
Eletroni Notes in Theoretial Computer Siene 89 No. 2 (2003)URL: http://www.elsevier.nl/loate/ents/volume89.html 22 pagesPartial Order Trae Analyzer (POTA) forDistributed Programs
Alper Sen 1 Vijay K. Garg 2;3Department of Eletrial and Computer EngineeringThe University of Texas at Austin, Austin, TX, 78712, USA

AbstratCheking the orretness of software is a growing hallenge. In this paper, we presenta prototype implementation of Partial Order Trae Analyzer (POTA), a tool forheking exeution traes of both message passing and shared memory programsusing temporal logi. So far runtime veri�ation tools have used the total ordermodel of an exeution trae, whereas POTA uses a partial order model. The partialorder model enables us to apture possibly exponential number of interleavings and,in turn, this allows us to �nd bugs that are not found using a total order model.However, veri�ation in partial order model su�ers from the state explosion problem{ the number of possible global states in a program inreases exponentially withthe number of proesses.POTA employs an e�etive abstration tehnique alled omputation sliing. Aslie of a omputation (exeution trae) with respet to a prediate is the ompu-tation with the least number of global states that ontains all global states of theoriginal omputation for whih the prediate evaluates to true. The advantage ofthis tehnique is that, it mitigates the state explosion problem by reasoning only onthe part of the global state spae that is of interest. In POTA, we implement om-puting sliing algorithms for temporal logi prediates from a subset of CTL. Theoverall omplexity of evaluating a prediate in this logi upon using omputationsliing beomes polynomial in the number of proesses ompared to exponentialwithout sliing.We illustrate the e�etiveness of our tehniques in POTA on test ases suh asthe General Inter-ORB Protool (GIOP) [18℄. POTA also ontains a module thattranslates exeution traes to Promela [16℄ (input language SPIN). This moduleenables us to ompare our results on exeution traes with SPIN. In some ases, wewere able to verify traes with 250 proesses ompared to only 10 proesses usingSPIN. 2003 Published by Elsevier Siene B. V.

http://www.elsevier.nl/locate/entcs/volume89.html

Sen and Garg1 IntrodutionA fundamental problem in distributed systems is that of prediate detetion{ deteting whether a �nite exeution trae of a distributed program satis-�es a given prediate. There are appliations of prediate detetion in manydomains suh as testing, debugging, and monitoring of distributed programs.For example, when debugging a distributed mutual exlusion algorithm, itis useful to monitor the system to detet onurrent aesses to the sharedresoures.A �nite trae an be modeled in two ways. The �rst model imposes apartial order between events, for example Lamport's happened-before relation[20℄. The seond model imposes a total order (interleaving) of events. We usethe former approah in this paper, whih is a more faithful representation ofonurreny [20℄.Consider an exeution of a distributed program. The partial order modelof the resulting exeution trae is shown in Figure 1(a). In the trae, thereare two proesses P1 and P2 with integer variables x and y, respetively. Theevents are represented by solid irles. Proess P2 sends a message to proessP1 by exeuting event f1 and proess P1 reeives that message by exeutingevent e1. Eah event is labeled with the value of the respetive variable imme-diately after the event is exeuted. For example, the value of x immediatelyafter exeuting e1 is 2. The �rst event on eah proess initializes the stateof the proess. The set of all global states reahable from the initial statefe0; f0g is displayed in Figure 1(b). In the �gure, we represent a global stateas a tuple where eah element is the last event that ourred on a proess.Observe that fe1; f0g is not a reahable global state beause it depits a sit-uation where a message has been reeived from P2 by P1, that is e1, but P2has not yet sent the message. By using a partial order representation, we areable to apture all possible interleavings of events, namely ten in total, ratherthan a single interleaving. One suh interleaving sequene is fe0; f0g, fe0; f1g,fe1; f1g, fe2; f1g, fe3; f1g, fe3; f2g, fe3; f3g as shown in Figure 1(b) with thiklines. Therefore we an obtain better overage in terms of testing and debug-ging by apturing all interleavings. This overage may translate into �ndingbugs that are not found using a single interleaving.The main problem in prediate detetion in the partial order model isthe state explosion problem|the set of possible global states of a distributedprogram with n individual proesses an be of size exponential in n. A vari-ety of strategies for ameliorating the state explosion problem, inluding sym-boli representation of states and partial order redution have been explored[23,12,33,26,8,31,32℄.1 Email: sen�ee.utexas.edu Homepage: http://www.ee.utexas.edu/~sen/2 supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas EduationBoard Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant3 Email: garg�ee.utexas.edu Homepage: http://www.ee.utexas.edu/~garg/2

Sen and Garg
2e ,

1e ,

2f 1f

2e ,

3f2e , 3e , 2f

2f

1e ,

1f

3f

3e , 1f1e , 3f 3e , 1f

0e 0f

0e

0e

0e 3f

2f

1f

3e

3f

1e 2e

1f

0e

0f

P 1

P 2
2f

3f

1e 2e

1f

0e

0f 2f

0e 0f

1e 1f 3f2e 0e 0f

3f3e

3f2e

0e1e

2f

2e

0f

3f

1f

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

,3e{

{ {

{

{

{

{

{ }

}

}

}}

}

}

}

{ }

(b)

{ },

{ },

{ },

{ },

5

6

(c)

4

y 0 2

2

0

x 0

(a)

6

4

0 2

2

0

0

Initial state

Final state

Initial state: Final state:{ , }

Initial state: Final state:{ , } { , } Initial state: Final state:{ , }

{ , }

{ , }

(d)

{

{ }

}

},

,

, ,

{: meta−event

x = 2 y = 0

W

D

V

C

x = 4

y = 6Fig. 1. (a) A omputation (b) its set of all reahable global states () its slie withrespet to (2 � x � 4)^(y 6= 2) (d) its slie with respet to EF((2 � x � 4)^(y 6= 2))In this paper, we present a prototype implementation of Partial OrderTrae Analyzer (POTA) tool for heking exeution traes of distributed pro-grams. POTA onsists of an instrumentation module, a translator modulethat translates exeution traes into Promela [16℄ (SPIN input language) andan analyzer module. The use of an e�etive abstration tehnique alled om-putation sliing for temporal logi veri�ation is the most signi�ant aspetof POTA and onstitutes the analyzer module.Computation sliing was introdued in [11,24℄ as an abstration tehniquefor analyzing distributed omputations (�nite exeution traes). A omputa-tion slie, de�ned with respet to a global prediate, is the omputation withthe least number of global states that ontains all global states of the originalomputation for whih the prediate evaluates to true. Sliing an be usedto throw away the extraneous global states of the original omputation in aneÆient manner, and fous on only those that are urrently relevant for ourpurpose.Using the results in [11,24℄ and [28℄, we an eÆiently use omputationsliing for the subset of CTL [4℄ with the following three properties. First,temporal operators are EF, EG, and AG and boolean operators are on-juntion and disjuntion. Seond, atomi propositions are regular prediates,whih we will de�ne later. Third, negation operator has been pushed ontoatomi propositions. We all this logi Regular CTL plus (RCTL+), wherethe plus denotes that the disjuntion and negation operators are inluded inthe logi. We also onsider a disjuntion and negation free subset of RCTL+and denote this by Regular CTL (RCTL). In RCTL+, we use the lass of pred-iates, alled regular prediates, that was introdued in [11℄. The slie with3

