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Abstract

Checking the correctness of software is a growing challenge. In this paper, we present
a prototype implementation of Partial Order Trace Analyzer (POTA), a tool for
checking execution traces of both message passing and shared memory programs
using temporal logic. So far runtime verification tools have used the total order
model of an execution trace, whereas POTA uses a partial order model. The partial
order model enables us to capture possibly exponential number of interleavings and,
in turn, this allows us to find bugs that are not found using a total order model.
However, verification in partial order model suffers from the state explosion problem

the number of possible global states in a program increases exponentially with
the number of processes.

POTA employs an effective abstraction technique called computation slicing. A
slice of a computation (execution trace) with respect to a predicate is the compu-
tation with the least number of global states that contains all global states of the
original computation for which the predicate evaluates to true. The advantage of
this technique is that, it mitigates the state explosion problem by reasoning only on
the part of the global state space that is of interest. In POTA, we implement com-
puting slicing algorithms for temporal logic predicates from a subset of CTL. The
overall complexity of evaluating a predicate in this logic upon using computation
slicing becomes polynomial in the number of processes compared to exponential
without slicing.

We illustrate the effectiveness of our techniques in POTA on test cases such as
the General Inter-ORB Protocol (GIOP) [18]. POTA also contains a module that
translates execution traces to Promela [16] (input language SPIN). This module
enables us to compare our results on execution traces with SPIN. In some cases, we
were able to verify traces with 250 processes compared to only 10 processes using
SPIN.
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1 Introduction

A fundamental problem in distributed systems is that of predicate detection

detecting whether a finite execution trace of a distributed program satis-
fies a given predicate. There are applications of predicate detection in many
domains such as testing, debugging, and monitoring of distributed programs.
For example, when debugging a distributed mutual exclusion algorithm, it
is useful to monitor the system to detect concurrent accesses to the shared
resources.

A finite trace can be modeled in two ways. The first model imposes a
partial order between events, for example Lamport’s happened-before relation
[20]. The second model imposes a total order (interleaving) of events. We use
the former approach in this paper, which is a more faithful representation of
concurrency [20].

Consider an execution of a distributed program. The partial order model
of the resulting execution trace is shown in Figure [[[(a). In the trace, there
are two processes P, and P, with integer variables = and y, respectively. The
events are represented by solid circles. Process P, sends a message to process
P, by executing event f; and process P, receives that message by executing
event e;. Each event is labeled with the value of the respective variable imme-
diately after the event is executed. For example, the value of x immediately
after executing e; is 2. The first event on each process initializes the state
of the process. The set of all global states reachable from the initial state
{eq, fo} is displayed in Figure [(b). In the figure, we represent a global state
as a tuple where each element is the last event that occurred on a process.
Observe that {eq, fo} is not a reachable global state because it depicts a sit-
uation where a message has been received from P, by P, that is e;, but P,
has not yet sent the message. By using a partial order representation, we are
able to capture all possible interleavings of events, namely ten in total, rather
than a single interleaving. One such interleaving sequence is {eq, fo}, {€o, f1},
{er, f1}, {ea, [1}, {es, f1}, {es, fo}, {es, f3} as shown in Figure[dl(b) with thick
lines. Therefore we can obtain better coverage in terms of testing and debug-
ging by capturing all interleavings. This coverage may translate into finding
bugs that are not found using a single interleaving.

The main problem in predicate detection in the partial order model is
the state explosion problem—the set of possible global states of a distributed
program with n individual processes can be of size exponential in n. A vari-
ety of strategies for ameliorating the state explosion problem, including sym-
bolic representation of states and partial order reduction have been explored
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Fig. 1. (a) A computation (b) its set of all reachable global states (c) its slice with
respect to (2 < x < 4)A(y # 2) (d) its slice with respect to EF((2 < 2 < 4)A(y # 2))

In this paper, we present a prototype implementation of Partial Order
Trace Analyzer (POTA) tool for checking execution traces of distributed pro-
grams. POTA consists of an instrumentation module, a translator module
that translates execution traces into Promela [I6] (SPIN input language) and
an analyzer module. The use of an effective abstraction technique called com-
putation slicing for temporal logic verification is the most significant aspect
of POTA and constitutes the analyzer module.

Computation slicing was introduced in [[T24] as an abstraction technique
for analyzing distributed computations (finite execution traces). A computa-
tion slice, defined with respect to a global predicate, is the computation with
the least number of global states that contains all global states of the original
computation for which the predicate evaluates to true. Slicing can be used
to throw away the extraneous global states of the original computation in an
efficient manner, and focus on only those that are currently relevant for our
purpose.

Using the results in [IT24] and [28], we can efficiently use computation
slicing for the subset of CTL [ with the following three properties. First,
temporal operators are EF, EG, and AG and boolean operators are con-
junction and disjunction. Second, atomic propositions are regular predicates,
which we will define later. Third, negation operator has been pushed onto
atomic propositions. We call this logic Regular CTL plus (RCTL+4), where
the plus denotes that the disjunction and negation operators are included in
the logic. We also consider a disjunction and negation free subset of RCTL+
and denote this by Regular CTL (RCTL). In RCTL+, we use the class of pred-
icates, called regular predicates, that was introduced in [II]. The slice with
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respect to a regular predicate contains precisely those global states for which
the predicate evaluates to true. Regular predicates widely occur in practice
during verification. Some examples of regular predicates are conjunction of
local predicates [TOIT7] such as “all processes are in red state”, certain channel
predicates [I0] such as “at most k messages are in transit from process P; to
P;”, and some relational predicates [I0].

