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Motivation

Debugging and Testing Distributed Programs:

Global Breakpoints: stop the program when x1 + x2 > x3

Traces need to be analyzed to locate bugs.

Software Fault-Tolerance:

Distributed programs are prone to errors.
I Concurrency, nondeterminism, process and channel failures

Software faults are dominant reasons for system outages

Need to take corrective action when the current computation violates
a safety invariant

Software Quality Assurance:

Can I trust the results of the computation? Does it satisfy all required
properties?
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What is a Distributed Computation?

Distributed Program:
a computer program that runs on a distributed system

Distributed Computation:
A single execution of a distributed program

Assumptions:
No shared memory,
No shared clock,
Asynchrony in communication
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Modeling a Distributed Computation
A computation is (E , → ) where E is the set of events and →
(happened-before) is the smallest relation that includes:

e occurred before f in the same process implies e → f .

e is a send event and f the corresponding receive implies e → f .

if there exists g such that e → g and g → f , then e → f .
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[Lamport 78]
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Modeling a computation as a Poset

(E , → ) is an irreflexive poset ( → is an irreflexive and transitive binary
relation on E )
Can we exploit the theory of ordered sets?

join/meet of elements, width of a poset, dimension of a poset, order
ideals

Example: Order ideal of a poset corresponds to a consistent global state.
The set of all order ideals form a distributive lattice under set containment
relation.
Can we exploit the theory of distributive lattices for analyzing consistent
global states ?

representing sublattices, lattice congruences
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Background: Posets
A poset (partially ordered set) is a tuple (X ,≤) where X is any set and ≤
is a binary relation on X with the following properties:

reflexive,

antisymmetric and

transitive

(X , <) is an irreflexive poset when < is irreflexive and transitive.
Examples:

1 (N, <):
set of natural numbers under usual less than relation

2 (Nk , <):
set of k-dimensional vectors under component-wise comparison
(2, 3, 0) < (3, 3, 1)
(2, 3, 0) 6< (1, 4, 2)

3 (E , → ):
set of events of a distributed computation under the happened-before
relation
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Background: Poset Terminology
b1 b2 b3

a1 a2 a3

x ||y (x incomparable with y):
¬(x < y) ∧ ¬(y < x)

chain: Y ⊆ X is a chain if every distinct pair of elements from Y is
comparable

antichain: Y ⊆ X is an antichain if every distinct pair of elements
from Y is incomparable

height of a poset: size of the longest chain in the poset

width of a poset: size of the longest antichain in the poset

width antichain: antichains of size equal to the width
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Background: Lattices
For any z ∈ X , z is the join of x and y , i.e., z = x t y iff

x ≤ z and y ≤ z

∀z ′ ∈ X , (x ≤ z ′ ∧ y ≤ z ′)⇒ z ≤ z ′.

The meet of two elements z = x u y is defined dually.
A poset (X ,≤) is a lattice iff it is closed under meets and joins.
∀x , y ∈ X , x t y ∈ X and x u y ∈ X .f
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Background: Sublattices
Which subsets form sublattices?
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Background: Distributive Lattices
A lattice (L,≤) is a distributive lattice iff
∀x , y , z ∈ L : x t (y u z) = (x t y) u (x t z).
Fact

A lattice is distributive iff it does not have a pentagon or a diamond
as a sublattice.
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Figure: Examples of nondistributive lattices
RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 11



Background: Order Ideals of a Poset
b1 b2 b3

a1 a2 a3

Let (X , <) be any poset. A subset Y ⊆ X an order ideal (or a downset) if

z ∈ Y ∧ y < z ⇒ y ∈ Y .

Are these order ideals?
Y1 = {a1, b1}
Y2 = {a1, a3, b1}
Y3 = {}
Y4 = X
Y ⊆ X an order filter if z ∈ Y ∧ z < y ⇒ y ∈ Y

RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 12



Example: Order Ideals

Consistent Global State (CGS) of a Distributed System

P1

P2

P3

G1 G2

m

m

m1

2

3

Consistent global state = subset of events executed so far
A subset G of E is a consistent global state (also called a consistent cut )
if
∀e, f ∈ E : (f ∈ G ) ∧ (e → f ) ⇒ (e ∈ G )
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Background: Lattice of order ideals

Theorem

The set of all order ideals of any poset forms a distributive lattice under
the set containment relation.

