# Predicate Detection to Solve Combinatorial Optimization Problems 

Vijay K. Garg<br>Parallel and Distributed Systems Lab,<br>Department of Electrical and Computer Engineering, The University of Texas at Austin.

## Motivation

Consider the following problems:

- Shortest Path Problem:

Input: a weighted directed graph and a source vertex
Output: Least Cost of reaching any vertex $i$
Dijkstra's algorithm for graph with non-negative weights, Bellman-Ford algorithm for graphs with no negative cycles

- Stable Marriage Problem:

Input: ordered preferences of $n$ men and $n$ women
Output: Man-optimal stable marriage
Gale-Shapley's algorithm

- Assignment Problem:

Input: $n$ items, $n$ bidders with valuation for items
Output: Least market clearing prices
Hungarian Algorithm (or Gale-Demange-Sotomayor's Auction)
Could there be a single algorithm that solves all of these problems?
Lattice-Linear Predicate (LLP) Algorithm

## Steps of Using LLP Algorithm

- Step 1: Model the underlying search space. A Distributive Lattice of State Vectors. The order on the lattice is based on the optimization objective of the problem.
- Step 2: Define the feasibility predicate $B$. An element is feasible if it satisfies constraints of the problem
- Step 3: Check whether the feasibility predicate $B$ is Lattice-Linear. If $B$ is lattice-linear, LLP Algorithm will return the optimal feasible solution.


## Step 1: Modeling the underlying search space

Model the problem as $n$ processes choosing their component in a vector of size $n$. The choice for a single process is total ordered.

computation: poset $(E, \rightarrow)$
candidate solution: a possible global state of the system.

## Consistent Global State



A subset $G$ of $E$ is a consistent global state if

$$
\forall e, f \in E:(f \in G) \wedge(e \rightarrow f) \Rightarrow(e \in G)
$$

The set of all consistent global states forms a finite distributive lattice. The order is component-wise comparison.

## Step 1: Examples

$G$ : Global State Vector where $G[i]$ is the component for process $i$.

- Shortest Path: $G[i]$ : cost of reaching vertex $i$ from the source vertex initially 0
- Stable Marriage: $G[i]$ : index in the preference list for man $i$ initially $1 / /$ top choice
- Market Clearing Prices: $G[i]$ : price of item $i$ initially 0


## Step 2: Defining Feasibility Predicate

- Shortest Path: Every non-source node has a parent. For any node $j \neq 0$,

$$
\exists i \in \operatorname{pre}(j): G[j] \geq G[i]+w[i, j]
$$

- Stable Marriage: Every man must be matched to a different woman and there must not be any blocking pair. For any man $j$, let $z=\operatorname{mpref}[j][G[j]] ; / / c u r r e n t$ woman assigned to man $j$

$$
\neg \exists i: \exists k \leq G[i]:(z=\operatorname{mpref}[i][k]) \wedge(\operatorname{rank}[z][i]<\operatorname{rank}[z][j]))
$$

- Market Clearing Prices: There is no overdemanded item at that pricing vector. For any item $j$,

$$
\neg \exists J: \text { minimalOverDemanded }(J, G) \wedge(j \in J)
$$

## Lattice-Linearity for Predicate Detection



Forbidden State The state at $P_{i}$ is forbidden at $G$ with respect to $B$ if unless $P_{i}$ is advanced $B$ cannot become true.

$$
\text { forbidden }(G, i, B) \equiv \forall H: G \subseteq H:(G[i]=H[i]) \Rightarrow \neg B(H)
$$

Lattice-Linear Predicates A predicate $B$ is lattice-linear if for all consistent cuts $G$,

$$
\neg B(G) \Rightarrow \exists i: \text { forbidden }(G, i, B)
$$

## Examples of Lattice-Linear Predicates

- A conjunctive predicate
$I_{1} \wedge I_{2} \wedge \ldots \wedge I_{n}$, where $I_{i}$ is local to $P_{i}$.
Suppose $G$ is not feasible. Then, there exists $j$ such that $l_{j}$ is false in
$G$. The index $j$ is forbidden in $G$.
- Shortest Path

Any $j$ such that $v_{j}$ does not have a parent,
( $\forall i \in \operatorname{pre}(j): G[j]<G[i]+w[i, j])$ is forbidden in $G$.

- Stable Marriage
$j$ is forbidden in $G$ if
$\exists i: \exists k \leq G[i]:(z=m p r e f[i][k]) \wedge(\operatorname{rank}[z][i]<\operatorname{rank}[z][j]))$
- Market Clearing Price
$(\neg \exists J$ : minimalOverDemanded $(J, G) \wedge(j \in J))$
Any $j$ in a minimal overDemanded set is forbidden.


## Example of Predicates that are not Lattice-Linear

Example 1: $B(G) \equiv x+y \geq 1$


Example 2: $B(G) \equiv G$ is a matching.