To illustrate predicate detection using computation slicing, consider the
computation in Figure[l(a). Let p = (2 <2 <4) A (y # 2), and suppose we
want to detect EF(p). Without computation slicing, we are forced to examine
all global states of the computation, thirteen in total, to decide whether the
computation satisfies the predicate. Alternatively, we can compute the slice
of the computation with respect to regular predicate EF(p) and use this slice
for predicate detection. For this purpose, first we compute the slice with
respect to the atomic proposition p as follows. Immediately after executing
f2, the value of y becomes 2 which does not satisfy y # 2. To reach a global
state satisfying y # 2, f3 has to be executed. In other words, any global
state in which only f; has been executed but not f3 is of no interest to us
and can be ignored. The slice is shown in Figure [(c). It is modeled by a
partial order on a set of meta-events; each meta-event consists of one or more
“primitive” events. A global state of the slice either contains all the events in
a meta-event or none of them. Moreover, a meta-event “belongs” to a global
state only if all its incoming neighbours are also contained in the state. The
slice contains only four states C', D,V and W and has much fewer states than
the computation itself — exponentially smaller in many cases — resulting in
substantial savings. Using the slice in Figure [M(c), we can obtain the last
state that satisfies p in the computation, which is denoted by W. We also
know from the definition of EF(p) that every global state of the computation
that occurs before W satisfies EF (p), e.g. states enclosed in the dashed ellipse
in Figure[[(b). Therefore, applying this observation we can compute the slice
with respect to EF (p) as shown in Figure[[(d). Finally, we check whether the
initial state of the computation is the same as the initial state of the slice. If
the answer is yes then the predicate is satisfied, otherwise not.

POTA implements predicate detection algorithms for RCTL and RCTL+
which use computation slicing. We show in [28], that the complexity of pred-
icate detection for a predicate p in RCTL is O(|p| - n?|E|), where |p| is the
number of boolean and temporal operators in p and F is the total number of
events. To the best of our knowledge, there did not exist tools that imple-
ment efficient algorithms (polynomial in the number of processes) to detect
predicates that contain nested temporal logic predicates. An example of a
nested predicate is AG(EF (reset)), which states that reset is possible from
every state. Furthermore, we validate with experiments that even for RCTL~+
predicates our computation slicing based technique is very effective.

We performed experiments using POTA on several protocols. We also used
the POTA translator module to enable comparison with SPIN on execution
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traces. In fairness, SPIN is designed for checking correctness of programs and
not traces. However, to the best of our knowledge it is the best distributed
program verification tool we can use for our partial order models. Some of
the protocols we used for experiments are the General Inter-ORB Protocol
(GIOP) [18] and the primary secondary protocol [B2]. GIOP is a central
feature of the Common Object Request Broker Architecture (CORBA) that
aids in achieving the desired interoperability between ORBs. The CORBA
specification defines a standard protocol to allow communication of object in-
vocations between ORBs. Kamel and Leue [I8] could not fully verify a model
of GIOP with 10 processes. Instead, they verified a simplified version of the
protocol without server migration functionality. In one case, we generated
execution traces of unsimplified GIOP protocol for a configuration with 250
processes. However, even with an execution trace input, SPIN failed to com-
plete verification with more than 10 processes. We also injected faults into
the protocol and analyzed the resulting execution traces. With SPIN, we used
bit-state hashing approximation option to handle larger number of processes,
but in this case SPIN failed to find the faults before running out of memory.
However, POTA was able to find the faults easily. In all cases, our algorithms
are significantly faster and space efficient than SPIN. We have measured over
three orders of magnitude gain over SPIN in some experiments.

Computation slicing can indeed be used to facilitate predicate detection
even for a larger class of predicates than RCTL+ as illustrated by the fol-
lowing example. Consider a predicate p that is a conjunction of two clauses
p1 and po. Now, assume that p; is such that it belongs to RCTL+ but p,
has no structural property that can be exploited for efficient detection, such
as, (z1 * xo + x3 > x4), where z; is an integer variable on process i. To
detect p, without computation slicing, we are forced to use global-state-space-
construction-based approaches, which do not take advantage of the fact that
p1 can be detected efficiently. With computation slicing, however, we can first
compute the slice for p;. If only a small fraction of global states satisfy py,
then instead of detecting p in the computation, it is much more efficient to
detect p in the slice. Therefore by spending only polynomial amount of time
in computing the slice we can throw away exponential number of global states,
thereby obtaining an exponential speedup overall.