Sen and Gargrespet to a regular prediate ontains preisely those global states for whihthe prediate evaluates to true. Regular prediates widely our in pratieduring veri�ation. Some examples of regular prediates are onjuntion ofloal prediates [10,17℄ suh as \all proesses are in red state", ertain hannelprediates [10℄ suh as \at most k messages are in transit from proess Pi toPj", and some relational prediates [10℄.To illustrate prediate detetion using omputation sliing, onsider theomputation in Figure 1(a). Let p = (2 � x � 4) ^ (y 6= 2), and suppose wewant to detet EF(p). Without omputation sliing, we are fored to examineall global states of the omputation, thirteen in total, to deide whether theomputation satis�es the prediate. Alternatively, we an ompute the slieof the omputation with respet to regular prediate EF(p) and use this sliefor prediate detetion. For this purpose, �rst we ompute the slie withrespet to the atomi proposition p as follows. Immediately after exeutingf2, the value of y beomes 2 whih does not satisfy y 6= 2. To reah a globalstate satisfying y 6= 2, f3 has to be exeuted. In other words, any globalstate in whih only f2 has been exeuted but not f3 is of no interest to usand an be ignored. The slie is shown in Figure 1(). It is modeled by apartial order on a set of meta-events; eah meta-event onsists of one or more\primitive" events. A global state of the slie either ontains all the events ina meta-event or none of them. Moreover, a meta-event \belongs" to a globalstate only if all its inoming neighbours are also ontained in the state. Theslie ontains only four states C;D; V and W and has muh fewer states thanthe omputation itself { exponentially smaller in many ases { resulting insubstantial savings. Using the slie in Figure 1(), we an obtain the laststate that satis�es p in the omputation, whih is denoted by W . We alsoknow from the de�nition of EF(p) that every global state of the omputationthat ours beforeW satis�es EF(p), e.g. states enlosed in the dashed ellipsein Figure 1(b). Therefore, applying this observation we an ompute the sliewith respet to EF(p) as shown in Figure 1(d). Finally, we hek whether theinitial state of the omputation is the same as the initial state of the slie. Ifthe answer is yes then the prediate is satis�ed, otherwise not.POTA implements prediate detetion algorithms for RCTL and RCTL+whih use omputation sliing. We show in [28℄, that the omplexity of pred-iate detetion for a prediate p in RCTL is O(jpj � n2jEj), where jpj is thenumber of boolean and temporal operators in p and E is the total number ofevents. To the best of our knowledge, there did not exist tools that imple-ment eÆient algorithms (polynomial in the number of proesses) to detetprediates that ontain nested temporal logi prediates. An example of anested prediate is AG(EF(reset)), whih states that reset is possible fromevery state. Furthermore, we validate with experiments that even for RCTL+prediates our omputation sliing based tehnique is very e�etive.We performed experiments using POTA on several protools. We also usedthe POTA translator module to enable omparison with SPIN on exeution4

Sen and Gargtraes. In fairness, SPIN is designed for heking orretness of programs andnot traes. However, to the best of our knowledge it is the best distributedprogram veri�ation tool we an use for our partial order models. Some ofthe protools we used for experiments are the General Inter-ORB Protool(GIOP) [18℄ and the primary seondary protool [32℄. GIOP is a entralfeature of the Common Objet Request Broker Arhiteture (CORBA) thataids in ahieving the desired interoperability between ORBs. The CORBAspei�ation de�nes a standard protool to allow ommuniation of objet in-voations between ORBs. Kamel and Leue [18℄ ould not fully verify a modelof GIOP with 10 proesses. Instead, they veri�ed a simpli�ed version of theprotool without server migration funtionality. In one ase, we generatedexeution traes of unsimpli�ed GIOP protool for a on�guration with 250proesses. However, even with an exeution trae input, SPIN failed to om-plete veri�ation with more than 10 proesses. We also injeted faults intothe protool and analyzed the resulting exeution traes. With SPIN, we usedbit-state hashing approximation option to handle larger number of proesses,but in this ase SPIN failed to �nd the faults before running out of memory.However, POTA was able to �nd the faults easily. In all ases, our algorithmsare signi�antly faster and spae eÆient than SPIN. We have measured overthree orders of magnitude gain over SPIN in some experiments.Computation sliing an indeed be used to failitate prediate detetioneven for a larger lass of prediates than RCTL+ as illustrated by the fol-lowing example. Consider a prediate p that is a onjuntion of two lausesp1 and p2. Now, assume that p1 is suh that it belongs to RCTL+ but p2has no strutural property that an be exploited for eÆient detetion, suhas, (x1 � x2 + x3 > x4), where xi is an integer variable on proess i. Todetet p, without omputation sliing, we are fored to use global-state-spae-onstrution-based approahes, whih do not take advantage of the fat thatp1 an be deteted eÆiently. With omputation sliing, however, we an �rstompute the slie for p1. If only a small fration of global states satisfy p1,then instead of deteting p in the omputation, it is muh more eÆient todetet p in the slie. Therefore by spending only polynomial amount of timein omputing the slie we an throw away exponential number of global states,thereby obtaining an exponential speedup overall.2 Related WorkPrediate detetion is a hard problem. Deteting even a 2-CNF prediateunder EF modality has been shown to be NP-omplete, in general [25℄.Prediate detetion is a widely-studied problem. There are three majorapproahes to solving prediate detetion: global-snapshot-based approah[2℄, global-state-spae-onstrution-based approah (inluding model hek-ing) [4,5℄, and prediate-restrition-based approah [10℄. The �rst approahan detet only stable prediates (whih remain true one they beome true),5

