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Detecting a 3-CNF Predicate

3-CNF Predicate:

A conjunction of clauses.

Each clause is a disjunction of exactly three literals.

Example: (x1 ∨ x2 ∨ x3)
∧

(x2 ∨ x3 ∨ x4)
∧

(x1 ∨ x2 ∨ x4)
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The Transformation: From 3-SAT Problem

For each variable xi in the formula, there is a process Pi that hosts xi
in the computation.

Each variable xi is initially false and then becomes true.

(x1 ∨ x2 ∨ x3)
∧

(x1 ∨ x2 ∨ x3)
∧

(x1 ∨ x3 ∨ x4)
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Detecting a 2-CNF Predicate

Singular 2-CNF Predicate: a global predicate in conjunctive normal
(CNF) form such that:

each clause has exactly two literals, and

no two clauses contain variables from the same process.

[Mittal and Garg, ICDCS 2001]

Examples: Let xi be a boolean variable on process Pi .

+ (x1 ∨ x2) ∧ (x3 ∨ x4)

+ (x1 ∨ x3) ∧ (x2 ∨ x4)

− (x1 ∨ x2) ∧ (x2 ∨ x3)

More restrictive than a 3-CNF predicate.

2-SAT problem can be solved in polynomial time.
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Detecting a Singular 2-CNF Predicate

No two clauses in a singular 2-CNF predicate contain variables from the
same process.

=⇒
The set of processes in the computation can be partitioned into pairwise

disjoint groups such that each group consists of processes that host
variables in the same clause.

Observation: To find a consistent cut that satisfies a singular 2-CNF
predicate, it is necessary and sufficient to find a subset of true events, one
from some process in each group, that are mutually consistent.
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Detecting Singular 2-CNF Predicates: Example
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Here, G1 = {P1,P2}, G2 = {P3,P4} and G3 = {P5,P6}.
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Proof Structure

Singular 2−CNF Predicate
Detection Problem

Non−Monotone 3−SAT Problem

3−SAT Problem
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Non-Monotone 3-CNF Formulae

Non-Monotone 3-CNF Formula: a formula in conjunctive normal form
(CNF) such that:

each clause has at most three literals, and

each clause with exactly three literals has at least one positive and
one negative literal.

Examples:

+ (y1 ∨ y3)
∧
(y2 ∨ y4 ∨ y1)

+ (y1 ∨ y2)
∧
(y2 ∨ y3 ∨ y1)

− (y1 ∨ y2)
∧
(y1 ∨ y3 ∨ y4)
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Non-Monotone 3-SAT Problem

Given a non-monotone 3-CNF formula, does there exist a satisfying truth
assignment for the formula?

Complexity: Non-monotone 3-SAT problem is NP-complete in general.

Idea: Reduction from 3-SAT problem. Replace the clause (y1 ∨ y2 ∨ y3)
with clauses (y1 ∨ y2 ∨ z3), (y3 ∨ z3) and (y3 ∨ z3).
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Solving Non-Monotone 3-SAT Problem

Observation: To find a satisfying truth assignment for a non-monotone
3-CNF formula, it is necessary and sufficient to find a subset of literals,
one from each clause, that are mutually non-conflicting.

For example: (y1 ∨ y2 ∨ y3) ∧ (y1 ∨ y2) ∧ (y3 ∨ y2)

+ {y1, y2, y3}

+ {y2, y1, y3}

− {y1, y1, y3}
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The Transformation

There is a one-to-one correspondence between a clause in the formula and
a clause in the predicate.

There is a one-to-one correspondence between a literal in the formula and
a true event in the computation.

Two literals conflict if and only if the corresponding true events are
inconsistent.
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The Transformation: Example
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Potential Problems

To make true events corresponding to conflicting literals (e.g., y2 and y2)
inconsistent:

add an arrow from the successor of the true event for the positive
literal to the true event for the negative literal.

Problems: If arrows are not added properly, then

Added arrows can create cycles.

Two true events corresponding to non-conflicting literals can become
inconsistent.
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Potential Problems: Example
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the true event for y2 in the first clause is now inconsistent with the true
event for y1 in the second clause

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 16 / 74



The Solution

Whenever literals in a clause are forced to share a process:

choose one positive literal and one negative literal for sharing, and

put the true event for the positive literal before the true event for the
negative literal.
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The Main Idea of Computation Slicing

slicing

computation

slice

retain all red
consistent cuts
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Computation Slice

Computation slice: a sub-computation such that:

1 it contains all consistent cuts of the computation satisfying the given
predicate, and

2 it contains the least number of consistent cuts

[Mittal and Garg, DC 2005]

sub-computation
e.g.

computation
e.g.