The set of ideals forms a lattice

if X and Y are ideals then so are X ∩ Y and X ∪ Y
meet → intersection join → union

b1 b2 b3

a1 a2 a3

Y1 = {a1, a3, b1}
Y2 = {a1, a2, b2}
Y1 ∪ Y2 = {a1, a2, a3, b1, b2}
Y1 ∩ Y2 = {a1}
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Ideal Lattice

The lattice of ideals is distributive

union distributes over intersection

which of the following graphs are possible CGS lattices?

Corollary: The set of all CGS of a computation forms a distributive lattice.
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Modeling using States vs Events
One can model a computation using states rather than events

y:=y+3 receive(y) y:=2*y

x:=x−1send(x)x:=x+2

Equivalent state based model

0,1

0,1

x := x−1x := x+2        

y := y+3 y:=2*y

2,3 3,61,4

1,3 2,3 3,2pc,x

pc,y 

receive(y)

send(x)



Consistent Global States in the State based Model

a b c

e f g

(a) Event Based
Model

a0 a′ b′ c ′

e0 e ′ f ′ g ′

(b) State Based Model

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f }

{a, b, c , e, f }{a, b, e, f , g}

{a, b, c , e, f , g}

(c) CGS

{a0, e0}

{a′, e0} {a0, e ′}

{b′, e0} {a′, e ′}

{c ′, e0} {b′, e ′}

{c ′, e ′} {b′, f ′}

{c ′, f ′} {b′, g ′}

{c ′, g ′}

(d) CGS
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Global Predicate Detection

Predicate: A global condition expressed using variables on processes

e.g., more than one process is in critical section,
there is no token in the system

Problem: find a consistent cut that satisfies the given predicate

X Y

p1

p2

critical sections

The global predicate may express: a software fault or a global breakpoint
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Two interpretations of predicates

s1 s2
s3s0

t 3t 2t 1t 0

s
2 3

1

2

3

(0,0) 1

t

Possibly:Φ: exists a path from the initial state to the final state along
which Φ is true on some state
Definitely:Φ : for all paths from the initial state to the final state Φ is
true on some state
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Detecting Possibly:Φ

Centralized Checker Process

Send relevant events to the checker process

Include dependency information for events

Checker process enumerates consistent global states
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Tracking Dependency
Problem: Given (E , → ), assign timestamps v to events in E such that
∀e, f ∈ E : e → f ≡ v(e) < v(f )

P1

P

P

P

2

3

4
(0,0,0,1) (0,0,0,2)

(3,1,0,0)

(2,1,3,1)

(2,1,0,0)

(0,0,2,1) (2,1,4,1)

(0,2,0,0) (2,3,3,1)

(0,0,1,0)

(0,1,0,0)

(1,0,0,0)

Online Timestamps: Vector Clocks [Fidge 89, Mattern 89]:
all events: increment v [i ] after each event
send events: piggyback v with the outgoing message
receive events: compute the max with the received timestamp
RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 22



Detecting Possibly : B — Enumeration of Consistent
Global States

e1 e3

f1 f2 f3

e2

(b)

00

10 01

1120

21 12

22 13

23

33

(a)

BFS: 00, 01, 10, 11, 20, 12, 21, 13, 22, 23, 33

DFS: 00, 10, 20, 21, 22, 23, 33, 11, 12, 13, 01

(c)
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Challenges for Lattice Enumeration

The number of CGS is exponential in the number of processes

The lattice cannot be stored in the main memory

What if the poset is infinite?
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Cooper and Marzullo’s Algorithm

[Cooper and Marzullo 91]
Implicit BFS Traversal
current: list of the global states at the current level.
Initially, current has only one global state, the initial global state
repeat

enumerate current;
last := current;
current = global states reached from last in one step;

until (current is empty)

Problems:
Repeated Enumeration: a CGS can be reached from multiple global states.
Space Complexity: need to store a level of the lattice – exponential in the
number of processes
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Avoiding Repeated Enumeration

G

G + e G + f

G + e + f

Idea: explore events only in a sorted order
an event e is explored from a global state G iff e is bigger than all the
events in G

RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 26



Revised BFS Algorithm

Q: set of CGS at the current level initially {(0, 0, . . . , 0)};
σ: a topological sort of all events in (E , → )

while (Q 6= ∅) do
G := remove first(Q);
for all events e enabled in G do // generate CGS at the next level

if (∀f ∈ maximal(G ) : σ(f ) < σ(e)) then
H := G ∪ {e};
append(Q,H);

endfor;
endwhile;

Time : O(n2M) Space complexity: O(nwL)
n: number of processes M: number of CGS
wL: width of the lattice L.
Problem: wL is exponential in n in the worst case.
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Implicit Depth First Search
Idea: Instead of storing width, store the height of the lattice
Use implicit Depth-First-Search [Alagar and Venkaesan 94]

G : array[1..n] of integer; // current global state
pred : array[1..n] of integer; // predecessor info for the next event

function dfsTraversal(int k) //event e at Pk enabled in the current state
G [k] + +;
enumerate(G );
compute pred [k] using the vector clock for e
forall (j 6= k): if (ej depends on e) then pred [j ]−−;
forall (j) with next event ej

if (pred [j ] = 0) and σ(e) < σ(ej))
dfsTraversal(j);

restore values of G and pred ;
end;

Problem: Stack can grow to O(E ) the number of events in the
computation
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Lexical Enumeration of Consistent Global States

e1 e3

f1 f2 f3

e2

(b)
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33

BFS: 00, 01, 10, 11, 20, 12, 21, 13, 22, 23, 33

DFS: 00, 10, 20, 21, 22, 23, 33, 11, 12, 13, 01

Lexical: 00, 01, 10, 11, 12, 13, 20, 21, 22, 23, 33

(c)

(a)
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Lexical Order

G <l H iff

∃k : (∀i : 1 ≤ i ≤ k − 1 : G [i ] = H[i ]) ∧ (G [k] < H[k]).

Lemma

∀G ,H : G ⊆ H ⇒ G ≤l H.
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Algorithm for Lex Order

nextLex(G ): next consistent global state in lexical order
var

G : consistent global state initially (0, 0, ..., 0);
enumerate(G );
while (G < >)

G := nextLex(G );
enumerate(G );

endwhile ;
No intermediate consistent global nodes stored
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Computing next consistent global state in lexical order

Lemma

Given any global state K (possibly inconsistent), the set of all consistent
global states that are greater than or equal to K in the CGS lattice is a
sublattice.

Corollary

There exists a minimum consistent global state H that is greater than
or equal to a given global state K .

Notation

succ(G , k): advance along Pk and reset components for Pi (i > k) to
0.
e.g. succ(〈7, 5, 8, 4〉, 2) = 〈7, 6, 0, 0〉
succ〈7, 5, 8, 4〉, 3) is 〈7, 5, 9, 0〉.
leastConsistent(K ): the least consistent global state greater than or
equal to a given global state K in the ⊆ order.
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Computation of nextLex(G )

Theorem

nextLex(G ) = leastConsistent(succ(G , k))

where k is the index of the process with the smallest priority which has an
event enabled in G .
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2 g4g g3

Example: Let G = (4, 3, 3). Then k = 2, succ(G , k) = (4, 4, 0)
Therefore, nextLex(G ) = (4, 4, 1).
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Algorithm for Lex Order

nextLex(G ): next consistent global state in lexical order
var

G : consistent global state initially (0, 0, ..., 0);
enumerate(G );
while (G < >)

k := smallest priority process with an event enabled in G
G := leastConsistent(succ(G , k))
enumerate(G );

endwhile ;
k , succ(G , k) and leastConsistent() can be computed in O(n2) time using
vector clocks.
[Garg03]
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Parallel and Online Algorithms

Partition the lattice into multiple interval sublattices
Assume that events arrive in a total order σ consistent with → .
for every event e

Gmin(e) = smallest consistent global state that contains e

Gbnd(e) = {f |σ(f ) ≤ σ(e)}
Theorem[Chang and Garg 14]: Consider the set of all interval lattices, I (e),
{G |Gmin(e) ⊆ G ⊆ Gbnd(e)}.
These interval lattices are mutually disjoint and cover the entire lattice of
all consistent global states.
ParaMount: A parallel implementation for detecting predicates in
concurrent systems [Chang and Garg 14]
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Predicate Detection for Special Cases