Sen and Gargand the seond approah su�ers from the state explosion problem. We fol-low the prediate-restrition-based approah that exploits the struture of theprediate and diretly uses the omputation to detet if the prediate is satis-�ed in a global state. Some examples of the prediates for whih the prediatedetetion an be solved eÆiently are: onjuntive [10,17℄, disjuntive [10℄,stable [2℄, observer-independent [3,10℄, linear [10,29℄, and non-temporal regu-lar [11,24℄ prediates. These prediate lasses have been so far deteted undersome or all of the temporal operators EF, EG, AG, AF and under the untiloperator of CTL [29℄, but not under any nesting of these operators. For ex-ample, a prediate EF(p^EG(q)), where p and q are onjuntive prediates,annot be eÆiently deteted using only the eÆient algorithms for onjun-tive prediates. In POTA, we an detet suh nested temporal logi prediateseÆiently.The idea of using temporal logi for analyzing exeution traes (also re-ferred to as runtime veri�ation) has reently been attrating a lot of attention.We �rst presented a temporal logi framework for partially ordered exeutiontraes in [29℄ and gave eÆient algorithms for prediates of the form EG(p)and AG(p) when p is a linear prediate. The eÆieny of those algorithmsdepended on the fat that p was a state prediate and therefore we ould eÆ-iently evaluate the satis�ability of p at a global state. However, in this paperwe present implementation of eÆient algorithms even when p is a temporalprediate.Some other examples of using temporal logi for heking exeution traesare the ommerial Temporal Rover tool (TR) [7℄, the MaC tool [19℄, theJPaX tool [15℄, and the JMPaX tool [30℄. TR allows the user to speify thetemporal formula in programs. These temporal formula are translated intoJava ode before ompilation. The MaC and JPaX tools onsider a totallyordered view of an exeution trae and therefore an potentially miss bugsthat an be dedued from the trae.JMPaX tool is loser to POTA beause of the partial order trae model.The di�erenes in both approahes an be summarized as follows. JMPaXuses a subset of temporal logi with safety where atomi propositions an bearbitrary. Whereas POTA uses a subset of temporal logi with both safetyand liveness where atomi propositions are restrited. The omplexity of theprediate detetion algorithm in POTA is polynomial-time in the number ofproesses whereas the omplexity an be exponential-time in the number ofproesses (as large as the width of the lattie of global states) in JMPaX.3 Overview of POTA ArhitetureThe overall struture of POTA arhiteture is shown in Figure 2. The toolonsists of 3 main modules; analyzer, translator, and instrumentor.The analyzer module ontains our omputation sliing and prediate de-tetion algorithms. Given an exeution trae and a prediate (spei�ation)6

Sen and Garg
Distributed

Program

Promela code

Translate

Detect
Computation Slice

Specification

Execute

Spin

Slice

Analyzer

Translator

Translate

Partial Order
Execution Trace

Program
Instrumented

Instrument

Execute

Instrumentor

Fig. 2. Overview of POTA Arhiteturein RCTL+, the omputation slie may ontain more states than the ones thatsatisfy the prediate. Therefore, the analyzer module uses the following strat-egy to deide whether the prediate is satis�ed or not. Case 1, if the slieand the input trae have di�erent initial states then the prediate is not sat-is�ed. In this ase a ounterexample is generated. Case 2, if the prediateis from RCTL and the slie and the input trae have the same initial statesthen the prediate is satis�ed. Case 3, when the prediate does not belongto RCTL (that is, it ontains disjuntion or negation operators) and the slieand the input trae have the same initial states then we have to take an extrastep. This is beause the initial state of the slie may not satisfy the predi-ate. Therefore, we employ the translation module and translate the slie intoPromela [16℄ (input language of SPIN). Then we use SPIN to hek the traeassuming that there are equivalent spei�ations in LTL.The translator module takes a partial order representation of a trae andgenerates output in spei� languages. This module serves two purposes; toenable omparison of our sliing tehnique with other tehniques suh as par-tial order redution and to enable veri�ation of prediates that do not belongto RCTL but for whih we an take advantage of omputation sliing. Thelatter purpose is served when the prediate belongs to RCTL+ as explainedin Case 3 in the above paragraph or when the prediate is a onjuntionof prediates where one of the onjunts belong to RCTL+ as explained inthe introdution. Sine we are working with distributed programs whih ex-hibit a lot of parallelism and independeny, partial order redution tehniquesan take advantage of these properties of distributed programs. The SPINmodel heker ontains implementation of partial order redution tehniques.Currently, translation from traes to Promela is supported. The translationmehanism is similar to the tehnique explained in [21℄ for translations frommessage sequene harts (MSC) to Promela.The instrumentation module inserts ode at the appropriate plaes in theprogram to be monitored. The instrumented program is suh that it outputs7

Sen and Gargthe values of variables relevant to the prediate in question and keeps a vetorlok that is updated for eah internal, send and reeive event aording to theFidge/Mattern algorithm [9,22℄. We use the vetor lok to obtain a partialorder representation of traes.Upon running the instrumented program a separate log �le for eah proessis generated. Eah log �le onsists of a sequene of loal states that a proessgoes through. Eah loal state ontains the values of variables relevant to theprediate being veri�ed and a vetor lok. Log �les for every proess are thenombined to obtain a partial order representation of the exeution trae.Instead of using a log �le, if every proess sends its trae to a dediatedproess whih ombines them during runtime, we an obtain an on-line veri-�ation environment.Currently, programs are manually instrumented. We onduted experi-ments with Java and Promela programs. For SPIN programs, we insert odeinto Promela programs and also made hanges to the SPIN soure ode so thatwe an obtain a partial order model when we run SPIN in simulation modewith the option for generating a message sequene hart output. SPIN's MSCoutput is by default a total ordered exeution. However, we observed fromthis MSC output that there are unneessary dependenies therefore eventsdo not need to be totally ordered suh as request messages from two di�er-ent proesses sent to two di�erent servers do not need to be totally ordered.We are in the proess of hoosing an appropriate instrumentation tehniquefor Java programs. The hoie is between Java JDI as in [1℄ or byte odeinstrumentation as in JPaX.4 ModelA distributed program onsists of n proesses denoted by P1; P2; : : : ; Pn. Tra-ditionally, a distributed omputation is modeled as a partial order on a setof events, alled happened-before relation [20℄. The happened-before relationbetween any two \primitive" events e and f an be formally stated as thesmallest relation suh that e happened-before f if and only if e ours be-fore f in the same proess, or e is a send of a message and f is a reeive ofthat message, or there exists an event g suh that e happened-before g andg happened-before f . In this paper we relax the restrition that the orderon events must be a partial order. More preisely, we use direted graphs tomodel distributed omputations as well as slies. Direted graphs allow us tohandle both of them in a uniform and onvenient manner. Furthermore, wean extend the happened-before relation to read and write events of sharedvariables as in [30℄.Given a direted graph G, let V(G) and E(G) denote the set of vertiesand edges, respetively. We de�ne a onsistent ut (global state) on diretedgraphs as a subset of verties suh that if the subset ontains a vertex thenit ontains all its inoming neighbours. Formally, C is a onsistent ut of G,8

