A Distributed Abstraction Algorithm for Online Predicate Detection

Himanshu Chauhan ¹ Vijay K. Garg ¹ Aravind Natarajan ² Neeraj Mittal ²

¹Parallel & Distributed Systems Lab, Department of Electrical & Computer Engineering University of Texas at Austin

> ²Department of Computer Science, University of Texas at Dallas

Outline

Outline

Why Online Predicate Detection?

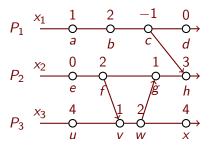
- Large Parallel Computations
 - Non-terminating executions, e.g. server farms
 - Debugging, Runtime validation

Other Applications

- General predicate detection algorithms, such as Cooper-Marzullo [1991]
 - Perform abstraction with respect to simpler predicate
 - Detect remaining conjunct in the abstracted structure
 - Reduced complexity by using abstraction based detection

Predicate Detection in Distributed Computations

Find all global states in a computation that satisfy a predicate

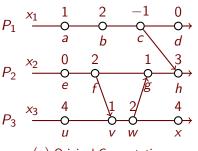


Predicate
$$(x_1 * x_2 + x_3 < 5) \land (x_1 \ge 1) \land (x_3 \le 3)$$
: $O(k^3)$ steps

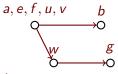
- $O(k^n)$ complexity for n processes, and k events per process
- Compute intensive for large computations

Exploiting Predicate Structure Using Abstractions

Predicate
$$(x_1 * x_2 + x_3 < 5) \land (x_1 \ge 1) \land (x_3 \le 3)$$



(a) Original Computation



(b) Slice w.r.t. $(x_1 > 1) \land (x_3 < 3)$

Paper Focus

Offline and Online algorithms for abstracting computations for regular predicates exist
 [Mittal et al. 01 & Sen et al. 03]

■ **This paper**: Efficient **distributed** *online* algorithm to abstract a computation with respect to *regular* predicates.

Outline

System Model

- Asynchronous message passing
- n reliable processes
- FIFO, loss-less channels
- Denote a distributed computation with (E, \rightarrow)
 - E: Set of all events in the computation
 - \blacksquare \rightarrow : happened-before relation

[Lamport 78]

Consistent Cut: Possible global state of the system during its execution.

Consistent Cut: Possible global state of the system during its execution.

Formally:

Given a distributed computation (E, \rightarrow) , a subset of events $C \subseteq E$ is a consistent cut if C contains an event e only if it contains all events that happened-before e.

$$e \in C \land f \rightarrow e \Rightarrow f \in C$$

Consistent Cut: Possible global state of the system during its execution.

i.e. if a message receipt event has *happened*, the corresponding message send event must have happened.

Consistent Cut: Possible global state of the system during its execution.

For conciseness, we represent a consistent cut by its maximum elements on each process.

$$\begin{cases}
a \\
b \\
c \\
c \\
e \\
f \\
g
\end{cases}$$

$$\begin{bmatrix}
b, e \\
f \\
g
\end{cases}$$

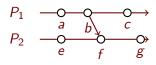
$$\begin{bmatrix}
a, f \\
f \\
g
\end{cases}$$

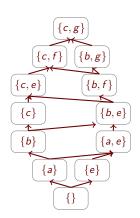
Use vector clocks for checking consistency/finding causual dependency

Lattice of Consistent Cuts

Set of all consistent cuts of a computation (E, \rightarrow) , forms a lattice under the relation \subseteq . [Mattern 89]

Lattice of Consistent Cuts

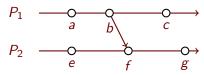




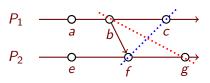
Computation and its Lattice of Consistent Cuts

A predicate is *regular* if for any two consistent cuts C and D that satisfy the predicate, the consistent cuts given by $(C \cup D)$ and $(C \cap D)$ also satisfy the predicate.

A predicate is *regular* if for any two consistent cuts C and D that satisfy the predicate, the consistent cuts given by $(C \cup D)$ and $(C \cap D)$ also satisfy the predicate.



