
A Lattice-Theoretic Approach to Monitoring
Distributed Computations

Vijay K. Garg and Neeraj Mittal

Parallel and Distributed Systems Laboratory
Department of Electrical and Computer Engineering

The University of Texas at Austin

Advanced Networking and Dependable Systems Laboratory
Department of Computer Science
The University of Texas at Dallas

September 22, 2014

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 1 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 2 / 74

Detecting a 3-CNF Predicate

3-CNF Predicate:

A conjunction of clauses.

Each clause is a disjunction of exactly three literals.

Example: (x1 ∨ x2 ∨ x3)
∧

(x2 ∨ x3 ∨ x4)
∧

(x1 ∨ x2 ∨ x4)

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 3 / 74

The Transformation: From 3-SAT Problem

For each variable xi in the formula, there is a process Pi that hosts xi
in the computation.

Each variable xi is initially false and then becomes true.

(x1 ∨ x2 ∨ x3)
∧

(x1 ∨ x2 ∨ x3)
∧

(x1 ∨ x3 ∨ x4)
��
��
��

��
��
��

��
��
��

��
��
��

4x

��
��
��

��
��
��

��
��
��

��
��
��

x3

2x
��
��
��

��
��
��

��
��
��

��
��
��

x1
��
��
��
��

��
��
��
��P1

P2

P4

P3

G

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 4 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 5 / 74

Detecting a 2-CNF Predicate

Singular 2-CNF Predicate: a global predicate in conjunctive normal
(CNF) form such that:

each clause has exactly two literals, and

no two clauses contain variables from the same process.

[Mittal and Garg, ICDCS 2001]

Examples: Let xi be a boolean variable on process Pi .

+ (x1 ∨ x2) ∧ (x3 ∨ x4)

+ (x1 ∨ x3) ∧ (x2 ∨ x4)

− (x1 ∨ x2) ∧ (x2 ∨ x3)

More restrictive than a 3-CNF predicate.

2-SAT problem can be solved in polynomial time.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 6 / 74

Detecting a Singular 2-CNF Predicate

No two clauses in a singular 2-CNF predicate contain variables from the
same process.

=⇒
The set of processes in the computation can be partitioned into pairwise

disjoint groups such that each group consists of processes that host
variables in the same clause.

Observation: To find a consistent cut that satisfies a singular 2-CNF
predicate, it is necessary and sufficient to find a subset of true events, one
from some process in each group, that are mutually consistent.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 7 / 74

Detecting Singular 2-CNF Predicates: Example

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

2x

5x

1x

3x 4x

6x

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�P 1

3
3

5
5

6
6

2

4

1

P

P

P

P

P

x

2x

x

4x

x

x

()

(

(

)

)

Here, G1 = {P1,P2}, G2 = {P3,P4} and G3 = {P5,P6}.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 8 / 74

Proof Structure

Singular 2−CNF Predicate
Detection Problem

Non−Monotone 3−SAT Problem

3−SAT Problem

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 9 / 74

Non-Monotone 3-CNF Formulae

Non-Monotone 3-CNF Formula: a formula in conjunctive normal form
(CNF) such that:

each clause has at most three literals, and

each clause with exactly three literals has at least one positive and
one negative literal.

Examples:

+ (y1 ∨ y3)
∧
(y2 ∨ y4 ∨ y1)

+ (y1 ∨ y2)
∧
(y2 ∨ y3 ∨ y1)

− (y1 ∨ y2)
∧
(y1 ∨ y3 ∨ y4)

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 10 / 74

Non-Monotone 3-SAT Problem

Given a non-monotone 3-CNF formula, does there exist a satisfying truth
assignment for the formula?

Complexity: Non-monotone 3-SAT problem is NP-complete in general.

Idea: Reduction from 3-SAT problem. Replace the clause (y1 ∨ y2 ∨ y3)
with clauses (y1 ∨ y2 ∨ z3), (y3 ∨ z3) and (y3 ∨ z3).

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 11 / 74

Solving Non-Monotone 3-SAT Problem

Observation: To find a satisfying truth assignment for a non-monotone
3-CNF formula, it is necessary and sufficient to find a subset of literals,
one from each clause, that are mutually non-conflicting.