## LLP Algorithm

How much to advance: $j$ is forbidden in $G$ until $\alpha$ iff

$$
\forall H \in L: H \geq G:(H[j]<\alpha) \Rightarrow \neg B(H)
$$

vector function getLeastFeasible( $T$ : vector, $B$ : predicate)
// $T$ : top element of the lattice
var $G$ : vector of reals initially $\forall i: G[i]=0$;
while $\exists j$ : forbidden $(G, j, B)$ do
for all $j$ such that forbidden $(G, j, B)$ in parallel:
if $(\alpha(G, j, B)>T[j])$ then return null; else $G[j]:=\alpha(G, j, B)$;
endwhile;
return $G$; // the optimal solution

All processes can asynchronously evaluate forbidden and advance in parallel. Only $P_{j}$ updates $G[j]$.

## LLP Algorithm: Stable Marriage Problem

$P_{j}:$

```
var G: array[1..n] of 1..n;
```

input: mpref[i,k]: int for all $i, k ; / /$ men preferences $\operatorname{rank}[k][i]:$ int for all $k, i$; // women ranking
init: $G[j]:=1$;
always: $w=\operatorname{mpref}[j][G[j]]$;
forbidden:
$(\exists i: \exists k \leq G[i]:(w=\operatorname{mpref}[i][k]) \wedge(\operatorname{rank}[w][i]<\operatorname{rank}[w][j]))$
advance: $G[j]:=G[j]+1$;
Slightly more general than Gale-Shapley Algorithm:
instead of starting from $(1,1, \ldots, 1)$, can start from any choice vector.

## LLP Algorithm: Shortest Path Problem

input: pre(j): list of $1 . . n$;
$w[i, j]$ : positive int for all $i \in \operatorname{pre}(j)$
$s: 1 . . n ; / /$ source node;
init: $G[j]:=0$;
always:

$$
\begin{aligned}
& \text { parent }[j, i]=(i \in \operatorname{pre}(j)) \wedge(G[j] \geq G[i]+w[i, j]) ; \\
& \text { fixed }[j]=(j=s) \vee(\exists i: \operatorname{parent}[j, i] \wedge \text { fixed }[i]) \\
& Q=\{(G[i]+w[i, k]) \mid(i \in \operatorname{pre}(k)) \wedge \text { fixed }(i) \wedge \neg \text { fixed }(k)\} ;
\end{aligned}
$$

forbidden: $\neg$ fixed $[j]$
advance: $G[j]:=\max \{\min Q, \min \{G[i]+w[i, j] \mid i \in \operatorname{pre}(j)\}\}$
By ignoring the second part of advance, we can get Dijkstra's algorithm.

## LLP Algorithm: Shortest Path Problem Revisited

Assume no negative cost cycle.

```
input: pre(j): list of 1..n;
w[i,j]: int for all i}\in\operatorname{pre}(j
init: if (j=s) then G[j]:= 0 else G[j]:= maxint;
forbidden: G[j] > min{G[i]+w[i,j]|i\in\operatorname{pre}(j)}
advance: G[j]:=min{G[i]+w[i,j]|i\in\operatorname{pre}(j)}
```

Lattice is reversed: the bottom element is (maxint, maxint, ..., maxint) This is just Bellman-Ford's algorithm.

## LLP Algorithm: Market Clearing Prices

input: $v[b, i]$ : int for all $b, i$
init: $G[j]:=0$;
always: $E=\{(k, b) \mid \forall i:(v[b, k]-G[k]) \geq(v[b, i]-G[i])\}$;

$$
\begin{aligned}
& \operatorname{demand}\left(U^{\prime}\right)=\left\{k \mid \exists b \in U^{\prime}:(k, b) \in E\right\} ; \\
& \text { overDemanded }(J) \equiv \exists U^{\prime} \subseteq U:\left(\operatorname{demand}\left(U^{\prime}\right)=J\right) \wedge\left(|J|<\left|U^{\prime}\right|\right)
\end{aligned}
$$

forbidden: $\exists J$ : minimal - OverDemanded $(J) \wedge(j \in J)$ advance: $G[j]:=G[j]+1$;

This is just Demange-Gale-Sotomayor exact auction algorithm.

## Constrained Optimization

If $B_{1}$ and $B_{2}$ are lattice-linear then $B_{1} \wedge B_{2}$ is also lattice-linear.

- least stable marriage such that regret of Peter is less than or equal to regret of John
- least feasible path such that the cost of reaching $x$ equals cost of reaching $y$
- least clearing prices such that item $_{1}$ is priced at least 5 more than item $_{2}$.
All of the additional constraints are also lattice-linear.


## Conclusions

How to Solve Many Combinatorial Optimization Problems
Find the least feasible element

- View State space as the set of consistent global states
- Each process starts with the most desirable choice and moves to less desirable
- Define a "feasibility" predicate $B$
- Check if $B$ satisfies the lattice-linearity condition

Other algorithms as special cases of the LLP Algorithm:

- Gale's Top Trading Cycle Algorithm,
- Horn's satisfiability algorithm,
- Johnson's algorithm to transform graphs with negative cost edges


## Future Work

- Techniques when the feasibility predicate is not lattice-linear.

