
Appliations of Lattie Theory to DistributedComputingVijay K. GargECE DepartmentUniversity of TexasAustin, TX, USAgarg�ee.utexas.edu Neeraj MittalCS DepartmentUniversity of Texas, DallasRihardson, TX, USAneerajm�utdallas.edu Alper SenECE DepartmentUniversity of TexasAustin, TX, USAsen�ee.utexas.eduAbstratIn this note, we disuss the appliations of lattie theory to solving problems in distributedsystems. The �rst problem we onsider is that of deteting a prediate in a omputation,i.e., determining whether there exists a onsistent ut of the omputation satisfying the givenprediate. The seond problem involves omputing the slie of a omputation with respet to aprediate. A slie is a onise representation of all those global states of the omputation thatsatisfy the given prediate. The third problem we onsider is that of analyzing a partial ordertrae of a distributed program to determine whether it satis�es the given temporal logi formula.Finally, we onsider the problem of timestamping events and global states of a omputation toapture the order relationship. We disuss how the results from lattie theory an be used insolving eah of the above problems.1 IntrodutionIn 1978, Lamport in a seminal paper [Lam78℄ argued that the order of events that an be observedin a distributed omputation is only partial. He alled this partial order the happened-before orderand presented a mehanism alled logial loks that gave a timestamp in a totally ordered domainpreserving the happened-before order. Sine the theory of partial orders matured in 50's and 60'smostly due to pioneering work by Birkho� and Dilworth, it is natural to assume that the theoryof partial orders would then be applied to distributed omputing in the next few years. However,the progress in appliation of the theory of partial orders to distributed omputing has been slow.We disuss a few of these appliations in distributed omputing espeially in the areas of globalproperty evaluation and timestamping events.In 1985, Chandy and Lamport [CL85℄ de�ned a onsistent ut, also alled a onsistent globalstate. Let E be the set of events of a omputation and ! be the happened-before order on E. Asubset G of E is a onsistent ut if whenever it ontains an element f then it ontains all elements ethat happened-before f . This onept is idential to the notion of order ideal in the lattie theory.In that paper, they also gave a distributed algorithm to reord a onsistent utIn 1989, Mattern [Mat89℄ showed that the set of all onsistent uts of a distributed omputationforms a lattie. This result is a speial ase of the theorem in lattie theory that the set of all idealsof a partial order forms a distributive lattie. Note that Mattern (onurrently with Fidge [Fid91℄)also de�ned a vetor lok mehanism that an be used to timestamp events in a distributedomputation. Vetor loks have been used extensively in many distributed algorithms [Gar02b℄.

In 1991, Charron-Bost [CB91℄ gave a lower bound on the dimension of vetor loks usingdimension theory of partial orders. Dimension theory of partial orders was initiated by Dushnikand Miller in 1941 [DM41℄. In that paper, they also gave a family of posets Sn of width n whihhad dimension n.In 1995, Chase and Garg [CG95℄ de�ned linear prediates for eÆient detetion of global predi-ates. It an be shown that a prediate B is linear if and only if the set of onsistent uts satisfyingB is losed under the meet operation of the lattie of onsistent uts. The set of linear prediatesan be deteted eÆiently assuming eÆient advanement property.So far, the fat that the set of onsistent uts form a distributive lattie was not really exploitedin distributed omputing literature. One of the fundamental theorems of Birkho� states that every�nite distributive lattie an be generated by the poset formed by its join-irreduible elements.Sine the set of join-irreduible elements may be (exponentially) smaller than the lattie itself, thistheorem is very useful omputationally.In 2001, Garg and Mittal [GM01℄ introdued the notion of omputation slie based on thistheorem. A slie of a omputation with respet to a prediate B is a onise representation of allonsistent uts that satisfy B. Slie has bene�ts in terms of state spae redution for prediatedetetion. These appliations were further explored by Mittal and Garg in [MG01, MG03℄.In 2001, Garg and Skawratananond [GS01℄ de�ned a speial type of partial order alled stringand showed that Fidge-Mattern vetor lok orresponds to a string realizer of a poset. They alsoapplied Dilworth's theorem for the dimension of a �nite distributive lattie to show that any vetorlok mehanism that an timestamp a onsistent ut of a distributed omputation on N proessesmust have dimension at least N .In 2002, Sen and Garg [SG02, SG03b℄ developed algorithms to ompute slies for temporallogi formulas. These algorithms are useful in deteting temporal logi formulas in a distributedomputation [SG02℄. They implemented a tool alled Partial Order Trae Analyzer (POTA)[SG03b℄for evaluating temporal logi formulas on partial order traes.The purpose of this note is to provide the reader with relevant onepts in lattie theory and abrief survey of its appliations to distributed omputing. The note is organized as follows. Setion 2provides the basi de�nitions in lattie theory. Setion 3 gives appliations of lattie theory in globalprediate detetion, Setion 4 in omputation sliing, Setion 5 in partial order trae analysis, andSetion 6 in timestamping events and onsistent uts.2 Partially Ordered Sets and LattiesA pair (X;P) is alled a partially ordered set or poset ifX is a set and P is a reexive, antisymmetri,and transitive binary relation on X. We all X the ground set while P is a partial order on X. The6 and divides relations on the set of natural numbers are some examples of partial orders.We write x 6 y and y > x in P when (x; y) 2 P . Also, x < y and y > x in P means x 6 y inP and x 6= y. Let x; y 2 X with x 6= y. If either x < y or y < x, we say x and y are omparable.On the other hand, if neither x < y nor x > y, then we say x and y are inomparable.A poset (X;P) is alled a hain or a linear order if every distint pair of points from X isomparable in P . Similarly, we all a poset an antihain if every distint pair of points from X isinomparable in P . The width of a poset is de�ned to be the largest antihain in the poset and isdenoted by width(P).Finite posets are often depited graphially using a Hasse diagram. To de�ne Hasse diagrams,we �rst de�ne a relation overs as follows. For any two elements x; y, we say y overs x if x < yand 8z 2 X : x 6 z < y implies z = x. In other words, there should not be any element z with

x < z < y. A Hasse diagram of a poset is a graph with the property that there is an edge from xto y if and only if y overs x. Furthermore, when drawing the �gure in an Eulidean plane, x isdrawn lower than y when y overs x. For example, onsider the poset (X;6).X def= fa; b; ; d; eg; 6 def= f(a; a); (b; b); (;); (d; d); (a; b); (a;); (a; d); (a; e); (b; d); (b; e); (; e); (d; e)g:The �rst Hasse diagram in Figure 1 orresponds to this poset.An element y 2 X is alled an upper bound for S � X if s 6 y in P , for every s 2 S. An upperbound y for S is the least upper bound for S, provided y 6 y0 in P for every upper bound y0 ofS. Lower bounds and greatest lower bounds are de�ned similarly. The greatest lower bound is alsoreferred to as in�mum or meet. Similarly, the least upper bound is also referred to as supremum orjoin. We denote the meet of fa; bg by a u b, and the join of fa; bg by a t b.In the set of natural numbers ordered by the divides relation, the join orresponds to �ndingthe greatest ommon divisor and the meet orresponds to �nding the least ommon multiple of twonatural numbers.The greatest lower bound or the least upper bound may not always exist. In the third posetin Figure 1, the set fb; g does not have any least upper bound (although both d and e are upperbounds). fff f f
f
f

