
Ele
troni
 Notes in Theoreti
al Computer S
ien
e 89 No. 2 (2003)URL: http://www.elsevier.nl/lo
ate/ent
s/volume89.html 22 pagesPartial Order Tra
e Analyzer (POTA) forDistributed Programs
Alper Sen 1 Vijay K. Garg 2;3Department of Ele
tri
al and Computer EngineeringThe University of Texas at Austin, Austin, TX, 78712, USA

Abstra
tChe
king the
orre
tness of software is a growing
hallenge. In this paper, we presenta prototype implementation of Partial Order Tra
e Analyzer (POTA), a tool for
he
king exe
ution tra
es of both message passing and shared memory programsusing temporal logi
. So far runtime veri�
ation tools have used the total ordermodel of an exe
ution tra
e, whereas POTA uses a partial order model. The partialorder model enables us to
apture possibly exponential number of interleavings and,in turn, this allows us to �nd bugs that are not found using a total order model.However, veri�
ation in partial order model su�ers from the state explosion problem{ the number of possible global states in a program in
reases exponentially withthe number of pro
esses.POTA employs an e�e
tive abstra
tion te
hnique
alled
omputation sli
ing. Asli
e of a
omputation (exe
ution tra
e) with respe
t to a predi
ate is the
ompu-tation with the least number of global states that
ontains all global states of theoriginal
omputation for whi
h the predi
ate evaluates to true. The advantage ofthis te
hnique is that, it mitigates the state explosion problem by reasoning only onthe part of the global state spa
e that is of interest. In POTA, we implement
om-puting sli
ing algorithms for temporal logi
 predi
ates from a subset of CTL. Theoverall
omplexity of evaluating a predi
ate in this logi
 upon using
omputationsli
ing be
omes polynomial in the number of pro
esses
ompared to exponentialwithout sli
ing.We illustrate the e�e
tiveness of our te
hniques in POTA on test
ases su
h asthe General Inter-ORB Proto
ol (GIOP) [18℄. POTA also
ontains a module thattranslates exe
ution tra
es to Promela [16℄ (input language SPIN). This moduleenables us to
ompare our results on exe
ution tra
es with SPIN. In some
ases, wewere able to verify tra
es with 250 pro
esses
ompared to only 10 pro
esses usingSPIN.

2003 Published by Elsevier S
ien
e B. V.

http://www.elsevier.nl/locate/entcs/volume89.html

Sen and Garg1 Introdu
tionA fundamental problem in distributed systems is that of predi
ate dete
tion{ dete
ting whether a �nite exe
ution tra
e of a distributed program satis-�es a given predi
ate. There are appli
ations of predi
ate dete
tion in manydomains su
h as testing, debugging, and monitoring of distributed programs.For example, when debugging a distributed mutual ex
lusion algorithm, itis useful to monitor the system to dete
t
on
urrent a

esses to the sharedresour
es.A �nite tra
e
an be modeled in two ways. The �rst model imposes apartial order between events, for example Lamport's happened-before relation[20℄. The se
ond model imposes a total order (interleaving) of events. We usethe former approa
h in this paper, whi
h is a more faithful representation of
on
urren
y [20℄.Consider an exe
ution of a distributed program. The partial order modelof the resulting exe
ution tra
e is shown in Figure 1(a). In the tra
e, thereare two pro
esses P1 and P2 with integer variables x and y, respe
tively. Theevents are represented by solid
ir
les. Pro
ess P2 sends a message to pro
essP1 by exe
uting event f1 and pro
ess P1 re
eives that message by exe
utingevent e1. Ea
h event is labeled with the value of the respe
tive variable imme-diately after the event is exe
uted. For example, the value of x immediatelyafter exe
uting e1 is 2. The �rst event on ea
h pro
ess initializes the stateof the pro
ess. The set of all global states rea
hable from the initial statefe0; f0g is displayed in Figure 1(b). In the �gure, we represent a global stateas a tuple where ea
h element is the last event that o

urred on a pro
ess.Observe that fe1; f0g is not a rea
hable global state be
ause it depi
ts a sit-uation where a message has been re
eived from P2 by P1, that is e1, but P2has not yet sent the message. By using a partial order representation, we areable to
apture all possible interleavings of events, namely ten in total, ratherthan a single interleaving. One su
h interleaving sequen
e is fe0; f0g, fe0; f1g,fe1; f1g, fe2; f1g, fe3; f1g, fe3; f2g, fe3; f3g as shown in Figure 1(b) with thi
klines. Therefore we
an obtain better
overage in terms of testing and debug-ging by
apturing all interleavings. This
overage may translate into �ndingbugs that are not found using a single interleaving.The main problem in predi
ate dete
tion in the partial order model isthe state explosion problem|the set of possible global states of a distributedprogram with n individual pro
esses
an be of size exponential in n. A vari-ety of strategies for ameliorating the state explosion problem, in
luding sym-boli
 representation of states and partial order redu
tion have been explored[23,12,33,26,8,31,32℄.1 Email: sen�e
e.utexas.edu Homepage: http://www.e
e.utexas.edu/~sen/2 supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Edu
ationBoard Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant3 Email: garg�e
e.utexas.edu Homepage: http://www.e
e.utexas.edu/~garg/2

Sen and Garg
2e ,

1e ,

2f 1f

2e ,

3f2e , 3e , 2f

2f

1e ,

1f

3f

3e , 1f1e , 3f 3e , 1f

0e 0f

0e

0e

0e 3f

2f

1f

3e

3f

1e 2e

1f

0e

0f

P 1

P 2
2f

3f

1e 2e

1f

0e

0f 2f

0e 0f

1e 1f 3f2e 0e 0f

3f3e

3f2e

0e1e

2f

2e

0f

3f

1f

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

,3e{

{ {

{

{

{

{

{ }

}

}

}}

}

}

}

{ }

(b)

{ },

{ },

{ },

{ },

5

6

(c)

4

y 0 2

2

0

x 0

(a)

6

4

0 2

2

0

0

Initial state

Final state

Initial state: Final state:{ , }

Initial state: Final state:{ , } { , } Initial state: Final state:{ , }

{ , }

{ , }

(d)

{

{ }

}

},

,

, ,

{: meta−event

x = 2 y = 0

W

D

V

C

x = 4

y = 6Fig. 1. (a) A
omputation (b) its set of all rea
hable global states (
) its sli
e withrespe
t to (2 � x � 4)^(y 6= 2) (d) its sli
e with respe
t to EF((2 � x � 4)^(y 6= 2))In this paper, we present a prototype implementation of Partial OrderTra
e Analyzer (POTA) tool for
he
king exe
ution tra
es of distributed pro-grams. POTA
onsists of an instrumentation module, a translator modulethat translates exe
ution tra
es into Promela [16℄ (SPIN input language) andan analyzer module. The use of an e�e
tive abstra
tion te
hnique
alled
om-putation sli
ing for temporal logi
 veri�
ation is the most signi�
ant aspe
tof POTA and
onstitutes the analyzer module.Computation sli
ing was introdu
ed in [11,24℄ as an abstra
tion te
hniquefor analyzing distributed
omputations (�nite exe
ution tra
es). A
omputa-tion sli
e, de�ned with respe
t to a global predi
ate, is the
omputation withthe least number of global states that
ontains all global states of the original
omputation for whi
h the predi
ate evaluates to true. Sli
ing
an be usedto throw away the extraneous global states of the original
omputation in aneÆ
ient manner, and fo
us on only those that are
urrently relevant for ourpurpose.Using the results in [11,24℄ and [28℄, we
an eÆ
iently use
omputationsli
ing for the subset of CTL [4℄ with the following three properties. First,temporal operators are EF, EG, and AG and boolean operators are
on-jun
tion and disjun
tion. Se
ond, atomi
 propositions are regular predi
ates,whi
h we will de�ne later. Third, negation operator has been pushed ontoatomi
 propositions. We
all this logi
 Regular CTL plus (RCTL+), wherethe plus denotes that the disjun
tion and negation operators are in
luded inthe logi
. We also
onsider a disjun
tion and negation free subset of RCTL+and denote this by Regular CTL (RCTL). In RCTL+, we use the
lass of pred-i
ates,
alled regular predi
ates, that was introdu
ed in [11℄. The sli
e with3

