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Motivation

Debugging and Testing Distributed Programs:

Global Breakpoints: stop the program when x1 + x2 > x3

Traces need to be analyzed to locate bugs.

Software Fault-Tolerance:

Distributed programs are prone to errors.
◮ Concurrency, nondeterminism, process and channel failures

Assumptions made on the environment may not hold

Software Quality Assurance:

Can I trust the results of the computation? Does it satisfy all required
properties?
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Modeling a Distributed Computation
A computation is (E , → ) where E is the set of events and →
(happened-before) is the smallest relation that includes:

e occurred before f in the same process implies e → f .

e is a send event and f the corresponding receive implies e → f .

if there exists g such that e → g and g → f , then e → f .
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[Lamport 78]
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Tracking Dependency
Problem: Given (E , → ), assign timestamps v to events in E such that
∀e, f ∈ E : e → f ≡ v(e) < v(f )
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Online Timestamps: Vector Clocks [Fidge 89, Mattern 89]:
all events: increment v [i ] after each event
send events: piggyback v with the outgoing message
receive events: compute the max with the received timestamp
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Dynamic Chain Clocks

Problem with vector clocks: scalability, dynamic process structure
Idea: Computing the “chains” in an online fashion [Aggarwal and Garg
PODC 05] for relevant events
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Figure : (a) A computation with 4 processes (b) The relevant subcomputation
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Optimal Offline Chain Decomposition

Antichain: Set of pairwise concurrent elements
Width (w): Maximum size of an antichain
Dilworth’s Chain Partition Theorem [Dilworth 50]: A poset of width w can
be partitioned into w chains and cannot be partitioned into fewer than w
chains.

b1 b2 b3

a1 a2 a3
Requires knowledge of complete poset
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Online Chain Decomposition

Elements of a poset presented in a total order consistent with the
poset

Assign elements to chains as they arrive

Can be viewed as a game between
◮ Bob: present elements
◮ Alice: assign them to chains

x u

y z

Up-growing online posets: new element has to be a maximal
element of the order presented so far
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Online Chain Decomposition for Up-growing Orders

Theorem (Felsner 97): The value of the on-line chain partition game for
up-growing orders of width w is

(

w+1
2

)

.
Theorem: There exists an efficient online algorithm for online chain
decomposition of up-growing orders that uses at most w2 chains with at
most O(w2) comparisons per event. [Aggarwal and Garg, PODC 05]

Use k sets of queues B1,B2, ...,Bw . The set Bi has i queues with the
invariant that no head of any queue is comparable to the head of any
other queue.

For a new element z , insert it into the first queue q in Bi with its
head less than z .

Swap remaining queues in Bi with queues in Bi−1.
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Online Chain Decomposition for General Posets

Open Problem 1: Give an algorithm for online chain decomposition on a
poset that requires at most polynomial number of chains in w .

Theorem (Szemerédi, 1982): The value of the on-line chain partition game
is at least

(

w+1
2

)

.
Theorem (Kierstead, 1981): The value of the on-line chain partition game
is at most (5w − 1)/4.
Theorem (Bosek and Krawczyk, 2009): The value of the on-line chain
partition game is at most w16∗lgw .
On-Line Chain Partitions of Orders: A Survey
Bartlomiej Bosek, Stefan Felsner, Kamil Kloch, Tomasz Krawczyk,
Grzegorz Matecki, Piotr Micek, Order, 2012.
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Consistent Global State (CGS) of a Distributed System
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Consistent global state = subset of events executed so far
A subset G of E is a consistent global state (also called a consistent cut )
if
∀e, f ∈ E : (f ∈ G ) ∧ (e → f ) ⇒ (e ∈ G )
[Chandy and Lamport 85]
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Global Snapshot Algorithms

white event: events executed before recording the local state
red event: events executed after recording the local state
Key idea:
Ensuring consistency: A process must be red to act on a red message
State of a channel: Record white messages received by red processes
Chandy-Lamport’s Algorithm for FIFO systems:

Marker Rule: send a marker on all outgoing channels on turning red
Mattern’s Algorithm for non-FIFO systems [Mattern 89]:

send the number of white messages sent along each channel

Message complexity: O(n2) for complete topology
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Reducing Message Complexity of Global Snapshot

Algorithms

Key idea: Do not send markers

Use a spanning tree to turn all processes red

Use the tree to compute the sum of all white messages sent

Use the Distributed Trigger Counting (DTC) protocol to detect when
all white messages have been received