f fff ff
����Æ6��I ���7CCCC

CCCCO 6
������I�������6 6

�������I
���7 SSSo

ab d e b
a ab d ef

Figure 1: Only the �rst two posets are latties.A set of partially-ordered elements (or poset) forms a lattie if the greatest lower bound and theleast upper bound exist and are ontained in the set for every pair of elements. Thus, the �rst twoposets in Figure 1 are latties, whereas the third one is not. As another example, the power set ofa given set forms a lattie under � relation.Example 1 For the set fx; y; zg, the power set is given by f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg;fx; y; zgg. The meet of the two elements of a power set is given by their intersetion. For example,the meet of fx; yg and fy; zg is fyg. Dually, the join is given by their union. For example, thejoin of fx; yg and fy; zg is fx; y; zg. In other words, the meet and join operators of the lattieorrespond to intersetion (\) and union ([), respetively.The lattie in Example 1 is alled a Boolean lattie. A subset of a lattie is a sublattie ifit is losed under the meet and join operations. For example, in the Boolean lattie the set ofall subsets of fx; y; zg that ontain x forms a sublattie. However, the set of all subsets withat most two elements does not form a sublattie. A lattie is distributive if its meet operatordistributes over its join operator. For example, sine intersetion distributes over union, a Boolean

lattie is distributive. The lattie of natural numbers with 6 de�ned as the relation divides is alsodistributive. Two important nondistributive latties, alled diamond and pentagon, are shown inFigure 2.
0

1

a b c

b

a

c

1

0Figure 2: Examples of nondistributive lattiesOne of the Birkho�'s results on latties states that a lattie is distributive if and only if it doesnot ontain a pentagon or a diamond as a sublattie [DP90℄.Now, onsider a (�nite) set of partially-ordered elements (not neessarily a lattie). A subsetof elements forms an order ideal (or simply an ideal) if whenever an element is ontained in thesubset then all its preeding elements are also ontained in the subset. Formally, a subset S of Xis an order ideal if it satis�es8x; y 2 X : (x 2 S) ^ (y 6 x)) (y 2 S)Example 2 For the poset in Figure 3(b), some examples of ideals are fa; b; g and fa; bg. However,fa; dg is not an ideal beause it ontains d but not b, whih preedes d.It is well-known that the set of ideals of a poset forms a distributive lattie under � relation[DP90℄. For a distributed omputation, whih is essentially a poset of events ordered by Lamport'shappened-before relation [Lam78℄, the notion of order ideal oinides with that of onsistent ut.Therefore it an be dedued that the set of onsistent uts of a omputation forms a distributivelattie.By using the notion of ideals, we went from a poset to a distributive lattie. Is it possibleto go in the reverse diretion? The answer is provided by Birkho�'s Representation Theorem[DP90℄. Intuitively, the result says that a �nite distributive lattie an be uniquely haraterizedby only a small subset of its elements known as join-irreduible elements An element of a lattieis join-irreduible if (1) it is not the least element, and (2) it annot be expressed as join of twoelements, both di�erent from itself. Clearly, the join-irreduible elements of a Boolean lattie arethe singleton sets.Example 3 The Boolean lattie in Example 1 has three join-irreduible elements, namely fxg,fyg and fzg. As expeted, every other element that is di�erent from ; an be expressed as theunion of some or all of these three elements.Pitorially, in a �nite lattie, an element is join-irreduible if and only if it has exatly one lowerover, that is, there is exatly one edge oming into the element in the Hasse diagram. Intuitively,the join-irreduible elements of a distributive lattie at as basis elements for the lattie. Everyelement of the lattie, exept for the least one (e.g., ; in a Boolean lattie), an be written as the

(b)(a)

: join−irreducible element

c d

a b

d

ba

c

Figure 3: (a) An example of a distributive lattie (b) its partial order representation.join of some or all of these join-irreduible elements. The notion of meet-irreduible elements anbe de�ned dually. The meet-irreduible elements of a Boolean lattie are given by those subsetsof the ground set that have exatly one element missing. Thus, the meet-irreduible elements ofthe Boolean lattie in Example 1 are fx; yg, fy; zg and fx; zg. Clearly, every other element that isdi�erent from fx; y; zg an be expressed as the intersetion of some or all of these three elements.Birkho�'s Theorem states that every �nite poset P is isomorphi to the set of join-irreduibleelements of the set of ideals of P . Similarly, every �nite distributive lattie is isomorphi to theset of ideals of its join-irreduible elements. Thus, Birkho�'s Theorem establishes the dualitybetween �nite posets and �nite distributive latties. We an go from a �nite poset to its dual �nitedistributive lattie by onstruting the set of its order ideals and from the �nite distributive lattieto the poset by restriting it to join-irreduible elements. For example, Figure 3(b) gives the posetorresponding to the lattie in Figure 3(a).3 Deteting Global PrediatesA prediate is simply a boolean funtion from the set of all onsistent uts to f0; 1g. Equivalently,a prediate spei�es a subset of onsistent uts in whih the boolean funtion evaluates to 1.We now de�ne various lasses of prediates. The lass of meet-losed prediates are usefulbeause they allow us to ompute the least onsistent ut that satis�es a given prediate.De�nition 1 (Meet-Closed Prediates) A prediate B is meet-losed if for all onsistent utsG;H: B(G) ^B(H)) B(G uH)The prediate \does not ontain x" in the Boolean lattie is meet-losed whereas the prediate\has size k" is not.In a distributed omputation, we de�ne a prediate to be loal if its truth value depends onlyon the state of a single proess. Any global prediate that an be expressed as a onjuntion ofloal prediates is meet-losed.It follows from the de�nition that if there exists any onsistent ut that satis�es a meet-losedprediate B, then there exists the least one. Note that the prediate false whih orresponds tothe empty subset and the prediate true whih orresponds to the entire set of onsistent uts are

