
Repeated Computation of Global Functions in aDistributed EnvironmentVijay K. Garg and Joydeep GhoshAbstract|In a distributed system, many algorithms need re-peated computation of a global function. These algorithmsgenerally use a static hierarchy for gathering necessary datafrom all processes. As a result, they are unfair to pro-cesses at higher levels of the hierarchy, who have to performmore work than processes at lower levels. In this paper, wepresent a new revolving hierarchical scheme, in which theposition of a process in the hierarchy changes with time.This reorganization of hierarchy is achieved concurrentlywith its use. It results in algorithms that are not only fairto all processes, but also less expensive in terms of mes-sages. The reduction in the number of messages is achievedby reusing messages for more than one computation of theglobal function. The technique is illustrated for distributedbranch-and-bound problem, and for asynchronous compu-tation of �xed points.Keywords|Global Functions, Distributed Programs, Hier-archy, PermutationsI. IntroductionIn a distributed system, many algorithms compute aglobal function that requires information from all processes.These algorithms are sometimes called consensus protocols[13,2,3] , or total algorithms [19] Moreover, in many appli-cations, the global function is computed several times [5].Examples of applications which require repeated computa-tion of a global function are deadlock detection [7] clocksynchronization [11], distributed branch and bound [17],parallel alpha-and-beta search [9], global snapshot compu-tation [6], and N+1-section search [1]. Examples of infor-mation necessary to compute the global function are localwait-for graphs for the deadlock detection problem, andthe value of local bounds for distributed branch-and-boundsearch. Any centralized algorithm for gathering informa-tion is necessarily unfair towards the coordinator which hasto do more work than others [15]. A centralized coordina-tor may also become a performance bottleneck. At theother extreme, an equitable ring-based algorithm takes along time to collect the entire information [14, 19].A common compromise is to logically map the processesonto a k-ary tree. Each process in the tree is responsiblefor relaying the information needed from its sub-tree to itsparent. The root of the tree plays the role of coordinator.This approach guarantees that any process has to commu-nicate with at most k+1 other processes. In addition, theintermediate processes may perform partial computationsThis work was supported in part by the NSF Grant CCR 9110605, theNavy Grant N00039-91-C-0082, NSF Grant MIP-9011787, TATP Grant14-9712, a TRW faculty assistantship award, and IBM Agreement 153.Authors are with the Electrical and Computer Engineering Dept, Uni-versityof Texas at Austin, Austin, TX 78712-1084; vijay@pine.ece.utexas.edu;ghosh@pine.ece.utexas.edu

so that the root has less work to do. The approach is stillunfair to processes at the higher levels of the tree who, ingeneral, have to perform more work than processes at thelower levels.This paper introduces a new revolving hierarchical schemein which every process has to perform the same amount ofwork over time. In this scheme, the place of a process in thelogical hierarchy changes with time. Moreover, informationfrom previous hierarchies is used so that the reorganizationof hierarchy is done concurrently with its use. This tech-nique, when applied to any hierarchical algorithm, resultsin an algorithm that is not only fair to all processes, butalso less expensive in terms of messages. The reductionin the number of messages is achieved by reuse of a mes-sage for more than one computation of the global function.We illustrate applications of this technique in distributedbranch-and-bound problems and asynchronous computa-tion of �xed points.The idea of reorganization has appeared in the literaturein many contexts. Many systems provide fault-toleranceby reorganizing the computation when a process/processorfails [21, 20, 16]. Worm programs [18] reorganize them-selves to adapt to the availability of idle workstations andtheir failure. For example, a worm may consist of manymore segments at night than during daytime. All the abovesystems adopt an ad-hoc approach to reorganization, whichis done as an exception rather than a rule. Also, they em-phasize fault-tolerance and not equitable workload distri-bution, which is the main aim of our scheme.The algorithms in this paper are applicable to problemswhere the degree of each of the N processes in the underly-ing communication graph is at least
(log(N)), and wherethe communication graph is known to all processes in thesystem. Similar conditions have been imposed for totalalgorithms [19], and consensus protocols [2,3] for computa-tion of global functions. These approaches use the same al-gorithm several times if repeated computation of the globalfunction is required, thus resulting in many wasteful mes-sages. For example, K computations of a global functionby [2] requires O(K N log(N)) messages. Our algorithmsrequire only O(K N) messages.This paper is organized as follows. Section II summa-rizes the desirable properties of a distributed data gather-ing problem. The properties that are desirable include lightload on processes, high concurrency, and equitable work-load distribution. We show that none of the existing meth-ods satisfy all these properties. Section III describes the1

revolving hierarchal scheme and shows that it possesses allthe desirable properties outlined in Section II. The schemeis based on permutations which satisfy constraints thatarise from the need to reuse messages and distribute theworkload equally. A systematic method is given for gener-ating such permutations. Section IV discusses an e�cientimplementation of the technique. Section V deals with astricter requirement that no process at any step sends orreceives more than one message, and presents a unifyingscheme that can be used both for data gathering and re-sults dissemination. Section VI generalizes the results ofthe previous sections for an arbitrary number of processes,and asynchronous communication. Section VII describesapplications of our techniques.II. Requirements for Distributed Data GatheringIn this paper, by a distributed system we mean a setof processes that communicate with each other using syn-chronous messages, that is, the sender of a message waitstill the receiver is ready (as in CSP). This can be easilyimplemented by ensuring that the sender does not proceedtill it receives an acknowledgement from the receiver. How-ever, the latter part of the paper also discusses applicationsof our technique for distributed systems with asynchronousmessages. It is assumed that transmission is error-free andnone of the processors crash during the computation.A distributed data gathering problem requires that oneprocess receives enough data from everybody, directly orindirectly, to be able to compute a function of the globalstate. Let a time step of the algorithm be the time ittakes for a process to send a message. Clearly, a processcannot send two messages in one time step. The desirableproperties of any algorithm that achieves data gathering ina distributed system are:1. Light Load: Let there be N processes in the system.No process should receive more than kmessages in one timestep of the algorithm, where k is a parameter dependenton the application, and on the physical characteristics ofthe network. A small value of k guarantees that no processis swamped by a large number of messages.2. High Concurrency: Given the above constraintand the fact that there must be some communication, di-rectly or indirectly, from every process to the coordinatorprocess, it can be deduced that any algorithm takes at leastlogk(N) time steps. To see this, note that at the end of the�rst step, a process knows the state of at most k + 1 pro-cesses. By the same argument, at the end of jth time step,a process knows the state of at most (kj+kj�1+kj�2::+1)processes. It follows that at least logk(N)� 1 step are re-quired. The second requirement is that the algorithmmustnot take more than O(log(N)) steps.3. Equal Load: For the purposes of load-balancingand fairness each process should send and receive the samenumber and the same size of messages over time. In addi-tion, they should perform the same set of operations in thealgorithm. This requirement assumes special importancefor algorithms that run for a long time or when the pro-cesses belong to di�erent individuals/organizations. The