Exploit the structure/properties of the predicate

stable predicate: [Chandy and Lamport 85]

once the predicate becomes true, it stays true

e.g., deadlock

observer independent predicate [Charron-Bost et al 95]

occurs in one interleaving =⇒ occurs in all interleavings

e.g., stable predicates, disjunction of local predicates

linear predicate [Chase and Garg 95]

closed under meet, e.g., there is no leader in the system

relational predicate: x1 + x2 + · · ·+ xn > k [Chase and Garg 95]
[Tomlinson and Garg 96]

e.g., violation of k-mutual exclusion
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Linearity

e

G H

Crucial Element crucial(G , e,B)
For a consistent cut G $ E and a predicate B, e ∈ E − G is crucial for G
if:

∀H ⊇ G : (e ∈ H) ∨ ¬B(H).

Linear Predicates A predicate B is linear if for all consistent cuts G $ E ,

¬B(G ) ⇒ ∃e ∈ E − G : crucial(G , e,B).
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Examples of Linear Predicates: Conjunctive Predicates

e

G H

mutual exclusion problem: (P1 in CS) and (P2 in CS)

missing primary: (P1 is secondary) and (P2 is secondary) and (P3 is
secondary)
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Channel Predicates: Observing hallways

Many properties require channels
Example: termination detection – all processes are idle and all channels are
empty
Channel predicate: boolean function on the state of the unidirectional
channel
channel state : sequence of messages sent - set of messages received
Linearity: Given any channel state in which the predicate is false, either

the next event at the receiver is crucial, or
the next event at the sender is crucial
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Linear Channel Predicates

Empty channels
If false, then it cannot be made true by sending more messages.
The next event at the receiver is crucial.

Channel has more than three red messages
The next event at the sender is crucial.

Channel has exactly three red messages
If less than three, the next event at the sender is crucial,
If more than three, the next event at the receiver is crucial
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Non-linear Channel Predicates

B ≡Channel has an odd number of messages

S’

C[2]

D[1]

D[2]

P
1

2
P

S C[1]

R

The set of cuts satisfying the predicate is not linear.
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Linearity of Predicates and Meet-Closure

Theorem: [Chase and Garg 95] A predicate B is linear if and only if it is
meet-closed (in the lattice of all consistent cuts).
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Special Classes of Predicates

a predicate P is meet-closed if all the cuts that satisfy the predicate
are closed under intersection. (C1 |= P ∧ C2 |= P)⇒ (C1 ∩ C2) |= P.

A predicate P is join-closed if all cuts that satisfy the predicate are
closed under union.
i.e., (C1 |= P ∧ C2 |= P)⇒ (C1 ∪ C2) |= P.

A predicate is regular if it is join-closed and meet-closed.

A predicate P is stable, if
∀C1,C2 ∈ L : C1 |= P ∧ C1 ⊆ C2 ⇒ C2 |= P.

RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 44



Example: Special Classes of Predicates

meet 
losed predi
atejoin 
losed predi
ate(i) stable predi
ate(iii)regular predi
ate(ii)
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{}
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{e1, f1}
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{e3, f1}

{e3, f3}

{e2, f3}
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{e2, f2}
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Detecting Linear Predicates

(Advancement Property) There exists an efficient (polynomial time)
function to determine the crucial event.
Theorem: Any linear predicate that satisfies advancement property can be
detected efficiently.
Example: A conjunctive predicate, l1 ∧ l2 ∧ . . . ∧ ln, where li is local to Pi .
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Importance of Conjunctive Predicates

Sufficient for detection of the following global predicates

boolean expression of local predicates which can be expressed as a
disjunction of a small number of conjunctions.
Example: x , y and z are in three different processes. Then,
even(x) ∧ ((y < 0) ∨ (z > 6))
≡
(even(x) ∧ (y < 0))∨ (even(x) ∧ (z > 6))

predicate satisfied by only a small number of values
Example: x and y are in different processes.
(x = y) is not a local predicate but x and y are binary.
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Conditions for Conjunctive Predicates

local predicate is false

local predicate is true

Predicate is true on this cut

Possibly

(l1 ∧ l2 ∧ . . . ln) is true iff there exist si in Pi such that li is true in state si ,
and si and sj are incomparable for distinct i , j .
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Weak Conjunctive Predicates: Centralized Algorithm

Each non-checker process maintains its local vector
send the vector clock to the checker process whenever

local predicate is true

at most once in each message interval.