meet-losed prediates. We now give another haraterization of meet-losed prediates that willbe useful for omputing the least onsistent ut that satis�es the prediate. To this end, we �rstde�ne the notion of a ruial event for a onsistent ut.De�nition 2 (Cruial Element) For a onsistent ut G $ E and a prediate B, we de�ne e 2E �G to be ruial for G as:ruial(G; e;B) def= 8H � G : (e 2 H) _ :B(H):De�nition 3 (Linear Prediates) A prediate B is linear if for all onsistent uts G $ E,:B(G)) 9e 2 E �G : ruial(G; e;B):Intuitively, this means that any onsistent ut H, that is at least G, annot satisfy the prediateunless it ontains e. Now, we haveTheorem 1 ([CG95℄) A prediate B is linear if and only if it is meet-losed.Proof: First assume that B is not losed under meet. We show that B is not linear. Sine B isnot losed under meets, there exist two onsistent uts H and K suh that B(H) and B(K) butnot B(H uK). De�ne G to be H uK. G is a strit subset of H � E beause B(H) but not B(G).Therefore, G annot be equal to E. We show that B is not linear by showing that there does notexist any ruial element for G. A ruial element e, if it exists, annot be in H � G beause Kdoes not ontain e and still B(K) holds. Similarly, it annot be in K � G beause H does notontain e and still B(H) holds. It also annot be in E � (H [K) beause of the same reason. Weonlude that there does not exist any ruial event for G.Now assume that B is not linear. This implies that there exists G $ E suh that :B(G) andnone of the elements in E�G is ruial. We �rst laim that E�G annot be a singleton. Assumeif possible E � G ontains only one element e. Then, any onsistent ut H that ontains G anddoes not ontain e must be equal to G itself. This implies that :B(H) beause we assumed :B(G).Therefore, e is ruial ontraditing our assumption that none of the elements in E �G is ruial.Let W = E � G. For eah e 2 W , we de�ne He as the onsistent ut that ontains G, does notontain e and still satis�es B. It is easy to see that G is the meet of all He. Therefore, B is notmeet-losed beause all He satisfy B, but not their meets. 2Example 4 Consider the Boolean Lattie generated by all subsets of f1; :::; ng. Let the prediateB de�ned to be true on a onsistent ut G as \If G ontains any odd i < n, then it also ontainsi + 1." It is easy to verify that B is meet-losed. Given any G for whih B does not hold, theruial elements onsist of fiji is even; 2 6 i 6 n; i� 1 2 G; i 62 GgExample 5 Consider a distributed omputation on two proesses P1 and P2 and the prediate Bto be true on a onsistent ut if both the proesses are in the ritial setion. Given any onsistentut G for whih B does not hold, either P1 is not in the ritial setion, or P2 is not in the ritialsetion. In the former ase, the next event of P1 after G, entering the ritial setion is ruialand in the latter ase the event of P2 entering the ritial setion is ruial. This example an beeasily generalized to any global boolean prediate that an be expressed as a onjuntion of loalprediates.

Our interest is in deteting whether there exists an onsistent ut that satis�es a given pred-iate B. We assume that given a onsistent ut, G, it is eÆient to determine whether B istrue for G or not. On aount of linearity of B, if B is evaluated to be false in some onsistentut G, then we know that there exists a ruial event in E�G. We make an additional assumption:(EÆient Advanement Property) There exists an eÆient (polynomial time) funtion todetermine the ruial event.We now haveTheorem 2 ([CG95℄) If B is a linear prediate with the eÆient advanement property, thenthere exists an eÆient algorithm to determine the least onsistent ut that satis�es B (if any).Proof: An eÆient algorithm to �nd the least ut in whih B is true is given in Figure 4. Wesearh for the least onsistent ut starting from the empty onsistent ut. If the prediate is falsein the onsistent ut, then we �nd the ruial element using the eÆient advanement propertyand then repeat the proedure. If this is the last state on the proess, then we return false else weadvane along the proess that has the ruial event. 2boolean funtion detet(B:boolean prediate, P :poset)var G: onsistent ut initially G := fg;while (:B(G) ^ (G 6= P)) doLet e be suh that ruial(G; e;B) in P ;G := G [feg.endwhile;if B(G) return true;else return false;Figure 4: An eÆient algorithm to detet a linear prediateAssuming that ruial(G; e;B) an be evaluated eÆiently for a given poset, we an determinethe least onsistent ut that satis�es B eÆiently even though the number of onsistent uts may beexponentially larger than the size of the poset. In pratie, most meet-losed prediates B satisfythe eÆient advanement property. All the examples in this paper do.So far we have foused on meet-losed prediates. All the de�nitions and ideas arry overto join-losed prediates. If the prediate B is join-losed, then one an searh for the largestonsistent ut that satis�es B in a fashion analogous to �nding the least onsistent ut when it ismeet-losed.Prediates that are both meet-losed and join-losed are alled regular prediates.De�nition 4 (Regular Prediates [GM01℄) A prediate is regular if the set of onsistent utsthat satisfy the prediate forms a sublattie of the lattie of onsistent uts. Equivalently, a prediateB is regular with respet to P if it is losed under t and u, i.e., for all onsistent uts G;H of theposet P : B(G) ^B(H)) B(G tH) ^B(G uH)

The set of onsistent uts that satisfy a regular prediate forms a sublattie of the lattie of allonsistent uts. Some examples of regular prediates are:� Consider the prediate B as \there is no outstanding message in the hannel." We show thatthis prediate is regular. Observe that B holds on a onsistent ut G if only if for all sendevents in G the orresponding reeive events are also in G. It is easy to see that if B(G) andB(H), then B(G[H). To see that it holds for G\H, let e be any send event in G\H. Letf be the reeive event orresponding to e. From B(G), we get that f 2 G and from B(H),we get that f 2 H. Thus f 2 G \H. Hene, B(G \H). Similarly, the following prediatesare also regular.{ There is no token message in transit.{ No token message is in transit between proesses P1 and P5.{ Every \request" message has been \aknowledged" in the system.� Any loal prediate is regular. Thus the following prediates are regular.{ The leader has sent all \prepare to ommit" messages.{ Proess Pi is in a \red" state.� Channel prediates suh as \there are at most k messages in transit from Pi to Pj" and \thereare at least k messages in transit from Pi to Pj" are also regular.It is easy to verify that the lass of regular prediates is losed under onjuntion. The losureunder onjuntion implies that the following prediates are also regular:� No proess has the token, and no hannel has the token.� Any onjuntion of loal prediates.4 Sliing Distributed ComputationsSuppose we are not interested in all onsistent uts of a omputation but in only a subset ofthem, namely those that satisfy some property of interest to us expressed as a prediate mappinga onsistent ut to a boolean value. Further, suppose the set of onsistent uts for whih theprediate evaluates to true forms a sublattie of the lattie of onsistent uts. A sublattie of adistributive lattie is also a distributive lattie [DP90℄. Therefore, using Birkho�'s Theorem, thesublattie generated by the onsistent uts satisfying the prediate is ompletely haraterized bythe join-irreduible elements of the sublattie.Example 6 The distributed omputation shown in Figure 5(a) onsists of two proesses P1 andP2. Proess P1 exeutes events a and b, whereas proess P2 exeutes events and d. On exeutingb, P1 sends a message to P2, whih is reeived by P2 at d. The set of onsistent uts of theomputation are shown in Figure 5(b). Suppose we are interested in only those onsistent uts forwhih no messages are in transit|also known as strongly onsistent uts. They have been shadedin Figure 5(b) and are shown separately in Figure 5(). The set of strongly onsistent uts formsa sublattie and its join-irreduible elements have been drawn with thik boundaries. The posetindued on the set of join-irreduible elements of the sublattie is shown in Figure 5(d).