Message Complexity is dominated by DTC protocol [Garg, Garg,
Sabharwal, TPDS 10]
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Distributed Trigger Counting (DTC) Problem

System: Completely connected topology
n processes
w triggers that arrive at these processes, w >> n

DTC Problem: Raise an alarm when all triggers have arrived
No Fake Alarms: Alarm is raised only when at least w triggers received.
No Dead State: If w triggers are received, then an alarm is raised

Naive Centralized Algorithm:
Send a message to a master node whenever a trigger arrives

Message Complexity: w
Maximum Receive Load: w
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Centralized Algorithm

Idea: send a message after B triggers
Use rounds with repeated halving.

ŵ = triggers not yet received
B := ⌈ŵ/(2n)⌉

Master starts the end of round when the count reaches ⌊ŵ/2⌋.
compute w ′ := all unreported triggers
recompute ŵ := ŵ − w ′ and B for the next round.

Claim: The algorithm does not have any dead state.
at most B − 1 unreported triggers per process.
⇒ at most ⌈ŵ/2⌉ − 1 total unreported triggers.
Reported triggers at Master ≤ ⌊ŵ/2⌋ − 1 .
Message Complexity: O(n logw)
Maximum Receive Load: O(n logw)
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LayeredRand Algorithm

n = (2L − 1) processors arranged in L layers
i th layer has 2i processors, i = 0 to L− 1.
Threshold for layer i , τ(i) = ⌈ŵ/4.2i . log(n + 1)⌉
C (x): sum of triggers received by x and some processors in layers below.
For non-root processor x at layer i :
if a trigger is received: C (x) + +;

if C (x) ≥ τ(i)
pick a processor y from level i − 1 at random and send a coin to y .
C (x) := C (x)− τ(i);

if a coin is received from level i + 1:
C (x) := C (x) + τ(i + 1).

Root r :maintains C (r)
If C (r) > ⌊ŵ/2⌋, initiate end-of-round procedure

Message Complexity: O(n log n logw)
Maximum Receive Load: O(log n logw)
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DTC Algorithms

Algorithm Message Complexity MaxRecvLoad

Centralized O(n · (log n + logw)) O(n · (log n+ logw))
LayeredRand O(n · log n · logw) O(log n · logw)
CoinRand O(n · (logw + log n)) O(logw + log n)
TreeFillRand O(n · log(w/n)) O(log(w/n))

[Chakaravarthy, Choudhury, Garg, Sabharwal 12] ,
TreeFill: [Kim, Lee, Park, Cho 13]

Lower Bound: [Garg, Garg, Sabharwal 10]
Message Complexity: O(n log(w/n))
MaxRecvLoad: O(log(w/n))

Notation: n: Number of processes, w : Number of triggers
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Distributed Trigger Counting

Open Problem 2: Give a deterministic algorithm for distributed trigger
counting that requires O(n log(w/n)) messages and has maximum receive
load of O(log(w/n)) .
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Global Predicate Detection

Predicate: A global condition expressed using variables on processes

e.g., more than one process is in critical section,
there is no token in the system

Problem: find a consistent cut that satisfies the given predicate

X Y

p1

p2

critical sections

The global predicate may express: a software fault or a global breakpoint
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Two interpretations of predicates

s1 s2
s3s0

t 3t 2t 1t 0

s
2 3

1

2

3

(0,0) 1

t

Possibly:Φ: exists a path from the initial state to the final state along
which Φ is true on some state
Definitely:Φ : for all paths from the initial state to the final state Φ is
true on some state
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Cooper and Marzullo’s Algorithm

[Cooper and Marzullo 91]
Implicit BFS Traversal
current: list of the global states at the current level.
Initially, current has only one global state, the initial global state
repeat

enumerate current;
last := current;
current = global states reached from last in one step;

until (current is empty)

Problem:
Space Complexity: need to store a level of the lattice – exponential in the
number of processes
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Lexical Enumeration of Consistent Global States

e1 e3

f1 f2 f3

e2

(b)
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BFS: 00, 01, 10, 11, 20, 12, 21, 13, 22, 23, 33

DFS: 00, 10, 20, 21, 22, 23, 33, 11, 12, 13, 01

Lexical: 00, 01, 10, 11, 12, 13, 20, 21, 22, 23, 33

(c)

(a)
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Algorithm for Lex Order

nextLex(G ): next consistent global state in lexical order
var

G : consistent global state initially (0, 0, ..., 0);
enumerate(G );
while (G < ⊤)

G := nextLex(G );
enumerate(G );

endwhile ;
No intermediate consistent global nodes stored [Garg PDCS 03]
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Computing next consistent global state in lexical order

Lemma

Given any global state K (possibly inconsistent), the set of all consistent
global states that are greater than or equal to K in the CGS lattice is a
sublattice.