Sen and Gargif 8e; f 2 V(G) : (e; f) 2 E(G) ^ (f 2 C)) (e 2 C). We say that a stronglyonneted omponent is non-trivial if it has more than one vertex. We denotethe set of onsistent uts of a direted graph G by C(G). Observe that theempty set ; and the set of verties V(G) trivially belong to C(G). We all themtrivial onsistent uts. We use P(G) to denote the set of pairs of verties (u; v)suh that there is a path from u to v in G. We assume that eah vertex hasa path to itself.We model a distributed omputation (or simply a omputation), denotedby hE;!i, as a direted graph with verties as the set of events E and edgesas!. We use event and vertex interhangeably. To limit our attention to onlythose onsistent uts that an atually our during an exeution, we assumethat P(hE;!i) ontains at least the Lamport's happened-before relation [20℄. A distributed omputation in our model an ontain yles. This is beausewhereas a omputation in the happened-before model aptures the observableorder of exeution of events, a omputation in our model aptures the set ofpossible onsistent uts. Intuitively, eah strongly onneted omponent of aomputation an be viewed as a meta-event ; a meta-event onsists of one ormore primitive events.We assume the presene of a �titious global initial and a global �nal event,denoted by ? and >, respetively. The global initial event ours before anyother event on the proesses and initializes the state of the proesses. Theglobal �nal event ours after all other events on the proesses. Any non-trivialonsistent ut will ontain the global initial event and not the global �nalevent. Therefore, every onsistent ut of a omputation in traditional model(happened-before model) is a non-trivial onsistent ut of the omputationin our model and vie versa. Note that the empty onsistent ut, ;, in thetraditional model orresponds to f?g in our model and the �nal onsistentut, E, in the traditional model orresponds to E�f>g in our model and wedenote this by E . We use upperase letters C, D, H, V , and W to representonsistent uts.Figure 3 shows a omputation and its lattie of (non-trivial) onsistentuts. A onsistent ut in the �gure is represented by its frontier. For example,the onsistent ut C = fe3; e2; e1; f2; f1;?g is represented by fe3; f2g.
2e 3e

2f 3f

1e

1f
P 2

P 1 2e ,

1e ,2f

2f 1f

2e ,

3f

3f2e , 3e , 2f

2f

1e ,

1f

3f

3e , 1f1e , 3f

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

(a)

2 4 5

0 2 6

Initially x=0, y=0

x

y

1f

,3e{

{ {

{ {

{

{

{

{ {

{

}

}

}

}

}

}

}}

}

}

}

}{

{ }

(b)

C

C

Fig. 3. (a) A omputation hE;!i (b) and its lattie orresponding to C(G)Given a onsistent ut, a prediate is evaluated with respet to the values9

Sen and Gargof variables resulting after exeuting all events in the ut. If a prediate pevaluates to true for a onsistent ut C, we say that C satis�es p. We leavethe prediate unde�ned for the trivial onsistent uts.5 Bakground on SliingThe notion of omputation slie is based on the Birkho�'s RepresentationTheorem for Finite Distributive Latties [6℄. The readers who are not familiarwith earlier papers on omputation sliing are urged to read the extendedversion of the paper from [27℄.5.1 Computation SlieRoughly speaking, a omputation slie (or simply a slie) is a onise rep-resentation of all those onsistent uts of the omputation that satisfy theprediate. More preisely,De�nition 5.1 [slie [24℄℄ A slie of a omputation with respet to a prediateis a direted graph with the least number of onsistent uts that ontains allonsistent uts of the given omputation for whih the prediate evaluates totrue.We denote the slie of a omputation hE;!i with respet to a prediatep by slie(hE;!i; p). Note that hE;!i = slie(hE;!i; true). It was provenin [24℄ that the slie exists and is uniquely de�ned for all prediates. Everyslie derived from the omputation hE;!i has the trivial onsistent uts (;and E) among its set of onsistent uts. A slie is empty if it has no non-trivial onsistent uts [24℄. In the rest of the paper, unless otherwise stated,a onsistent ut refers to a non-trivial onsistent ut. In general, a slie willontain onsistent uts that do not satisfy the prediate (besides trivial on-sistent uts). In ase a slie does not ontain any suh ut, it is alled lean.We next give the lass of prediates for whih the slie is lean.6 Regular PrediatesGiven a omputation, the set of onsistent uts satisfying a regular predi-ate forms a sublattie of the set of onsistent uts of the omputation [11℄.Equivalently,De�nition 6.1 [regular prediate [24℄℄ A prediate is regular if given twoonsistent uts that satisfy the prediate, the onsistent uts obtained bytheir set union and set intersetion also satisfy the prediate. Formally, givena regular prediate p,(C satis�es p) ^ (D satis�es p)) (C \D satis�es p) ^ (C [D satis�es p)We say that a regular prediate is non-temporal if it does not ontaintemporal operators suh as EF, AG, and EG, otherwise it is a temporal10

Sen and Gargregular prediate. In [11℄ polynomial-time algorithms are given for omputingslies for non-temporal regular prediates. In [28℄, we showed that EF(p),AG(p), and EG(p) are temporal regular prediates when p is regular andgave polynomial-time algorithms to ompute these slies, whih we will brieyexplain in the next setion.Some examples of non-temporal regular prediates are monotoni hannelprediates suh as \there are at least k messages in transit from Pi to Pj",onjuntion of loal prediates suh as \Pi and Pj are in ritial setion",and relational prediates suh as x1 � x2 � 5, where xi is a monotoniallynon-dereasing integer variable on proess i. From the de�nition of a regularprediate we dedue that a regular prediate has a least satisfying ut and agreatest satisfying ut. Furthermore, the lass of regular prediates is losedunder onjuntion.Also in [24℄ polynomial-time algorithms are given to ompute slies withrespet to boolean ombination of regular prediates. Given the slies withrespet to two regular prediates, the omplexity of omputing the slie forthe onjuntion and disjuntion of these regular prediates is O(n2jEj). Theomplexity of omputing the slie for the negation of a regular prediate isO(n2jEj2). Note that regular prediates are not losed under disjuntion andnegation operators therefore slies obtained with respet to prediates thatontain these operators may not be lean.6.1 RCTL+ Syntax and SemantisWe de�ne suessor of a ut by a relation . � C(G)�C(G) suh that C .D ifand only if D = C[e, where e is the set of verties in some strongly onnetedomponent in hE;!i and e \ C = ;. We denote the reexive losure of thisrelation by .. A onsistent ut sequene C0; C1; : : : ; Ck of (C(G);�) satis�esthat for eah 0 � i < k, Ci . Ci+1. We say that a ut D is reahable from aut C if C � D.Propositional temporal logis use a �nite set of atomi propositions AP ,eah one of whih represents some property of the global state. A labelingfuntion �: C(G)! 2AP assigns to eah global state the set of prediates fromAP that hold in it. In this paper we assume that atomi propositions arenon-temporal regular prediates and their negations.The formal syntax of RCTL+ is given below.� Every prediate ap 2 AP is an RCTL+ formula.� If p and q are RCTL+ formulas, then so are p_ q, p^ q, EF(p), EG(p),and AG(p).Given a �nite distributive lattie L = (C(G);�), the formulas of RCTL+are interpreted over the onsistent uts in C(G). Let p be an RCTL+ formulaand C be a onsistent ut in C(G). Then, the satisfation relation, L;C j= pmeans that prediate p holds at onsistent ut C in lattie L = (C(G);�) andis de�ned indutively below. We denote C j= p as a short form for L;C j= p,11