X
Y

Z
Z

X Y
(d)

(a)

(b)

()

fg
fag fg

fa; g

fa; b; ; dg

fa; bg
fa; b; g

fa; b; ; dg
fa; g

fgfag
fg

P1
P2

a b
d

Figure 5: (a) A distributed omputation, (b) the distributive lattie generated by its onsistentuts, () the sublattie ontaining all onsistent uts for whih no messages are in transit, and(d) the poset indued on the set of join-irreduible elements of the sublattie.In ase the set of onsistent uts that satisfy the prediate does not form a sublattie, we addone or more other onsistent uts|that do not satisfy the prediate|to omplete the sublattie.The onsistent uts are added in suh a way so as to minimize the total number of onsistent utsin the resulting sublattie. The sublattie is then represented using the set of its join-irreduibleelements. This suint representation of a possibly large set of onsistent uts satisfying someproperty is referred to as a slie [GM01, MG01℄.Theorem 3 The slie of a distributed omputation is uniquely de�ned for all prediates.Proof: Let D denote the set of all onsistent uts that satisfy the prediate. We show that thesublattie with the least number of onsistent uts that satisfy D is uniquely de�ned. Assumethe ontrary. Let X and Y be two distint sublatties with the least number of onsistent utssuh that (1) ardinality(X) = ardinality(Y), and (2) both X and Y ontain D. Consider Z =X \ Y . Clearly, Z also ontains D. Also, sine X 6= Y , ardinality(Z) < ardinality(X) andardinality(Z) < ardinality(Y). It an be proved that intersetion of two sublatties is also asublattie. This implies that Z is a sublattie that ontains D and has fewer number of onsistentuts than either X or Y|a ontradition. 2The slie for a prediate may ontain onsistent uts that do not satisfy the prediate|namelythose that are added to omplete the sublattie. A slie is lean if it ontains only those onsistentuts that satisfy the prediate [MG01℄. Clearly, the slie of a omputation for a prediate is lean ifand only if the prediate is regular.Another way of looking at slie is that it spei�es whih events should be exeuted in an atomifashion and the order in whih they should be exeuted. For example, the slie shown in Figure 5(d)and redrawn in Figure 6(a) spei�es that events b and d should be exeuted atomially after events

fag
fg

fb; dg
d

a

b

(a) (b)
? >

Figure 6: (a) A slie depiting the events that are to exeuted atomially, and (b) the graphrepresentation of the slie in (a).a and have been exeuted. This is expeted beause any onsistent ut whih inludes the sendevent of a message but not its reeive will have at least one message in transit.For algorithmi purposes, it is more onvenient to represent a slie using a direted graph onevents possibly ontaining yles; all events that are to be exeuted atomially form a stronglyonneted omponent. The notion of onsistent ut, of ourse, has to be extended appropriately.We de�ne a onsistent ut (global state) on direted graphs as a subset of verties suh that ifthe subset ontains a vertex then it ontains all its inoming neighbours. Observe that the emptyset ; and the set of all verties are trivial onsistent uts.We introdue a �titious global initial and a global �nal event, denoted by ? and >, respetively.The global initial event ours before any other event on the proesses and initializes the state ofthe proesses. The global �nal event ours after all other events on the proesses. Any non-trivialonsistent ut will ontain the global initial event and not the global �nal event. Therefore, everyonsistent ut of a omputation in the model without ? and > is a non-trivial onsistent ut ofthe omputation in the model with ? and > and vie versa. Note that the empty onsistent ut,; and the �nal onsistent ut E, in the model without ? and > orrespond to f?g and E � f>gin our model, respetively.We denote the slie of a omputation hE;!i with respet to a prediate p by slie(hE;!i; p).Note that hE;!i = slie(hE;!i; true). Every slie derived from the omputation hE;!i has thetrivial onsistent uts (; and E) among its set of onsistent uts. A slie is empty if it has nonon-trivial onsistent uts [MG01℄. In the rest of the paper, unless otherwise stated, a onsistentut refers to a non-trivial onsistent ut. In general, a slie will ontain onsistent uts that do notsatisfy the prediate (besides trivial onsistent uts).The graph representation of the slie shown in Figure 6(a) is depited in Figure 6(b). Everysublattie of the lattie of onsistent uts (of a omputation) an be generated by a graph obtainedby simply adding zero or more edges to the omputation [Gar02a℄.Now, the slie of a omputation for a prediate an be omputed as follows. For every pair ofevents e and f , detet whether there is a onsistent ut of the omputation satisfying the prediatethat ontains f but does not ontain e. An edge is added from e to f if and only if the detetionalgorithm returns \no" as the answer. The reason is that, on adding an edge from e to f in agraph, the resulting graph retains all onsistent uts of the original graph exept those that ontainf but not e. Therefore if no onsistent ut satisfying the prediate that ontains f but not e exists,then an edge from e to f an be safely added to the graph without eliminating any of the desiredonsistent uts. Also, note that given a slie of a omputation for a prediate, we an detet theprediate in the omputation easily by simply testing the slie for emptiness. Therefore it followsthat:Theorem 4 There exists an eÆient algorithm for omputing the slie for a prediate if and onlyif there exists an eÆient algorithm for deteting the prediate.