{b}{c} {a, d}

a b

c d

e.g.

all sent messages have been received

predicate

Slicer

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 21 / 74



Slicing Example

{d , f }

slicing

no messages in transit

f

d

b

{a, c}

{e}

a

c

e

P1

P2

P3

{b}
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Slicing Example (Contd.)

f

d
=⇒

ba

c

e

P1

P2

P3

{a, b, c, e}

{a}

{}

{a, e}

{e}

{a, c}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, d , e, f }
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Characterization of Consistent Cuts

The set of consistent cuts of a distributed computation forms a
distributive lattice.

1 meet operator: set intersection

2 join operator: set union

3 meet distributes over join
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Basis Elements

Basis element: cannot be represented as join of two other elements

{a, b, c, d , e, f }

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

{e}

A basis element has exactly one incoming edge.
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Birkhoff’s Representation Theorem

Theorem

A distributive lattice can be recovered exactly from the set of its basis
elements.

Y

Z

⇐⇒

X

Y

Z

U

W

V

WU

X

V

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

All elements can be represented as join of some subset of its basis elements.
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What about a Subset of Consistent Cuts?

X Y

X ∪ Y

X ∩ Y

{e}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

{a, b, c, d , e, f }

{}

{a}

X in subset and
Y in subset

=⇒

X ∩ Y in subset and
X ∪ Y in subset

Sublattice: subset of consistent cuts closed under intersection and union.
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Representing a Sublattice

Theorem

A sublattice of a distributive lattice is also a distributive lattice.

A sublattice has a succinct representation.

Z {d , f }

⇐⇒ ⇐⇒

W X

Z

Y

{b}

{e}X

YW {a, c}

{a, b, c, d , e, f }

{e}{a, c}

{a, b, c}

{a, c, d , e, f }

{}

{a, c, e}

{a, b, c, e}
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What if the Subset is not a Sublattice?

Add consistent cuts to complete the sublattice.

=⇒

{}

{a, c}

{a, b, c}

{a, c, d , e, f }

{a, c, e}

{}

{e}{a, c}

{a, b, c}

{a, c, d , e, f }{a, b, c, e}

{a, b, c, d , e, f }

{a, c, e}

{e}
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Computing the Slice

Algorithm:

1 Find all consistent cuts that satisfy the predicate.

2 Add consistent cuts to complete the sublattice.

3 Find the basis elements of the sublattice.

Can we find the basis elements without computing the sublattice?
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Regular Predicate

Regular predicate: the set of consistent cuts satisfying the predicate is
closed under intersection and union.

(X satisfies b) and (Y satisfies b)

=⇒

(X ∩ Y satisfies b) and (X ∪ Y satsfies b)

[Mittal and Garg, DC 2005]

Examples:

conjunctive predicate—conjunction of local predicates

there are at most (or at least) k messages in transit from process Pi

to process Pj

every “request” message has been “acknowledged” in the system
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Properties of Regular Predicates

The set of consistent cuts satisfying a regular predicate forms a sublattice
of the set of all consistent cuts.

The class of regular predicates is closed under conjunction:
If b1 and b2 are regular predicates then so is b1 ∧ b2

The class of regular predicates is a subset of the class of linear predicates.
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Computing the Slice for Regular Predicate

x

z

vu

w

y

P1

P2

P3

b = “no messages in transit”

Algorithm:
Step 1: Compute the least consistent cut L that satisfies b.

L = {}
Step 2: Compute the greatest consistent cut G that satisfies b.

G = {u, v ,w , x , y , z}
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Computing the Slice for Regular Predicate

Algorithm:
Step 3: For every event e ∈ G − L, compute J(e) defined as:

(1) J(e) contains e.
(2) J(e) satisfies b.
(3) J(e) is the least consistent cut satisfying (1) and (2).

J(e) is a basis element of the sublattice.

J(e) is a regular predicate.
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Slicing Example

x

z

vu

w

y

P1

P2

P3

J(u) = J(w)

J(u) = {u,w}
J(v) = {u, v ,w}
J(w) = {u,w} (duplicate)
J(x) = {u,w , x , y , z}
J(y) = {y}
J(z) = {u,w , x , y , z} (duplicate)
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Slicing Algorithms

Efficient slicing algorithms have been developed for many classes of
predicates.