2 Related Work

Predicate detection is a hard problem. Detecting even a 2-CNF predicate
under EF modality has been shown to be NP-complete, in general [25].
Predicate detection is a widely-studied problem. There are three major
approaches to solving predicate detection: global-snapshot-based approach
[2], global-state-space-construction-based approach (including model check-
ing) [, and predicate-restriction-based approach [I0]. The first approach
can detect only stable predicates (which remain true once they become true),
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and the second approach suffers from the state explosion problem. We fol-
low the predicate-restriction-based approach that exploits the structure of the
predicate and directly uses the computation to detect if the predicate is satis-
fied in a global state. Some examples of the predicates for which the predicate
detection can be solved efficiently are: conjunctive [TOUTT], disjunctive [I0],
stable |2, observer-independent [BUT0], linear [T29], and non-temporal regu-
lar [TT24] predicates. These predicate classes have been so far detected under
some or all of the temporal operators EF, EG, AG, AF and under the until
operator of CTL [29], but not under any nesting of these operators. For ex-
ample, a predicate EF(p AEG(q)), where p and ¢ are conjunctive predicates,
cannot be efficiently detected using only the efficient algorithms for conjunc-
tive predicates. In POTA, we can detect such nested temporal logic predicates
efficiently.

The idea of using temporal logic for analyzing execution traces (also re-
ferred to as runtime verification) has recently been attracting a lot of attention.
We first presented a temporal logic framework for partially ordered execution
traces in [29 and gave efficient algorithms for predicates of the form EG(p)
and AG(p) when p is a linear predicate. The efficiency of those algorithms
depended on the fact that p was a state predicate and therefore we could effi-
ciently evaluate the satisfiability of p at a global state. However, in this paper
we present implementation of efficient algorithms even when p is a temporal
predicate.

Some other examples of using temporal logic for checking execution traces
are the commercial Temporal Rover tool (TR) [, the MaC tool [19], the
JPaX tool [15], and the JMPaX tool [30]. TR allows the user to specify the
temporal formula in programs. These temporal formula are translated into
Java code before compilation. The MaC and JPaX tools consider a totally
ordered view of an execution trace and therefore can potentially miss bugs
that can be deduced from the trace.

JMPaX tool is closer to POTA because of the partial order trace model.
The differences in both approaches can be summarized as follows. JMPaX
uses a subset of temporal logic with safety where atomic propositions can be
arbitrary. Whereas POTA uses a subset of temporal logic with both safety
and liveness where atomic propositions are restricted. The complexity of the
predicate detection algorithm in POTA is polynomial-time in the number of
processes whereas the complexity can be exponential-time in the number of
processes (as large as the width of the lattice of global states) in JMPaX.

3 Overview of POTA Architecture

The overall structure of POTA architecture is shown in Figure @I The tool
consists of 3 main modules; analyzer, translator, and instrumentor.

The analyzer module contains our computation slicing and predicate de-
tection algorithms. Given an execution trace and a predicate (specification)
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Fig. 2. Overview of POTA Architecture

in RCTL+4, the computation slice may contain more states than the ones that
satisfy the predicate. Therefore, the analyzer module uses the following strat-
egy to decide whether the predicate is satisfied or not. Case 1, if the slice
and the input trace have different initial states then the predicate is not sat-
isfied. In this case a counterexample is generated. Case 2, if the predicate
is from RCTL and the slice and the input trace have the same initial states
then the predicate is satisfied. Case 3, when the predicate does not belong
to RCTL (that is, it contains disjunction or negation operators) and the slice
and the input trace have the same initial states then we have to take an extra
step. This is because the initial state of the slice may not satisfy the predi-
cate. Therefore, we employ the translation module and translate the slice into
Promela [I6] (input language of SPIN). Then we use SPIN to check the trace
assuming that there are equivalent specifications in LTL.

The translator module takes a partial order representation of a trace and
generates output in specific languages. This module serves two purposes; to
enable comparison of our slicing technique with other techniques such as par-
tial order reduction and to enable verification of predicates that do not belong
to RCTL but for which we can take advantage of computation slicing. The
latter purpose is served when the predicate belongs to RCTL+ as explained
in Case 3 in the above paragraph or when the predicate is a conjunction
of predicates where one of the conjuncts belong to RCTL+ as explained in
the introduction. Since we are working with distributed programs which ex-
hibit a lot of parallelism and independency, partial order reduction techniques
can take advantage of these properties of distributed programs. The SPIN
model checker contains implementation of partial order reduction techniques.
Currently, translation from traces to Promela is supported. The translation
mechanism is similar to the technique explained in [ZI] for translations from
message sequence charts (MSC) to Promela.

The instrumentation module inserts code at the appropriate places in the
program to be monitored. The instrumented program is such that it outputs
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the values of variables relevant to the predicate in question and keeps a vector
clock that is updated for each internal, send and receive event according to the
Fidge/Mattern algorithm [Q22]. We use the vector clock to obtain a partial
order representation of traces.

Upon running the instrumented program a separate log file for each process
is generated. Each log file consists of a sequence of local states that a process
goes through. Each local state contains the values of variables relevant to the
predicate being verified and a vector clock. Log files for every process are then
combined to obtain a partial order representation of the execution trace.

Instead of using a log file, if every process sends its trace to a dedicated
process which combines them during runtime, we can obtain an on-line veri-
fication environment.