More eÆient algorithms for omputing the slie for speial lasses of prediates inluding linear(and regular) prediates, omplement of regular prediates, and k-loal prediates for onstant kan be found elsewhere [GM01, MG01, MG03℄.A useful operation on slies is omposition [MG01℄. Given two slies, slie omposition an beused, for example, to ompute a graph whose onsistent uts are exatly those that belong to boththe slies. This is referred to as omposition with respet to onjuntion. Dually, slies an alsobe omposed with respet to disjuntion. Slies an be omposed by simply manipulating edgesin their graph representation. Spei�ally, to ompose slies with respet to onjuntion, we addan edge from an event e to an event f if and only if the edge is present in the (transitively-losed)graph representation of at least one of the slies [MG01℄. Similarly, to ompose slies with respetto disjuntion, we add an edge from an event e to an event f if and only if the edge is present inthe graph representation of both the slies [MG01℄. Also, an algorithm to ompute the slie withrespet to the negation of a regular prediate has been given in [MG01℄.Sliing an be used to failitate prediate detetion as illustrated by the following senario.Consider a prediate B that is a onjuntion of two lauses B1 and B2. Now, assume that B1 issuh that it an be deteted eÆiently but B2 has no strutural property that an be exploitedfor eÆient detetion. An eÆient algorithm for loating some onsistent ut satisfying B1 annotguarantee that the ut also satis�es B2. Therefore, to detet B, without omputation sliing, weare fored to use tehniques suh as breadth �rst searh [CM91℄, depth �rst searh [AV01℄, andpartial-order methods (a model-heking tehnique) [SUL00℄, whih do not take advantage of thefat that B1 an be deteted eÆiently. With omputation sliing, however, we an �rst omputethe slie for B1. If only a small fration of onsistent uts satisfy B1, then instead of detetingB in the omputation, it is muh more eÆient to detet B in the slie. Therefore by spendingonly polynomial amount of time in omputing the slie we an throw away exponential number ofonsistent uts, thereby obtaining an exponential speedup overall. In fat, our experimental resultsindiate that sliing an indeed lead to an exponential improvement over existing tehniques forprediate detetion in terms of time and spae [MG03, SG03b℄.5 Analyzing Partial Order TraesTraditional tehniques for eliminating bugs in onurrent programs (message-passing or shared-memory based) inlude testing and formal methods. Testing tehniques are ad-ho and do not allowfor formal spei�ation and veri�ation of logial properties that a program needs to satisfy. Formalmethods suh as model heking and theorem proving do not sale well and need onsiderablemanual e�ort. Given that formal methods, in general, work on an abstrat model of a programand make assumptions on the environment, even if a program has been formally veri�ed, we stillannot be sure of the orretness of a partiular implementation. However, for highly dependablesystems suh as avionis or automobiles, it is ruial to reason on the partiular implementation.We fous on a tehnique alled runtime veri�ation that addresses some of the problems intesting and formal methods. This tehnique enables automati veri�ation of implementations oflarge programs using temporal logi spei�ations. The salability in runtime veri�ation omesfrom examining only a single exeution trae of a program like in testing.Next we show how to use omputation sliing with respet to temporal logi prediates forpartial order trae analysis.We model a �nite trae of a program as a partial order between events, for example Lamport'shappened-before relation [Lam78℄. Most runtime veri�ation tools suh as MaC tool [KKL+01℄ andNASA's JPaX tool [HR01℄ model a trae as a total order (interleaving) of events. Using a partial

order model, we an apture exponential number of possible total order traes suintly. Thistranslates into �nding bugs that are not found with MaC or JPaX tools. Also, a partial ordermodel is a more faithful representation of onurreny [Lam78℄ and this model enables us to applyour theory to distributed programs as well as shared memory programs.5.1 Computation Slies for Temporal Logi PrediatesMany spei�ations of distributed programs are temporal in nature beause we are interested inproperties related to the sequene of states during an exeution rather than just the initial and�nal states. For example, the liveness property in dining philosophers problem, \a philosopher,whenever gets hungry, eventually gets to eat", is a temporal property. The onept of sliing isuseful for deteting temporal logi prediates sine it enables us to reason only on the part of theglobal state spae that ould potentially a�et the prediate.We show in [SG02℄ that temporal prediates EF(p), EG(p), and AG(p) are regular when p isregular and we all suh prediates as temporal regular prediates. We say that a onsistent utC satis�es EF(p) if p holds for some onsistent ut on some path from C to the �nal onsistentut. We say that a onsistent ut C satis�es EG(p) (resp. AG(p)) if p holds for all uts onsome (resp. all) path from C to the �nal onsistent ut, Algorithms in [GM01, MG01℄ for regularprediates assume the eÆient advanement property and the property that given a onsistent ut,it is eÆient to determine whether the prediate holds for the ut or not. However, these propertiesdo not hold for temporal regular prediates. With the results of [SG02℄, we an eÆiently useomputation sliing for analyzing traes in the subset of well-known temporal logi CTL [CE81℄with the following properties.� Atomi propositions are regular prediates and their negations.� Temporal operators are EF, EG, and AG.We all this logi Regular CTL plus (RCTL+), where plus denotes that the disjuntion and negationoperators are inluded in the logi. The prediate detetion problem is to deide whether the initialut of the omputation satis�es a given prediate. In RCTL+, we use a restrited set of temporalprediates beause we do not yet have eÆient algorithms to ompute slies for temporal prediatessuh as AF(p) or AX(p) in CTL. However, our experimental results suggest that RCTL+ ontainsa widely used subset of CTL.Examples of temporal prediates are the omplement of the liveness property in dining philoso-phers suh as EF(hungry^EG(:eat)) or the reset state is eventually reahable suh asAG(EF reset).Next, we briey desribe our omputation sliing algorithms for RCTL+ prediates presented in[SG02℄.Sine the onsistent uts of the slie of a omputation is a subset of onsistent uts of theomputation, the slie an be obtained by adding edges to the omputation. In other words, theslie ontains additional edges that do not exist in the omputation. Below, we will show whihedges we should add to a omputation for omputing slies.Now we explain Algorithm A1 in Figure 7 for generating the slie of a omputation with respetto EF(p). From the de�nition of EF(p), all onsistent uts of the omputation that an reah thegreatest onsistent ut that satis�es p, all this utW , also satis�es EF(p). Furthermore, these utsare the only ones that satisfy EF(p). We an �nd W using slie(hE;!i; p) when it is nonempty.To ensure that all uts that annot reah W do not belong to slie(hE;!i;EF(p)), we add edgesfrom > to the suessors of events in the frontier of W in hE;!i. A frontier of a onsistent utis the set of those events of the ut whose suessors, if they exist, are not ontained in the ut.Adding an edge from > to an event makes any ut that ontains that event trivial.

Algorithm A1Input: A omputation hE;!i and slie(hE;!i; p)Output: slie(hE;!i;EF(p))1. Let G be hE;!i and let W be the �nal ut of slie(hE;!i; p)2. If W exists then3. 8 e 2 frontier(W): add an edge from the vertex > to su(e) in G4. return G5. else return empty slieAlgorithm A2Input: A omputation hE;!i and slie(hE;!i; p)Output: slie(hE;!i;AG(p))1. Let G be slie(hE;!i; p)2. For eah pair of verties (e; f) in G suh that,(i) :(e! f) in hE;!i, and(ii) (e! f) in Gadd an edge from vertex e to the vertex ?3. return GAlgorithm A3Input: A omputation hE;!i and slie(hE;!i; p)Output: slie(hE;!i;EG(p))1. Let G be slie(hE;!i; p)2. For eah pair of verties (e; f) in G suh that,(i) :(e! f) in hE;!i, and(ii) (e! f) and (f ! e) in Gadd an edge from vertex e to the vertex ?3. return GFigure 7: Algorithm for generating a slie with respet to EF(p), AG(p) and EG(p)The following theorem is ruial in obtaining Algorithm A2 in Figure 7 that generates the sliefor AG(p).Theorem 5 ([SG02℄) Given a omputation hE;!i and slie(hE;!i; p), a onsistent ut D inhE;!i satis�es AG(p) i� it inludes vertex e of every additional edge (e; f) in slie(hE;!i; p).Proof Sketh:If a onsistent ut D does not inlude vertex e then there exists a onsistent ut H that an bereahed from D in the omputation suh that H does not inlude e but inludes f . In this ase, itis lear that H does not satisfy p sine (e; f) is an edge in the slie(hE;!i; p) and every onsistentut of slie(hE;!i; p) that inludes f must inlude e. Therefore from the de�nition of AG(p), Ddoes not satisfy AG(p).Now we prove the other diretion. If a onsistent ut D does not satisfy AG(p) then thereexists a onsistent ut H reahable from D suh that H does not satisfy p. We know that only theonsistent uts that inlude f but not e do not satisfy p. Sine H is reahable from D and H doesnot inlude e, we have that D also does not inlude e. 2Sine the onsistent uts that satisfy AG(p) is a subset of onsistent uts that satisfy p, the sliefor AG(p) an be obtained by adding edges to the slie for p. Using the above Theorem, we add anedge from e to ? for any additional edge (e; f) in slie(hE;!i; p) to obtain slie(hE;!i;AG(p)).