Some examples:

regular predicates, co-regular predicates, linear predicates, stable
predicates, observer-independent predicates, etc.
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How does Computation Slicing Help?

slicing cuts that satisfy b1

computation

slice for b1

detect b1 ∧ b2

detect b2

retain all consistent

satisfy b1
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Composing Two Slices: Conjunction

⋂
=

= slice for b1 ∧ b2slice for b1 slice for b2
∧
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Composing Two Slices: Disjunction

⋃
=

slice for b1 slice for b2 slice for b1 ∨ b2=
∨
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Composition Algorithms

Efficient algorithms for both conjunction and disjunction.

Time complexity: O(n|E |) where
n: number of processes

|E |: number of events [Mittal and Garg, DC 2005]

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 43 / 74



Computing a Slice using Composition

Example: (x1 ∨ x2)
∧

(x3 ∨ x4)

compose:∨ compose:∨

compose:∧

x1 x2

slice

x3 x4

x1 ∨ x2 x3 ∨ x4

(x1 ∨ x2) ∧ (x3 ∨ x4)
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Why Online Slicing Algorithm?

Compute the slice incrementally as new events are generated.

Slice for the computation is available more quickly.

Fault can be detected in a more timely manner.
[Mittal et al., TPDS 2007]
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The Main Idea

Off-line Algorithm:

1 Compute L and G—the least and the greatest consistent cuts that
satisfy the predicate.

2 Compute J(x) for all events x in G \ L.

On-Line Algorithm:

When a new event arrives, compute the new G .

Only need to compute J(x) for events x ∈ Gnew \ Gold .

Amortized time-complexity: O(n2) per event, where n denotes the
number of processes.
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Online Slicing Algorithm: Example

b = “no messages in transit”

GL

dc

P1

P2

P3

e

ba

Already computed
J(x) for

x ∈ {a, b, c , e}.

GL

fd

a

P2

P3

b

e

c

P1

No new
computation

needed.

GL

d f

g

a
P1

P2

P3

b

e

c

Only need to
compute J(x) for
x ∈ {d , f , g}.
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Why Distributed Algorithm?

Centralized Algorithm: All events sent to a single process.

Distributed Algorithm: Overhead evenly distributed among all processes:

Less work per process.

Less storage space per process.

[Chauhan et al., SRDS 2013]
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Challenges

Simple decomposition of centralized algorithm into n independent
executions is inefficient.

Results in large number of redundant communications.

Multiple computations may lead to identical results.
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The Main Idea

There is one token per process.

Ti denotes the token for process Pi .

Ti is responsible for computing J(e) for all events e on Pi .

Ti calculates J(e)s one event at a time.

Ti may move from one process to another process to compute J(e).
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Algorithm for Process Pi

Consider event e on process Pi :

Ti starts at Pi .

Keeps tracks of the current cut under consideration:
◮ Initialized using J(predecessor of e).

If the cut either is not consistent or does not satisfy the predicate,
then find the process along with the cut needs to be advanced.

Ti moves to that process.
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Optimizations

Optimization I: Copy information from another token whenever two tokens
meet.

Optimization II: Stall computations that would lead to duplication of steps.
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Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates
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Generalized Model

Model both distributed computation and its slice using a directed graph on
events.

Two special events: the initial event ⊥ and the final event ⊤.

[Mittal and Garg, DC 2005, Mittal et al., TPDS 2007]

{d , f }

f

no messages in transit

d
slicing

f

a

c

e

b
P1

P2

P3

ba

e

⊤⊥ c d

{b}{a, c}

{e}

ba

e

⊤⊥ c d

f
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Cycles in a Graph

What is the meaning of a cycle in a graph?

A consistent of a graph either contains all the events in a cycle or
none of them.

{d , f }

{b}{a, c}

{e}

ba

e

⊤⊥ c d

f

Not Consistent Cuts
{⊥, a}
{⊥, c}
{⊥, a, b}

Consistent Cuts
{⊥}
{⊥, e}
{⊥, a, c}
{⊥, a, b, c}
{⊥, a, b, c , e}
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Edges and Consistent Cuts

Anti-monotonic relation.
Adding an edge to a graph shrinks its set of consistent cuts.

a b

c ⊤d

e f

⊥

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}
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Edges and Consistent Cuts

Anti-monotonic relation.
Adding an edge to a graph shrinks its set of consistent cuts.

b

e

⊤⊥ c d

f

a

{a, b, e} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, c, d}

RV14 Tutorial (Garg and Mittal) Monitoring Distributed Computations September 22, 2014 59 / 74



Edges and Consistent Cuts

Anti-monotonic relation.
Adding an edge to a graph shrinks its set of consistent cuts.