Sen and Gargwhen L is lear from the ontext.� C j= ap i� ap 2 �(C) for an atomi proposition ap.� C j= p ^ q i� C j= p and C j= q.� C j= p _ q i� either C j= p or C j= q.� C j= EG(p) i� for some onsistent ut sequene C0; : : : ; Ck suh that (i)C0 = C, (ii) Ck = E , (iii) Ci . Ci+1 for 0 � i < k, we have (iv) Ci j= p for all0 � i � k.� C j= AG(p) i� for all onsistent ut sequenes C0; : : : ; Ck suh that (i)C0 = C, (ii) Ck = E , (iii) Ci . Ci+1 for 0 � i < k, we have (iv) Ci j= p for all0 � i � k.� C j= EF(p) i� for some onsistent ut sequene C0; : : : ; Ck suh that (i)C0 = C, (ii) Ck = E , (iii) Ci . Ci+1 for 0 � i < k, we have (iv) Ci j= p forsome 0 � i � k.We de�ne L j= p if and only if L; f?g j= p. The formula C j= AG(p)(resp. C j= EG(p)) intuitively means that for all onsistent ut sequenes(resp. for some onsistent ut sequene) C; : : : ; E , p holds at every ut of thesequene. The formula C j= EF(p) intuitively means that for some onsistentut sequene C; : : : ; E , there exists a onsistent ut that satis�es p.We de�ne RCTL as the subset of RCTL+ where disjuntion and negationoperators are not allowed.The prediate detetion problem is to deide whether the initial onsistentut of a distributed omputation satis�es a prediate.7 Algorithms for Computing Slies for Temporal Pred-iatesOur distributed program analysis tool POTA uses omputation sliing forprediate detetion. Mittal and Garg [24℄ also used omputation sliing foreÆient detetion of prediates of the form EF(p), EG(p), AG(p) for non-temporal regular p. However, their prediate detetion algorithm is based onomputing slies for non-temporal regular prediates. Therefore, it annotbe used for deteting nested temporal prediates suh as AG(p) when p is atemporal prediate like p = EF(q). In this setion, we explain our sliing algo-rithms from [28℄ for temporal regular prediates to enable eÆient prediatedetetion for RCTL+ whih also inludes nested temporal prediates.The slie of a omputation with respet to a temporal prediate is thesmallest omputation that ontains all onsistent uts of the given omputa-tion for whih the prediate holds. We proved in [28℄ that temporal prediatesEF(p), EG(p), and AG(p) are regular for regular p. Therefore, the slies forthese temporal prediates are lean.The input to eah algorithm in this setion is a omputation hE;!i and itsslie with respet to a regular prediate p, that is, slie(hE;!i; p). The outputof eah algorithm is an appliation of a temporal operator on the slie. For12

Sen and Gargexample, in order to generate a slie with respet to AG(EF(p)), where p is anon-temporal regular prediate, we an use the sliing algorithms explained inthis setion as follows: First, we ompute the slie for p using the algorithmsin [11,24℄ for non-temporal regular prediates. Then, we give this slie andthe omputation to the EF sliing algorithm to obtain slie(hE;!i;EF(p)).Finally, the output of EF sliing algorithm and the omputation is given asan input to AG sliing algorithm to obtain slie(hE;!i;AG(EF(p))).Sine the onsistent uts of the slie of a omputation is a subset of on-sistent uts of the omputation, the slie an be obtained by adding edges tothe omputation. In other words, the slie ontains additional edges that donot exist in the omputation. For example, onsider Figure 6(a) that displaysthe slie of the omputation in Figure 3 with respet to :((x = 5) ^ (y = 2)).The only onsistent ut in the omputation that does not satisfy the prediateis fe3; e2; e1; f1;?g. By adding the edge (f2; e3), we disallow this onsistentut from the slie. Below, for omputing slies for EF(p), we will show whihedges we add to the omputation. Similarly, sine the onsistent uts of theslie for AG(p) is a subset of onsistent uts of the slie for p, the slie forAG(p) an be obtained by adding edges to the slie for p.Now we explain Algorithm A1 in Figure 5 for generating the slie of aomputation with respet to EF(p). From the de�nition of EF(p), all onsis-tent uts of the omputation that an reah the greatest onsistent ut thatsatisfy p, say W , will also satisfy EF(p) and furthermore these are the onlyuts that satisfy EF(p). We an �nd the ut W using slie(hE;!i; p) when itis nonempty. We onstrut the slie for EF(p) from the omputation so thatW is the �nal ut of the slie. To ensure that all uts whih annot reah Wdo not belong to the slie, we add edges from > to the suessors of eventsin the frontier of W . Adding an edge from > to an event makes any utthat ontains the event trivial. Figure 4 shows the appliation of AlgorithmA1. Given the slie of the omputation in Figure 3(a) for some prediate p asshown in Figure 4(a), �rst we ompute the �nal ut of the slie for p, that is,fe2; f3g. Then, on the omputation, we add an edge from > to the suessorof e2, that is e3. The suessor of f3 does not exist so we do not add any otheredges. The resulting slie for EF(p) is displayed in Figure 4().Now we desribe the AG(p) sliing algorithm in Figure 5. We explainedabove that to obtain the slie for AG(p) we will add edges to the slie forp and eliminate onsistent uts that do not belong to slie for AG(p). Nowwe show whih edges we should add. We laim that onsistent uts of theslie(hE;!i; p) that do not inlude vertex e of eah additional edge (e; f)do not satisfy AG(p). For simpliity, let the slie(hE;!i; p) have a singleadditional edge (e; f). For example, onsistent uts f?g, ff1;?g, fe1; f1;?g,and fe2; e1; f1;?g of the slie in Figure 6(a) do not inlude vertex f2 of theadditional edge (f2; e3). It is easy to see that these four onsistent uts do notsatisfy AG(p) and therefore we should add edges to eliminate them. We nowgive a proof sketh of the orretness of the algorithm for the simpli�ed ase13