condition of equitable load is di�erent from the symme-try requirement in [5,3], as processes in our algorithms canhave di�erent roles at a speci�c phase of the algorithm.However, in most practical applications, it is su�cient toensure that all processes share the workload and responsi-bilities equally over time, rather than at every instant.Let us consider the three main approaches taken for dis-tributed data gathering, in light of the requirements statedabove.Centralized: In this scheme, every process sends its datadirectly to a pre-chosen coordinator. This scheme violatesthe requirements on light and equal load. The load on thecoordinator can be reduced by constraining it to receiveonly k messages per time step, but then it takes N=k timesteps to gather all the required information.Ring-based: In this scheme, processes are organized in aring fashion, and any process communicates directly onlywith its left and right neighbors. Ring-based algorithmscan result in an equal load on all processes, but the level ofconcurrency is low since it takes N � 1 time steps for oneprocess to receive information from all other processes [8].Hierarchy based: A logical k-ary tree is �rst mapped ontothe set of processes. At every time step, each process sendsstates of processes in its sub-tree to its parent. This meansthat the root process receives information from all pro-cesses in O(log(N)) time. This approach also satis�es theconstraint on the number of messages received per unittime; however, it violates the requirement of fairness, sinceprocesses at the higher levels of a hierarchy have to do morework than processes at the lower levels.III. An Equitable, Revolving HierarchyIn this section, we present an algorithm based on revolv-ing hierarchy among processes [10], that satis�es all threedesired properties of a distributed data gathering scheme.That is, the algorithm does not require a process to receivemore than k messages per time step, computes the globalfunction in O(log(N)) steps, and puts an equal work loadon all processes.Let there be N processes, numbered uniquely from theset P = f1; :::; Ng, that are organized in the form of ak-ary tree. This tree also has N positions. Let pos(x; t)be the position of the process x at time t. For simplicity,let pos(x; 0) = x for all x 2 P . The recon�guration ofhierarchy consists of the remapping of processes to di�erentpositions. This recon�guration is de�ned using a functionnext : P ! P which gives the new position of the processwhich was earlier in position x. That is, if for some yand t, pos(y; t) = x, then pos(y; t + 1) = next(x). As twoprocesses cannot be assigned the same position, next is a 1-1 and onto function on the set P . Such functions are calledpermutations. Any permutation can be written as productof disjoint cycles [12]. For any permutation f de�ned onthe set P , the orbit of any element x 2 P is de�ned to be:orbit(x) = ff i(x)ji � 0gThat is, orbit(x) contains all elements in the cycle thatcontains x. f is called primitive if there exists a x 2 P2

time message 1 message 2 idle0 1,3 ! 2 5,7 ! 6 41 2,6 ! 4 1,3 ! 5 72 4,5 ! 7 2,6 ! 1 33 7,1 ! 3 4,5 ! 2 6Fig. 1. A message sequence for repeated computation of aglobal functionsuch that orbit(x) = P . We require next to be primitiveso that any process occupies all positions in N time units.As an illustration of a revolving hierarchy, consider thecase when N = 7 and k = 2. Figure 1 shows a sequence ofmessage transmissions that exhibit the desired propertiesoutlined in Section II. At time t = 1, process 4 is ableto obtain information from all other processes, since themessages received by it from processes 2 and 6 include the(possibly partially processed) messages sent by processes 1,3, 5 and 7 in the previous time step. Thus it can computea global function at the end of this time step. Similarly, att = 2, process 7 can compute a global function.The sequences of messages given in Fig. 1 is actually ob-tained by the revolving hierarchy illustrated in Fig. 2. Torecognize this, consider an initial assignment of process ito node i of tree T1, using an inorder labeling. At t = 0,the leaves of this tree send a message to their parents. Att = 1, we want to continue the propagation of these mes-sages to the root of T1, and simultaneously initiate mes-sages needed for the next global computation. This can beachieved by de�ning another tree T2 of N nodes such thatthe internal nodes of T1 form one subtree of T2, say the leftsubtree, and the leaf processes are remapped onto the rootand the other subtree of T2. The messages sent at t = 1are precisely those sent by the leaf nodes of T2 to theirparents. Subsequent message sequences are obtained in asimilar fashion by forming a new tree at each time step, asillustrated in Fig. 2. The trees T1; T2; :::; are called gathertrees since each such tree determines the sequence of mes-sages used to collect all information required to computeone global function. Thus, a throughput of one global re-sult per unit time is achieved after an initial startup delayof dlogNe � 1 steps. Note that this is possible because ofthe use of a message in dlogNe � 1 gather trees. Also, allmessages may not be of equal size, since a message sentby a process may include a portion of the messages that itreceived in the previous time step. The actual content ofmessages is application dependent, and will be examinedin Section VII. In this section, we shall concentrate on thesequence of messages generated, and on the properties thatthey satisfy.The sequence of logical trees T1; T2; :::; represents thetime evolution of the assignment of the N processes to po-sitions in a revolving tree. At every step, the processes areremapped onto the nodes of this tree according to a per-mutation function, next(x), applied to the current positionx; 1 � x � N . For the example in Fig. 2, with an inorder