Corollary

There exists a minimum consistent global state H that is greater than
or equal to a given global state K .

Notation

succ(G , k): advance along Pk and reset components for Pi (i > k) to
0.
e.g. succ(〈7, 5, 8, 4〉, 2) = 〈7, 6, 0, 0〉
succ〈7, 5, 8, 4〉, 3) is 〈7, 5, 9, 0〉.

leastConsistent(K ): the least consistent global state greater than or
equal to a given global state K in the ⊆ order.
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Computation of nextLex(G )

Theorem

nextLex(G ) = leastConsistent(succ(G , k))

where k is the index of the process with the smallest priority which has an
event enabled in G .
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Example: Let G = (4, 3, 3). Then k = 2, succ(G , k) = (4, 4, 0)
Therefore, nextLex(G ) = (4, 4, 1).
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Algorithm for Lex Order

nextLex(G ): next consistent global state in lexical order
var

G : consistent global state initially (0, 0, ..., 0);
enumerate(G );
while (G < ⊤)

k := smallest priority process with an event enabled in G
G := leastConsistent(succ(G , k))
enumerate(G );

endwhile ;
k , succ(G , k) and leastConsistent() can be computed in O(n2) time using
vector clocks.
[Garg03]
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Parallel and Online Algorithms

Partition the lattice into multiple interval sublattices
Assume that events arrive in a total order σ consistent with → .
for every event e

Gmin(e) = smallest consistent global state that contains e

Gbnd (e) = {f |σ(f ) ≤ σ(e)}

Theorem[Chang and Garg, PPoPP 14]: Consider the set of all interval
lattices, I (e),
{G |Gmin(e) ⊆ G ⊆ Gbnd (e)}.
These interval lattices are mutually disjoint and cover the entire lattice of
all consistent global states.
ParaMount: A parallel implementation for detecting predicates in
concurrent systems
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Summary of Enumeration Algorithms

Problem: Given a poset P , enumerate all its consistent global states.

Algorithm Time per Global State Space

Implicit BFS [Cooper, Marzullo 93] O(n3) exp. in n
Implicit DFS [Alagar, Venkatesan 01] O(n3) O(|P |)
Gray Code [Pruesse, Ruskey93] O(|P |) exp. in |P |
Ideal Tree [jegou95, habib01] O(∆(P)) O(|P |)
Lexical [Ganter, Reuter 91, Garg 03] O(n2) O(n)
QuickLex [Chang, Garg 15] O(n ·∆(P)) O(n2)

Notation:
P : poset,
n: width of the poset,
∆(P): maximum in-degree of any node in the Hasse Diagram of P
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CAT Enumeration Problem

Input: A distributed computation (a poset)
Output: Enumeration of all consistent global states of the computation.
Open Problem 3:
Is there an algorithm that takes constant amortized time for enumeration
of each consistent global state?
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Predicate Detection for Special Cases

Exploit the structure/properties of the predicate

stable predicate: [Chandy and Lamport 85]

once the predicate becomes true, it stays true

e.g., deadlock

observer independent predicate [Charron-Bost et al 95]

occurs in one interleaving =⇒ occurs in all interleavings

e.g., stable predicates, disjunction of local predicates

linear predicate [Chase and Garg 95]

closed under meet, e.g., there is no leader in the system

relational predicate: x1 + x2 + · · ·+ xn > k [Chase and Garg 95]
[Tomlinson and Garg 96]

e.g., violation of k-mutual exclusion
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Special Classes of Predicates
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Linearity

e

G H

Crucial Element crucial(G , e,B)
For a consistent cut G $ E and a predicate B , e ∈ E − G is crucial for G
if:

∀H ⊇ G : (e ∈ H) ∨ ¬B(H).

Linear Predicates A predicate B is linear if for all consistent cuts G $ E ,

¬B(G ) ⇒ ∃e ∈ E − G : crucial(G , e,B).