Optimization: Sufficient to send the vector once after any message is sent
Space complexity: O(n)
message complexity: O(ms), ms = number of program messages sent.
Time complexity: detection of local predicates, maintain vector clock O(n)

[Garg and Waldecker 94]
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Checker Process

n queues of vectors
Steps

1 Begin with the initial global state

2 Eliminate any vector that happened before any other vector along the
current global state.

Predicate is true for the first time

all vectors are pairwise concurrent

Predicate is false

if we eliminate the final vector from any process
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Overhead: Checker processes

Space complexity

n queues, each containing at most m vectors

Time complexity

The algorithm for checker requires at most O(n2m) comparisons.

Any algorithm which determines whether there exists a set of
incomparable vectors of size n in n chains of size at most m, makes at
least mn(n − 1)/2 comparisons.
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Disadvantages of above algorithm

Centralized

Checker process may become a bottleneck

Space requirements

Queues at the checker process may grow large

Message complexity

many additional messages to the checker process
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Token-based Algorithm

A monitor process is active only if it has the token. Token consists of two
vectors G and color .
G : global state vector

G [i ] = k indicates that state (i , k) is part of the current cut.

color: indicates which states have been eliminated.

If color [i ] = red then state (i ,G [i ]) has been eliminated and can
never satisfy the global predicate.

If color [i ] = green, then there is no state in G such that (i ,G [i ])
happened before that state.
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Monitor Process Algorithm: Mi

var candidate:array[1..n] of integer;
on receiving the token (G,color)

while (color[i] = red) do
receive candidate from application process Pi

if (candidate.vclock[i] > G[i]) then
G[i] := candidate.vclock[i]; color[i]:=green;

endwhile
for j 6= i :

if (candidate.vclock[j] > G[j]) then
G[j] := candidate.vclock[j];
color[j]:=red;

endif
endfor
if (∃ j: color[j] = red) then send token to Pj

else detect := true;

RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 54



Analysis of Single-Token WCP Algorithm

Theorem

For any computation (E , → ) and any conjunctive predicate B, if B holds
in (E , → ), then the Single-Token WCP algorithm returns the least CGS
that satisfies B. If B is false, then the algorithm returns false.

Work complexity: O(n2m)
Every time a state is eliminated, O(n) work is performed. There are at
most mn states.
Message complexity: O(mn).
Communication bit complexity: O(n2m).

size of both the token and the candidate messages is O(n).
Space complexity: O(mn) space per process.
m: maximum number of vectors per process, n: number of processes
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Other WCP algorithms

A completely distributed algorithm [Chase and Garg 94]

Uses Dijkstra and Scholten’s termination detection algorithm

Keeping queues shorter [Chiou and Korfhage 95]

eliminate vectors that are useless

Avoiding control messages [Hurfin, Mizuno et al 96]

piggyback info/token with application messages
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Relational Predicates: Binary Variables

Problem: Given (S , → )
B ≡ x1 + x2 + x3 . . . xn ≥ k
where xi resides on process Pi .
Example:
xi : Pi is using the shared resource.
Are there k or more processes using the resource concurrently?
Equivalent Problem: Is there an antichain H ⊆ S such that the size of H
it at least k and x is true on local states in H.

[Tomlinson and Garg 96]

RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 58



Using Dilworth’s Theorem

Dilworth’s Chain Partition Theorem: For any poset (X ,≤),
size of a maximum sized antichain (width)
=
the minimum number of chains that covers the poset

b1 b2 b3

a1 a2 a3

k queues of vector clocks can be merged into k − 1 queues iff there is no
antichain of size k .
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Relational Predicate Algorithm

Input: n queues of vector clocks;
Output: true iff

∑
i xi ≥ k)

for i := 1 to n − k + 1 do
pick smallest k chains and merge them into k − 1 chains;
if not possible then

found an antichain of size k ;
return true;//the antichain = CGS where the predicate holds

endfor;
return false;// only k − 1 chains left

RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 60



Generalized Merging

Theorem: Let the poset be presented as k queues of vector clocks. There
exists an efficient algorithm that can merge N queues into N − 1 queues in
an online fashion whenever possible.
[Tomlinson and Garg 96]
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(3,2,2)
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(0,2,0)

(1,0,0)

(3,2,0)

(3,2,2)

(0,3,0)

(0,2,0)

(1,0,0) (3,2,0)

(0,3,0)

(b)

(c) (d)

(a)

C3

C1 C2

P1
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How to merge queues of vectors?