For example: (y1 ∨ y2 ∨ y3) ∧ (y1 ∨ y2) ∧ (y3 ∨ y2)

+ {y1, y2, y3}

+ {y2, y1, y3}

− {y1, y1, y3}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 12 / 74

The Transformation

There is a one-to-one correspondence between a clause in the formula and
a clause in the predicate.

There is a one-to-one correspondence between a literal in the formula and
a true event in the computation.

Two literals conflict if and only if the corresponding true events are
inconsistent.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 13 / 74

The Transformation: Example

��
��
��

��
��
��

1
y

2
y

y
3

x3

4x

�
�
�

�
�
�

y
1

y
2

y
3

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2
y

y
1x1

2x

��
��
��
��

y
1

y
2

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

x43

x1 2x

x

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 14 / 74

Potential Problems

To make true events corresponding to conflicting literals (e.g., y2 and y2)
inconsistent:

add an arrow from the successor of the true event for the positive
literal to the true event for the negative literal.

Problems: If arrows are not added properly, then

Added arrows can create cycles.

Two true events corresponding to non-conflicting literals can become
inconsistent.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 15 / 74

Potential Problems: Example

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

y
1

2
y

y
2 1

y

3
y1

y
2

y 3
y

1
y y

2

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

the true event for y2 in the first clause is now inconsistent with the true
event for y1 in the second clause

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 16 / 74

The Solution

Whenever literals in a clause are forced to share a process:

choose one positive literal and one negative literal for sharing, and

put the true event for the positive literal before the true event for the
negative literal.

�
�
�
�

�
�
�
�

��
��
��
��

y
1

��
��
��
��

1
y y

2 3
y

��
��
��

��
��
��

��
��
��
��

3
y

�
�
�

�
�
�

��
��
��
��

1
y y

2

1
y

2
y 3

y

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

2
y
3

y

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 17 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 18 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 19 / 74

The Main Idea of Computation Slicing

slicing

computation

slice

retain all red
consistent cuts

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 20 / 74

Computation Slice

Computation slice: a sub-computation such that:

1 it contains all consistent cuts of the computation satisfying the given
predicate, and

2 it contains the least number of consistent cuts

[Mittal and Garg, DC 2005]

sub-computation
e.g.

computation
e.g.

{b}{c} {a, d}

a b

c d

e.g.

all sent messages have been received

predicate

Slicer

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 21 / 74

Slicing Example

{d , f }

slicing

no messages in transit

f

d

b

{a, c}

{e}

a

c

e

P1

P2

P3

{b}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 22 / 74

Slicing Example (Contd.)

f

d
=⇒

ba

c

e

P1

P2

P3

{a, b, c, e}

{a}

{}

{a, e}

{e}

{a, c}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, d , e, f }

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 23 / 74

Characterization of Consistent Cuts

The set of consistent cuts of a distributed computation forms a
distributive lattice.

1 meet operator: set intersection

2 join operator: set union

3 meet distributes over join

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 24 / 74

Basis Elements

Basis element: cannot be represented as join of two other elements

{a, b, c, d , e, f }

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

{e}

A basis element has exactly one incoming edge.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 25 / 74

Birkhoff’s Representation Theorem

Theorem

A distributive lattice can be recovered exactly from the set of its basis
elements.

Y

Z

⇐⇒

X

Y

Z

U

W

V

WU

X

V

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

All elements can be represented as join of some subset of its basis elements.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 26 / 74

What about a Subset of Consistent Cuts?

X Y

X ∪ Y

X ∩ Y

{e}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

{a, b, c, d , e, f }

{}

{a}

X in subset and
Y in subset

=⇒

X ∩ Y in subset and
X ∪ Y in subset

Sublattice: subset of consistent cuts closed under intersection and union.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 27 / 74

Representing a Sublattice

Theorem

A sublattice of a distributive lattice is also a distributive lattice.

A sublattice has a succinct representation.