This ensures that onsistent uts that do not inlude vertex e of any additional edge (e; f) aredisallowed, whereas the rest belongs to slie(hE;!i;AG(p)).The algorithm for EG(p) sliing displayed in Figure 7 is similar to the AG(p) sliing algorithm.However in this ase, for eah additional edge (e; f) that generates a non-trivial strongly onnetedomponent in slie(hE;!i; p), we add an edge from the vertex e to the vertex ?. Intuitively, ifa ut C does not inlude suh a omponent then, as in the ase of AG(p), there exists a ut Dreahable from C suh that D does not satisfy p. However, di�erent from AG(p) ase, now thereexists suh a ut D on all paths from C to the �nal state. Using the de�nition of EG(p), it is learthat C does not satisfy EG(p).5.2 Experimental Study: Partial Order Trae Analyzer (POTA)We implemented our temporal logi sliing algorithms in a prototype tool alled Partial Order TraeAnalyzer (POTA) [SG03b, SG03a℄ that is used for heking exeution traes of distributed programswith temporal logi prediates. POTA onsists of an instrumentation module for generating partialorder exeution traes, a translator module that translates exeution traes into a well-known modelheker SPIN's input language Promela [Hol97℄ and an analyzer module. The use of omputationsliing for temporal logi veri�ation is the most signi�ant aspet of POTA and onstitutes theanalyzer module.Figure 8 displays our prediate detetion algorithm in POTA that uses sliing algorithms. Theomplexity of prediate detetion for RCTL+ is dominated by the omplexity of omputing theslie with respet to a non-temporal regular prediate, whih has O(n2jEj) omplexity [GM01,MG01℄. Therefore, the overall omplexity of prediate detetion for RCTL+ without negation anddisjuntion operators is O(jpj �n2jEj), where jpj is the number of boolean and temporal operators inp. When the prediate ontains disjuntion or negation operators the slie may not be lean. In thisase, we may have to take an extra step. This is beause the initial state of the slie may in fatnot satisfy the prediate. Therefore, we employ the translator module of POTA and translate theslie into Promela then we use SPIN to hek the trae. This approah may lead to exponential-time omplexity for RCTL+ prediates. However, the slie is in general muh smaller than theomputation whih we validate with experimental studies.Input: A omputation hE;!i and a prediate pOutput: Prediate is satis�ed or not1. Reursively proess p from inside to outside while applying temporal and boolean operatorsto ompute slie(hE;!i; p)2. If initialCut(hE;!i) 6= initialCut(slie(hE;!i; p) then3. return false and ounterexampleelse4. if p does not ontain : or _ then5. return true6. else translate slie(hE;!i; p) into Promela and run SPINFigure 8: Prediate Detetion using SliingIn order to evaluate the e�etiveness of POTA, we performed experiments with salable pro-tools, omparing our omputation sliing based approah with partial order redution basedapproah of SPIN [Hol97℄. We performed experiments on several protools suh as the Asyn-hronous Transfer Mode Ring (ATMR) [ISO93℄, General Inter-ORB Protool (GIOP) [OMG97℄,dining philosophers and leader eletion. We ould model almost all temporal logi spei�ations ofthe prootols in RCTL+. We veri�ed on�gurations with 250 proesses using POTA, whereas SPIN

s s

a b

c d

b

a

d

c

Poset Chain Realizer

L2L1

a

c

b

d

String Realizer

a

d

b d

b

1

c

2

c

a

Figure 9: (X;P)failed to verify on�gurations with more than 10 proesses due to state explosion. Detailed resultsof our experiments are available from POTA web site [SG03a℄. The experimental work proves thatfor large problem sizes, omputation sliing is an e�etive tehnique.6 Timestamping Events and Global StatesIn this setion, we show appliations of dimension theory of partial orders to timestamping eventsand global states of a omputation. We also provide the neessary bakground in the dimensiontheory.6.1 DimensionA family R = fL1; L2; : : : ; Ltg of linear orders on X is alled a hain realizer of a poset (X;P) ifP = \R. x < y 2 Li \ Lj if x < y in both Li and Lj . We also say that R realizes P . Figure 9shows a poset P in whih fL1; L2g realizes P .It an be shown [Tro92℄ that R is a realizer of P if and only if for every x; y 2 X with x k y(x inomparable to y) in P , there exist distint integers i; j with 1 6 i; j 6 t for whih x < y in Liand y < x in Lj .De�nition 5 ([Tro92℄) For any poset (X;P), the dimension of (X;P), denoted by dim(X;P), isthe least positive integer t for whih there exists a family R = fL1; L2; : : : ; Ltg of linear extensionsof P so that P = \R = \ti=1Li.The dimension of the poset in Figure 9 is 2. The onept of dimension provides us a way toenode a partial order. The elements of a partial order with dimension t an be enoded with at-dimensional vetor as follows. For any element x, the vetor vx is de�ned as follows: vx[i℄ =number of elements less than x in Li, for 1 6 i 6 t. Given ode for two elements vx and vy, wehave the following order: vx < vy () 8i : vx[i℄ < vy[i℄ (5.1)For example, the ode for a and b in the poset in Figure 9 is (2; 3) and (3; 1) based on the realizer.Based on the ode and (5.1), it an be easily determined that a and b are onurrent. We all theorder given by (5.1) the hain order.The dimension of a poset an be arbitrarily large. Consider a poset (X;P) where X =fa1; a2; : : : ; ang [fb1; b2; : : : ; bng, and ai < bj in P if and only if i 6= j, for i; j = 1; 2; : : : ; n.This lass of posets is known as the standard example and denoted by Sm. Figure 10 shows thediagram for S5. The following Theorem is due to Dushnik and Miller [DM41℄.