Currently, programs are manually instrumented. We conducted experi-
ments with Java and Promela programs. For SPIN programs, we insert code
into Promela programs and also made changes to the SPIN source code so that
we can obtain a partial order model when we run SPIN in simulation mode
with the option for generating a message sequence chart output. SPIN’s MSC
output is by default a total ordered execution. However, we observed from
this MSC output that there are unnecessary dependencies therefore events
do not need to be totally ordered such as request messages from two differ-
ent processes sent, to two different servers do not need to be totally ordered.
We are in the process of choosing an appropriate instrumentation technique
for Java programs. The choice is between Java JDI as in [I] or byte code
instrumentation as in JPaX.

4 Model

A distributed program consists of n processes denoted by Py, Py, ..., P,. Tra-
ditionally, a distributed computation is modeled as a partial order on a set
of events, called happened-before relation [20]. The happened-before relation
between any two “primitive” events e and f can be formally stated as the
smallest relation such that e happened-before f if and only if e occurs be-
fore f in the same process, or e is a send of a message and f is a receive of
that message, or there exists an event ¢ such that e happened-before g and
g happened-before f. In this paper we relax the restriction that the order
on events must be a partial order. More precisely, we use directed graphs to
model distributed computations as well as slices. Directed graphs allow us to
handle both of them in a uniform and convenient manner. Furthermore, we
can extend the happened-before relation to read and write events of shared
variables as in [30].

Given a directed graph G, let V(G) and E(G) denote the set of vertices
and edges, respectively. We define a consistent cut (global state) on directed
graphs as a subset of vertices such that if the subset contains a vertex then
it contains all its incoming neighbours. Formally, C is a consistent cut of G,
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if Ve, f € V(G) : (e, f) € E(G) A (f € C) = (e € C). We say that a strongly
connected component is non-trivial if it has more than one vertex. We denote
the set of consistent cuts of a directed graph G by C(G). Observe that the
empty set () and the set of vertices V(G) trivially belong to C(G). We call them
trivial consistent cuts. We use P(G) to denote the set of pairs of vertices (u, v)
such that there is a path from u to v in (G. We assume that each vertex has
a path to itself.

by (E,—), as a directed graph with vertices as the set of events E and edges
as —. We use event and vertex interchangeably. To limit our attention to only
those consistent cuts that can actually occur during an execution, we assume
that P((E, —)) contains at least the Lamport’s happened-before relation [20]
. A distributed computation in our model can contain cycles. This is because
whereas a computation in the happened-before model captures the observable
order of execution of events, a computation in our model captures the set of
possible consistent cuts. Intuitively, each strongly connected component of a
computation can be viewed as a meta-event; a meta-event consists of one or
more primitive events.

We assume the presence of a fictitious global initial and a global final event,
denoted by | and T, respectively. The global initial event occurs before any
other event on the processes and initializes the state of the processes. The
global final event occurs after all other events on the processes. Any non-trivial
consistent cut will contain the global initial event and not the global final
event. Therefore, every consistent cut of a computation in traditional model
(happened-before model) is a non-trivial consistent cut of the computation
in our model and vice versa. Note that the empty consistent cut, (), in the
traditional model corresponds to { L} in our model and the final consistent
cut, E, in the traditional model corresponds to £ — {T} in our model and we
denote this by £. We use uppercase letters C', D, H, V., and W to represent
consistent cuts.

Figure Bl shows a computation and its lattice of (non-trivial) consistent
cuts. A consistent cut in the figure is represented by its frontier. For example,
the consistent cut C' = {es, s, €1, fo, f1, L} is represented by {es, fs}.

Initially x=0, y=0
(a

Fig. 3. (a) A computation (E,—) (b) and its lattice corresponding to C(G)

Given a consistent cut, a predicate is evaluated with respect to the values
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of variables resulting after executing all events in the cut. If a predicate p
evaluates to true for a consistent cut C', we say that C' satisfies p. We leave
the predicate undefined for the trivial consistent cuts.

5 Background on Slicing

The notion of computation slice is based on the Birkhoff’s Representation
Theorem for Finite Distributive Lattices [6]. The readers who are not familiar
with earlier papers on computation slicing are urged to read the extended
version of the paper from [27].

5.1 Computation Slice

Roughly speaking, a computation slice (or simply a slice) is a concise rep-
resentation of all those consistent cuts of the computation that satisfy the
predicate. More precisely,

Definition 5.1 [slice [24]] A slice of a computation with respect to a predicate
is a directed graph with the least number of consistent cuts that contains all
consistent cuts of the given computation for which the predicate evaluates to
true.

We denote the slice of a computation (E, —) with respect to a predicate
p by slice((E, —),p). Note that (E, —) = slice((E, —), true). It was proven
in [24] that the slice exists and is uniquely defined for all predicates. Every
slice derived from the computation (F,—) has the trivial consistent cuts ()
and E) among its set of consistent cuts. A slice is empty if it has no non-
trivial consistent cuts [24]. In the rest of the paper, unless otherwise stated,
a consistent cut refers to a non-trivial consistent cut. In general, a slice will
contain consistent cuts that do not satisfy the predicate (besides trivial con-
sistent cuts). In case a slice does not contain any such cut, it is called lean.
We next give the class of predicates for which the slice is lean.