Theorem: [Chase and Garg 95] A predicate B is linear if and only if it is
meet-closed (in the lattice of all consistent cuts).
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Examples of Linear Predicates: Conjunctive Predicates

e

G H

mutual exclusion problem: (P1 in CS) and (P2 in CS)

missing primary: (P1 is secondary) and (P2 is secondary) and (P3 is
secondary)

Empty channels
If false, then it cannot be made true by sending more messages.
The next event at the receiver is crucial.

Channel has more than three red messages
The next event at the sender is crucial.
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Detecting Linear Predicates

(Advancement Property) There exists an efficient (polynomial time)
function to determine the crucial event.
Theorem: [Chase and Garg 95] Any linear predicate that satisfies
advancement property can be detected efficiently.
Example: A conjunctive predicate, l1 ∧ l2 ∧ . . . ∧ ln, where li is local to Pi .
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Relational Predicates: Binary Variables

Problem: Given (S , → )
B ≡ x1 + x2 + x3 . . . xn ≥ k
where xi resides on process Pi .
Example:
xi : Pi is using the shared resource.
Are there k or more processes using the resource concurrently?
Equivalent Problem: Is there an antichain H ⊆ S such that the size of H
it at least k and x is true on local states in H.

[Tomlinson and Garg 96]
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Relational Predicate Algorithm

Using Dilworth’s Chain Partition Theorem: k queues of vector clocks can
be merged into k − 1 queues iff there is no antichain of size k .
Theorem: Let the poset be presented as N queues of vector clocks. There
exists an efficient algorithm that can merge N queues into N − 1 queues in
an online fashion whenever possible.
[Tomlinson and Garg 96]
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Relational Predicates: Nonbinary Variables
Let xi : number of tokens at Pi

Σxi < k : loss of tokens
Algorithm: max-flow technique [Groselj 93, Chase and Garg 95],
Consistent cut with minimum value = min cut in the flow graph

max-flow conversion
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e
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294x2 = 9
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a b
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a b
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∞
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Efficient Distributed Online Detection Algorithms for

Relational Predicates

Input: An online computation (E , → )
A relational predicate B

Open Problem:
Design an efficient distributed online algorithm to detect if there exists a
consistent global state G in the computation such that G satisfies the
given relational predicate B .
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Computation Abstraction: Computation Slicing

slicing

computation

slice

retain all red
consistent cuts
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Computation Slice: Definition

Computation slice: a sub-computation such that:

1 it contains all consistent cuts of the computation satisfying the given
predicate, and

2 it contains the least number of consistent cuts

sub-computation
e.g.

computation
e.g.

{b}{c} {a, d}

a b

c d

e.g.

all sent messages have been received

predicate

Slicer
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Slicing Example

{d , f }

slicing

no messages in transit

f

d

b

{a, c}

{e}

a

c

e

P1

P2

P3

{b}
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Slicing Example (Contd.)

f

d
=⇒

ba

c

e

P1

P2

P3

{a, b, c , e}

{a}

{}

{a, e}

{e}

{a, c}{a, b}

{a, b, c} {a, b, e} {a, c , d} {a, c , e}

{a, c , d , e}{a, b, c , d}

{a, b, c , d , e} {a, c , d , e, f }

{a, b, c , d , e, f }
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Join-irreducible Elements

join-irreducible element: cannot be represented as join of two other
elements

{a, b, c , d , e, f }

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c , d} {a, c , e}

{a, c , d , e}{a, b, c , d}

{a, b, c , d , e} {a, c , d , e, f }

{a, b, c , e}

{e}

A join-irreducible element has exactly one incoming edge
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Birkhoff’s Representation Theorem

Theorem

A distributive lattice can be recovered exactly from the set of its
join-irreducible elements.

Y

Z

⇐⇒

X

Y

Z

U

W

V

WU

X

V

{a, b, c , d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c , d} {a, c , e}

{a, c , d , e}{a, b, c , d}

{a, b, c , d , e} {a, c , d , e, f }

{a, b, c , e}

All elements can be represented as join of some join-irreducible elements.
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Representing a Sublattice

Theorem

A sublattice of a distributive lattice is also a distributive lattice.

A sublattice has a succinct representation.