P1 P2 P3

a:(1,0,0) d:(0,1,0) f:(2,0,0)
b:(1,1,0) e:(2,2,0) g:(2,3,0)
c:(1,2,0)
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Naive Strategy

Move a minimal element into any output queue in which it can be inserted.
After insertion of a, d , b, c :

Q1 Q2

a:(1,0,0) d:(0,1,0)
b:(1,1,0)
c:(1,2,0)

P1 P2 P3

f:(2,0,0)
e:(2,2,0) g:(2,3,0)
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Merge is Possible

Q1 Q2

a:(1,0,0) d:(0,1,0)
f:(2,0,0) b(1,1,0)
e:(2,2,0) c:(1,2,0)
g:(2,3,0)

b : (1, 1, 0) is inserted in Q2 and not Q1.
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Queue Insert Graph

G = (V ,E ): undirected graph called queue insert graph
V : set of k input queues
E : undirected edges on V
Invariant 1: G is a spanning tree
⇒ there are exactly k − 1 edges in G . Each edge is labeled with a unique
output queue
Invariant 2: Let (Pi ,Pj) be labeled with Qk

All elements of Pi and Pj are bigger than all elements of Qk ⇒ Any
element from Pi or Pj can be inserted at the tail of Qk .

P1

P2

Q2

P3

Q1
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P1

P2

Q2

P3

Q1

Q1 Q2

a:(1,0,0) d:(0,1,0)

P1 P2 P3

b:(1,1,0) e:(2,2,0) f:(2,0,0)
c:(1,2,0) g:(2,3,0)
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Using Queue Insert Graph
b : (1, 1, 0) ∈ P1 < e : (2, 2, 0) ∈ P2

delete b : (1, 1, 0) from P1 and insert in an output queue.
Which one?

1 Add an edge between Pi and Pj in the spanning tree.

2 A unique cycle is formed. Let (Pi ,Pk) be the other edge incident on
Pi in that cycle.

3 Remove (Pi ,Pk). Transfer its label to (Pi ,Pj) and insert the vector in
the corresponding output queue.

P1

P2

Q2

P3

Q1

Verify: Queue Insert Graph invariant is preserved.
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Relational Predicates: Nonbinary Variables
Let xi : number of tokens at Pi

Σxi < k : loss of tokens
Algorithm: max-flow technique [Groselj 93, Chase and Garg 95],
Consistent cut with minimum value = min cut in the flow graph

max-flow conversion

c

e

2 5x1 = 8

294x2 = 9

1

c

e

1 2 58

9

9
2

4

p1

p2

a b

fd

a b

fd

∞
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Summary

Space efficient algorithms for general predicates

Time efficient algorithms for special classes of predicates

Problem: What if the predicate does not belong to one of the special
classes?
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Basis Temporal Logic: Motivation

RCTL can handle only regular predicates. Even a simple formula such as
p ∨ q is not regular.
Need for a logic:

Sufficiently expressive

Easy to write formulas in that logic

Can detect them with polynomial time complexity
polynomial in the number of processes, not the size of the formula
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Basis Temporal Logic: Syntax

AP: Set of Atomic Propositions
Atomic Propositions are evaluated on a single global state.
A predicate in BTL is defined recursively as follows:

1 ∀l ∈ AP, l is a BTL predicate

2 If P and Q are BTL predicates then P ∨ Q, P ∧ Q, ♦P and ¬P are
also BTL predicates

Example:B = ¬♦(
∧

redi ) ∧ token0

[Ogale and Garg 07]
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Basis Temporal Logic: Semantics

E , → : Poset (distributed computation)
L: Lattice of consistent global states of (E , → )
C : A consistent global state of (E , → )
λ : L→ 2AP set of atomic propositions true in any consistent global state