Z {d , f }

⇐⇒ ⇐⇒

W X

Z

Y

{b}

{e}X

YW {a, c}

{a, b, c, d , e, f }

{e}{a, c}

{a, b, c}

{a, c, d , e, f }

{}

{a, c, e}

{a, b, c, e}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 28 / 74

What if the Subset is not a Sublattice?

Add consistent cuts to complete the sublattice.

=⇒

{}

{a, c}

{a, b, c}

{a, c, d , e, f }

{a, c, e}

{}

{e}{a, c}

{a, b, c}

{a, c, d , e, f }{a, b, c, e}

{a, b, c, d , e, f }

{a, c, e}

{e}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 29 / 74

Computing the Slice

Algorithm:

1 Find all consistent cuts that satisfy the predicate.

2 Add consistent cuts to complete the sublattice.

3 Find the basis elements of the sublattice.

Can we find the basis elements without computing the sublattice?

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 30 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 31 / 74

Regular Predicate

Regular predicate: the set of consistent cuts satisfying the predicate is
closed under intersection and union.

(X satisfies b) and (Y satisfies b)

=⇒

(X ∩ Y satisfies b) and (X ∪ Y satsfies b)

[Mittal and Garg, DC 2005]

Examples:

conjunctive predicate—conjunction of local predicates

there are at most (or at least) k messages in transit from process Pi

to process Pj

every “request” message has been “acknowledged” in the system

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 32 / 74

Properties of Regular Predicates

The set of consistent cuts satisfying a regular predicate forms a sublattice
of the set of all consistent cuts.

The class of regular predicates is closed under conjunction:
If b1 and b2 are regular predicates then so is b1 ∧ b2

The class of regular predicates is a subset of the class of linear predicates.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 33 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 34 / 74

Computing the Slice for Regular Predicate

x

z

vu

w

y

P1

P2

P3

b = “no messages in transit”

Algorithm:
Step 1: Compute the least consistent cut L that satisfies b.

L = {}
Step 2: Compute the greatest consistent cut G that satisfies b.

G = {u, v ,w , x , y , z}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 35 / 74

Computing the Slice for Regular Predicate

Algorithm:
Step 3: For every event e ∈ G − L, compute J(e) defined as:

(1) J(e) contains e.
(2) J(e) satisfies b.
(3) J(e) is the least consistent cut satisfying (1) and (2).

J(e) is a basis element of the sublattice.

J(e) is a regular predicate.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 36 / 74

Slicing Example

x

z

vu

w

y

P1

P2

P3

J(u) = J(w)

J(u) = {u,w}
J(v) = {u, v ,w}
J(w) = {u,w} (duplicate)
J(x) = {u,w , x , y , z}
J(y) = {y}
J(z) = {u,w , x , y , z} (duplicate)

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 37 / 74

Slicing Algorithms

Efficient slicing algorithms have been developed for many classes of
predicates.

Some examples:

regular predicates, co-regular predicates, linear predicates, stable
predicates, observer-independent predicates, etc.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 38 / 74

How does Computation Slicing Help?

slicing cuts that satisfy b1

computation

slice for b1

detect b1 ∧ b2

detect b2

retain all consistent

satisfy b1

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 39 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 40 / 74

Composing Two Slices: Conjunction

⋂
=

= slice for b1 ∧ b2slice for b1 slice for b2
∧

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 41 / 74

Composing Two Slices: Disjunction

⋃
=

slice for b1 slice for b2 slice for b1 ∨ b2=
∨

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 42 / 74

Composition Algorithms

Efficient algorithms for both conjunction and disjunction.

Time complexity: O(n|E |) where
n: number of processes

|E |: number of events [Mittal and Garg, DC 2005]

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 43 / 74

Computing a Slice using Composition

Example: (x1 ∨ x2)
∧

(x3 ∨ x4)

compose:∨ compose:∨

compose:∧

x1 x2

slice

x3 x4

x1 ∨ x2 x3 ∨ x4

(x1 ∨ x2) ∧ (x3 ∨ x4)

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 44 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 45 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 46 / 74

Why Online Slicing Algorithm?

Compute the slice incrementally as new events are generated.