4

7

3

1

5

2

7

1 36

65
T

T

T

1

1

2

2

3

3

Fig. 2. Overlapping trees that determine messagesequenceslabeling of the nodes, this permutation is:� 1 2 3 4 5 6 75 1 7 2 6 3 4 � (1)Thus, process 1 which is in position 1 in T1, goes to position5 in T2 and position 6 in T3.To generate a revolving hierarchy, next(x) must satisfythe following two constraints:1) Gather Tree Constraint: The interior nodes of Tishould form a subtree of Ti+1. That is, interior nodesat level j in Ti should be mapped to level j + 1 in Ti+1,and the parent-child relationships among these nodes bepreserved. This restriction ensures that the message se-quences required for the root process at each snapshot toobtain global information are not disturbed during the re-organization needed to initiate messages for the next com-putation.The following permutation function on inorder labels sat-is�es the gather tree constraint:next(x) = x=2; for even(x)2) Fairness Constraint: The permutation should be prim-itive. This ensures that a process visits each position in thelogical tree exactly once in N steps. Thus, if di�erent posi-tions require di�erent workload, then each process will endup doing an equal amount of work after N time units.We now present a permutation that satis�es gather-treeand fairness constraints. De�ne lead0(x) as a function thatreturns the number of leading zeros in the n bit binaryrepresentation of x. For x = 1; 2; :::;N = 2n � 1, considerthe following next(x) function:next(x)f/* Type I move */if (even(x)) then3

x0 := x=2;/* Type II move */if (odd(x)^ (x < 2n�1)) thenx0 := x � 2lead0(x) + 1;/* Type III move */if (odd(x)^ (x > 2n�1)) thenx0 := (x+ 1) ;if (x0 = N + 1) then x0 := x0=2;return(x0);gThe next function is applied to determine the next po-sition of a process in an inorder labelled complete binarytree. Let the N nodes be divided into four disjoint groups:Name MembersRInt even(x) ^ (x � 2n�1)LInt even(x) ^ (x < 2n�1)LLeaf odd(x)^ (x < 2n�1)RLeaf odd(x)^ (x > 2n�1)Type I moves are required by the gather-tree constraint.Thus, if x is even it moves down the tree till it becomes aleft leaf. Type II and Type III moves just visit the rightsubtree using inorder traversal. For a Type II move, x �2lead0(x) gives the last node visited in the right subtree.The next node to be visited is obtained by adding 1 to theprevious node visited. Note that as x 2 LLeaf for a TypeII move, lead0(x) � 1, hence x0 is odd. Also the msb of x0is 1, because x is multiplied by 2lead0(x). Thus, a Type IImove maps a left leaf node to a right leaf node. A TypeIII move just visits the next node in the inorder traversal,unless x = N in which case x0 is made to be the root tostart the cycle all over again.To show that next satis�es fairness and gather-tree con-straints, we need a few Lemmas.Lemma 1 Let f : P ! P be a permutation.Let P0; P1; :::; Pm�1 be a partition of P into m disjoint setssuch that f(Pi) = P(i+1) mod m (2)Then, f is primitive if and only if 9x 2 P0 : P0 � orbit(x)Proof: If f is primitive, orbit(x) = P , and therefore in-cludes P0. We now show the converse. For any x 2 P0,P0 � orbit(x) implies that 8j : fj(P0) � fj(orbit(x)).Since f(orbit(x)) � orbit(x), we get that 8j : fj(P0) �orbit(x). Further, as f(Pi) = P(i+1) mod m, it follows that8j : Pj � orbit(x). Hence, P � orbit(x).We say that Q � P is a core of P with respect to f i�for any x that is in P , but not in Q, there exists an i suchthat f i(x) 2 Q. Intuitively, Q is any subset of P whichhas non-empty intersection with all cycles in P . We de�nerestriction of a permutation f : P ! P to its core Q � P(denoted by fQ : Q! Q) as follows:fQ(x) = fj(x) where j = mini�1fijf i(x) 2 Qg.

The following Lemma proves that fQ is also a permuta-tion.Lemma 2 If f : P ! P is a permutation, then fQ : Q!Q is also a permutation for any core Q of P with respectto f .Proof: We have to show that fQ is a 1-1 and onto function.As both the domain and the range of fQ are �nite and havethe same cardinality, it is su�cient to show that fQ is 1-1.We show this by contradiction. Let x; y 2 Q such thatx 6= y, but fQ(x) = fQ(y). Let k = mini�1fijf i(x) 2 Qg,and l = mini�1fijf i(y) 2 Qg. k and l exist as Q is a core.Assume without loss of generality that k � l. Then, byde�nition of fQ, fk(x) = f l(y). As f is a permutationand therefore invertible, we deduce that fk�l(x) = y. Ifk = l, we get that x = y, which is a contradiction. If k > l,we have found a strictly smaller number than k such thatfk�l(x) 2 Q, again a contradiction.The next Lemma provides the motivation of de�ning fQ.Lemma 3 A permutation f : P ! P is primitive i� thereexists a core Q � P such that fQ is primitive.Proof: One side is obvious. If f is primitive, fP is alsoprimitive trivially. We show the converse. Let the permu-tation f not be primitive. This implies that f has a cycleC of length strictly smaller than jP j. Since Q is a core,there is no cycle in P � Q. This implies that C containssome but not all elements of Q, i.e., C \Q is a non-emptyproper subset of Q. Consider any x 2 C\Q. Its orbit withrespect to fQ is also C \ Q. Hence, fQ also has a cyclesmaller than jQj, proving that fQ is also not primitive.
LLeaf RLeaf