Sen and Gargrespe
t to a regular predi
ate
ontains pre
isely those global states for whi
hthe predi
ate evaluates to true. Regular predi
ates widely o

ur in pra
ti
eduring veri�
ation. Some examples of regular predi
ates are
onjun
tion oflo
al predi
ates [10,17℄ su
h as \all pro
esses are in red state",
ertain
hannelpredi
ates [10℄ su
h as \at most k messages are in transit from pro
ess Pi toPj", and some relational predi
ates [10℄.To illustrate predi
ate dete
tion using
omputation sli
ing,
onsider the
omputation in Figure 1(a). Let p = (2 � x � 4) ^ (y 6= 2), and suppose wewant to dete
t EF(p). Without
omputation sli
ing, we are for
ed to examineall global states of the
omputation, thirteen in total, to de
ide whether the
omputation satis�es the predi
ate. Alternatively, we
an
ompute the sli
eof the
omputation with respe
t to regular predi
ate EF(p) and use this sli
efor predi
ate dete
tion. For this purpose, �rst we
ompute the sli
e withrespe
t to the atomi
 proposition p as follows. Immediately after exe
utingf2, the value of y be
omes 2 whi
h does not satisfy y 6= 2. To rea
h a globalstate satisfying y 6= 2, f3 has to be exe
uted. In other words, any globalstate in whi
h only f2 has been exe
uted but not f3 is of no interest to usand
an be ignored. The sli
e is shown in Figure 1(
). It is modeled by apartial order on a set of meta-events; ea
h meta-event
onsists of one or more\primitive" events. A global state of the sli
e either
ontains all the events ina meta-event or none of them. Moreover, a meta-event \belongs" to a globalstate only if all its in
oming neighbours are also
ontained in the state. Thesli
e
ontains only four states C;D; V and W and has mu
h fewer states thanthe
omputation itself { exponentially smaller in many
ases { resulting insubstantial savings. Using the sli
e in Figure 1(
), we
an obtain the laststate that satis�es p in the
omputation, whi
h is denoted by W . We alsoknow from the de�nition of EF(p) that every global state of the
omputationthat o

urs beforeW satis�es EF(p), e.g. states en
losed in the dashed ellipsein Figure 1(b). Therefore, applying this observation we
an
ompute the sli
ewith respe
t to EF(p) as shown in Figure 1(d). Finally, we
he
k whether theinitial state of the
omputation is the same as the initial state of the sli
e. Ifthe answer is yes then the predi
ate is satis�ed, otherwise not.POTA implements predi
ate dete
tion algorithms for RCTL and RCTL+whi
h use
omputation sli
ing. We show in [28℄, that the
omplexity of pred-i
ate dete
tion for a predi
ate p in RCTL is O(jpj � n2jEj), where jpj is thenumber of boolean and temporal operators in p and E is the total number ofevents. To the best of our knowledge, there did not exist tools that imple-ment eÆ
ient algorithms (polynomial in the number of pro
esses) to dete
tpredi
ates that
ontain nested temporal logi
 predi
ates. An example of anested predi
ate is AG(EF(reset)), whi
h states that reset is possible fromevery state. Furthermore, we validate with experiments that even for RCTL+predi
ates our
omputation sli
ing based te
hnique is very e�e
tive.We performed experiments using POTA on several proto
ols. We also usedthe POTA translator module to enable
omparison with SPIN on exe
ution4

Sen and Gargtra
es. In fairness, SPIN is designed for
he
king
orre
tness of programs andnot tra
es. However, to the best of our knowledge it is the best distributedprogram veri�
ation tool we
an use for our partial order models. Some ofthe proto
ols we used for experiments are the General Inter-ORB Proto
ol(GIOP) [18℄ and the primary se
ondary proto
ol [32℄. GIOP is a
entralfeature of the Common Obje
t Request Broker Ar
hite
ture (CORBA) thataids in a
hieving the desired interoperability between ORBs. The CORBAspe
i�
ation de�nes a standard proto
ol to allow
ommuni
ation of obje
t in-vo
ations between ORBs. Kamel and Leue [18℄
ould not fully verify a modelof GIOP with 10 pro
esses. Instead, they veri�ed a simpli�ed version of theproto
ol without server migration fun
tionality. In one
ase, we generatedexe
ution tra
es of unsimpli�ed GIOP proto
ol for a
on�guration with 250pro
esses. However, even with an exe
ution tra
e input, SPIN failed to
om-plete veri�
ation with more than 10 pro
esses. We also inje
ted faults intothe proto
ol and analyzed the resulting exe
ution tra
es. With SPIN, we usedbit-state hashing approximation option to handle larger number of pro
esses,but in this
ase SPIN failed to �nd the faults before running out of memory.However, POTA was able to �nd the faults easily. In all
ases, our algorithmsare signi�
antly faster and spa
e eÆ
ient than SPIN. We have measured overthree orders of magnitude gain over SPIN in some experiments.Computation sli
ing
an indeed be used to fa
ilitate predi
ate dete
tioneven for a larger
lass of predi
ates than RCTL+ as illustrated by the fol-lowing example. Consider a predi
ate p that is a
onjun
tion of two
lausesp1 and p2. Now, assume that p1 is su
h that it belongs to RCTL+ but p2has no stru
tural property that
an be exploited for eÆ
ient dete
tion, su
has, (x1 � x2 + x3 > x4), where xi is an integer variable on pro
ess i. Todete
t p, without
omputation sli
ing, we are for
ed to use global-state-spa
e-
onstru
tion-based approa
hes, whi
h do not take advantage of the fa
t thatp1
an be dete
ted eÆ
iently. With
omputation sli
ing, however, we
an �rst
ompute the sli
e for p1. If only a small fra
tion of global states satisfy p1,then instead of dete
ting p in the
omputation, it is mu
h more eÆ
ient todete
t p in the sli
e. Therefore by spending only polynomial amount of timein
omputing the sli
e we
an throw away exponential number of global states,thereby obtaining an exponential speedup overall.2 Related WorkPredi
ate dete
tion is a hard problem. Dete
ting even a 2-CNF predi
ateunder EF modality has been shown to be NP-
omplete, in general [25℄.Predi
ate dete
tion is a widely-studied problem. There are three majorapproa
hes to solving predi
ate dete
tion: global-snapshot-based approa
h[2℄, global-state-spa
e-
onstru
tion-based approa
h (in
luding model
he
k-ing) [4,5℄, and predi
ate-restri
tion-based approa
h [10℄. The �rst approa
h
an dete
t only stable predi
ates (whi
h remain true on
e they be
ome true),5