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5Figure 10: S5Theorem 6 ([DM41℄) dim(Sm) = m.Let Li = [a1; : : : ; ai�1; ai+1; : : : ; am; bi; ai; b1; : : : ; bi�1; bi+1; : : : ; bm℄, where a1 is the lowest element,and bm is the highest element in hain Li Then R = fL1; L2; : : : ; Lmg is a realizer of Sm.We saw that lassial dimension theory provides lower bounds on the dimension of vetors whenthe omparison is based on the hain order. On the other hand, the vetor loks in distributedomputing use vetor ordering given by the following (6.2) whih we all vetor order.u < v � 8k : 1 6 k 6 N : u[k℄ 6 v[k℄^9j : 1 6 j 6 N : u[j℄ < v[j℄ (6.2)We generalize the onepts in dimension theory so that the ordering used between odes is identialto (6.2). We �rst give the de�nition of a string.De�nition 6 (string) A poset (X;P) is a string if and only if 9f : X ! N (the set of naturalnumbers) suh that 8x; y 2 X : x < y i� f(x) < f(y)The set of elements in a string whih have the same f value is alled a knot. For example, aposet (X;P) where X = fa; b; ; dg and P = f(a; b); (a;); (a; d); (b; d); (; d)g is a string beausewe an assign f(a) = 0; f(b) = f() = 1, and f(d) = 2. Here, b and are in the same knot. Thedi�erene between a hain and a string is that a hain requires existene of a one-to-one mappingsuh that x < y i� f(x) < f(y). For strings, we drop the requirement of the funtion to be one-to-one. We represent a �nite string by the sequene of knots in the string. Thus, P is equivalent tothe string f(a); (b;); (d)g.A hain is a string in whih every knot is of size 1. An anti-hain is also a string with exatlyone knot.We write x 6s y if x 6 y in string s, and x <s y if x < y in string s.De�nition 7 (String Realizer) For any poset (X;P), a set of strings S is alled a string realizeri� 8x; y 2 X : x < y in P if and only if (1) 8s 2 S : x 6s y, and (2) 9t 2 S : x <t y.The de�nition of less-than relation between two elements in the poset based on the strings isidential to the less-than relation as used in vetor loks. This is one of the motivation for de�ningstring realizer in the above manner. A string realizer for the poset in Fig. 9 is given by two stringss1 = f(); (d; a); (b)g s2 = f(d; b); (; a)gNow, analogous to the dimension we de�neDe�nition 8 (String Dimension) For any poset (X;P), the string dimension of (X;P), denotedby sdim(X;P), is the size of the set S with the least number of strings suh that S is a string realizerfor (X;P).

Example 7 Consider the poset (X;P) as follows. X = f;; fag; fbg; fa; bg; fa; g; fa; b; gg, P =f(A;B) 2 X �X : A � Bg. A string realizer for the poset an be obtained as follows. For eah setA 2 X, we use a bit vetor representation of the set A. Thus, fa; g is represented by (1; 0; 1) andthe set fa; bg is represented by (1; 1; 0). This representation gives us a string realizer with threestrings suh that every string has exatly two knots.It may appear, at �rst, that the string dimension of a poset may be muh smaller than thehain dimension. However, this is not the ase as shown by the following result.Theorem 7 ([GS01℄) For any poset (X;P) suh that sdim(P) > 2; sdim(P) = dim(P)6.2 Lower Bound on Dimension of Vetor CloksAs we have mentioned before, the de�nition of a string realizer is idential to the de�nition forvetor loks in distributed systems. A distributed omputation on N proesses an be modeled asa poset of events (E;!) of width N . Fidge and Mattern's vetor loks are simply string realizersof the poset (E;!).We �rst onsider lower bounds on the (string) dimension of vetor loks. The following resultis due to Charron-Bost[CB91℄. The proof shown here is di�erent and taken from [GS01℄.Theorem 8 For every N , there exists a distributed omputation (E;!) on N proesses suh thatany assignment from E to N k that aptures onurreny relation on E has k > N .Proof: The result is trivially true for N equal to 1. For any N > 2, onsider the standard exampleSN shown in Figure 10. De�ne ai and b(i mod N)+1 to be on proess Pi. This omputation is on Nproesses. By Dushnik and Miller's Theorem, this poset has dimension N . From Theorem 7, theomputation has string dimension also equal to N . Any assignment from E to N k that apturesonurreny relation, results in a string realizer with k strings. Sine the string dimension is N , itfollows that k > N . 2Next we show that N -dimensional vetor loks of Fidge and Mattern (FM vetors for short)have an additional property that makes it neessary to have dimension N for all omputations. Inpartiular, FM vetors satisfy the following property. If f and g are two distint events suh thatevent f is on proess Pi, then f:v[i℄ 6 g:v[i℄) f ! g (8.3)where e:v[i℄ denotes the ith omponent of the vetor lok assigned to the event e. As a result ofthis property FM vetors an also be used to timestamp elements of another poset - the lattie ofonsistent uts of the omputation (E;!).For a onsistent ut F , we de�ne its timestamp asF:v[i℄ = maxfe:v[i℄ j e 2 Fg (8.4)It an be shown that any vetor lok mehanism based on 8.4 that satis�es 8.3 aptures therelation � between onsistent uts, i.e., F � G () F:v 6 G:v.We have earlier mentioned that the set of all onsistent uts under the relation � forms adistributive lattie. A result due to Dilworth tells us the dimension of a distributive lattie.Theorem 9 ([Dil50℄) Let L be a distributive lattie generated by a poset (X;P). Then dim(L) =width(P).Therefore, we haveTheorem 10 ([GS01℄) Any vetor lok mehanism that aptures � relation on the set of on-sistent uts in a distributed omputation of width N must have at least N oordinates.