Z {d , f }

⇐⇒ ⇐⇒

W X

Z

Y

{b}

{e}X

YW {a, c}

{a, b, c , d , e, f }

{e}{a, c}

{a, b, c}

{a, c , d , e, f }

{}

{a, c , e}

{a, b, c , e}
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Computing the Slice

Algorithm:

1 Find all consistent cuts that satisfy the predicate

2 Add consistent cuts to complete the sublattice

3 Find the join-irreducible elements of the sublattice

Can we find the join-irreducible elements without computing the sublattice?
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Computing the Slice for Regular Predicate

x

z

vu

w

y

P1

P2

P3

B = “no messages in transit”

Algorithm: For every event e ∈ E , compute J(e) defined as:
(1) J(e) contains e
(2) J(e) satisfies B
(3) J(e) is the least consistent cut satisfying (1) and (2)
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Slicing Example

x

z

vu

w

y

P1

P2

P3

J(u) = J(w)

J(u) = {u,w}
J(v) = {u, v ,w}
J(w) = {u,w} (duplicate)
J(x) = {u,w , x , y , z}
J(y) = {y}
J(z) = {u,w , x , y , z} (duplicate)
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How does Computation Slicing Help?

slicing cuts that satisfy b1

computation

slice for b1

detect b1 ∧ b2

detect b2

retain all consistent

satisfy b1
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Results on Slicing

Efficient polynomial-time algorithms for computing the slice for:

general predicate:
Theorem: Given a computation, if a predicate b can be detected
efficiently then the slice for b can also be computed efficiently.
[Mittal, Sen and Garg TPDS 07]

Temporal Logic Operators: EF, AG, EG [Sen and Garg OPODIS 03]

Approximate slice: For arbitrary boolean expression [Mittal and Garg
DC 05]

Distributed Abstraction Algorithm: Online Slicing Algorithm
[Chauhan, Garg, Natarajan, Mittal SRDS13]
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Efficient Computation Abstraction

Input: an online distributed computation (E , → )
A predicate B

Open Problem: Give an efficient algorithm to compute an abstraction of
(E , → ) with respect to B when B is not a regular predicate.
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Monitoring Temporal Logic Formulas

Motivation: Detect formulas with polynomial time complexity
polynomial in the size of the computation, not the size of the formula

Basis Temporal Logic: Syntax
AP : Set of Atomic Propositions
Atomic Propositions are evaluated on a single global state.
A predicate in BTL is defined recursively as follows:

1 ∀l ∈ AP , l is a BTL predicate

2 If P and Q are BTL predicates then P ∨ Q, P ∧ Q, ♦P and ¬P are
also BTL predicates

Example:B = ¬♦(
∧

redi ) ∧ token0
[Ogale and Garg, DISC 07]
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Basis Temporal Logic: Semantics

(E , → ): Poset (distributed computation)
L: Lattice of consistent global states of (E , → )
C : A consistent global state of (E , → )
λ : L → 2AP set of atomic propositions true in any consistent global state

(C , L, λ) |= l ⇔ l ∈ λ(C ) for an atomic proposition l

(C , L, λ) |= P ∧Q ⇔ C |= P and C |= Q

(C , L, λ) |= P ∨Q ⇔ C |= P or C |= Q

(C , L, λ) |= ¬P ⇔ ¬(C |= P)

(C , L, λ) |= ♦P ⇔ ∃C ′ ∈ L : (C ⊆ C ′ and C ′ |= P)
There exists a future consistent global state in which P is true.
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Basis of a Predicate

Given a computational lattice L, corresponding to a computation E , and a
predicate P , a subset S [P ] of L is a basis of P if

1 Compactness: The size of S [P ] is polynomial in the size of
computation E .

2 Efficient Membership: Given any consistent global state C ∈ L, there
exists a polynomial time algorithm that takes S [P ], E and C as input
and determines whether (C , L) |= P .

Examples

Order Ideal Predicate: P is true in G iff G ⊆ W
Sufficient to keep the largest CGS G that satisfies P

Regular Predicate:
Sufficient to keep the slice (or join-irreducibles) of (E , → ) with
respect to P
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Semiregular Predicates

P is a semiregular predicate if it can be expressed as a conjunction of a
regular predicate with a stable predicate.
Examples:

All processes are never red concurrently at any future state and
process P0 has the token. That is, P = ¬♦(

∧

redi ) ∧ token0.