Sen and Gargand the se
ond approa
h su�ers from the state explosion problem. We fol-low the predi
ate-restri
tion-based approa
h that exploits the stru
ture of thepredi
ate and dire
tly uses the
omputation to dete
t if the predi
ate is satis-�ed in a global state. Some examples of the predi
ates for whi
h the predi
atedete
tion
an be solved eÆ
iently are:
onjun
tive [10,17℄, disjun
tive [10℄,stable [2℄, observer-independent [3,10℄, linear [10,29℄, and non-temporal regu-lar [11,24℄ predi
ates. These predi
ate
lasses have been so far dete
ted undersome or all of the temporal operators EF, EG, AG, AF and under the untiloperator of CTL [29℄, but not under any nesting of these operators. For ex-ample, a predi
ate EF(p^EG(q)), where p and q are
onjun
tive predi
ates,
annot be eÆ
iently dete
ted using only the eÆ
ient algorithms for
onjun
-tive predi
ates. In POTA, we
an dete
t su
h nested temporal logi
 predi
ateseÆ
iently.The idea of using temporal logi
 for analyzing exe
ution tra
es (also re-ferred to as runtime veri�
ation) has re
ently been attra
ting a lot of attention.We �rst presented a temporal logi
 framework for partially ordered exe
utiontra
es in [29℄ and gave eÆ
ient algorithms for predi
ates of the form EG(p)and AG(p) when p is a linear predi
ate. The eÆ
ien
y of those algorithmsdepended on the fa
t that p was a state predi
ate and therefore we
ould eÆ-
iently evaluate the satis�ability of p at a global state. However, in this paperwe present implementation of eÆ
ient algorithms even when p is a temporalpredi
ate.Some other examples of using temporal logi
 for
he
king exe
ution tra
esare the
ommer
ial Temporal Rover tool (TR) [7℄, the MaC tool [19℄, theJPaX tool [15℄, and the JMPaX tool [30℄. TR allows the user to spe
ify thetemporal formula in programs. These temporal formula are translated intoJava
ode before
ompilation. The MaC and JPaX tools
onsider a totallyordered view of an exe
ution tra
e and therefore
an potentially miss bugsthat
an be dedu
ed from the tra
e.JMPaX tool is
loser to POTA be
ause of the partial order tra
e model.The di�eren
es in both approa
hes
an be summarized as follows. JMPaXuses a subset of temporal logi
 with safety where atomi
 propositions
an bearbitrary. Whereas POTA uses a subset of temporal logi
 with both safetyand liveness where atomi
 propositions are restri
ted. The
omplexity of thepredi
ate dete
tion algorithm in POTA is polynomial-time in the number ofpro
esses whereas the
omplexity
an be exponential-time in the number ofpro
esses (as large as the width of the latti
e of global states) in JMPaX.3 Overview of POTA Ar
hite
tureThe overall stru
ture of POTA ar
hite
ture is shown in Figure 2. The tool
onsists of 3 main modules; analyzer, translator, and instrumentor.The analyzer module
ontains our
omputation sli
ing and predi
ate de-te
tion algorithms. Given an exe
ution tra
e and a predi
ate (spe
i�
ation)6

Sen and Garg
Distributed

Program

Promela code

Translate

Detect
Computation Slice

Specification

Execute

Spin

Slice

Analyzer

Translator

Translate

Partial Order
Execution Trace

Program
Instrumented

Instrument

Execute

Instrumentor

Fig. 2. Overview of POTA Ar
hite
turein RCTL+, the
omputation sli
e may
ontain more states than the ones thatsatisfy the predi
ate. Therefore, the analyzer module uses the following strat-egy to de
ide whether the predi
ate is satis�ed or not. Case 1, if the sli
eand the input tra
e have di�erent initial states then the predi
ate is not sat-is�ed. In this
ase a
ounterexample is generated. Case 2, if the predi
ateis from RCTL and the sli
e and the input tra
e have the same initial statesthen the predi
ate is satis�ed. Case 3, when the predi
ate does not belongto RCTL (that is, it
ontains disjun
tion or negation operators) and the sli
eand the input tra
e have the same initial states then we have to take an extrastep. This is be
ause the initial state of the sli
e may not satisfy the predi-
ate. Therefore, we employ the translation module and translate the sli
e intoPromela [16℄ (input language of SPIN). Then we use SPIN to
he
k the tra
eassuming that there are equivalent spe
i�
ations in LTL.The translator module takes a partial order representation of a tra
e andgenerates output in spe
i�
 languages. This module serves two purposes; toenable
omparison of our sli
ing te
hnique with other te
hniques su
h as par-tial order redu
tion and to enable veri�
ation of predi
ates that do not belongto RCTL but for whi
h we
an take advantage of
omputation sli
ing. Thelatter purpose is served when the predi
ate belongs to RCTL+ as explainedin Case 3 in the above paragraph or when the predi
ate is a
onjun
tionof predi
ates where one of the
onjun
ts belong to RCTL+ as explained inthe introdu
tion. Sin
e we are working with distributed programs whi
h ex-hibit a lot of parallelism and independen
y, partial order redu
tion te
hniques
an take advantage of these properties of distributed programs. The SPINmodel
he
ker
ontains implementation of partial order redu
tion te
hniques.Currently, translation from tra
es to Promela is supported. The translationme
hanism is similar to the te
hnique explained in [21℄ for translations frommessage sequen
e
harts (MSC) to Promela.The instrumentation module inserts
ode at the appropriate pla
es in theprogram to be monitored. The instrumented program is su
h that it outputs7

Sen and Gargthe values of variables relevant to the predi
ate in question and keeps a ve
tor
lo
k that is updated for ea
h internal, send and re
eive event a

ording to theFidge/Mattern algorithm [9,22℄. We use the ve
tor
lo
k to obtain a partialorder representation of tra
es.Upon running the instrumented program a separate log �le for ea
h pro
essis generated. Ea
h log �le
onsists of a sequen
e of lo
al states that a pro
essgoes through. Ea
h lo
al state
ontains the values of variables relevant to thepredi
ate being veri�ed and a ve
tor
lo
k. Log �les for every pro
ess are then
ombined to obtain a partial order representation of the exe
ution tra
e.Instead of using a log �le, if every pro
ess sends its tra
e to a dedi
atedpro
ess whi
h
ombines them during runtime, we
an obtain an on-line veri-�
ation environment.Currently, programs are manually instrumented. We
ondu
ted experi-ments with Java and Promela programs. For SPIN programs, we insert
odeinto Promela programs and also made
hanges to the SPIN sour
e
ode so thatwe
an obtain a partial order model when we run SPIN in simulation modewith the option for generating a message sequen
e
hart output. SPIN's MSCoutput is by default a total ordered exe
ution. However, we observed fromthis MSC output that there are unne
essary dependen
ies therefore eventsdo not need to be totally ordered su
h as request messages from two di�er-ent pro
esses sent to two di�erent servers do not need to be totally ordered.We are in the pro
ess of
hoosing an appropriate instrumentation te
hniquefor Java programs. The
hoi
e is between Java JDI as in [1℄ or byte
odeinstrumentation as in JPaX.4 ModelA distributed program
onsists of n pro
esses denoted by P1; P2; : : : ; Pn. Tra-ditionally, a distributed
omputation is modeled as a partial order on a setof events,
alled happened-before relation [20℄. The happened-before relationbetween any two \primitive" events e and f
an be formally stated as thesmallest relation su
h that e happened-before f if and only if e o

urs be-fore f in the same pro
ess, or e is a send of a message and f is a re
eive ofthat message, or there exists an event g su
h that e happened-before g andg happened-before f . In this paper we relax the restri
tion that the orderon events must be a partial order. More pre
isely, we use dire
ted graphs tomodel distributed
omputations as well as sli
es. Dire
ted graphs allow us tohandle both of them in a uniform and
onvenient manner. Furthermore, we
an extend the happened-before relation to read and write events of sharedvariables as in [30℄.Given a dire
ted graph G, let V(G) and E(G) denote the set of verti
esand edges, respe
tively. We de�ne a
onsistent
ut (global state) on dire
tedgraphs as a subset of verti
es su
h that if the subset
ontains a vertex thenit
ontains all its in
oming neighbours. Formally, C is a
onsistent
ut of G,8