6 Regular Predicates

Given a computation, the set of consistent cuts satisfying a regular predi-
cate forms a sublattice of the set of consistent cuts of the computation [TT].
Equivalently,

Definition 6.1 [regular predicate [24]] A predicate is regular if given two
consistent cuts that satisfy the predicate, the consistent cuts obtained by
their set union and set intersection also satisfy the predicate. Formally, given
a regular predicate p,

(C satisfies p) A (D satisfies p) = (C N D satisfies p) A (C U D satisfies p)

We say that a regular predicate is non-temporal if it does not contain
temporal operators such as EF, AG, and EG, otherwise it is a temporal
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regular predicate. In [I1] polynomial-time algorithms are given for computing
slices for non-temporal regular predicates. In [28], we showed that EF(p),
AG(p), and EG(p) are temporal regular predicates when p is regular and
gave polynomial-time algorithms to compute these slices, which we will briefly
explain in the next section.

Some examples of non-temporal regular predicates are monotonic channel
predicates such as “there are at least & messages in transit from FP; to P;”,
conjunction of local predicates such as “P; and P; are in critical section”,
and relational predicates such as z; — x9 < 5, where x; is a monotonically
non-decreasing integer variable on process 7. From the definition of a regular
predicate we deduce that a regular predicate has a least satisfying cut and a
greatest satisfying cut. Furthermore, the class of regular predicates is closed
under conjunction.

Also in [24] polynomial-time algorithms are given to compute slices with
respect to boolean combination of regular predicates. Given the slices with
respect to two regular predicates, the complexity of computing the slice for
the conjunction and disjunction of these regular predicates is O(n?|E|). The
complexity of computing the slice for the negation of a regular predicate is
O(n?*/E|?). Note that regular predicates are not closed under disjunction and
negation operators therefore slices obtained with respect to predicates that
contain these operators may not be lean.

6.1 RCTL+ Syntax and Semantics

We define successor of a cut by a relation > C C(G) x C(G) such that C> D if
and only if D = C'Ue, where ¢ is the set of vertices in some strongly connected
component in (F,—) and e N C' = (). We denote the reflexive closure of this
relation by >. A consistent cut sequence Cy,C,...,Cy of (C(G), C) satisfies
that for each 0 <1 < k, C; > C;1. We say that a cut D is reachable from a
cut Cif C C D.

Propositional temporal logics use a finite set of atomic propositions AP,
each one of which represents some property of the global state. A labeling
function \: C(G) — 24 assigns to each global state the set of predicates from
AP that hold in it. In this paper we assume that atomic propositions are
non-temporal regular predicates and their negations.

The formal syntax of RCTL+ is given below.

e Every predicate ap € AP is an RCTL+ formula.

o If p and ¢ are RCTL+ formulas, then so are pV q, p A q, EF(p), EG(p),
and AG(p).

Given a finite distributive lattice L = (C(G), €), the formulas of RCTL+
are interpreted over the consistent cuts in C(G). Let p be an RCTL+ formula
and C be a consistent cut in C(G). Then, the satisfaction relation, L,C' = p
means that predicate p holds at consistent cut C in lattice L = (C(G), C) and
is defined inductively below. We denote C' |= p as a short form for L, C' [ p,
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when L is clear from the context.

e C =apiff ap € A(C) for an atomic proposition ap.

o C =pAqiff C =pand C Eq.

o C =pVqiff either C =por C | q.

e C' = EG(p) iff for some consistent cut sequence Cy, ..., Cy such that (i)
Co=C, (it) Cr =&, (iii) C;> Cyyq for 0 < i < k, we have (iv) C; = p for all
0<i<k.

o C' = AG(p) iff for all consistent cut sequences Cy, ..., Cy such that (i)
Co = C, (ii) Cr = &, (ii1) C; > Ciyq for 0 < i < k, we have (iv) C; = p for all
0<i<k.

e C' = EF(p) iff for some consistent cut sequence Cy, ..., Cy such that (i)
Co = C, (i1) Cp, = &, (ii1) C;»> Ciyq for 0 < i < k, we have (iv) C; = p for
some 0 <1 < k.

We define L = p if and only if L,{L} = p. The formula C | AG(p)
(resp. C = EG(p)) intuitively means that for all consistent cut sequences
(resp. for some consistent cut sequence) C,..., &, p holds at every cut of the
sequence. The formula C' = EF(p) intuitively means that for some consistent
cut sequence C, ..., &, there exists a consistent cut that satisfies p.

We define RCTL as the subset of RCTL+ where disjunction and negation
operators are not allowed.

The predicate detection problem is to decide whether the initial consistent
cut of a distributed computation satisfies a predicate.

7 Algorithms for Computing Slices for Temporal Pred-
icates

Our distributed program analysis tool POTA uses computation slicing for
predicate detection. Mittal and Garg [24] also used computation slicing for
efficient detection of predicates of the form EF(p), EG(p), AG(p) for non-
temporal regular p. However, their predicate detection algorithm is based on
computing slices for non-temporal regular predicates. Therefore, it cannot
be used for detecting nested temporal predicates such as AG(p) when p is a
temporal predicate like p = EF(q). In this section, we explain our slicing algo-
rithms from [28)] for temporal regular predicates to enable efficient predicate
detection for RCTL+ which also includes nested temporal predicates.