Sen and Garg
2e ,

2f

1f

2e ,

3f

3f2e ,

2f

3f2f

1e
2e 3e

1f

2e 3e

2f 3f

1e

1f

1e ,2f

2f

2e ,

3f

3f2e ,

2f

1e ,

1f

1e , 3f

2e , 1f

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

(a) (b)

1f

{

{ {

{

{

{

}

}

}

}

}

}

}{

(c)

1f

{

{ {

{

{

{ {

{

}

}

}

}

}

}

}

}{

{ }

(d)

}

Fig. 4. (a) A slie of hE;!i in Fig. 3 (b) the orresponding sublattie () Theappliation of the temporal operator EF on the slie in (a) (d) the orrespondingsublattiewith a single additional edge. The proof for full ase an be found in [28℄.Theorem 7.1 Given a omputation hE;!i and slie(hE;!i; p), a onsistentut D in hE;!i satis�es AG(p) i� it inludes vertex e of the additional edge(e; f) in slie(hE;!i; p).Proof Sketh:If a onsistent ut D does not inlude vertex e then there exists a onsistentut H that an be reahed from D in the omputation suh that H does notinlude e but inludes f . In this ase, it is lear that H does not satisfyp sine (e; f) is an edge in the slie(hE;!i; p) and every onsistent ut ofslie(hE;!i; p) that inludes f must inlude e. Therefore from the de�nitionof AG(p), D does not satisfy AG(p).Now we prove the other diretion. If a onsistent ut D does not satisfyAG(p) then there exists a onsistent ut H reahable from D suh that Hdoes not satisfy p. We know that only the onsistent uts that inlude f butnot e do not satisfy p. Sine H is reahable from D and H does not inludee, we have that D also does not inlude e. 2In AlgorithmA2, for any additional edge (e; f), we add an edge from vertexe to vertex ?. This ensures that onsistent uts of the omputation that donot inlude vertex e of any additional edge (e; f) are disallowed from the slie,whereas the rest still belong to slie(hE;!i;AG(p)). For example, onsistentut fe1; f1;?g of the slie in Figure 6(a) does not inlude vertex f2 of theadditional edge (f2; e3) in Figure 6(a), therefore we add an edge (f2;?) andobtain the slie in Figure 6(). The ut fe1; f1;?g annot be a onsistent utof this new slie sine it has to inlude vertex f2.14

Sen and GargAlgorithm A1Input: A omputation hE;!i and slie(hE;!i; p)Output: slie(hE;!i;EF(p))Step 1. Let G be hE;!i and let W be the �nal ut ofslie(hE;!i; p)Step 2. If W exists thenStep 3. 8 e 2 frontier(W): add an edge fromthe vertex > to su(e) in GStep 4. return GStep 5. else return empty slieAlgorithm A2Input: A omputation hE;!i and slie(hE;!i; p)Output: slie(hE;!i;AG(p))Step 1. Let G be slie(hE;!i; p)Step 2. For eah pair of verties (e; f) in G suh that,(i) :(e! f) in hE;!i, and(ii) (e! f) in Gadd an edge from vertex e to the vertex ?Step 3. return GFig. 5. Algorithms for generating a slie with respet to EF(p) and AG(p)The algorithm for EG(p) sliing is similar to the AG(p) sliing algorithmand is explained in [28℄. The omplexity of the temporal sliing algorithms isO(njEj) [28℄.Complexity of RCTL Prediate Detetion: Given a prediate inRCTL we an ompute the slie for the prediate reursively from inside-outby applying the appropriate temporal or boolean operator on the slies. Itis then easy to determine whether the prediate is satis�ed by just hekingwhether the initial state of the omputation and the slie are the same. Theomplexity of prediate detetion is dominated by the omplexity of om-puting the slie with respet to a non-temporal regular prediate, whih hasO(n2jEj) omplexity [11,24℄. Therefore, the overall omplexity of prediatedetetion for RCTL is O(jpj � n2jEj), where jpj is the number of boolean andtemporal operators in p. The prediate detetion in RCTL+ has worst aseexponential-time omplexity. However, the slie is in general muh smaller15

Sen and Garg

2f

2e ,

3f

2f

3f,3e{ }

3e , 2f{ }3f2e ,{

3f

2f

1e

1e

2e ,

2f

1f

2e ,

3f

2f

3f,3e{ }

3e , 2f{ }3f2e ,{

3f

2f

1f

1e

1e

1e

3f

1e
2e 3e

1f 2f

3f

1e
2e 3e

1f 2f

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

(c)

2 4

0 2

5

2 4 5

0 2 6

6

(a)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(d)

{

{

{

}

}

}

}}

}

{

{

,

,

(b)

1f

{ {

{

{

{

}

}

}

}

}

}

}{

}

}

}

{

{

{

,

,

,

Fig. 6. (a) The slie of hE;!i in Fig. 3 with respet to :((x = 5) ^ (y = 0))(b) the orresponding sublattie () The slie of hE;!i in Fig. 3 with respet toAG :((x = 5) ^ (y = 0)) (d) the orresponding sublattiethan the omputation whih we validate with experiments in the next setion.8 Experimental ResultsIn order to evaluate the e�etiveness of POTA, we performed experiments withsalable protools, omparing our omputation sliing based approah withpartial order redution based approah of SPIN [16℄. All experiments wereperformed on a 1.4 Ghz Pentium 4 mahine running Linux. We restrited thememory usage to 512MB, but did not set a time limit. The two performanemetris we measured are running time and memory usage. In the ase ofsliing both metris also inlude the overhead of omputing the slie. We usethe symbol � to denote that the veri�ation was not ompleted due to runningout of memory.We onsider the following distributed programs distributed dining philoso-phers, primary-seondary, and GIOP protools. Further experimental resultsan be obtained from POTA website [27℄.Distributed Dining Philosophers (ddph): We use the Java protoolfrom [14℄ for this exerise and hek the following properties. The omple-ment of the safety property, that is, Wi;j20:::(n�1)(EF(eati ^ eatj)) where i andj denote philosophers next to eah other. The omplement of the livenessproperty, that is, Wi20:::(n�1)(EF(hungryi^EG(:eati))), for eah philosopheri. Observe that the negation of a loal prediate :eati is also a loal predi-ate and furthermore it is a regular prediate. Finally, we hek the propertyAG(EF(eati)) whih denotes that eating is possible from every state. Table16