A predicate is *regular* if for any two consistent cuts C and D that satisfy the predicate, the consistent cuts given by $(C \cup D)$ and $(C \cap D)$ also satisfy the predicate.



$${b,g} \cap {c,f} = {b,f},$$

 ${b,g} \cup {c,f} = {c,g}$

Regular Predicates - Examples

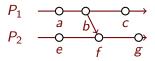
- Local Predicates
- Conjunctive Predicates conjunctions of local predicates
- Monotonic Channel Predicates
 - All channels are empty/full
 - There are at most m messages in transit from P_i to P_j

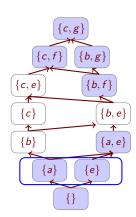
Regular Predicates - Examples

- Local Predicates
- Conjunctive Predicates conjunctions of local predicates
- Monotonic Channel Predicates
 - All channels are empty/full
 - There are at most m messages in transit from P_i to P_j

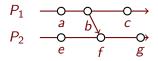
Not Regular: There are even number of messages in a channel

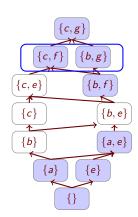
Predicate: "all channels are empty"





Predicate: "all channels are empty"





Outline

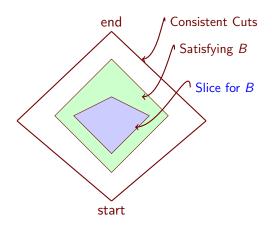
Why use Abstractions?

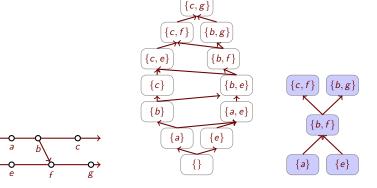
Goal: Find all global states that satisfy a given predicate.

Key Benefit of Abstraction

When B is regular: we can "get away" with only enumerating cuts that satisfy B, and are **not** joins of other consistent cuts.

Due to Birkhoff's Representation Theorem for Lattices [Birkhoff 37]



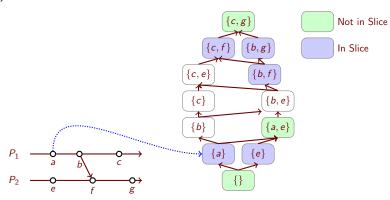


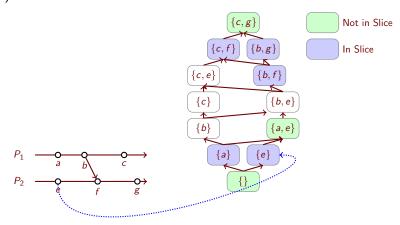
B: "all channels are empty"

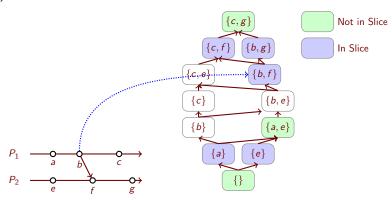
Exploit $J_B(e)$

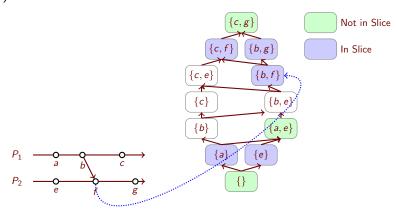
Given a predicate B, and event e in a computation

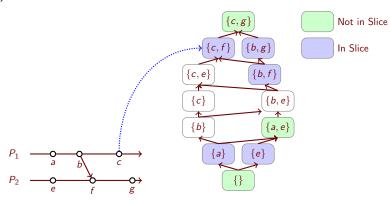
 $J_B(e)$: The least consistent cut that satisfies B and contains e.





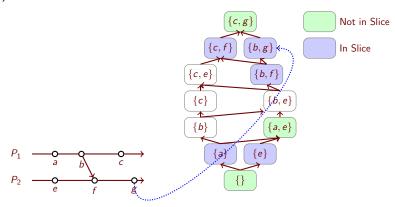






How do we do that?

Given a predicate B, and event e in a computation $J_B(e)$: The least consistent cut that satisfies B and contains e.



Slice for Regular Predicates

For a computation (E, \rightarrow) , and regular predicate B

Slice for *B* is defined as:

$$J_B = \{J_B(e) \mid e \in E\}$$

Bored with definitions?

- Enough with the definitions
- Enough with notation
- Just tell us the crux of it

Bored with definitions?

It comes down to a two line pseudo-code

```
foreach event e in computation:
```

find the least consistent cut that satisfies B and includes e

Centralized Online Slicing

- One process acts as the central *slicer CS*
- Each process *P_i* sends details (state/vector clock etc.) of <u>relevant</u> events to *CS*

[Mittal et al. 07]

Outline

Challenges

 Simple decomposition of centralized algorithm into n independent executions is inefficient

- Results in large number of redundant communications
- Multiple computations lead to identical results

Distributed Online Slicing

- Each process P_i has an additional *slicer* thread S_i
- P_i sends details (state/vector clock etc.) of <u>relevant</u> events **locally** to S_i

Distributed Algorithm at S_i

- Each *slicer*, S_i , has a **token**, T_i , that computes $J_B(e)$ where $e \in E_i$
- Tokens are sent to other *slicers* to progress on $J_B(e)$