Sen and Gargif 8e; f 2 V(G) : (e; f) 2 E(G) ^ (f 2 C)) (e 2 C). We say that a strongly
onne
ted
omponent is non-trivial if it has more than one vertex. We denotethe set of
onsistent
uts of a dire
ted graph G by C(G). Observe that theempty set ; and the set of verti
es V(G) trivially belong to C(G). We
all themtrivial
onsistent
uts. We use P(G) to denote the set of pairs of verti
es (u; v)su
h that there is a path from u to v in G. We assume that ea
h vertex hasa path to itself.We model a distributed
omputation (or simply a
omputation), denotedby hE;!i, as a dire
ted graph with verti
es as the set of events E and edgesas!. We use event and vertex inter
hangeably. To limit our attention to onlythose
onsistent
uts that
an a
tually o

ur during an exe
ution, we assumethat P(hE;!i)
ontains at least the Lamport's happened-before relation [20℄. A distributed
omputation in our model
an
ontain
y
les. This is be
ausewhereas a
omputation in the happened-before model
aptures the observableorder of exe
ution of events, a
omputation in our model
aptures the set ofpossible
onsistent
uts. Intuitively, ea
h strongly
onne
ted
omponent of a
omputation
an be viewed as a meta-event ; a meta-event
onsists of one ormore primitive events.We assume the presen
e of a �
titious global initial and a global �nal event,denoted by ? and >, respe
tively. The global initial event o

urs before anyother event on the pro
esses and initializes the state of the pro
esses. Theglobal �nal event o

urs after all other events on the pro
esses. Any non-trivial
onsistent
ut will
ontain the global initial event and not the global �nalevent. Therefore, every
onsistent
ut of a
omputation in traditional model(happened-before model) is a non-trivial
onsistent
ut of the
omputationin our model and vi
e versa. Note that the empty
onsistent
ut, ;, in thetraditional model
orresponds to f?g in our model and the �nal
onsistent
ut, E, in the traditional model
orresponds to E�f>g in our model and wedenote this by E . We use upper
ase letters C, D, H, V , and W to represent
onsistent
uts.Figure 3 shows a
omputation and its latti
e of (non-trivial)
onsistent
uts. A
onsistent
ut in the �gure is represented by its frontier. For example,the
onsistent
ut C = fe3; e2; e1; f2; f1;?g is represented by fe3; f2g.
2e 3e

2f 3f

1e

1f
P 2

P 1 2e ,

1e ,2f

2f 1f

2e ,

3f

3f2e , 3e , 2f

2f

1e ,

1f

3f

3e , 1f1e , 3f

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

(a)

2 4 5

0 2 6

Initially x=0, y=0

x

y

1f

,3e{

{ {

{ {

{

{

{

{ {

{

}

}

}

}

}

}

}}

}

}

}

}{

{ }

(b)

C

C

Fig. 3. (a) A
omputation hE;!i (b) and its latti
e
orresponding to C(G)Given a
onsistent
ut, a predi
ate is evaluated with respe
t to the values9

Sen and Gargof variables resulting after exe
uting all events in the
ut. If a predi
ate pevaluates to true for a
onsistent
ut C, we say that C satis�es p. We leavethe predi
ate unde�ned for the trivial
onsistent
uts.5 Ba
kground on Sli
ingThe notion of
omputation sli
e is based on the Birkho�'s RepresentationTheorem for Finite Distributive Latti
es [6℄. The readers who are not familiarwith earlier papers on
omputation sli
ing are urged to read the extendedversion of the paper from [27℄.5.1 Computation Sli
eRoughly speaking, a
omputation sli
e (or simply a sli
e) is a
on
ise rep-resentation of all those
onsistent
uts of the
omputation that satisfy thepredi
ate. More pre
isely,De�nition 5.1 [sli
e [24℄℄ A sli
e of a
omputation with respe
t to a predi
ateis a dire
ted graph with the least number of
onsistent
uts that
ontains all
onsistent
uts of the given
omputation for whi
h the predi
ate evaluates totrue.We denote the sli
e of a
omputation hE;!i with respe
t to a predi
atep by sli
e(hE;!i; p). Note that hE;!i = sli
e(hE;!i; true). It was provenin [24℄ that the sli
e exists and is uniquely de�ned for all predi
ates. Everysli
e derived from the
omputation hE;!i has the trivial
onsistent
uts (;and E) among its set of
onsistent
uts. A sli
e is empty if it has no non-trivial
onsistent
uts [24℄. In the rest of the paper, unless otherwise stated,a
onsistent
ut refers to a non-trivial
onsistent
ut. In general, a sli
e will
ontain
onsistent
uts that do not satisfy the predi
ate (besides trivial
on-sistent
uts). In
ase a sli
e does not
ontain any su
h
ut, it is
alled lean.We next give the
lass of predi
ates for whi
h the sli
e is lean.6 Regular Predi
atesGiven a
omputation, the set of
onsistent
uts satisfying a regular predi-
ate forms a sublatti
e of the set of
onsistent
uts of the
omputation [11℄.Equivalently,De�nition 6.1 [regular predi
ate [24℄℄ A predi
ate is regular if given two
onsistent
uts that satisfy the predi
ate, the
onsistent
uts obtained bytheir set union and set interse
tion also satisfy the predi
ate. Formally, givena regular predi
ate p,(C satis�es p) ^ (D satis�es p)) (C \D satis�es p) ^ (C [D satis�es p)We say that a regular predi
ate is non-temporal if it does not
ontaintemporal operators su
h as EF, AG, and EG, otherwise it is a temporal10

Sen and Gargregular predi
ate. In [11℄ polynomial-time algorithms are given for
omputingsli
es for non-temporal regular predi
ates. In [28℄, we showed that EF(p),AG(p), and EG(p) are temporal regular predi
ates when p is regular andgave polynomial-time algorithms to
ompute these sli
es, whi
h we will brie
yexplain in the next se
tion.Some examples of non-temporal regular predi
ates are monotoni

hannelpredi
ates su
h as \there are at least k messages in transit from Pi to Pj",
onjun
tion of lo
al predi
ates su
h as \Pi and Pj are in
riti
al se
tion",and relational predi
ates su
h as x1 � x2 � 5, where xi is a monotoni
allynon-de
reasing integer variable on pro
ess i. From the de�nition of a regularpredi
ate we dedu
e that a regular predi
ate has a least satisfying
ut and agreatest satisfying
ut. Furthermore, the
lass of regular predi
ates is
losedunder
onjun
tion.Also in [24℄ polynomial-time algorithms are given to
ompute sli
es withrespe
t to boolean
ombination of regular predi
ates. Given the sli
es withrespe
t to two regular predi
ates, the
omplexity of
omputing the sli
e forthe
onjun
tion and disjun
tion of these regular predi
ates is O(n2jEj). The
omplexity of
omputing the sli
e for the negation of a regular predi
ate isO(n2jEj2). Note that regular predi
ates are not
losed under disjun
tion andnegation operators therefore sli
es obtained with respe
t to predi
ates that
ontain these operators may not be lean.6.1 RCTL+ Syntax and Semanti
sWe de�ne su