(C , L, λ) |= l ⇔ l ∈ λ(C ) for an atomic proposition l

(C , L, λ) |= P ∧ Q ⇔ C |= P and C |= Q

(C , L, λ) |= P ∨ Q ⇔ C |= P or C |= Q

(C , L, λ) |= ¬P ⇔ ¬(C |= P)

(C , L, λ) |= ♦P ⇔ ∃C ′ ∈ L : (C ⊆ C ′ and C ′ |= P)
There exists a future consistent global state in which P is true.
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Special Classes of Predicates

meet 
losed predi
atejoin 
losed predi
ate(i) stable predi
ate(iii)regular predi
ate(ii)

{}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

{e1, f2}

{e2, f2}

{}

{e3, f2}

{f2}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

{e1, f2}

{e2, f2}

{f3}

{}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

{e1, f2}

{e2, f2}
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Basis of a Predicate

Given a computational lattice L, corresponding to a computation E , and a
predicate P, a subset S [P] of L is a basis of P if

1 Compactness: The size of S [P] is polynomial in the size of
computation E .

2 Efficient Membership: Given any consistent global state C ∈ L, there
exists a polynomial time algorithm that takes S [P], E and C as input
and determines whether (C , L) |= P.

Examples

Predicate for an Order Ideal:
Sufficient to keep the largest CGS that satisfies P

Regular Predicate:
Sufficient to keep the slice (or join-irreducibles) of (E , → ) with
respect to P

RV’14 Tutorial (Garg and Mittal) Monitoring Distributed Computations 76



Stable Predicates

Ideal with max 
ut c2

Ideal with max 
ut c1

Stable Predi
ate
c2

c1

Representing stable predicates Not necessarily a basis!

Given a stable predicate P and the computational lattice L, a stable
structure is the set of ideals I such that a cut satisfies P iff it does not
belong to any of the ideals in I. Therefore, C |= P ⇔ ¬(C ∈

⋃
I∈I I ).
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Semiregular Predicates

P is a semiregular predicate if it can be expressed as a conjunction of a
regular predicate with a stable predicate.
Examples:

All processes are never red concurrently at any future state and
process P0 has the token. That is, P = ¬♦(

∧
redi ) ∧ token0.

At least one process is beyond phase k (stable) and all the processes
are red.

claim: All regular predicates and stable predicates are semiregular.
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Properties of Semiregular Predicates

A semiregular predicate is join-closed regular and stable predicates
are join-closed

if P and Q are semiregular then so is P ∧ Q. both regular and
stable predicates are closed under conjunction
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Properties of Semiregular Predicates

If P is a semiregular predicate then ♦P and �P are semiregular.

If P is semiregular, P has a unique maximal cut, say Cmax and ♦P is
an ideal of the lattice that contains all cuts less than or equal to Cmax .

�P is a stable predicate for any P, and therefore it is also semiregular.
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Semiregular Structure

A semiregular structure, g , is a tuple (〈slice, I〉) consisting of a slice and a
stable structure, such that
the predicate is true in cuts that belong to their intersection.
C ∈ g ⇔ (C ∈ slice) ∧ ¬(C ∈

⋃
I∈I I ).
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Algorithm to Detect BTL: Base Case

/*The input predicate Pin has all negations pushed
- inside to the ♦ operator or to the atomic propositions */
/* each semiregular structure is represented as a tuple 〈slice,maxCuts〉
- where maxCuts is the set of maximal cuts
- of the ideals I representing the stable structure */

function getBasis(Predicate Pin)
output: S [Pin], a set of semiregular structures

Case 1. (Base case: local predicates) : Pin = l or Pin = ¬l
S [Pin] := {〈slice(P), {}〉}

Case 2. Pin = P ∨ Q
Case 3. Pin = P ∧ Q
Case 4. Pin = ♦P
Case 5. Pin = ¬♦P

return S [Pin]
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Algorithm to Detect BTL: Conjunctions and Disjunctions

function getBasis(Predicate Pin)
output: S [Pin], a set of semiregular structures

Case 1. (Base case: local predicates) : Pin = l or Pin = ¬l
S [Pin] := {〈slice(P), {}〉}

Case 2. Pin = P ∨ Q
S [P] := getBasis(P); S [Q] = getBasis(Q);
S [Pin] := S [P] ∪ S [Q];