II

RInt
II

II

III

LInt

Fig. 3. Node groups and transitionsWe are now ready for our �rst main result.4

Theorem 1 The function next(.) is a primitive permuta-tion that satis�es the gather tree constraint.Proof: We �rst show that next is a permutation. Letx; y 2 f1; :::; Ng be such that x 6= y. Type I move is 1-1 because for any even x1; x2, (x1=2 = x2=2) implies that(x1 = x2). Type II move is 1-1, because for any odd x1; x2,if lead0(x1) 6= lead0(x2), then x1�2lead0(x1) 6= x2�2lead0(x2)as they have di�erent number of trailing zeros. Otherwise,x01 = x02 clearly implies that x1 = x2. Type III is also 1-1.Also, no element other than N maps to (N + 1)=2 sincethe only other possibility, x = (N + 1)=2� 1 = 2n�1 � 1,does not belong to the domain of type III moves. Thus,if the same type of move is applicable for both x and y,then next(x) 6= next(y) because each type of move (typeI, type II, and type III) is 1-1. Furthermore, the rangesof di�erent types of move are disjoint; for illustration seeFigure 3. Hence, if di�erent types of moves are applied tox and y, then also next(x) 6= next(y). Therefore, next is1-1. Further, the domain and the range of next have �niteand equal cardinality, therefore it is also onto. Thus, it isa permutation.To show that the permutation next is primitive, �rst ob-serve that Q = LLeaf [RLeaf [RInt forms a core of Pwith respect to next. This is because for any x 2 LInt,there exists i such that nexti(x) 2 LLeaf . By Lemma 2,nextQ is also a permutation. We now apply Lemma 1 toshow that nextQ is primitive. We partition Q into threesets Q0 = LLeaf;Q1 = RLeaf , and Q2 = RInt. It canbe easily checked that nextQ(Qi) = Qi+1 mod 3. Moreover,any cycle starting from a node x in RLeaf �rst visits ver-tex x + 1 (or (x + 1)=2) in RInt, followed by a vertex inLLeaf, which is followed again by the next vertex in Rleaf.Thus, the vertices in RLeaf are visited in sequence, andorbit(x) = RLeaf . Applying Lemma 1, we conclude thatnextQ is primitive. As Q is a core of P and nextQ is prim-itive, by applying Lemma 3, next is also primitive.Lastly, next also satis�es the gather tree constraint be-cause of Type I moves.Signi�cance: If next(x) is used to determine the remappingof the processes to nodes for the next time step. in eachtime step, then:(i) A global function can be computed in dlogNe� 1 stepsafter its initiation; and(ii) A throughput of one global function computation pertime step can be obtained.Note that the gather trees are only tools to determinethe sequence of message transmissions. The goal is to �ndat any time t, whether a given process needs to send amessage, and if so, which process should be the recepientof that message.Let parent(x) yield the parent of node x, and msg(x; t)be the process number to which process x sends a messageat time t. If x does not send a message at time t, thenmsg(x; t) = nil. For an inorder labeling, a node has anodd label i� it is a leaf node. Since only leaf nodes sendmessages, we obtain:

msg(x; t) = � next�t (parent (nextt(x))) if odd(nextt(x))nil otherwiseFor an inorder labeling, the parent of a leaf node has thesame binary representation as that node excepting that thetwo least signi�cant bits are 10. For example, node 1010 isthe parent of nodes 1001 and 1011. Thus, the parent canbe readily evaluated.IV. Implementation IssuesWe can simplify the computation of nextt(x) and next�t(x)by renumbering the tree nodes in the sequence traversedby a process. This is shown in Fig. 4, where the tree nodesare relabeled 0 through N-1. The old (inorder) labellingis given in parenthesis. 1 Let the processes be numbered0,...,N-1 also, and process i be mapped onto node i at t = 0.This relabeling causes the next(:) and parent(:) functionsto be transformed into new next(:) and new parent(:) re-spectively. Moreover, new nextt(x) is simply equal to x+t.Therefore,msg(x; t) = � new parent(x+ t) � t if x+ t is a leaf;nil otherwise (3)For N = 31, we obtain:leaf node; i : 0 15 7 22 3 10 18 25new parent(i) : 30 30 14 14 6 6 21 21leaf node; i : 1 4 8 11 16 19 23 26new parent(i) : 2 2 9 9 17 17 24 24(4)We only need to store the new parent function for the leafnodes to determine whom to send a message at any time t.Thus, the destination can be calculated in constant time,by looking up a table of size O(N). Alternatively, one cangenerate the new parent function and trade o� storage forcomputation time.Let us de�ne a communication distance set, CDS, as:CDS = fi j i = new parent(j) � j; j a leaf nodeg : (5)Lemma 4 Process x will send a message (at some time)to process y i� y � x 2 CDS.Proof:): y � x 2 CDS means that there exists a leafnode j1 such that y � x = new parent(j1)� j1:Let t1 = j1�x: Then y�x = new parent(x+t1)�(x+t1)or y = new parent(x + t1) � t1: Since (x + t1) = j1 is aleaf, from Eq. 3 we infer that x sends a message to y attime t1.(: Let x send a message to y at time t2. From Eq. 3,we havey = new parent(x+ t2)� t2 and that x+ t2 is a leaf node.Substituting j2 = x+ t2, we gety = new parent(j2)�(j2�x), or y�x = new parent(j2)�j2 2 CDSsince j2 is a leaf node.1It can be shown that, even though the function next(.) gets trans-formed by changing the labeling of the tree nodes, the derived function,msg(x; t), is unique for a given next(.) function.5