The slice of a computation with respect to a temporal predicate is the
smallest computation that contains all consistent cuts of the given computa-
tion for which the predicate holds. We proved in [2§] that temporal predicates
EF(p), EG(p), and AG(p) are regular for regular p. Therefore, the slices for
these temporal predicates are lean.

The input to each algorithm in this section is a computation (E, —) and its
slice with respect to a regular predicate p, that is, slice((E, —), p). The output
of each algorithm is an application of a temporal operator on the slice. For
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example, in order to generate a slice with respect to AG(EF(p)), where p is a
non-temporal regular predicate, we can use the slicing algorithms explained in
this section as follows: First, we compute the slice for p using the algorithms
in [TT24] for non-temporal regular predicates. Then, we give this slice and
the computation to the EF slicing algorithm to obtain slice((E, —), EF(p)).
Finally, the output of EF slicing algorithm and the computation is given as
an input to AG slicing algorithm to obtain slice((E, —), AG(EF(p))).

Since the consistent cuts of the slice of a computation is a subset of con-
sistent cuts of the computation, the slice can be obtained by adding edges to
the computation. In other words, the slice contains additional edges that do
not exist in the computation. For example, consider Figure@l(a) that displays
the slice of the computation in Figure B with respect to =((x = 5) A (y = 2)).
The only consistent cut in the computation that does not satisfy the predicate
is {es, eq, €1, f1, L}. By adding the edge (fs,e3), we disallow this consistent
cut from the slice. Below, for computing slices for EF(p), we will show which
edges we add to the computation. Similarly, since the consistent cuts of the
slice for AG(p) is a subset of consistent cuts of the slice for p, the slice for
AG(p) can be obtained by adding edges to the slice for p.

Now we explain Algorithm A1 in Figure 0 for generating the slice of a
computation with respect to EF(p). From the definition of EF(p), all consis-
tent cuts of the computation that can reach the greatest consistent cut that
satisfy p, say W, will also satisfy EF(p) and furthermore these are the only
cuts that satisfy EF(p). We can find the cut W using slice((E, —), p) when it
is nonempty. We construct the slice for EF(p) from the computation so that
W is the final cut of the slice. To ensure that all cuts which cannot reach W
do not belong to the slice, we add edges from T to the successors of events
in the frontier of W. Adding an edge from T to an event makes any cut
that contains the event trivial. Figure Hl shows the application of Algorithm
A1. Given the slice of the computation in Figure Bla) for some predicate p as
shown in Figure H(a), first we compute the final cut of the slice for p, that is,
{ea, f3}. Then, on the computation, we add an edge from T to the successor
of e5, that is e3. The successor of f3 does not exist so we do not add any other
edges. The resulting slice for EF(p) is displayed in Figure B(c).

Now we describe the AG(p) slicing algorithm in Figure @ We explained
above that to obtain the slice for AG(p) we will add edges to the slice for
p and eliminate consistent cuts that do not belong to slice for AG(p). Now
we show which edges we should add. We claim that consistent cuts of the
slice((E, =), p) that do not include vertex e of each additional edge (e, f)
do not satisfy AG(p). For simplicity, let the slice((E, —),p) have a single
additional edge (e, f). For example, consistent cuts { L}, {fi, L}, {e1, f1, L},
and {es, e, f1, L} of the slice in Figure B(a) do not include vertex fo of the
additional edge (fo, e3). It is easy to see that these four consistent cuts do not
satisfy AG(p) and therefore we should add edges to eliminate them. We now
give a proof sketch of the correctness of the algorithm for the simplified case

13



Fig. 4. (a) A slice of (E,—) in Fig. Bl (b) the corresponding sublattice (c¢) The
application of the temporal operator EF on the slice in (a) (d) the corresponding
sublattice

with a single additional edge. The proof for full case can be found in [28§].

Theorem 7.1 Given a computation (E,—) andslice((E, —),p), a consistent
cut D in (E,—) satisfies AG(p) iff it includes vertex e of the additional edge

(e, f) in slice((E,—),p).

If a consistent cut D does not include vertex e then there exists a consistent
cut H that can be reached from D in the computation such that H does not
include e but includes f. In this case, it is clear that H does not satisfy
p since (e, f) is an edge in the slice((F,—),p) and every consistent cut of
slice((E, —), p) that includes f must include e. Therefore from the definition
of AG(p), D does not satisfy AG(p).

Now we prove the other direction. If a consistent cut D does not satisfy
AG(p) then there exists a consistent cut H reachable from D such that H
does not satisfy p. We know that only the consistent cuts that include f but
not e do not satisfy p. Since H is reachable from D and H does not include
e, we have that D also does not include e. O

In Algorithm A2, for any additional edge (e, f), we add an edge from vertex
e to vertex L. This ensures that consistent cuts of the computation that do
not include vertex e of any additional edge (e, f) are disallowed from the slice,
whereas the rest still belong to slice((E, —), AG(p)). For example, consistent
cut {ey, f1, L} of the slice in Figure B(a) does not include vertex fy of the
additional edge (f,e3) in Figure Bl(a), therefore we add an edge (fy, L) and
obtain the slice in Figure Bl(c). The cut {e;, f;, L} cannot be a consistent cut
of this new slice since it has to include vertex fs.

