
Predicate Detection to Solve Combinatorial
Optimization Problems

Vijay K. Garg

Parallel and Distributed Systems Lab,
Department of Electrical and Computer Engineering,

The University of Texas at Austin.

UT Austin () Lattice-Linear Predicates 1

Motivation
Consider the following problems:

Shortest Path Problem:
Input: a weighted directed graph and a source vertex
Output: Least Cost of reaching any vertex i
Dijkstra’s algorithm for graph with non-negative weights,
Bellman-Ford algorithm for graphs with no negative cycles

Stable Marriage Problem:
Input: ordered preferences of n men and n women
Output: Man-optimal stable marriage
Gale-Shapley’s algorithm

Assignment Problem:
Input: n items, n bidders with valuation for items
Output: Least market clearing prices
Hungarian Algorithm (or Gale-Demange-Sotomayor’s Auction)

Could there be a single algorithm that solves all of these problems?
Lattice-Linear Predicate (LLP) Algorithm

UT Austin () Lattice-Linear Predicates 2

Steps of Using LLP Algorithm

Step 1: Model the underlying search space. A Distributive Lattice of
State Vectors. The order on the lattice is based on the optimization
objective of the problem.

Step 2: Define the feasibility predicate B. An element is feasible if it
satisfies constraints of the problem

Step 3: Check whether the feasibility predicate B is Lattice-Linear. If
B is lattice-linear, LLP Algorithm will return the optimal feasible
solution.

UT Austin () Lattice-Linear Predicates 3

Step 1: Modeling the underlying search space

Model the problem as n processes choosing their component in a vector of
size n. The choice for a single process is total ordered.

P

P

P

1

2

3

e
1

e
2

e
3

f
5

e
4

e

f
4

f
3

g
1

5

f
1

f
2

2
g
4

g g
3

computation: poset (E , →)
candidate solution: a possible global state of the system.

UT Austin () Lattice-Linear Predicates 4

Consistent Global State

P
1

P
2

P
3

G
1

G
2

m

m

m1

2

3

A subset G of E is a consistent global state if

∀e, f ∈ E : (f ∈ G) ∧ (e → f)⇒ (e ∈ G)

The set of all consistent global states forms a finite distributive lattice.
The order is component-wise comparison.

UT Austin () Lattice-Linear Predicates 5

Step 1: Examples

G : Global State Vector where G [i] is the component for process i .

Shortest Path: G [i]: cost of reaching vertex i from the source vertex
initially 0

Stable Marriage: G [i]: index in the preference list for man i
initially 1 // top choice

Market Clearing Prices: G [i]: price of item i
initially 0

UT Austin () Lattice-Linear Predicates 6

Step 2: Defining Feasibility Predicate

Shortest Path: Every non-source node has a parent. For any node
j 6= 0,

∃i ∈ pre(j) : G [j] ≥ G [i] + w [i , j]

Stable Marriage: Every man must be matched to a different woman
and there must not be any blocking pair. For any man j , let
z = mpref [j][G [j]]; //current woman assigned to man j

¬∃i : ∃k ≤ G [i] : (z = mpref [i][k]) ∧ (rank[z][i] < rank[z][j]))

Market Clearing Prices: There is no overdemanded item at that
pricing vector. For any item j ,

¬∃J : minimalOverDemanded(J,G) ∧ (j ∈ J)

UT Austin () Lattice-Linear Predicates 7

Lattice-Linearity for Predicate Detection

i

G
H

Forbidden State The state at Pi is forbidden at G with respect to B if
unless Pi is advanced B cannot become true.

forbidden(G , i ,B) ≡ ∀H : G ⊆ H : (G [i] = H[i]) ⇒ ¬B(H)

Lattice-Linear Predicates A predicate B is lattice-linear if for all consistent
cuts G ,

¬B(G) ⇒ ∃i : forbidden(G , i ,B).

UT Austin () Lattice-Linear Predicates 8

Examples of Lattice-Linear Predicates

A conjunctive predicate
l1 ∧ l2 ∧ . . . ∧ ln, where li is local to Pi .
Suppose G is not feasible. Then, there exists j such that lj is false in
G . The index j is forbidden in G .

Shortest Path
Any j such that vj does not have a parent,
(∀i ∈ pre(j) : G [j] < G [i] + w [i , j]) is forbidden in G .

Stable Marriage
j is forbidden in G if
∃i : ∃k ≤ G [i] : (z = mpref [i][k]) ∧ (rank[z][i] < rank[z][j]))

Market Clearing Price
(¬∃J : minimalOverDemanded(J,G) ∧ (j ∈ J))
Any j in a minimal overDemanded set is forbidden.