essor of a
ut by a relation . � C(G)�C(G) su
h that C .D ifand only if D = C[e, where e is the set of verti
es in some strongly
onne
ted
omponent in hE;!i and e \ C = ;. We denote the re
exive
losure of thisrelation by .. A
onsistent
ut sequen
e C0; C1; : : : ; Ck of (C(G);�) satis�esthat for ea
h 0 � i < k, Ci . Ci+1. We say that a
ut D is rea
hable from a
ut C if C � D.Propositional temporal logi
s use a �nite set of atomi
 propositions AP ,ea
h one of whi
h represents some property of the global state. A labelingfun
tion �: C(G)! 2AP assigns to ea
h global state the set of predi
ates fromAP that hold in it. In this paper we assume that atomi
 propositions arenon-temporal regular predi
ates and their negations.The formal syntax of RCTL+ is given below.� Every predi
ate ap 2 AP is an RCTL+ formula.� If p and q are RCTL+ formulas, then so are p_ q, p^ q, EF(p), EG(p),and AG(p).Given a �nite distributive latti
e L = (C(G);�), the formulas of RCTL+are interpreted over the
onsistent
uts in C(G). Let p be an RCTL+ formulaand C be a
onsistent
ut in C(G). Then, the satisfa
tion relation, L;C j= pmeans that predi
ate p holds at
onsistent
ut C in latti
e L = (C(G);�) andis de�ned indu
tively below. We denote C j= p as a short form for L;C j= p,11

Sen and Gargwhen L is
lear from the
ontext.� C j= ap i� ap 2 �(C) for an atomi
 proposition ap.� C j= p ^ q i� C j= p and C j= q.� C j= p _ q i� either C j= p or C j= q.� C j= EG(p) i� for some
onsistent
ut sequen
e C0; : : : ; Ck su
h that (i)C0 = C, (ii) Ck = E , (iii) Ci . Ci+1 for 0 � i < k, we have (iv) Ci j= p for all0 � i � k.� C j= AG(p) i� for all
onsistent
ut sequen
es C0; : : : ; Ck su
h that (i)C0 = C, (ii) Ck = E , (iii) Ci . Ci+1 for 0 � i < k, we have (iv) Ci j= p for all0 � i � k.� C j= EF(p) i� for some
onsistent
ut sequen
e C0; : : : ; Ck su
h that (i)C0 = C, (ii) Ck = E , (iii) Ci . Ci+1 for 0 � i < k, we have (iv) Ci j= p forsome 0 � i � k.We de�ne L j= p if and only if L; f?g j= p. The formula C j= AG(p)(resp. C j= EG(p)) intuitively means that for all
onsistent
ut sequen
es(resp. for some
onsistent
ut sequen
e) C; : : : ; E , p holds at every
ut of thesequen
e. The formula C j= EF(p) intuitively means that for some
onsistent
ut sequen
e C; : : : ; E , there exists a
onsistent
ut that satis�es p.We de�ne RCTL as the subset of RCTL+ where disjun
tion and negationoperators are not allowed.The predi
ate dete
tion problem is to de
ide whether the initial
onsistent
ut of a distributed
omputation satis�es a predi
ate.7 Algorithms for Computing Sli
es for Temporal Pred-i
atesOur distributed program analysis tool POTA uses
omputation sli
ing forpredi
ate dete
tion. Mittal and Garg [24℄ also used
omputation sli
ing foreÆ
ient dete
tion of predi
ates of the form EF(p), EG(p), AG(p) for non-temporal regular p. However, their predi
ate dete
tion algorithm is based on
omputing sli
es for non-temporal regular predi
ates. Therefore, it
annotbe used for dete
ting nested temporal predi
ates su
h as AG(p) when p is atemporal predi
ate like p = EF(q). In this se
tion, we explain our sli
ing algo-rithms from [28℄ for temporal regular predi
ates to enable eÆ
ient predi
atedete
tion for RCTL+ whi
h also in
ludes nested temporal predi
ates.The sli
e of a
omputation with respe
t to a temporal predi
ate is thesmallest
omputation that
ontains all
onsistent
uts of the given
omputa-tion for whi
h the predi
ate holds. We proved in [28℄ that temporal predi
atesEF(p), EG(p), and AG(p) are regular for regular p. Therefore, the sli
es forthese temporal predi
ates are lean.The input to ea
h algorithm in this se
tion is a
omputation hE;!i and itssli
e with respe
t to a regular predi
ate p, that is, sli
e(hE;!i; p). The outputof ea
h algorithm is an appli
ation of a temporal operator on the sli
e. For12

Sen and Gargexample, in order to generate a sli
e with respe
t to AG(EF(p)), where p is anon-temporal regular predi
ate, we
an use the sli
ing algorithms explained inthis se
tion as follows: First, we
ompute the sli
e for p using the algorithmsin [11,24℄ for non-temporal regular predi
ates. Then, we give this sli
e andthe
omputation to the EF sli
ing algorithm to obtain sli
e(hE;!i;EF(p)).Finally, the output of EF sli
ing algorithm and the
omputation is given asan input to AG sli
ing algorithm to obtain sli
e(hE;!i;AG(EF(p))).Sin
e the
onsistent
uts of the sli
e of a
omputation is a subset of
on-sistent
uts of the
omputation, the sli
e
an be obtained by adding edges tothe
omputation. In other words, the sli
e
ontains additional edges that donot exist in the
omputation. For example,
onsider Figure 6(a) that displaysthe sli
e of the
omputation in Figure 3 with respe
t to :((x = 5) ^ (y = 2)).The only
onsistent
ut in the
omputation that does not satisfy the predi
ateis fe3; e2; e1; f1;?g. By adding the edge (f2; e3), we disallow this
onsistent
ut from the sli
e. Below, for
omputing sli
es for EF(p), we will show whi
hedges we add to the
omputation. Similarly, sin
e the
onsistent
uts of thesli
e for AG(p) is a subset of
onsistent
uts of the sli
e for p, the sli
e forAG(p)
an be obtained by adding edges to the sli
e for p.Now we explain Algorithm A1 in Figure 5 for generating the sli
e of a
omputation with respe
t to EF(p). From the de�nition of EF(p), all
onsis-tent
uts of the
omputation that
an rea
h the greatest
onsistent
ut thatsatisfy p, say W , will also satisfy EF(p) and furthermore these are the only
uts that satisfy EF(p). We
an �nd the
ut W using sli
e(hE;!i; p) when itis nonempty. We
onstru
t the sli
e for EF(p) from the
omputation so thatW is the �nal
ut of the sli
e. To ensure that all
uts whi
h
annot rea
h Wdo not belong to the sli
e, we add edges from > to the su

essors of eventsin the frontier of W . Adding an edge from > to an event makes any
utthat
ontains the event trivial. Figure 4 shows the appli
ation of AlgorithmA1. Given the sli
e of the
omputation in Figure 3(a) for some predi
ate p asshown in Figure 4(a), �rst we
ompute the �nal
ut of the sli
e for p, that is,fe2; f3g. Then, on the
omputation, we add an edge from > to the su

essorof e2, that is e3. The su

essor of f3 does not exist so we do not add any otheredges. The resulting sli
e for EF(p) is displayed in Figure 4(
).Now we des
ribe the AG(p) sli
ing algorithm in Figure 5. We explainedabove that to obtain the sli
e for AG(p) we will add edges to the sli
e forp and eliminate
onsistent
uts that do not belong to sli
e for AG(p). Nowwe show whi
h edges we should add. We
laim that
onsistent
uts of thesli
e(hE;!i; p) that do not in
lude vertex e of ea
h additional edge (e; f)do not satisfy AG(p). For simpli
ity, let the sli
e(hE;!i; p) have a singleadditional edge (e; f). For example,
onsistent
uts f?g, ff1;?g, fe1; f1;?g,and fe2; e1; f1;?g of the sli
e in Figure 6(a) do not in
lude vertex f2 of theadditional edge (f2; e3). It is easy to see that these four
onsistent
uts do notsatisfy AG(p) and therefore we should add edges to eliminate them. We nowgive a proof sket
h of the
orre
tness of the algorithm for the simpli�ed
ase13