27 (16)

28 (8) 12 (24)

29 (4)

30 (2) 14 (6)

0 (1) 15 (3) 7(5) 22(7) 3(9) 10 (11) 18(13) 25 (15)

13 (12)

6 (10) 21 (14)

1 (17) 4 (19) 8(21) 11(23) 16(25) 19(27) 23(29) 26(31)

2 (18) 9 (22) 17 (26) 24 (30)

5 (20) 20 (28)

Fig. 4. Node labels generated by next. Original inorder labels are shown in parentheses.Using the above lemma one can de�ne a communicationgraph corresponding to a given next function with a nodefor each process, and a directed edge (a; b) between twonodes only if a sends a message to b at some time. Eachnode of this graph has the same in-degree and out-degree,given by the size of the set CDS.The next function is not the only permutation that satis-�es the gather tree and fairness constraints. Type I movesare mandated by the gather tree constraint, but there areseveral choices for Type II and Type III moves. The fol-lowing two criteria are proposed for chosing among severalcandidates for the next function:a) If the derived new parent function is simpler to generate,it is preferred.b) A next function whose corresponding CDS set has asmaller size is preferred.In the following, we show that the next function hasCDS of size 2(log2(N + 1)� 1).We assume that the tree is labelled using inorder. Letn = log2(N + 1). We partition the set of 2n�2 left leafnodes, LLeaf , into n� 1 disjoint groups by de�ningLLeaf(i) = fx 2 LLeaf jlead0(x) = i g.Note that since bn�1 = 0 and b0 = 1, i takes values from 1to n� 1. The size of LLeaf(i) is 2n�2�i for 1 � i � n� 2,and 1 for i = n�1. The importance of this partition is thatthe cycle of permutation next visits a node in LLeaf(i)after visiting exactly i internal nodes. This is because aright internal node is characterized by its most signi�cantbit (msb) = 1, and each move of type I one adds one leading

zero. All these moves except the last visit left internalnodes.We partition the cycle of permutation next into 2n�2segments. Each segment starts from a node in RLeaf andends in a LLeaf. The �rst segment starts at the leftmostleaf in RLeaf , which is labelled 1. Thus, we have parti-tioned all N elements into 2n�2 segments numbered from1..2n�2.Lemma 5 The size of the segment m is trail0(m) + 3,where trail0(m) gives the number of trailing zeros in thebinary representation of m.Proof: Nodes in RInt are visited in inorder by the de�-nition of next. In an inorder traversal the height of ithnode visited is equal to the number of trailing zeros in bi-nary representation of i. Thus, in segment m, we visit onenode in RLeaf , one node at the height trail0(m) in RInt,trail(0) nodes in Lint, and one node in LLeaf with thetotal of trail0(m) + 3 nodes.Let V (m) be the label of the left leaf node at the end ofsegment m. Clearly,V (m) = mXj=1 trail0(j) + 3mLet S(k) =Pkj=1 trail0(j). We need the following proper-ties of S(k).Lemma 6 1. S(a2i) = a2i � a+ S(a) for any i; a > 0;2. S(2a:2i�1) � S((2a � 1):2i�1) = 2i�1 for any odd a.6

Proof: We use induction on i.Base case:(i=1) We need to show that S(2a) = a + S(a).We again use induction on a. It is true for a = 1 asS(2 � 1) = 1 = S(1) + 1. Assume that it is true for a < k.Then S(2k) = S(2k�2)+trail0(2k�1)+trail0(2k). Thus,using induction hypothesis,S(2k) = S(k � 1) + (k � 1) + trail0(2k � 1) + trail0(2k).Since trail0(2k�1) = 0 and trail0(2k) = trail0(k)+1, weget thatS(2k) = S(k � 1) + k � 1 + trail0(k) + 1 = S(k) + k.Induction Assume that the Lemma is true for i < k.S(a2k) = S(2a:2k�1). Using induction hypothesis, S(a2k) =2a:2k�1�2a+S(2a). Using the base case to replace S(2a),we get S(a2k) = a2k � 2a+ S(a) + a = a2k � a+ S(a)2. Using part 1, we get S(2a:2i�1) � S((2a � 1):2i�1) =2i�1�1+S(2a)�S(2a�1) = 2i�1�1+ trail0(2a) = 2i�1as trail0(2a) is 1 for any odd a.Lemma 7 The nodes in LLeaf(i) are labelled as V ((2a�1)2i�1); a = 1; 2; 3; :::; 2n�2�i. Moreover, for an odd valueof \a" (corresponding to a left child), the labels of the corre-sponding parent and right sibling are given by V (a2i+1)�1and V (a2i+1 + 2i) respectively.Proof: A segment m ends in LLeaf(i) if and only if itvisits exactly i internal nodes. From Lemma 5, the seg-ment m visits exactly trail0(m) + 1 internal nodes. Thus,segments ending in LLeaf(i) are given by m such thattrail0(m) + 1 = i. Thus, m is of the form(2a� 1)2i�1 for some 1 � a � 2n�2�i. We will now focuson those LLeaf(i) which have more than 1 leaves, that is1 � i � n � 3.Then, odd values of a give the labels for left children,and even values for the right children in LLeaf . Since thenodes in RInt at any level are visited from left to right,(i) the parent of a left child in LLeaf(i) is visited in thenext segment that terminates in group LLeaf(i + 1). Itterminates in group LLeaf(i + 1) because the parent ofthe child has same number of leading zeros as the childand the next element of the segment will have one moreleading zero than the parent. The index of this segment is(2a� 1)2i�1 + 2i�1 = a2i.(ii) the right sibling is visited in the next segment thatterminates in group LLeaf(i). The index of this segmentis (2a + 1)2i�1.Theorem 2 For N = 2n � 1, the CDS for the next(x)labelling is of size 2(n� 1), and its members are given byCDS = [i=1 to n�1f2i � 1; �2i�1g: (6)Proof: From Lemma 7, the contributions to CDS comefrom di�erences in labels of parents and leaves. Consider-ing the nodes in group LLeaf(i), 1 � i � n� 3, which areleft children of their parents we get :