Sen and Garg1 displays our results for the liveness property.Table 1Distributed Dining Philosophers, Liveness Property3 4 5 6 7 10 20 30 40 100 250POTA T 0.14 0.17 0.19 0.23 0.22 0.49 3.54 10.37 18.1 137.2 965.3M 0.18 0.29 0.36 0.42 0.5 0.92 1.57 4.5 6.8 33.4 96SPIN T 0.1 1.16 15.6 144.7 *M 1.67 4.13 35.4 223.2 *Primary Seondary: The primary seondary program [32℄ onerns analgorithm designed to ensure that the system always ontains a pair of pro-esses ating together as primary and seondary. The property requires thatthere is a pair of proesses Pi and Pj suh that (1) Pi is ating as a primary andorretly thinks that Pj is its seondary, and (2) Pj is ating as a seondaryand orretly thinks that Pi is its primary. Both the primary and seondarymay hoose new proesses as their suessor at any time. The omplement ofthe safety property is EFV(:isPrimaryi _ :isSeondaryj _ (seondaryi 6=Pj)_(primaryj 6= Pi)) when i; j 2 0 : : : (n�1), i 6= j. Note that this prediateontains disjuntion operators and the slie may not be lean. However, Table2 shows that even in this ase sliing an redue the state spae substantially.Table 2Primary Seondary, Safety Property3 4 5 6 7 8 9 10 20 30 40POTA T 0.01 0.03 0.08 0.15 0.28 0.42 0.65 0.9 4.07 20.53 70.66M 0.41 0.75 1 2.03 2.75 3.77 7.78 8.82 28.89 199.49 304.5SPIN T 0.01 0.02 0.02 0.12 0.38 2.51 7.92 *M 1.57 1.57 1.67 2.29 5.05 21.95 81.54 *GIOP: In this setion, we present experimental results for the GeneralInter-ORB Protool (GIOP) whih was veri�ed in [18℄ using SPIN.The Common Objet Request Broker Arhiteture (CORBA) [13℄ de-sribes the arhiteture of a middleware platform that supports the imple-mentation of appliations in distributed and heterogeneous environments. TheCORBA standard is issued by OMG.The ORB is the key omponent of the CORBA programming model. AnORB is responsible for transferring operations from Clients to Servers. Thisrequires the ORB to loate a Server implementation (and possibly ativateit), transmit the operation and its parameters, and �nally return the resultsbak to the Client. 17

Sen and GargThe General Inter-ORB Protool (GIOP) is the abstrat protool whihis used for ommuniations between CORBA ORBs. It spei�es the transfersyntax and a standard set of message formats for ORB interoperation over anyonnetion-oriented transport Protool. GIOP is designed to be simple andeasy to implement, while still allowing for reasonable salability and perfor-mane. In order to allow server objets to move between di�erent ORBs andhave messages forwarded to them wherever they are, GIOP supports servermigration.Figure 7 displays the high level view of the Promela model of the GIOPprotool as depited in [18℄. The protool onsists of User, Client, Transport,Agent and Server proesses. Here, we ondut experiments for 4 of the 8 LTLprediates used in [18℄ (properties (iv) and (v) are onsidered as one). Below,formulas express the omplement of the property expressed in English.
Transport

Server

Agent

Transport

GIOP
Client
GIOP

User

Fig. 7. GIOP model(i) After sending a URequest message a User should eventually reeive theorresponding UReply message.EF(URequestSenti ^ EG(:UReplyReeivedi)), for all users i.(ii) After sending an SRequest the GIOP-Agent should eventually reeive aorresponding SReply.EF(SRequestSenti ^ EG(:SReplyReeivedi)), for all agents i.(iii) Requests sent by a lient are responded to eventually by a reply unlessthey have been anelled.EF�CRequestSenti ^ EG(:CReplyReeivedi _ :CCanelSenti)), forall lients i.(iv) If the user reeived no exeption, its request was performed exatly one.AG(:NoExeptioni _ (WkVj ServerjProessedi = m)), where m = 1 ifk = j and m = 0 otherwise, for all users i and for all servers j; k.(v) If the user reeived exeption, its request was performed at most one.AG(:SystemExeptioni _ (WkVj ServerjProessedi = m)_(Vl ServerlProessedi = 0)), where m = 1 if k = j and m = 0otherwise, for all users i and for all servers j; k; l.The full veri�ation of GIOP by Kamel and Leue [18℄ even for the on�gu-18

Sen and Gargration in Figure 7 with 10 proesses was not ompleted due to state explosion.They ould verify a simpli�ed version of the protool without server migrationwith 10 proesses. To enable veri�ation for larger number of proesses, theyused an approximation tehnique in SPIN alled bit-state hashing where twobits of memory are used to store a reahable state. SPIN displays a state ov-erage number (hash-fator) at the end of a veri�ation with bit-state hashing.With bit-state hashing, they ould verify the unsimpli�ed version of the pro-tool with 20 proesses with 1.5 hash-fator, whih means that the overagewas less than one perent sine best overage is obtained when the hash-fatoris greater than 100.We generated exeution traes for a variety of GIOP arhitetures wherewe dupliated the User and Server bloks. In one ase, we generated exeutiontraes from unsimpli�ed version of GIOP protool where the total number ofproesses was inreased to 250 and we ompleted full veri�ation of thesetraes. In Table 3, we present experimental results for the GIOP models withserver migration. Table 3Property (i) 10 20 40 80 120 160 200 250POTA T 0.2 0.24 4.6 50.8 183.8 1001.1 1291 1761M 1.7 1.3 1.9 16.3 33.7 63.2 76.7 91.9SPIN T 362.6 *M 320 *Property (v) 10 20 40 60 80 120POTA T 0.1 5.3 5.6 60.7 218.8 520.6M 0.4 4.4 21.6 150.4 301.4 475.7SPIN T 319.2 *M 305.4 *8.1 DisussionIn all exeution trae veri�ations, SPIN ould verify upto only 6 proesses inddph, 9 in primary seondary and 10 in GIOP protools, even when DCOL-LAPSE and DMA ompilation options were used. Observe that sine we usea larger memory than the one used in [18℄, the veri�ation of the unsimpli�edGIOP with 10 proesses is now possible in SPIN. We obtain three orders ofmagnitude speed up and state spae redution ompared to partial order re-dution with SPIN as shown in GIOP experiments. Using our sliing basedtehnique we ould verify upto 250 proesses in some ases. We also injeted19