14
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Algorithm A1l

Input: A computation (E, —) and slice((F, —),p)
Output: slice((E, —),EF(p))
Step 1. Let G be (E,—) and let W be the final cut of
slice((E,—),p)
Step 2.  If W exists then
Step 3. Ve € frontier(W): add an edge from
the vertex T to succ(e) in G
Step 4. return G

Step 5.  else return empty slice

Algorithm A2

Input: A computation (E, —) and slice((F, —),p)
Output: slice((E, —), AG(p))
Step 1. Let G be slice((F,—),p)
Step 2. For each pair of vertices (e, f) in G such that,
(i) =(e = f) in (E,—), and
(i) (e = f)in G
add an edge from vertex e to the vertex L

Step 3.  return G

Fig. 5. Algorithms for generating a slice with respect to EF(p) and AG(p)

The algorithm for EG(p) slicing is similar to the AG(p) slicing algorithm
and is explained in [2§]. The complexity of the temporal slicing algorithms is
O(n|E) [28].

Complexity of RCTL Predicate Detection: Given a predicate in
RCTL we can compute the slice for the predicate recursively from inside-out
by applying the appropriate temporal or boolean operator on the slices. It
is then easy to determine whether the predicate is satisfied by just checking
whether the initial state of the computation and the slice are the same. The
complexity of predicate detection is dominated by the complexity of com-
puting the slice with respect to a non-temporal regular predicate, which has
O(n* E|) complexity [IT124]. Therefore, the overall complexity of predicate
detection for RCTL is O(|p| - n?|E|), where |p| is the number of boolean and
temporal operators in p. The predicate detection in RCTL+ has worst case
exponential-time complexity. However, the slice is in general much smaller
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(©) (d

Fig. 6. (a) The slice of (F,—) in Fig. B with respect to =((z = 5) A (y = 0))
(b) the corresponding sublattice (c¢) The slice of (E,—) in Fig. Bl with respect to
AG —((z =5) A(y =0)) (d) the corresponding sublattice

than the computation which we validate with experiments in the next section.

8 Experimental Results

In order to evaluate the effectiveness of POTA, we performed experiments with
scalable protocols, comparing our computation slicing based approach with
partial order reduction based approach of SPIN [I6]. All experiments were
performed on a 1.4 Ghz Pentium 4 machine running Linux. We restricted the
memory usage to 512MB, but did not set a time limit. The two performance
metrics we measured are running time and memory usage. In the case of
slicing both metrics also include the overhead of computing the slice. We use
the symbol * to denote that the verification was not completed due to running
out of memory.

We consider the following distributed programs distributed dining philoso-
phers, primary-secondary, and GIOP protocols. Further experimental results
can be obtained from POTA website [21].

Distributed Dining Philosophers (ddph): We use the Java protocol
from [T4] for this exercise and check the following properties. The comple-
ment of the safety property, that is, \; ;.o , 1) (EF(eat; Aeat;)) where i and
j denote philosophers next to each other. The complement of the liveness
property, that is, \/Z.EO___(W])(EF(hungry,; ANEG(—eat;))), for each philosopher
1. Observe that the negation of a local predicate —eat; is also a local predi-
cate and furthermore it is a regular predicate. Finally, we check the property
AG(EF(eat;)) which denotes that eating is possible from every state. Table
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[ displays our results for the liveness property.

Table 1
Distributed Dining Philosophers, Liveness Property
3 4 5 6 7 10 20 30 40 100 250
POTA | T | 0.14 | 0.17 | 0.19 | 0.23 | 0.22 | 0.49 | 3.54 | 10.37 | 18.1 | 137.2 | 965.3
M|0.18]0.29 | 036 | 042 | 0.5 | 0.92 | 1.57 | 4.5 6.8 | 334 96
SPIN | T | 0.1 | 1.16 | 15.6 | 144.7 *
M| 1.67 | 4.13 | 35.4 | 223.2 *

Primary Secondary: The primary secondary program [32] concerns an
algorithm designed to ensure that the system always contains a pair of pro-
cesses acting together as primary and secondary. The property requires that
there is a pair of processes P; and P; such that (1) P is acting as a primary and
correctly thinks that P; is its secondary, and (2) P; is acting as a secondary
and correctly thinks that P; is its primary. Both the primary and secondary
may choose new processes as their successor at any time. The complement of
the safety property is EF A\(—isPrimary; V —isSecondary; V (secondary; #
P;)V (primary; # P;)) wheni,j € 0...(n—1), i # j. Note that this predicate
contains disjunction operators and the slice may not be lean. However, Table
shows that even in this case slicing can reduce the state space substantially.

Table 2
Primary Secondary, Safety Property
3 4 5 6 7 8 9 10 20 30 40
POTA | T | 0.01 | 0.03 | 0.08 | 0.15 | 0.28 | 0.42 | 0.65 | 0.9 | 4.07 | 20.53 | 70.66
M | 0.41]0.75 1 203 | 275 | 3.77 | 7.78 | 8.82 | 28.89 | 199.49 | 304.5
SPIN | T | 0.01 | 0.02 | 0.02 | 0.12 | 0.38 | 2.51 | 7.92 *
M | 1.57 | 1.57 | 1.67 | 2.29 | 5.05 | 21.95 | 81.54 *

GIOP: In this section, we present experimental results for the General
Inter-ORB Protocol (GIOP) which was verified in [I8] using SPIN.