V (a2i)� 1� V ((2a� 1)2i�1)= S(a2i) + 3a2i � 1� S((2a � 1)2i�1) � 3(2a� 1)2i�1=2i�1 � 1 + 3:2i�1 (using Lemma 6)=2i+1 � 1.Considering the nodes in group LLeaf(i), 1 � i � n�3,which are right children of their parents we get:V (a2i+1)� 1� V (a2i+1 + 2i)where a takes only odd values. On simplifying as before,this expression is equal to �2i+1.LLeaf(n�2) and LLeaf(n�1) contribute �1 and 2n�1�1 Finally, the nodes in RLeaf add 1 and -2 to the set CDS.Therefore, the CDS for the next(x) labelling is given byEq. 6.Note that the CDS given by Eq. 6 is incremental, so thatthe communication set for a smaller number of communi-cating processes is a subset of the CDS for a larger numberof processes. Also, the positive elements of the CDS are oneless (mod N) in magnitude from some negative element.This means that the communication requirements can besatis�ed by a homogeneous topology of degree 2n�1 usingbidirectional links and a two step communication scheme.In this topology, each node is connected to nodes at a dis-tance of �2i; 0 � i � n � 1, as indicated in Fig. 5. Mes-sages destined for a node at distance 2i � 1 for some i aresent in two steps. This topology preserves the incrementalproperty which is attractive when mapping the processesonto a multicomputer system.
x+4

x x+1

x+2

x+8

x-1

x-2

x-4

x-8

x + N+1
 2

Fig. 5. Physical connectivity required based on atwo-step routing procedureV. Restricted Message ReceptionIn the previous sections, we proposed techniques for re-peated computation of global functions where each processcould receive messages from at most two other processes ina time slice. In this section, we consider a more restricted7

scenario in which a process can receive a message from onlyone other process in a given time slice, i.e., k = 1. With-out loss of generality, let N = 2n. A list representation ismore convenient in this situation than the binary tree rep-resentation used in the previous section. Thus, if 5 sends amessage to 1, and 2 to 8 in some time step, we can denotethis by the list (5 1 2 8) or by the pairs, 5! 1 and 2! 8.The list positions are numbered as 0; 1; :::;2n� 1.Again, the message patterns in the next step can be de-termined by a suitable permutation, snext(x). Let bn�1; :::; b0be the binary representation of x, and cn�1; :::; c0 that ofx0 = snext(x). Furthermore, let the operations RS0; RS1; LS0and LS1 yield the numbers obtained by a right (left) shiftof the bits with a 0/1 in the most (least) signi�cant bitposition.The global function needs to be determined in logNsteps, which is a tight lower bound for k = 1. If we drawan analogy with a knock-out tournament in which the re-ceiving process is a winner, then the winners should playamong themselves until there is a single winner. At thesame time, the losers of the previous rounds also play todetermine winners for following tournaments.Thus, for the list representation, instead of the gathertree constraint, we have the following n Tournament con-straints:b0 = 1) cn�1 = 0; /* winners play among themselves*/for i = 1 to n� 1 :(b0 = 1) ^ (bn�1; :::; bi = 0; :::; 0)) cn�1; :::; ci�1 = 0; :::; 0;/* till the �nals, yielding one winner. */Consider the following function, where l is the number ofconsecutive zeros after the most signi�cant bit, and N =2n:snext(x)f/* Type S1 move */if (b0 = 1) then x0 := RS0(x);/* Type S2 move */if ((b0 = 0) ^ (bn�1 = 0)) then x0 := 1; bn�2; :::; b0 ;/* Type S3 move */if ((b0 = 0) ^ (bn�1 = 1)) thenif (x0 = N � 2) then x0 := x+ 1else x0 := LS1l+1(x) + 2;return(x0);g Figure 6 shows a partial sequence of the message patternsgenerated by snext(:) with n = 4.Theorem 3 The function snext(.) satis�es both the fair-ness and the tournament constraints.Proof: The S1 moves guarantee that the tournament con-straints are satis�ed. Winning positions are characterized

by b0 = 1. In the next round, these positions are mappedonto the left half of the list so that the winners play amongthemselves. Moreover, this procedure is repeated recur-sively for each sublist of positions 0 through 2i�1, i = n�1down to 0, till we get a list of size two, denoting the \�nal"match.To show the fairness constraint we divide the list posi-tions into four equal sets: ROdd; LOdd;LEven andREven,depending on the position being on the left (bn�1 = 0) orright half (bn�1 = 1) of the list, and whether the positionis odd (b0 = 1) or even. We observe that:(i) S2 moves de�ne a one-to-one mapping between LEvenand REven positions;(ii) S3 moves de�ne a one-to-one mapping between REvenand ROdd positions;(iii) One or more consecutive invocations of S1 moves takesone from a position in ROdd to a unique position in LEven(iv) S3 moves ensure that the positions in LEven are vis-ited in sequence, i.e. the position (x + 2) mod (N=2) isvisited after the position x; x 2 LEven.From Lemma 3 and arguments similar to Theorem 1, weget that snext(.) is a primitive permutation.As in Section III, we can simplify the calculation ofsnext(x) by relabelling the position numbers in the listin the sequence traversed by any process. For example,to obtain a function n snext(x) from snext(x) such thatn snext(x) = x+1(mod N), the new labels forN = 16 are:list position 0 1 2 3 4 5 6 7label 4 3 8 2 11 7 14 1list position 8 9 10 11 12 13 14 15label 5 10 9 6 12 13 15 0 (7)The new function, n snext(:) is such that n snextt(x) =x+ t. If y is the new label of an even location in the list,then it sends a message to the label dest(y) correspondingto the next odd position. For these positions, rec(y) = nilsignifying that no messages are received. If y is an oddlocation, then dest(y) = nil, signifying that no message issent, while rec(y) yields the label of the process from whichit receives a message. For N = 16, we obtain:y 0 1 2 3 4 5 6 7 8dest(y) nil nil nil nil 3 10 nil nil 2rec(y) 15 14 8 4 nil nil 9 11 nily 9 10 11 12 13 14 15dest(y) 6 nil 7 13 nil 1 0rec(y) nil 5 nil nil 12 nil nil (8)At t = 0, let process x be in position labeled x in the list.Then, for t � 0,msg(x; t) = dest(x + t) � t: (9)The communication distance set is:CDS = fi j i = dest(j) � j; dest(j) 6= nilg : (10)8