Sen and Gargfaults into the traes and ompared results of faulty protools. Using SPIN,even with bit-state hashing enabled veri�ation, the faults ould not be foundbeause the state spaes were too large and the overage was low. UsingPOTA, the faults were easily found.For problem sizes that prelude exhaustive program veri�ation or exhaus-tive runtime veri�ation, POTA proves to be an e�etive tool. Our tehniqueis orthogonal to other redution tehniques, that is, one an always use POTAto redue the state spae as long as we an exploit the spei�ation for om-putation sliing.Aknowledgements: We would like to aknowledge Neeraj Mittal for hisontribution in the implementation of POTA. We also thank Gerard J. Holz-mann for disussion on SPIN.Referenes[1℄ M. Brorkens and M. Moller. Dynami event generation for runtime hekingusing the JDI. In Runtime Veri�ation 2002, volume 70 of ENTCS, 2002.[2℄ K. M. Chandy and L. Lamport. Distributed snapshots: Determining globalstates of distributed systems. ACM Transations on Computer Systems,3(1):63{75, February 1985.[3℄ B. Charron-Bost, C. Delporte-Gallet, and H. Fauonnier. Loal and temporalprediates in distributed systems. ACM Transations on ProgrammingLanguages and Systems, 17(1):157{179, Jan 1995.[4℄ E. M. Clarke and E. A. Emerson. Design and Synthesis of SynhronizationSkeletons using Branhing Time Temporal Logi. In Pro. of the Workshop onLogis of Programs, volume 131 of LNCS, Yorktown Heights, New York, May1981.[5℄ R. Cooper and K. Marzullo. Consistent detetion of global prediates. In Pro.of the Workshop on Parallel and Distributed Debugging, pages 163{173, SantaCruz, CA, May 1991. ACM/ONR.[6℄ B. A. Davey and H. A. Priestley. Introdution to Latties and Order. CambridgeUniversity Press, Cambridge, UK, 1990.[7℄ D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN ModelCheking and Veri�ation, volume 1885 of LNCS, pages 323{330, 2000.[8℄ J. Esparza. Model heking using net unfoldings. Siene of ComputerProgramming, 23(2):151{195, 1994.[9℄ C. Fidge. Logial Time in Distributed Computing Systems. IEEE Computer,24(8):28{33, August 1991.[10℄ V. K. Garg. Elements of Distributed Computing. John Wiley & Sons, 2002.20

Sen and Garg[11℄ V. K. Garg and N. Mittal. On Sliing a Distributed Computation. In Pro. ofthe 15th International Conferene on Distributed Computing Systems (ICDCS),pages 322{329, Phoenix, Arizona, 2001.[12℄ P. Godefroid and P. Wolper. A partial approah to model heking. In Pro. ofthe 6th IEEE Symposium on Logi in Computer Siene, pages 406{415, 1991.[13℄ Objet Management Group. The Common Objet Request Broker:Arhiteture and Spei�ation. August 1997.[14℄ S. Hartley. Conurrent Programming: The Java Programming Language.Oxford University Press, 1998.[15℄ K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer.In Runtime Veri�ation 2001, volume 55 of ENTCS, 2001.[16℄ G. J. Holzmann. The Model Cheker SPIN. IEEE Transations on SoftwareEngineering, 23(5), May 1997.[17℄ M. Hur�n, M. Mizuno, M. Raynal, and M. Singhal. EÆient detetion ofonjuntions of loal prediates. IEEE Transations on Software Engineering,24(8):664{677, 1998.[18℄ M. Kamel and S. Leue. Formalization and Validation of the General Inter-ORB Protool (GIOP) Using Promela and SPIN. Software Tools for TehnologyTransfer, 2(4):394{409, April 2000.[19℄ M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: aRun-time Assurane Tool for Java Programs. In Runtime Veri�ation 2001,volume 55 of ENTCS, 2001.[20℄ L. Lamport. Time, Cloks, and the Ordering of Events in a Distributed System.Communiations of the ACM, 21(7):558{565, July 1978.[21℄ S. Leue and P.B. Ladkin. Implementing and verifying ms spei�ationsusing promela/xspin. In Proeedings of the DIMACS Workshop SPIN96, the2nd International Workshop on the SPIN Veri�ation System, volume 32 ofDIMACS Series, 1997.[22℄ F. Mattern. Virtual Time and Global States of Distributed Systems. InParallel and Distributed Algorithms: Pro. of the Int'l Workshop on Paralleland Distributed Algorithms, pages 215{226. Elsevier Siene Publishers B. V.(North-Holland), 1989.[23℄ K. L. MMillan. Symboli Model Cheking. Kluwer Aademi Publishers, 1993.[24℄ N. Mittal and V. K. Garg. Computation Sliing: Tehniques and Theory. In InPro. of the 15th International Symposium on Distributed Computing (DISC),pages 78{92, Lisbon, Portugal, 2001.[25℄ N. Mittal and V. K. Garg. On Deteting Global Prediates in DistributedComputations. In Pro. of the 15th International Conferene on DistributedComputing Systems (ICDCS), pages 3{10, Phoenix, Arizona, 2001.21

Sen and Garg[26℄ D. Peled. All from One, One for All: On Model Cheking Using Representatives.In 5th Int'l. Conferene on Computer-Aided Veri�ation (CAV), pages 409{423.Springer, Berlin, Heidelberg, 1993.[27℄ POTA. http://maple.ee.utexas.edu/~sen/POTA.html.[28℄ A. Sen and V. K. Garg. Automati Generation of Slies for Temporal LogiPrediate Detetion. Tehnial Report TR-PDS-2002-001, PDSL, ECE Dept.Univ. of Texas at Austin, 2002. Available at http://maple.ee.utexas.edu/.[29℄ A. Sen and V. K. Garg. Deteting Temporal Logi Prediates on the Happened-Before Model. In Pro. of the International Parallel and Distributed ProessingSymposium (IPDPS), Fort Lauderdale, Florida, 2002.[30℄ K. Sen, G. Rosu, and G. Agha. Runtime Safety Analysis of MultithreadedPrograms. TR UIUCDCS-R-2003-2334, Univ. of Illinois at Urbana Champaign,April 2003.[31℄ S. D. Stoller and Y. Liu. EÆient Symboli Detetion of Global Properties inDistributed Systems. In 10th Int'l. Conferene on Computer-Aided Veri�ation(CAV), volume 1447 of LNCS, pages 357{368, 1998.[32℄ S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. EÆient Detetion of GlobalProperties in Distributed Systems Using Partial-Order Methods. In 12th Int'l.Conferene on Computer-Aided Veri�ation (CAV), volume 1855 of LNCS,pages 264{279, 2000.[33℄ A. Valmari. A Stubborn Attak On State Explosion. In 2nd Int'l. Confereneon Computer-Aided Veri�ation (CAV), volume 531 of LNCS, pages 156{165,Berlin, Germany, 1990.

22

	Introduction
	Related Work
	Overview of POTA Architecture
	Model
	Background on Slicing
	Computation Slice

	Regular Predicates
	RCTL+ Syntax and Semantics

	Algorithms for Computing Slices for Temporal Predicates
	Experimental Results
	Discussion

	References