The Common Object Request Broker Architecture (CORBA) [I3] de-
scribes the architecture of a middleware platform that supports the imple-
mentation of applications in distributed and heterogeneous environments. The
CORBA standard is issued by OMG.

The ORB is the key component of the CORBA programming model. An
ORB is responsible for transferring operations from Clients to Servers. This
requires the ORB to locate a Server implementation (and possibly activate
it), transmit the operation and its parameters, and finally return the results
back to the Client.

17




ML AN LS RA LR ALY

The General Inter-ORB Protocol (GIOP) is the abstract protocol which
is used for communications between CORBA ORBs. It specifies the transfer
syntax and a standard set of message formats for ORB interoperation over any
connection-oriented transport Protocol. GIOP is designed to be simple and
easy to implement, while still allowing for reasonable scalability and perfor-
mance. In order to allow server objects to move between different ORBs and
have messages forwarded to them wherever they are, GIOP supports server
migration.

Figure [ displays the high level view of the Promela model of the GIOP
protocol as depicted in [I8]. The protocol consists of User, Client, Transport,
Agent and Server processes. Here, we conduct experiments for 4 of the 8 LTL
predicates used in [I8] (properties (iv) and (v) are considered as one). Below,
formulas express the complement of the property expressed in English.

L 1N
L L]

Fig. 7. GIOP model

(i) After sending a U Request message a User should eventually receive the
corresponding U Reply message.
EF (URequestSent; N EG(=UReplyReceived;)), for all users i.

(ii) After sending an SRequest the GIOP-Agent should eventually receive a
corresponding S Reply.
EF (SRequestSent; AN EG(—SReplyReceived;)), for all agents i.

(iii) Requests sent by a client are responded to eventually by a reply unless
they have been cancelled.

EF (C’RequestSenti N EG(—CReplyReceived; Vv —-CCancelSent;)), for
all clients i.

(iv) If the user received no exception, its request was performed exactly once.
AG(=NoException; V (\/,, \; Server;Processed; = m)), where m = 1 if
k = j and m = 0 otherwise, for all users ¢ and for all servers j, k.

(v) If the user received exception, its request was performed at most once.
AG(=SystemException; V (\/,, \; Server;Processed; = m)
V(N Server,Processed; = 0)), where m = 1if k = j and m =0
otherwise, for all users ¢ and for all servers j, k, [.

The full verification of GIOP by Kamel and Leue [I8] even for the configu-
18
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ration in Figure [ with 10 processes was not completed due to state explosion.
They could verify a simplified version of the protocol without server migration
with 10 processes. To enable verification for larger number of processes, they
used an approximation technique in SPIN called bit-state hashing where two
bits of memory are used to store a reachable state. SPIN displays a state cov-
erage number (hash-factor) at the end of a verification with bit-state hashing.
With bit-state hashing, they could verify the unsimplified version of the pro-
tocol with 20 processes with 1.5 hash-factor, which means that the coverage
was less than one percent since best coverage is obtained when the hash-factor
is greater than 100.

We generated execution traces for a variety of GIOP architectures where
we duplicated the User and Server blocks. In one case, we generated execution
traces from unsimplified version of GIOP protocol where the total number of
processes was increased to 250 and we completed full verification of these
traces. In Table Bl we present experimental results for the GIOP models with
server migration.

Table 3
Property (i) 10 20 | 40 | 80 120 160 200 | 250
POTA T | 02 |0.24 4.6 |50.8| 183.8 | 1001.1 | 1291 | 1761
M| 1.7 1.3 | 1.9 ] 16.3 | 33.7 63.2 | 76.7 | 91.9
SPIN T | 362.6 *
M | 320 *
Property (v) 10 20 | 40 60 80 120
POTA T | 01 |53 56 | 60.7 | 218.8 | 520.6
M| 04 |44|21.6 | 1504 | 301.4 | 475.7
SPIN T | 319.2 *
M | 305.4 *

8.1 Discussion

In all execution trace verifications, SPIN could verify upto only 6 processes in
ddph, 9 in primary secondary and 10 in GIOP protocols, even when DCOL-
LAPSE and DMA compilation options were used. Observe that since we use
a larger memory than the one used in [I8], the verification of the unsimplified
GIOP with 10 processes is now possible in SPIN. We obtain three orders of
magnitude speed up and state space reduction compared to partial order re-
duction with SPIN as shown in GIOP experiments. Using our slicing based
technique we could verify upto 250 processes in some cases. We also injected
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faults into the traces and compared results of faulty protocols. Using SPIN,
even with bit-state hashing enabled verification, the faults could not be found
because the state spaces were too large and the coverage was low. Using
POTA, the faults were easily found.

For problem sizes that preclude exhaustive program verification or exhaus-
tive runtime verification, POTA proves to be an effective tool. Our technique
is orthogonal to other reduction techniques, that is, one can always use POTA
to reduce the state space as long as we can exploit the specification for com-
putation slicing.

Acknowledgements: We would like to acknowledge Neeraj Mittal for his
contribution in the implementation of POTA. We also thank Gerard .J. Holz-
mann for discussion on SPIN.
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