Slice for the computation is available more quickly.

Fault can be detected in a more timely manner.
[Mittal et al., TPDS 2007]

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 47 / 74

The Main Idea

Off-line Algorithm:

1 Compute L and G—the least and the greatest consistent cuts that
satisfy the predicate.

2 Compute J(x) for all events x in G \ L.

On-Line Algorithm:

When a new event arrives, compute the new G .

Only need to compute J(x) for events x ∈ Gnew \ Gold .

Amortized time-complexity: O(n2) per event, where n denotes the
number of processes.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 48 / 74

Online Slicing Algorithm: Example

b = “no messages in transit”

GL

dc

P1

P2

P3

e

ba

Already computed
J(x) for

x ∈ {a, b, c , e}.

GL

fd

a

P2

P3

b

e

c

P1

No new
computation

needed.

GL

d f

g

a
P1

P2

P3

b

e

c

Only need to
compute J(x) for
x ∈ {d , f , g}.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 49 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 50 / 74

Why Distributed Algorithm?

Centralized Algorithm: All events sent to a single process.

Distributed Algorithm: Overhead evenly distributed among all processes:

Less work per process.

Less storage space per process.

[Chauhan et al., SRDS 2013]

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 51 / 74

Challenges

Simple decomposition of centralized algorithm into n independent
executions is inefficient.

Results in large number of redundant communications.

Multiple computations may lead to identical results.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 52 / 74

The Main Idea

There is one token per process.

Ti denotes the token for process Pi .

Ti is responsible for computing J(e) for all events e on Pi .

Ti calculates J(e)s one event at a time.

Ti may move from one process to another process to compute J(e).

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 53 / 74

Algorithm for Process Pi

Consider event e on process Pi :

Ti starts at Pi .

Keeps tracks of the current cut under consideration:
◮ Initialized using J(predecessor of e).

If the cut either is not consistent or does not satisfy the predicate,
then find the process along with the cut needs to be advanced.

Ti moves to that process.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 54 / 74

Optimizations

Optimization I: Copy information from another token whenever two tokens
meet.

Optimization II: Stall computations that would lead to duplication of steps.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 55 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 56 / 74

Generalized Model

Model both distributed computation and its slice using a directed graph on
events.

Two special events: the initial event ⊥ and the final event ⊤.

[Mittal and Garg, DC 2005, Mittal et al., TPDS 2007]

{d , f }

f

no messages in transit

d
slicing

f

a

c

e

b
P1

P2

P3

ba

e

⊤⊥ c d

{b}{a, c}

{e}

ba

e

⊤⊥ c d

f

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 57 / 74

Cycles in a Graph

What is the meaning of a cycle in a graph?

A consistent of a graph either contains all the events in a cycle or
none of them.

{d , f }

{b}{a, c}

{e}

ba

e

⊤⊥ c d

f

Not Consistent Cuts
{⊥, a}
{⊥, c}
{⊥, a, b}

Consistent Cuts
{⊥}
{⊥, e}
{⊥, a, c}
{⊥, a, b, c}
{⊥, a, b, c , e}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 58 / 74

Edges and Consistent Cuts

Anti-monotonic relation.
Adding an edge to a graph shrinks its set of consistent cuts.

a b

c ⊤d

e f

⊥

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 59 / 74

Edges and Consistent Cuts

Anti-monotonic relation.
Adding an edge to a graph shrinks its set of consistent cuts.

b

e

⊤⊥ c d

f

a

{a, b, e} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, c, d}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 59 / 74

Edges and Consistent Cuts

Anti-monotonic relation.
Adding an edge to a graph shrinks its set of consistent cuts.

b

e

⊤⊥ c d

f

a

{a, c, e}

{a, b, c, d}

{a, c, d , e, f }

{a, b, c, e}

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e}

{a, b, c, d , e}

{a, c, d}

{a, c, d , e}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 59 / 74

Computing the Slice: Revisited

Find the largest set of edges whose addition to the graph does not
eliminate any relevant consistent cut.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 60 / 74

Complement Graph

Given: Graph G and a pair of events (x , y).
Output: Complement graph G c [x , y] obtained by adding two edges to G :

1 the edge from y to ⊥, and

2 the edge from x to ⊤.9

a b

e

⊤⊥ c d

f

Graph G and events (c , a)

e

⊥

a b

c ⊤d

f

Complement graph G c [c , a]

G c [c , a] only contains those consistent cuts of G that include a but not c .