Sen and Garg
2e ,

2f

1f

2e ,

3f

3f2e ,

2f

3f2f

1e
2e 3e

1f

2e 3e

2f 3f

1e

1f

1e ,2f

2f

2e ,

3f

3f2e ,

2f

1e ,

1f

1e , 3f

2e , 1f

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

(a) (b)

1f

{

{ {

{

{

{

}

}

}

}

}

}

}{

(c)

1f

{

{ {

{

{

{ {

{

}

}

}

}

}

}

}

}{

{ }

(d)

}

Fig. 4. (a) A sli
e of hE;!i in Fig. 3 (b) the
orresponding sublatti
e (
) Theappli
ation of the temporal operator EF on the sli
e in (a) (d) the
orrespondingsublatti
ewith a single additional edge. The proof for full
ase
an be found in [28℄.Theorem 7.1 Given a
omputation hE;!i and sli
e(hE;!i; p), a
onsistent
ut D in hE;!i satis�es AG(p) i� it in
ludes vertex e of the additional edge(e; f) in sli
e(hE;!i; p).Proof Sket
h:If a
onsistent
ut D does not in
lude vertex e then there exists a
onsistent
ut H that
an be rea
hed from D in the
omputation su
h that H does notin
lude e but in
ludes f . In this
ase, it is
lear that H does not satisfyp sin
e (e; f) is an edge in the sli
e(hE;!i; p) and every
onsistent
ut ofsli
e(hE;!i; p) that in
ludes f must in
lude e. Therefore from the de�nitionof AG(p), D does not satisfy AG(p).Now we prove the other dire
tion. If a
onsistent
ut D does not satisfyAG(p) then there exists a
onsistent
ut H rea
hable from D su
h that Hdoes not satisfy p. We know that only the
onsistent
uts that in
lude f butnot e do not satisfy p. Sin
e H is rea
hable from D and H does not in
ludee, we have that D also does not in
lude e. 2In AlgorithmA2, for any additional edge (e; f), we add an edge from vertexe to vertex ?. This ensures that
onsistent
uts of the
omputation that donot in
lude vertex e of any additional edge (e; f) are disallowed from the sli
e,whereas the rest still belong to sli
e(hE;!i;AG(p)). For example,
onsistent
ut fe1; f1;?g of the sli
e in Figure 6(a) does not in
lude vertex f2 of theadditional edge (f2; e3) in Figure 6(a), therefore we add an edge (f2;?) andobtain the sli
e in Figure 6(
). The
ut fe1; f1;?g
annot be a
onsistent
utof this new sli
e sin
e it has to in
lude vertex f2.14

Sen and GargAlgorithm A1Input: A
omputation hE;!i and sli
e(hE;!i; p)Output: sli
e(hE;!i;EF(p))Step 1. Let G be hE;!i and let W be the �nal
ut ofsli
e(hE;!i; p)Step 2. If W exists thenStep 3. 8 e 2 frontier(W): add an edge fromthe vertex > to su

(e) in GStep 4. return GStep 5. else return empty sli
eAlgorithm A2Input: A
omputation hE;!i and sli
e(hE;!i; p)Output: sli
e(hE;!i;AG(p))Step 1. Let G be sli
e(hE;!i; p)Step 2. For ea
h pair of verti
es (e; f) in G su
h that,(i) :(e! f) in hE;!i, and(ii) (e! f) in Gadd an edge from vertex e to the vertex ?Step 3. return GFig. 5. Algorithms for generating a sli
e with respe
t to EF(p) and AG(p)The algorithm for EG(p) sli
ing is similar to the AG(p) sli
ing algorithmand is explained in [28℄. The
omplexity of the temporal sli
ing algorithms isO(njEj) [28℄.Complexity of RCTL Predi
ate Dete
tion: Given a predi
ate inRCTL we
an
ompute the sli
e for the predi
ate re
ursively from inside-outby applying the appropriate temporal or boolean operator on the sli
es. Itis then easy to determine whether the predi
ate is satis�ed by just
he
kingwhether the initial state of the
omputation and the sli
e are the same. The
omplexity of predi
ate dete
tion is dominated by the
omplexity of
om-puting the sli
e with respe
t to a non-temporal regular predi
ate, whi
h hasO(n2jEj)
omplexity [11,24℄. Therefore, the overall
omplexity of predi
atedete
tion for RCTL is O(jpj � n2jEj), where jpj is the number of boolean andtemporal operators in p. The predi
ate dete
tion in RCTL+ has worst
aseexponential-time
omplexity. However, the sli
e is in general mu
h smaller15

Sen and Garg

2f

2e ,

3f

2f

3f,3e{ }

3e , 2f{ }3f2e ,{

3f

2f

1e

1e

2e ,

2f

1f

2e ,

3f

2f

3f,3e{ }

3e , 2f{ }3f2e ,{

3f

2f

1f

1e

1e

1e

3f

1e
2e 3e

1f 2f

3f

1e
2e 3e

1f 2f

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

(c)

2 4

0 2

5

2 4 5

0 2 6

6

(a)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(d)

{

{

{

}

}

}

}}

}

{

{

,

,

(b)

1f

{ {

{

{

{

}

}

}

}

}

}

}{

}

}

}

{

{

{

,

,

,

Fig. 6. (a) The sli
e of hE;!i in Fig. 3 with respe
t to :((x = 5) ^ (y = 0))(b) the
orresponding sublatti
e (
) The sli
e of hE;!i in Fig. 3 with respe
t toAG :((x = 5) ^ (y = 0)) (d) the
orresponding sublatti
ethan the
omputation whi
h we validate with experiments in the next se
tion.8 Experimental ResultsIn order to evaluate the e�e
tiveness of POTA, we performed experiments withs
alable proto
ols,
omparing our
omputation sli
ing based approa
h withpartial order redu
tion based approa
h of SPIN [16℄. All experiments wereperformed on a 1.4 Ghz Pentium 4 ma
hine running Linux. We restri
ted thememory usage to 512MB, but did not set a time limit. The two performan
emetri
s we measured are running time and memory usage. In the
ase ofsli
ing both metri
s also in
lude the overhead of
omputing the sli
e. We usethe symbol � to denote that the veri�
ation was not
ompleted due to runningout of memory.We
onsider the following distributed programs distributed dining philoso-phers, primary-se
ondary, and GIOP proto
ols. Further experimental results
an be obtained from POTA website [27℄.Distributed Dining Philosophers (ddph): We use the Java proto
olfrom [14℄ for this exer
ise and
he
k the following properties. The
omple-ment of the safety property, that is, Wi;j20:::(n�1)(EF(eati ^ eatj)) where i andj denote philosophers next to ea
h other. The
omplement of the livenessproperty, that is, Wi20:::(n�1)(EF(hungryi^EG(:eati))), for ea
h philosopheri. Observe that the negation of a lo
al predi
ate :eati is also a lo
al predi-
ate and furthermore it is a regular predi
ate. Finally, we
he
k the propertyAG(EF(eati)) whi
h denotes that eating is possible from every state. Table16