At least one process is beyond phase k (stable) and all the processes
are red.

claim: All regular predicates and stable predicates are semiregular.
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Properties of Semiregular Predicates

A semiregular predicate is join-closed
regular and stable predicates are join-closed

if P and Q are semiregular then so is P ∧ Q.
both regular and stable predicates are closed under conjunction

If P is a semiregular predicate then ♦P and �P are semiregular.
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Semiregular Structure

A semiregular structure, g , is a tuple (〈slice,I〉) consisting of a slice and a
stable structure, such that
the predicate is true in cuts that belong to their intersection.
C ∈ g ⇔ (C ∈ slice) ∧ ¬(C ∈

⋃

I∈I I ).
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Algorithm to Detect BTL formulas

[Ogale and Garg 2007]
Key Idea: Recursively compute basis for the given BTL formula

Theorem

The total number of ideals |I | in the basis computed by the algorithm to
detect a BTL predicate P with k operators is at most 2k

Theorem

The time complexity of the algorithm to detect a BTL formula is
polynomial in the number of events (|E |) and the number of processes (n)
in the computation.
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Monitoring for Temporal Logic Formula

Input: An online distributed computation (E , → )
A temporal logic formula Φ

Open Problem 6:
Give an online algorithm to detect violation of Φ in (E , → ).

Sample Related Work:
[Fromentin, Raynal, Tomlinson, Garg ICPP 94]:

Regular Expressions, LRDAG
[Sen, Vardhan, Agha, Rosu ICSE 04]:

Past-Time Distributed Temporal Logic
[Ogale, Garg DISC 07]:

Basis Temporal Logic
[Mostafa, Bonakdarpour, IPDPS 15]:

3-valued LTL
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Talk Outline

1 Online Chain Decomposition

2 Global Predicate Detection
Distributed Trigger Counting
Enumerating Consistent Global States
Detecting Special Classes of Predicates

3 Monitoring for Temporal Logic Formulas
Computation Slicing
Detecting temporal logic formulas

4 Controlled Reexecution
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Motivation for Control

Who controls the past controls the future, who controls the present
controls the past...

George Orwell,
Nineteen Eighty-Four.

maintain global invariants or proper order of events
Examples: Distributed Debugging

ensure that busy1 ∨ busy2 is always true
ensure that m1 is delivered before m2

maintain ¬CS1 ∨ ¬CS2

Fault tolerance
On fault, rollback and execute under control

Adaptive policies
procedure A (B) better under light (heavy) load
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Models for Control

Is the future known ?
Yes: offline control

applications in distributed debugging, recovery, fault tolerance..
No: online control
applications: global synchronization, resource allocation

Delaying events vs Changing order of events vs Choosing Events
supervisor simply adds delay between events
supervisor changes order of events
supervisor chooses an event to execute
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Delaying events: Offline control

P1

P0

Maintain at least one of the process is not red
Can add additional arrows in the diagram such that the control relation
should not interfere with existing causality relation
(otherwise, the system deadlocks)
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Delaying events: Offline control

P0

P1

P0

P1

Problem:
Instance: Given a computation and a boolean expression B of local

predicates
Question: Is there a non-interfering control relation that maintains B

This problem is NP-complete [Tarafdar and Garg DISC 97]
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Controlled Re-execution

a c

bd

a c

bd

p1

p2

X

p1

p2

X

critical sections

Add the control necessary to maintain correctness properties

e.g., mutual exclusion

Efficient algorithms for computing the synchronization for:
Locks [Tarafdar, Garg DISC98]

◮ time-complexity: O(nm)

disjunctive predicate [Mittal, Garg PODC00]

e.g., (n − 1)-mutual exclusion
◮ time-complexity: O(m2)
◮ minimizes the number of synchronization arrows

region predicate [Mittal, Garg PODC00]

e.g., virtual clocks of processes are “approximately” synchronized
◮ time-complexity: O(nm2)
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Choosing Events at Runtime

Assume that the languages supports the construct or.
Semantics: the program is correct irrespective of which choice is made
Examples:

A.quicksort() or A.insertsort();
A.foo-version1(size) or A.foo-version0(size);
(item := Queue1.remove() or (item := Queue2.remove());
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Controlling Distributed Computation

Input: An online distributed computation (E , → )
a desired temporal logic predicate Φ

Open Problem 7: Synthesize control such that the controlled computation
satisfies Φ
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Summary

Constructing computation

Online Chain Decomposition

Global Predicate Detection

Distributed Trigger Counting

Enumerating Consistent Global States

Online Detection of Relational Predicates

Monitoring for Temporal Logic Formulas

Computation Abstraction Algorithms

Runtime monitoring for temporal logic formulas

Efficient Control

Runtime control to ensure temporal logic formulas
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Background Information

Elements of Distributed Computing Wiley & Sons 2002
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