Case 3. Pin = P ∧ Q
S [P] := getBasis(P); S [Q] = getBasis(Q);
S [Pin] :=

⋃
gp∈S[P],gq∈S[Q]{(〈gp.slice ∧ gq.slice,

gp.maxCuts ∪ gq.maxCuts〉)};
Case 4. Pin = ♦P
Case 5. Pin = ¬♦P

return S [Pin]
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Algorithm to Detect BTL: Modalities

function getBasis(Predicate Pin)
output: S [Pin], a set of semiregular structures

Case 1. (Base case: local predicates) : Pin = l or Pin = ¬l
Case 2. Pin = P ∨ Q
Case 3. Pin = P ∧ Q
Case 4. Pin = ♦P

S [P] := getBasis(P);
S [Pin] :=

⋃
g∈S[P]{〈♦(g .slice), {}〉};

Case 5. Pin = ¬♦P
S [P] := getBasis(P);
/* sliceorig is the original computation */
S [Pin] := {〈sliceorig ,∪g∈S[P]{maxCutIn(g .slice)}〉};

Remove all empty semiregular structures from S [Pin];

return S [Pin]
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Complexity Analysis

Theorem

The total number of ideals |I | in the basis computed by the algorithm to
detect a BTL predicate P with k operators is at most 2k

Theorem

The time complexity of the algorithm to detect a BTL formula is
polynomial in the number of events (|E |) and the number of processes (n)
in the computation.
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Conclusions

Lattice properties are crucial in monitoring distributed computations
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Additional Tutorial

Elements of Distributed Computing Wiley & Sons 2002

Introduction to Lattice Theory with Computer Science Applications
(Expected December 2014)
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Additional Topics

Monitoring for liveness properties:
Infinite (periodic posets)

Quotient Construction for Distributive Lattices
Collapsing sublattices such that temporal logic formula is true in

the original lattice iff it holds in the reduced lattice

Online Chain Partition
Events arrive in an online fashion. Insert them into as few chains

as possible
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Online Chain Decomposition

Elements of a poset presented in a total order consistent with the
poset

Assign elements to chains as they arrive

Can be viewed as a game between
I Bob: present elements
I Alice: assign them to chains

For a poset of width k , Bob can force alice to use k(k + 1)/2 chains.
Any online algorithm can be forced to use k2 chains [Felsner 97].

x u

y z
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Online Chain Decomposition

An efficient online algorithm that uses at most k2 chains with at most
O(k2) comparisons per event. [Aggarwal and Garg 05]

Use k sets of queues B1,B2, ...,Bk . The set Bi has i queues with the
invariant that no head of any queue is comparable to the head of any
other queue.

For a new element z , insert it into the first queue q in Bi with its
head less than z .

Swap remaining queues in Bi with queues in Bi−1.
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Motivation for Control

Who controls the past controls the future, who controls the present
controls the past...

George Orwell,
Nineteen Eighty-Four.

maintain global invariants or proper order of events
Examples: Distributed Debugging

ensure that busy1 ∨ busy2 is always true ensure that m1 is
delivered before m2

maintain ¬CS1 ∨ ¬CS2

Fault tolerance
On fault, rollback and execute under control

Adaptive policies
procedure A (B) better under light (heavy) load
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Models for Control

Is the future known ?
Yes: offline control

applications in distributed debugging, recovery, fault tolerance..
No: online control
applications: global synchronization, resource allocation

Delaying events vs Changing order of events
supervisor simply adds delay between events
supervisor changes order of events
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Delaying events: Offline control

P1

P0

Maintain at least one of the process is not red
Can add additional arrows in the diagram such that the control relation
should not interfere with existing causality relation
(otherwise, the system deadlocks)
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Delaying events: Offline control

P0

P1

P0

P1

Problem: Instance: Given a computation and a boolean expression q of
local predicates

Question: Is there a non-interfering control relation that maintains q
This problem is NP-complete [Tarafdar and Garg 97]
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Delaying events: disjunctive predicates

P1

P0

Efficient algorithm for disjunctive predicates
Example: at least one of the philosopher does not have a fork

Result:
a control strategy exists iff there is no set of overlapping false intervals
overlap(I1, I2) = (I1.lo → I2.hi) ∧ (I2.lo → I1.hi)
Result:
There exists an O(n2m) algorithm to determine the strategy n = number
of processes m = number of states per process
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