Sen and Garg1 displays our results for the liveness property.Table 1Distributed Dining Philosophers, Liveness Property3 4 5 6 7 10 20 30 40 100 250POTA T 0.14 0.17 0.19 0.23 0.22 0.49 3.54 10.37 18.1 137.2 965.3M 0.18 0.29 0.36 0.42 0.5 0.92 1.57 4.5 6.8 33.4 96SPIN T 0.1 1.16 15.6 144.7 *M 1.67 4.13 35.4 223.2 *Primary Se
ondary: The primary se
ondary program [32℄
on
erns analgorithm designed to ensure that the system always
ontains a pair of pro-
esses a
ting together as primary and se
ondary. The property requires thatthere is a pair of pro
esses Pi and Pj su
h that (1) Pi is a
ting as a primary and
orre
tly thinks that Pj is its se
ondary, and (2) Pj is a
ting as a se
ondaryand
orre
tly thinks that Pi is its primary. Both the primary and se
ondarymay
hoose new pro
esses as their su

essor at any time. The
omplement ofthe safety property is EFV(:isPrimaryi _ :isSe
ondaryj _ (se
ondaryi 6=Pj)_(primaryj 6= Pi)) when i; j 2 0 : : : (n�1), i 6= j. Note that this predi
ate
ontains disjun
tion operators and the sli
e may not be lean. However, Table2 shows that even in this
ase sli
ing
an redu
e the state spa
e substantially.Table 2Primary Se
ondary, Safety Property3 4 5 6 7 8 9 10 20 30 40POTA T 0.01 0.03 0.08 0.15 0.28 0.42 0.65 0.9 4.07 20.53 70.66M 0.41 0.75 1 2.03 2.75 3.77 7.78 8.82 28.89 199.49 304.5SPIN T 0.01 0.02 0.02 0.12 0.38 2.51 7.92 *M 1.57 1.57 1.67 2.29 5.05 21.95 81.54 *GIOP: In this se
tion, we present experimental results for the GeneralInter-ORB Proto
ol (GIOP) whi
h was veri�ed in [18℄ using SPIN.The Common Obje
t Request Broker Ar
hite
ture (CORBA) [13℄ de-s
ribes the ar
hite
ture of a middleware platform that supports the imple-mentation of appli
ations in distributed and heterogeneous environments. TheCORBA standard is issued by OMG.The ORB is the key
omponent of the CORBA programming model. AnORB is responsible for transferring operations from Clients to Servers. Thisrequires the ORB to lo
ate a Server implementation (and possibly a
tivateit), transmit the operation and its parameters, and �nally return the resultsba
k to the Client. 17

Sen and GargThe General Inter-ORB Proto
ol (GIOP) is the abstra
t proto
ol whi
his used for
ommuni
ations between CORBA ORBs. It spe
i�es the transfersyntax and a standard set of message formats for ORB interoperation over any
onne
tion-oriented transport Proto
ol. GIOP is designed to be simple andeasy to implement, while still allowing for reasonable s
alability and perfor-man
e. In order to allow server obje
ts to move between di�erent ORBs andhave messages forwarded to them wherever they are, GIOP supports servermigration.Figure 7 displays the high level view of the Promela model of the GIOPproto
ol as depi
ted in [18℄. The proto
ol
onsists of User, Client, Transport,Agent and Server pro
esses. Here, we
ondu
t experiments for 4 of the 8 LTLpredi
ates used in [18℄ (properties (iv) and (v) are
onsidered as one). Below,formulas express the
omplement of the property expressed in English.
Transport

Server

Agent

Transport

GIOP
Client
GIOP

User

Fig. 7. GIOP model(i) After sending a URequest message a User should eventually re
eive the
orresponding UReply message.EF(URequestSenti ^ EG(:UReplyRe
eivedi)), for all users i.(ii) After sending an SRequest the GIOP-Agent should eventually re
eive a
orresponding SReply.EF(SRequestSenti ^ EG(:SReplyRe
eivedi)), for all agents i.(iii) Requests sent by a
lient are responded to eventually by a reply unlessthey have been
an
elled.EF�CRequestSenti ^ EG(:CReplyRe
eivedi _ :CCan
elSenti)), forall
lients i.(iv) If the user re
eived no ex
eption, its request was performed exa
tly on
e.AG(:NoEx
eptioni _ (WkVj ServerjPro
essedi = m)), where m = 1 ifk = j and m = 0 otherwise, for all users i and for all servers j; k.(v) If the user re
eived ex
eption, its request was performed at most on
e.AG(:SystemEx
eptioni _ (WkVj ServerjPro
essedi = m)_(Vl ServerlPro
essedi = 0)), where m = 1 if k = j and m = 0otherwise, for all users i and for all servers j; k; l.The full veri�
ation of GIOP by Kamel and Leue [18℄ even for the
on�gu-18

Sen and Gargration in Figure 7 with 10 pro
esses was not
ompleted due to state explosion.They
ould verify a simpli�ed version of the proto
ol without server migrationwith 10 pro
esses. To enable veri�
ation for larger number of pro
esses, theyused an approximation te
hnique in SPIN
alled bit-state hashing where twobits of memory are used to store a rea
hable state. SPIN displays a state
ov-erage number (hash-fa
tor) at the end of a veri�
ation with bit-state hashing.With bit-state hashing, they
ould verify the unsimpli�ed version of the pro-to
ol with 20 pro
esses with 1.5 hash-fa
tor, whi
h means that the
overagewas less than one per
ent sin
e best
overage is obtained when the hash-fa
toris greater than 100.We generated exe
ution tra
es for a variety of GIOP ar
hite
tures wherewe dupli
ated the User and Server blo
ks. In one
ase, we generated exe
utiontra
es from unsimpli�ed version of GIOP proto
ol where the total number ofpro
esses was in
reased to 250 and we
ompleted full veri�
ation of thesetra
es. In Table 3, we present experimental results for the GIOP models withserver migration. Table 3Property (i) 10 20 40 80 120 160 200 250POTA T 0.2 0.24 4.6 50.8 183.8 1001.1 1291 1761M 1.7 1.3 1.9 16.3 33.7 63.2 76.7 91.9SPIN T 362.6 *M 320 *Property (v) 10 20 40 60 80 120POTA T 0.1 5.3 5.6 60.7 218.8 520.6M 0.4 4.4 21.6 150.4 301.4 475.7SPIN T 319.2 *M 305.4 *8.1 Dis
ussionIn all exe
ution tra
e veri�
ations, SPIN
ould verify upto only 6 pro
esses inddph, 9 in primary se
ondary and 10 in GIOP proto
ols, even when DCOL-LAPSE and DMA
ompilation options were used. Observe that sin
e we usea larger memory than the one used in [18℄, the veri�
ation of the unsimpli�edGIOP with 10 pro
esses is now possible in SPIN. We obtain three orders ofmagnitude speed up and state spa
e redu
tion
ompared to partial order re-du
tion with SPIN as shown in GIOP experiments. Using our sli
ing basedte
hnique we
ould verify upto 250 pro
esses in some
ases. We also inje
ted19