time messages (sender ! receiver)0 4! 3 8! 2 11! 7 14! 1 5! 10 9! 6 12! 13 15! 01 3! 2 7! 1 10! 6 13! 0 4! 9 8! 5 11! 12 14! 152 2! 1 6! 0 9! 5 12! 15 3! 8 7! 4 10! 11 13! 143 1! 0 : : :Fig. 6. Message Sequences Generated by snextFor the snext(:) function de�ned above, with N = 16,we get: CDS = f1; 3; 5;�6;�4;�3;�1g:As in Section IV, we would like to determine a lowerbound for the size of CDS. The labelling of the list positionsby n snext2(x) described below, results in a CDS of sizelogN . List position 0 is labelled as 0 by n snext2(x) toform a convenient starting point. The position x0 to belabelled next is determined from the current list position,x, as follows:if b0 = 1 then x0 := RS0(x);else if (b0 = 0) ^ (bn�1 = 1) then x0 := x+ 1;else x0 := �rst available position in REven(from left to right).The labels generated by n snext2(x) for N = 16 are:list position 0 1 2 3 4 5 6 7label 0 15 7 14 3 6 10 13list position 8 9 10 11 12 13 14 15label 1 2 4 5 8 9 11 12 (11)The corresponding CDS is f 1, 3, 7, 15 g.The labelling obtained by n snext2(x) is similar to thenew next2(x) labelling given in Section IV. The labels ofthe LEven positions are given by the numbers in Vn(i); 0 �i � N=4 � 1. We can group the positions in LEven intosizes of N/8, N/16,...,2,1, with the ith group being charac-terized by bn�1; :::; bn�i�1 = 0; :::; 0;1, excepting for thelast group which consists solely of position 0. The la-belling can be analyzed as before through a sequence ofsegments, each starting at an REven position, visiting thenext ROdd position and terminating at an LEven posi-tion via none or more LOdd positions. It can be seen thatthe Leven positions in the ith group contribute the numberV (2i)�V (2i�1)�1 = 2i+1�1 to the CDS. Also the number1 belongs to the CDS since the label of an ROdd position isone more than the label of the preceeding REven position.This yields the following result:Theorem 4 For N = 2n, the CDS for the n snext2(x) la-belling is of size n, and its elements are given byCDS = [i=1 to nf2i � 1g: (12)A. Broadcasting of MessagesIn several applications, such as the distributed branch-and-bound algorithm explained in Section VII, the result Rof a global computation also needs to be transmitted to all

the processes. In this section, we show that if snext(x) sat-is�es some further conditions, then such broadcasts can beperformed by attaching a copy of the result to the same setof message sequences that are used to gather informationfor future computations of R. Furthermore, this broadcastis achieved in log(N) time steps, which is the lower-boundfor the single sender case.To be able to broadcast in n = logN steps, the numberof processes having a copy of R must double at each step.This means that each of these processes must become asender of a message in the next time step, and the recipi-ents of these messages must be processes that have not yetobtained a copy of R.We �rst observe that the message sequence shown inFig. 6 does not satisfy the broadcasting requirements. Att = 0, process 4 computes R. At t = 1, a copy of R ispassed on to process 3. These two processes further passon copies of R to 2 and 9 respectively in the next timestep. However, at t = 3, we see that 4, which already hasa copy of R, is a receiver again. Therefore, the number ofprocesses to whom R is broadcast after 3 steps is less than23. Clearly, snext(:) needs to satisfy additional constraintsto double as a broadcasting function.Theorem 5 Let bn�1; :::; b0 be the current position of aprocess, and cn�1; :::; c0 be its next position as indicated bysnext(:). The function snext(.) can also perform a broad-cast of result R in n time steps provided the following ad-ditional n� 1 constraints are met:bi; :::; b1 = 0; :::; 0) ci�1; :::; c0 = 0; :::; 0; for i = 1 to n�1:(13)Proof: The process that computes R at time t0 is in posi-tion 1 at that instant. We show by induction that, at timet0+ j; j = 1 to n, the 2j processes whose positions at timet0 + j are characterized by bn�j; :::; b1 = 0; :::; 0, have acopy of R. This assertion is clearly true for j = 1. Assumethat it is valid for j = m � n�1. The constraints given byEq. 13 guarantee that, at the next time step, all the pro-cesses that already have a copy of R will be in a sending po-sition, (c0 = 0), characterized by cn�m�1; :::; c0 = 0; :::; 0:Furthermore, these positions will be unique since snext(:)is a permutation. Each of these processes can convey a copyof R to the processes occupying positions cn�m�1; :::; c1 =0; :::; 0; c0 = 1: Thus, at time t0+m+1, the 2m+1 processesin positions with bn�m�1; :::; b1 = 0; :::; 0 can obtain a copyof R.On examining snext(:), we see that it was not able toperform a concurrent broadcast because the S3 moves failed9