UT Austin () Lattice-Linear Predicates 9

Example of Predicates that are not Lattice-Linear
Example 1: B(G) ≡ x + y ≥ 1

x = 1x = 0

y = 0 y = 1

P
1

P
2

Example 2: B(G) ≡ G is a matching.

w2w1

w1 w2

m
1

m
2

UT Austin () Lattice-Linear Predicates 10

LLP Algorithm

How much to advance: j is forbidden in G until α iff

∀H ∈ L : H ≥ G : (H[j] < α) ⇒ ¬B(H).

vector function getLeastFeasible(T : vector, B: predicate)
//T : top element of the lattice
var G : vector of reals initially ∀i : G [i] = 0;
while ∃j : forbidden(G , j ,B) do

for all j such that forbidden(G , j ,B) in parallel:
if (α(G , j ,B) > T [j]) then return null;
else G [j] := α(G , j ,B);

endwhile;
return G ; // the optimal solution

All processes can asynchronously evaluate forbidden and advance in
parallel. Only Pj updates G [j].

UT Austin () Lattice-Linear Predicates 11

LLP Algorithm: Stable Marriage Problem

Pj :
var G : array[1..n] of 1..n;

input: mpref [i , k]: int for all i , k ; // men preferences
rank[k][i]: int for all k, i ; // women ranking

init: G [j] := 1;
always: w = mpref [j][G [j]];

forbidden:
(∃i : ∃k ≤ G [i] : (w = mpref [i][k]) ∧ (rank[w][i] < rank[w][j]))

advance: G [j] := G [j] + 1;
Slightly more general than Gale-Shapley Algorithm:
instead of starting from (1, 1, . . . , 1), can start from any choice vector.

UT Austin () Lattice-Linear Predicates 12

LLP Algorithm: Shortest Path Problem

input: pre(j): list of 1..n;
w [i , j]: positive int for all i ∈ pre(j)
s : 1..n; // source node;

init: G [j] := 0;
always:

parent[j , i] = (i ∈ pre(j)) ∧ (G [j] ≥ G [i] + w [i , j]);
fixed [j] = (j = s) ∨ (∃i : parent[j , i] ∧ fixed [i])
Q = {(G [i] + w [i , k])|(i ∈ pre(k)) ∧ fixed(i) ∧ ¬fixed(k)};

forbidden: ¬fixed [j]
advance: G [j] := max{min Q,min{G [i] + w [i , j] | i ∈ pre(j)}}

By ignoring the second part of advance, we can get Dijkstra’s algorithm.

UT Austin () Lattice-Linear Predicates 13

LLP Algorithm: Shortest Path Problem Revisited

Assume no negative cost cycle.

input: pre(j): list of 1..n;
w [i , j]: int for all i ∈ pre(j)

init: if (j = s) then G [j] := 0 else G [j] := maxint;
forbidden: G [j] > min{G [i] + w [i , j] | i ∈ pre(j)}
advance: G [j] := min{G [i] + w [i , j] | i ∈ pre(j)}

Lattice is reversed: the bottom element is (maxint,maxint, . . . ,maxint)
This is just Bellman-Ford’s algorithm.

UT Austin () Lattice-Linear Predicates 14

LLP Algorithm: Market Clearing Prices

input: v [b, i]: int for all b, i
init: G [j] := 0;
always: E = {(k , b) | ∀i : (v [b, k]− G [k]) ≥ (v [b, i]− G [i])};

demand(U ′) = {k | ∃b ∈ U ′ : (k , b) ∈ E};
overDemanded(J) ≡ ∃U ′ ⊆ U : (demand(U ′) = J) ∧ (|J| < |U ′|)

forbidden: ∃J : minimal − OverDemanded(J) ∧ (j ∈ J)
advance: G [j] := G [j] + 1;

This is just Demange-Gale-Sotomayor exact auction algorithm.

UT Austin () Lattice-Linear Predicates 15

Constrained Optimization

If B1 and B2 are lattice-linear then B1 ∧ B2 is also lattice-linear.

least stable marriage such that regret of Peter is less than or equal to
regret of John

least feasible path such that the cost of reaching x equals cost of
reaching y

least clearing prices such that item1 is priced at least 5 more than
item2.

All of the additional constraints are also lattice-linear.

UT Austin () Lattice-Linear Predicates 16

Conclusions

How to Solve Many Combinatorial Optimization Problems
Find the least feasible element

View State space as the set of consistent global states

Each process starts with the most desirable choice and moves to less
desirable

Define a “feasibility” predicate B

Check if B satisfies the lattice-linearity condition

Other algorithms as special cases of the LLP Algorithm:

Gale’s Top Trading Cycle Algorithm,

Horn’s satisfiability algorithm,

Johnson’s algorithm to transform graphs with negative cost edges

UT Austin () Lattice-Linear Predicates 17

Future Work

Techniques when the feasibility predicate is not lattice-linear.

UT Austin () Lattice-Linear Predicates 18