Sen and Gargfaults into the tra
es and
ompared results of faulty proto
ols. Using SPIN,even with bit-state hashing enabled veri�
ation, the faults
ould not be foundbe
ause the state spa
es were too large and the
overage was low. UsingPOTA, the faults were easily found.For problem sizes that pre
lude exhaustive program veri�
ation or exhaus-tive runtime veri�
ation, POTA proves to be an e�e
tive tool. Our te
hniqueis orthogonal to other redu
tion te
hniques, that is, one
an always use POTAto redu
e the state spa
e as long as we
an exploit the spe
i�
ation for
om-putation sli
ing.A
knowledgements: We would like to a
knowledge Neeraj Mittal for his
ontribution in the implementation of POTA. We also thank Gerard J. Holz-mann for dis
ussion on SPIN.Referen
es[1℄ M. Brorkens and M. Moller. Dynami
 event generation for runtime
he
kingusing the JDI. In Runtime Veri�
ation 2002, volume 70 of ENTCS, 2002.[2℄ K. M. Chandy and L. Lamport. Distributed snapshots: Determining globalstates of distributed systems. ACM Transa
tions on Computer Systems,3(1):63{75, February 1985.[3℄ B. Charron-Bost, C. Delporte-Gallet, and H. Fau
onnier. Lo
al and temporalpredi
ates in distributed systems. ACM Transa
tions on ProgrammingLanguages and Systems, 17(1):157{179, Jan 1995.[4℄ E. M. Clarke and E. A. Emerson. Design and Synthesis of Syn
hronizationSkeletons using Bran
hing Time Temporal Logi
. In Pro
. of the Workshop onLogi
s of Programs, volume 131 of LNCS, Yorktown Heights, New York, May1981.[5℄ R. Cooper and K. Marzullo. Consistent dete
tion of global predi
ates. In Pro
.of the Workshop on Parallel and Distributed Debugging, pages 163{173, SantaCruz, CA, May 1991. ACM/ONR.[6℄ B. A. Davey and H. A. Priestley. Introdu
tion to Latti
es and Order. CambridgeUniversity Press, Cambridge, UK, 1990.[7℄ D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN ModelChe
king and Veri�
ation, volume 1885 of LNCS, pages 323{330, 2000.[8℄ J. Esparza. Model
he
king using net unfoldings. S
ien
e of ComputerProgramming, 23(2):151{195, 1994.[9℄ C. Fidge. Logi
al Time in Distributed Computing Systems. IEEE Computer,24(8):28{33, August 1991.[10℄ V. K. Garg. Elements of Distributed Computing. John Wiley & Sons, 2002.20

Sen and Garg[11℄ V. K. Garg and N. Mittal. On Sli
ing a Distributed Computation. In Pro
. ofthe 15th International Conferen
e on Distributed Computing Systems (ICDCS),pages 322{329, Phoenix, Arizona, 2001.[12℄ P. Godefroid and P. Wolper. A partial approa
h to model
he
king. In Pro
. ofthe 6th IEEE Symposium on Logi
 in Computer S
ien
e, pages 406{415, 1991.[13℄ Obje
t Management Group. The Common Obje
t Request Broker:Ar
hite
ture and Spe
i�
ation. August 1997.[14℄ S. Hartley. Con
urrent Programming: The Java Programming Language.Oxford University Press, 1998.[15℄ K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer.In Runtime Veri�
ation 2001, volume 55 of ENTCS, 2001.[16℄ G. J. Holzmann. The Model Che
ker SPIN. IEEE Transa
tions on SoftwareEngineering, 23(5), May 1997.[17℄ M. Hur�n, M. Mizuno, M. Raynal, and M. Singhal. EÆ
ient dete
tion of
onjun
tions of lo
al predi
ates. IEEE Transa
tions on Software Engineering,24(8):664{677, 1998.[18℄ M. Kamel and S. Leue. Formalization and Validation of the General Inter-ORB Proto
ol (GIOP) Using Promela and SPIN. Software Tools for Te
hnologyTransfer, 2(4):394{409, April 2000.[19℄ M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: aRun-time Assuran
e Tool for Java Programs. In Runtime Veri�
ation 2001,volume 55 of ENTCS, 2001.[20℄ L. Lamport. Time, Clo
ks, and the Ordering of Events in a Distributed System.Communi
ations of the ACM, 21(7):558{565, July 1978.[21℄ S. Leue and P.B. Ladkin. Implementing and verifying ms
 spe
i�
ationsusing promela/xspin. In Pro
eedings of the DIMACS Workshop SPIN96, the2nd International Workshop on the SPIN Veri�
ation System, volume 32 ofDIMACS Series, 1997.[22℄ F. Mattern. Virtual Time and Global States of Distributed Systems. InParallel and Distributed Algorithms: Pro
. of the Int'l Workshop on Paralleland Distributed Algorithms, pages 215{226. Elsevier S
ien
e Publishers B. V.(North-Holland), 1989.[23℄ K. L. M
Millan. Symboli
 Model Che
king. Kluwer A
ademi
 Publishers, 1993.[24℄ N. Mittal and V. K. Garg. Computation Sli
ing: Te
hniques and Theory. In InPro
. of the 15th International Symposium on Distributed Computing (DISC),pages 78{92, Lisbon, Portugal, 2001.[25℄ N. Mittal and V. K. Garg. On Dete
ting Global Predi
ates in DistributedComputations. In Pro
. of the 15th International Conferen
e on DistributedComputing Systems (ICDCS), pages 3{10, Phoenix, Arizona, 2001.21

Sen and Garg[26℄ D. Peled. All from One, One for All: On Model Che
king Using Representatives.In 5th Int'l. Conferen
e on Computer-Aided Veri�
ation (CAV), pages 409{423.Springer, Berlin, Heidelberg, 1993.[27℄ POTA. http://maple.e
e.utexas.edu/~sen/POTA.html.[28℄ A. Sen and V. K. Garg. Automati
 Generation of Sli
es for Temporal Logi
Predi
ate Dete
tion. Te
hni
al Report TR-PDS-2002-001, PDSL, ECE Dept.Univ. of Texas at Austin, 2002. Available at http://maple.e
e.utexas.edu/.[29℄ A. Sen and V. K. Garg. Dete
ting Temporal Logi
 Predi
ates on the Happened-Before Model. In Pro
. of the International Parallel and Distributed Pro
essingSymposium (IPDPS), Fort Lauderdale, Florida, 2002.[30℄ K. Sen, G. Rosu, and G. Agha. Runtime Safety Analysis of MultithreadedPrograms. TR UIUCDCS-R-2003-2334, Univ. of Illinois at Urbana Champaign,April 2003.[31℄ S. D. Stoller and Y. Liu. EÆ
ient Symboli
 Dete
tion of Global Properties inDistributed Systems. In 10th Int'l. Conferen
e on Computer-Aided Veri�
ation(CAV), volume 1447 of LNCS, pages 357{368, 1998.[32℄ S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. EÆ
ient Dete
tion of GlobalProperties in Distributed Systems Using Partial-Order Methods. In 12th Int'l.Conferen
e on Computer-Aided Veri�
ation (CAV), volume 1855 of LNCS,pages 264{279, 2000.[33℄ A. Valmari. A Stubborn Atta
k On State Explosion. In 2nd Int'l. Conferen
eon Computer-Aided Veri�
ation (CAV), volume 531 of LNCS, pages 156{165,Berlin, Germany, 1990.

22

	Introduction
	Related Work
	Overview of POTA Architecture
	Model
	Background on Slicing
	Computation Slice

	Regular Predicates
	RCTL+ Syntax and Semantics

	Algorithms for Computing Slices for Temporal Predicates
	Experimental Results
	Discussion

	References