For each event make use of:

$$e \to f \Rightarrow J_B(e) \subseteq J_B(f)$$

Distributed Algorithm at S_i

B = "all channels are empty"

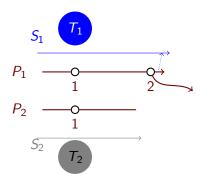
	$T_1 \otimes S_1$	$T_2 @ S_2$
е	$P_{1}.1$	$P_{2}.1$
cut	[1, 0]	[0, 1]
dependency	[1, 0]	[0, 1]
cut consistent?	√	✓
satisfies <i>B</i> ?	✓	√
output cut?	✓	✓
wait for	<i>P</i> ₁ .2	$P_{2}.2$

What happens in non-trivial cases?

B= "all channels are empty"

What happens in non-trivial cases?

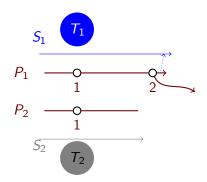
B = "all channels are empty"



Suppose, P_1 just reported its 2^{nd} event to S_1

What happens in non-trivial cases?

B = "all channels are empty"



Suppose, P_1 just reported its 2^{nd} event to S_1

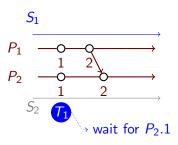
$T_1 \otimes S_1$
P ₁ .2
[2, 0]
[2, 0]
√
X
$P_{2}.1$

send T_1 to S_2

S_2 receives T_1

Regular predicate structure

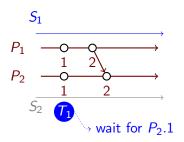
- Exact knowledge of which event to wait for
- Which states to evaluate predicate on



S_2 receives T_1

Regular predicate structure

- Exact knowledge of which event to wait for
- Which states to evaluate predicate on

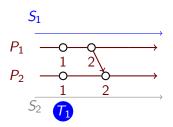


B would not be even evaluated on any state unless S_2 is told about a message 'receipt'

S_2 receives T_1

Regular predicate structure

- Exact knowledge of which event to wait for
- Which states to evaluate predicate on

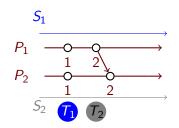


B would not be even evaluated on any state unless S_2 is told about a message 'receipt'

 T_1 would wait at S_2 till $P_2.2$ is reported

P_2 .2 is reported to S_2

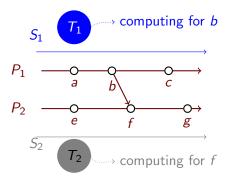
After P_2 .2 is reported to S_2



	$T_1 \otimes S_2$	$T_2 @ S_2$
е	$P_{1}.2$	$P_{2}.2$
cut	[2, 2]	[2, 2]
dependency	[2, 2]	[2, 2]
cut consistent?	√	√
satisfies B?	√	✓
output cut?	✓	✓
wait for	<i>P</i> ₁ .3	$P_2.3$

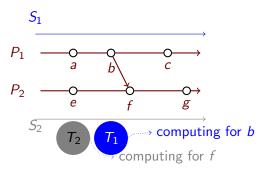
 S_2 sends T_1 back to S_1

Optimizations - I



Send only if needed - ie. <u>before sending</u> your token to S_k , check if you have token T_k containing the required information.

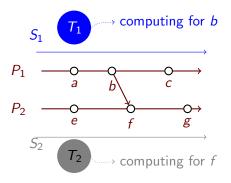
Optimizations - I



Send only if needed - ie. <u>before sending</u> your token to S_k , check if you have token T_k containing the required information.

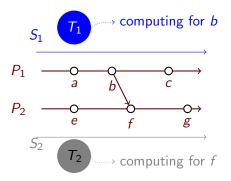
Optimizations - II

Stall computations that would lead to duplicate computations



Optimizations - II

Stall computations that would lead to duplicate computations



Allow only one computation to progress if there is a possibility of duplicates (see paper for details)

Outline

Distributed vs Centralized

```
n: \# of processes, |S|: \# bits required to store state data |E|: \# of events in computation |E_i|: \# of events on process P_i
```

	Centralized	Distributed
Work/Process	$O(n^2 E)$	O(n E)
Space/Process	O(E . S)	$O(E_i . S)$

$$O(n)$$
 savings in work per process $O(n)$ savings in storage space per process

For conjunctive predicates:

The optimized version has O(n) savings in message load per process

Questions?

Thanks!

Future Work

- Even with optimizations, there can be degenerate cases with O(|E|) messages on a single process
- Is there a distributed algorithm that guarantees reduced messages (by O(n)) per process?
- Total work performed is still O(n|E|)
- Is there a distributed algorithm that reduces this bound?