7 ConlusionsThe theory of posets and latties has many pratial appliations in distributed omputing. Be-sides the appliations in prediate detetion, lattie theory is also useful in prediate ontrol[TG99, MG00℄. We believe that the future will bring even more appliations of the theory oforder to distributed omputing. For example, the onepts of M�obius funtions, Zeta polynomialand Generating funtions (see the book on Enumerative Combinatoris, Vol 1, by R.Stanley Chap-ter 3 [Sta86℄) in posets, or modular latties, geometri latties et. (see the book on General LattieTheory by Gr�atzer [Gra78℄) have not yet found appliations in distributed omputing.We also expet, enrihment of the poset and lattie theory from distributed omputing applia-tions. The onepts of linear prediates, eÆient advanement property, algorithms for omputingslies et. an be viewed as omputational lattie theory.In addition to bene�ts in distributed omputing, tehniques in sliing have appliations inombinatoris. A ombinatorial problem usually requires enumerating, ounting or asertainingexistene of strutures that satisfy a given property B. We ast the ombinatorial problem as adistributed omputation suh that there is a bijetion between ombinatorial strutures satisfyingB and the global states that satisfy a property equivalent to B. We then apply results in sliing aomputation with respet to a prediate to obtain a slie of only those global states that satisfy B.This gives us an eÆient (polynomial time) algorithm to enumerate, ount or detet strutures thatsatisfy B when the total set of strutures is large but the set of strutures satisfying B is small. In[Gar02a℄, we illustrate this tehnique by analyzing problems in integer partitions, set families, andset of permutations.Referenes[AV01℄ S. Alagar and S. Venkatesan. Tehniques to Takle State Explosion in GlobalPrediate Detetion. IEEE Transations on Software Engineering, 27(8):704{714,August 2001.[CB91℄ B. Charron-Bost. Conerning the Size of Logial Cloks in Distributed Systems.Information Proessing Letters (IPL), 39:11{16, July 1991.[CE81℄ E. M. Clarke and E. A. Emerson. Design and Synthesis of Synhronization Skeletonsusing Branhing Time Temporal Logi. In Proeedings of the Workshop on Logis ofPrograms, volume 131 of Leture Notes in Computer Siene (LNCS), YorktownHeights, New York, May 1981.[CG95℄ C. Chase and V. K. Garg. On Tehniques and their Limitations for the GlobalPrediate Detetion Problem. In Proeedings of the Workshop on DistributedAlgorithms (WDAG), pages 303{317, Frane, September 1995.[CL85℄ K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States ofDistributed Systems. ACM Transations on Computer Systems, 3(1):63{75, February1985.[CM91℄ R. Cooper and K. Marzullo. Consistent Detetion of Global Prediates. In Proeedingsof the ACM/ONR Workshop on Parallel and Distributed Debugging, pages 163{173,Santa Cruz, California, 1991.

[Dil50℄ R. P. Dilworth. A Deomposition Theorem for Partially Ordered Sets. Annals ofMathematis, 51:161{166, 1950.[DM41℄ B. Dushnik and E. W. Miller. Partially Ordered Sets. Amerian Journal ofMathematis, 63:600{610, 1941.[DP90℄ B. A. Davey and H. A. Priestley. Introdution to Latties and Order. CambridgeUniversity Press, Cambridge, UK, 1990.[Fid91℄ C. Fidge. Logial Time in Distributed Computing Systems. IEEE Computer,24(8):28{33, August 1991.[Gar02a℄ V. K. Garg. Algorithmi Combinatoris based on Sliing Posets. In Proeedings of the22nd Conferene on the Foundations of Software Tehnology and Theoretial ComputerSiene (FSTTCS), pages 169{181. Springer-Verlag, Deember 2002. Leture Notes inComputer Siene (LNCS).[Gar02b℄ V. K. Garg. Elements of Distributed Computing. Wiley & Sons, 2002.[GM01℄ V. K. Garg and N. Mittal. On Sliing a Distributed Computation. In Proeedings ofthe 21st IEEE International Conferene on Distributed Computing Systems (ICDCS),pages 322{329, Phoenix, Arizona, April 2001.[Gra78℄ G. Gratzer. General Lattie Theory. Aademi Press, New York, NY, 1978.[GS01℄ V. K. Garg and C. Skawratananond. String Realizers of Posets with Appliations toDistributed Computing. In Proeedings of the 20th ACM Symposium on Priniples ofDistributed Computing (PODC), pages 72{80, Newport, Rhode Island, August 2001.[Hol97℄ G. Holzmann. The Model Cheker SPIN. IEEE Transations on Software Engineering,23(5):279{295, May 1997.[HR01℄ K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer. InRuntime Veri�ation 2001, volume 55 of ENTCS, 2001.[ISO93℄ ISO. Spei�ation of the Asynhronous Transfer Mode Ring (ATMR) Protool,January 1993.[KKL+01℄ M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a Run-timeAssurane Tool for Java Programs. In Runtime Veri�ation 2001, volume 55 ofENTCS, 2001.[Lam78℄ L. Lamport. Time, Cloks, and the Ordering of Events in a Distributed System.Communiations of the ACM (CACM), 21(7):558{565, July 1978.[Mat89℄ F. Mattern. Virtual Time and Global States of Distributed Systems. In Parallel andDistributed Algorithms: Proeedings of the Workshop on Distributed Algorithms(WDAG), pages 215{226. Elsevier Siene Publishers B. V. (North-Holland), 1989.[MG00℄ N. Mittal and V. K. Garg. Debugging Distributed Programs Using ControlledRe-exeution. In Proeedings of the 19th ACM Symposium on Priniples of DistributedComputing (PODC), pages 239{248, Portland, Oregon, July 2000.

[MG01℄ N. Mittal and V. K. Garg. Computation Sliing: Tehniques and Theory. InProeedings of the Symposium on Distributed Computing (DISC), pages 78{92, Lisbon,Portugal, Otober 2001.[MG03℄ N. Mittal and V. K. Garg. Software Fault Tolerane of Distributed Programs usingComputation Sliing. In Proeedings of the 23rd IEEE International Conferene onDistributed Computing Systems (ICDCS), pages 105{113, Providene, Rhode Island,May 2003.[OMG97℄ OMG. The Common Objet Request Broker: Arhiteture and Spei�ation, August1997.[SG02℄ A. Sen and V. K. Garg. Automati Generation of Computation Slies for DetetingTemporal Logi Prediates. Tehnial Report TR-PDS-2002-001, The Parallel andDistributed Systems Laboratory, Department of Eletrial and Computer Engineering,The University of Texas at Austin, 2002.[SG03a℄ A. Sen and V. K. Garg. Partial Order Trae Analyzer (POTA).http://maple.ee.utexas.edu/~sen/POTA.html, 2003.[SG03b℄ A. Sen and V. K. Garg. Partial Order Trae Analyzer (POTA) for DistributedPrograms. In Runtime Veri�ation 2003, volume 89 of ENTCS, 2003.[Sta86℄ R. Stanley. Enumerative Combinatoris Volume 1. Wadsworth and Brookes/Cole,Monterey, California, 1986.[SUL00℄ S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. EÆient Detetion of Global Propertiesin Distributed Systems Using Partial-Order Methods. In Proeedings of the 12thInternational Conferene on Computer-Aided Veri�ation (CAV), volume 1855 ofLeture Notes in Computer Siene (LNCS), pages 264{279. Springer-Verlag, July2000.[TG99℄ A. Tarafdar and V. K. Garg. Software Fault Tolerane of Conurrent Programs UsingControlled Re-exeution. In Proeedings of the 13th Symposium on DistributedComputing (DISC), pages 210{224, Bratislava, Slovak Republi, September 1999.[Tro92℄ W. T. Trotter. Combinatoris and Partially Ordered Sets: Dimension Theory. TheJohns Hopkins University Press, Baltimore, MD, 1992.