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 61 / 74

General Slicing Algorithm

Data: (1) graph G , (2) predicate b, and (3) algorithm Detect(b)
Result: Slice(b)

1 K := G ;
2 foreach pair of events (x , y) in G do

3 Compute G c [x , y];

4 if Detect(b) is false in G c [x , y] then
5 Add edge (x , y) in K ;
6 end if

7 end foreach

8 return K ;

Time complexity: O(n|E |T)
n: number of processes |E |: number of events
T : time complexity of detection algorithm

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 62 / 74

Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 63 / 74

Path Based Properties

Some system properties are defined on paths rather than states.

Examples:

Starvation freedom: Every request is eventually fulfilled.

Deadlock freedom: If there is one or more request in the system, then
some request is eventually fulfilled.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 64 / 74

Temporal Logic Predicates

A path is a sequence of consistent cuts ending at the final consistent cut
such that a successor of a cut is obtained by addition of a single vertex.

Temporal Operators: EF, EG, AG, EF and EX[j].

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 65 / 74

Temporal Operator: EF

X

X satisfies EF(b).

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 66 / 74

Temporal Operator: EG

X

X satisfies EG(b).

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 67 / 74

Temporal Operator: EF

X

X satisfies AF(b).

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 68 / 74

Temporal Operator: AG

X

X satisfies AG(b).

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 69 / 74

RCTL Predicates

Examples:

Violation of mutual exclusion: Processes P1 and P2 are not in their
critical sections simultaneously.

EF(CS1 ∧ CS2)

Starvation Freedom: Every request is eventually fulfilled.
AG(request =⇒ AF(granted))

RCTL: subset of CTL (Computation Tree Logic) where atomic
propositions are regular and the operators are EF, EG, AG, EX[j] and ∧.
[Sen and Garg, TC 2007]

An RCTL predicate is a regular predicate.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 70 / 74

Computing the Slice for EG(b)

Observation 1: Any consistent cut that satisfies EG(b) also satisfies b.

Idea 1: To compute Slice(EG(b)), first compute Slice(b) and then add
edges to it.

Observation 2:

Let C denote a cycle in Slice(b).

If a consistent cut X satisfies EG(b), then X includes all the vertices
from C.

Idea 2: Eliminate all consistent cuts that do not contain all vertices of a
cycle.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 71 / 74

Computing the Slice for EG(b)

f

d

a

c

e

P1

P2

P3

b

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

b = no messages in transit

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 72 / 74

Computing the Slice for EG(b)

f

d

a

c

e

P1

P2

P3

b

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

b = no messages in transit
Consistent cuts that satisfy EG(b): {a, c , d , e, f } and {a, b, c , d , e, f }.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 72 / 74

Computing the Slice for EG(b)

f

a

⊥

b

c ⊤d

e

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

All consistent cuts that do not satisfy b have been eliminated.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 73 / 74

Computing the Slice for EG(b)

a

⊥

b

c ⊤d

e f

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

All consistent cuts that do not include a or c are eliminated.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 73 / 74

Computing the Slice for EG(b)

⊥

b

c ⊤d

e f

a

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

All consistent cuts that do not include d or f are eliminated.

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 73 / 74

Computing the Slice for RCTL Predicates

Efficient slicing algorithms have been developed for other predicates
in RCTL.

Time complexity: O(|b|n2|E |), where
|b|: number of boolean and temporal operators in b
n: number of processes
|E |: number of events

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 74 / 74

	Complexity of General Predicate Detection
	Detecting 3-CNF Predicates
	Detecting 2-CNF Predicates

	Slicing a Distributed Computation
	Definitions and Techniques
	Other Extensions
	Equivalence: One for All and All for One
	Slicing for Temporal Logic Predicates