b

e

⊤⊥ c d

f

a

{a, c, e}

{a, b, c, d}

{a, c, d , e, f }

{a, b, c, e}

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e}

{a, b, c, d , e}

{a, c, d}

{a, c, d , e}
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Computing the Slice: Revisited

Find the largest set of edges whose addition to the graph does not
eliminate any relevant consistent cut.
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Complement Graph

Given: Graph G and a pair of events (x , y).
Output: Complement graph G c [x , y ] obtained by adding two edges to G :

1 the edge from y to ⊥, and

2 the edge from x to ⊤.9

a b

e

⊤⊥ c d

f

Graph G and events (c , a)

e

⊥

a b

c ⊤d

f

Complement graph G c [c , a]

G c [c , a] only contains those consistent cuts of G that include a but not c .
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General Slicing Algorithm

Data: (1) graph G , (2) predicate b, and (3) algorithm Detect(b)
Result: Slice(b)

1 K := G ;
2 foreach pair of events (x , y) in G do

3 Compute G c [x , y ];

4 if Detect(b) is false in G c [x , y ] then
5 Add edge (x , y) in K ;
6 end if

7 end foreach

8 return K ;

Time complexity: O(n|E |T )
n: number of processes |E |: number of events
T : time complexity of detection algorithm
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Tutorial Outline

1 Complexity of General Predicate Detection
Detecting 3-CNF Predicates
Detecting 2-CNF Predicates

2 Slicing a Distributed Computation
Definitions and Techniques

What is Computation Slicing?

Regular Predicates

Slicing for Regular Predicates

Slice Composition

Other Extensions
Online Slicing Algorithm

Distributed Slicing Algorithm

Equivalence: One for All and All for One
Slicing for Temporal Logic Predicates
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Path Based Properties

Some system properties are defined on paths rather than states.

Examples:

Starvation freedom: Every request is eventually fulfilled.

Deadlock freedom: If there is one or more request in the system, then
some request is eventually fulfilled.
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Temporal Logic Predicates

A path is a sequence of consistent cuts ending at the final consistent cut
such that a successor of a cut is obtained by addition of a single vertex.

Temporal Operators: EF, EG, AG, EF and EX[j ].
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Temporal Operator: EF

X

X satisfies EF(b).
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Temporal Operator: EG

X

X satisfies EG(b).
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Temporal Operator: EF

X

X satisfies AF(b).
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Temporal Operator: AG

X

X satisfies AG(b).
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RCTL Predicates

Examples:

Violation of mutual exclusion: Processes P1 and P2 are not in their
critical sections simultaneously.

EF(CS1 ∧ CS2)

Starvation Freedom: Every request is eventually fulfilled.
AG(request =⇒ AF(granted))

RCTL: subset of CTL (Computation Tree Logic) where atomic
propositions are regular and the operators are EF, EG, AG, EX[j ] and ∧.
[Sen and Garg, TC 2007]

An RCTL predicate is a regular predicate.
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Computing the Slice for EG(b)

Observation 1: Any consistent cut that satisfies EG(b) also satisfies b.

Idea 1: To compute Slice(EG(b)), first compute Slice(b) and then add
edges to it.

Observation 2:

Let C denote a cycle in Slice(b).

If a consistent cut X satisfies EG(b), then X includes all the vertices
from C.

Idea 2: Eliminate all consistent cuts that do not contain all vertices of a
cycle.
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Computing the Slice for EG(b)

f

d

a

c

e

P1

P2

P3

b

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

b = no messages in transit
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Computing the Slice for EG(b)

f

d

a

c

e

P1

P2

P3

b

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

b = no messages in transit
Consistent cuts that satisfy EG(b): {a, c , d , e, f } and {a, b, c , d , e, f }.
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Computing the Slice for EG(b)

f

a

⊥

b

c ⊤d

e

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

All consistent cuts that do not satisfy b have been eliminated.
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Computing the Slice for EG(b)

a

⊥

b

c ⊤d

e f

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

All consistent cuts that do not include a or c are eliminated.
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Computing the Slice for EG(b)

⊥

b

c ⊤d

e f

a

{a, b, c, d , e, f }

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d , e}{a, b, c, d}

{a, b, c, d , e} {a, c, d , e, f }

{a, b, c, e}

All consistent cuts that do not include d or f are eliminated.
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Computing the Slice for RCTL Predicates

Efficient slicing algorithms have been developed for other predicates
in RCTL.

Time complexity: O(|b|n2|E |), where
|b|: number of boolean and temporal operators in b
n: number of processes
|E |: number of events
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