to satisfy Eq. 13. Now consider the partial sequence ofmessages shown in Figure 7. The reader can verify that aglobal function is broadcast in 4 steps after it is computed,if this sequence is used.The message sequence of Fig. 7 was generated by thefunction bcnext(:) given below:bcnext(x)f/* Type S1 move */if (b0 = 1) then x0 := RS0(x);/* Type S2 move */if ((b0 = 0) ^ (b1 = 0)) then x0 := RS1(x) ;/* Type S3 move */if ((b0 = 0) ^ (b1 = 1)) thenx0 := LS1a((LS0b(x) + 2) mod 2n�1);return(x0);gwhere a and b are the number of leading zeros and onesrespectively, in the argument.The right-shifts cause the constraints of Eq. 13 to be au-tomatically satis�ed for S1 and S2 moves. For S3, b1 = 1,so the constraints do not apply. Therefore, bcnext(:) satis-�es the broadcast requirements. Moreover, it can be easilyshow that bcnext is a primitive permutation. Therefore,we have:Theorem 6 The function bcnext(.) satis�es the broad-casting, fairness and tournament constraints, and thereforegenerates message sequences that:1. allow a new global computation at every time step t,t � logN ;2. enable a process to gather information for a globalcomputation in logN steps; and3. enable broadcast of the results of a global computationto all processes in logN steps.VI. ExtensionsThis section shows that the technique to generate an ad-missible permutation for a binary tree can be generalizedto any k-ary tree. The revolving hierarchy scheme is alsoshown to apply even when it is not possible to impose acomplete k-ary tree on the network, and also when asyn-chronous messages are used instead of synchronous mes-sages.General k: We have shown the methods to generatesuitable permutations for binary trees. The technique eas-ily generalizes to any k-ary tree. A complete k-ary tree ofheight n has kn leaves, which can be divided into k groupsof equal size corresponding to the k subtrees rooted at thechildren of the root of the k-ary tree. The behavior of anysuitable permutation, k-ary next function on internal nodesis unique due to the gather-tree constraint, and is similarto type I move of Theorem 1. The k-ary next functionneeds to de�ne a 1-1 mapping from leaves in one group toleaves in the successive group using a move similar to type

II in Theorem 1. Finally, the last leaf group is mapped tointernal nodes using type III move.General N: So far we had assumed that N = (kj �1)=(k � 1), so that a complete k-ary tree could be used.Given any general N , we can �nd j such that kj�1 � 1 <(k � 1)N � kj � 1. We now supplement the network withenough virtual nodes so that the total number of nodes canform a complete tree. Thus, the number of virtual nodesis v0 = (kj � 1)=(k � 1)�N < (kj � kj�1)=(k � 1)= kj�1 < N (k � 1) + 1:This implies that if the load of virtual nodes is dis-tributed fairly, no node has to carry the burden of morethan k � 1 virtual nodes. A real node sends and receivesmessages on behalf of the virtual nodes it is responsiblefor. We can reduce the maximum load on any node, byreducing the arity of the tree at the expense of increasingits height.AsynchronousMessages: So far we had assumed thatthe communication is done via synchronous messages. Tosee that the technique works even with asynchronous mes-sages, note that every process becomes root in any consec-utive N steps. This process must receive messages directly,or indirectly from all processes. It relinquishes its positionas the root only after receiving all information needed tocompute a global function. This property automaticallysynchronizes the algorithm. Observe that algorithms fordistributed search in Section VII work even if the messagesare asynchronous. VII. ApplicationsOur techniques can be applied to derive algorithms fora wide variety of distributed control problems, especiallythose requiring computation of asynchronous global func-tions. In an asynchronous global function, if informationfrom a process is available regarding two di�erent times,the older information can always be discarded. For ex-ample, consider a distributed implementation of a branch-and-bound algorithm for the minimum traveling salesmanpath(TSP) problem. Each processor explores only thosepartial paths which have cost smaller than the minimumof costs of all known complete paths. If a processor knowsof a path with cost 75 at time step t and another of cost70 at time step t+1, then it needs to propagate only 70 asthe cost of its current minimum path. In this example, theroot does not need the current best path determined byeach processor at each time step to compute the (current)global minimum. The states that it receives may be stag-gered in time, i.e. its own state may be current whereas thestate of its sons one phase old, and the state of its grand-sons two phases old. We next describe our technique fortwo problems which satisfy the asynchrony condition on theglobal function. These are distributed branch-and-boundalgorithms, and distributed computation of �xed points.A. Distributed Branch-and-Bound AlgorithmsThese algorithms are most suitable for our technique.They satisfy not only the asynchrony condition, but also10

time messages (sender ! receiver)0 4! 3 10! 2 12! 9 15! 1 5! 11 13! 8 6! 14 7! 01 3! 2 9! 1 11! 8 14! 0 4! 10 12! 7 5! 13 6! 152 2! 1 8! 0 10! 7 13! 15 3! 9 11! 6 4! 12 5! 143 1! 0 : : : Fig. 7. Message sequence generated by bcnexthave an additional attractive property: it is feasible for in-ternal nodes to perform some intermediate operations andreduce the overall state sent to their parents. For exam-ple, in the TSP problem, an internal node needs to forwardonly that message which contains the minimum travelingpath and not all the messages it received from its chil-dren. Thus, a hierarchical algorithm (static or dynamic)for this problem reduces the total amount of informationow within the network. In general, if the required globalfunction is associative in its arguments (such as min), theninformation can be reduced by performing operations atinternal nodes.A distributed branch-and-bound problem requires mul-tiple processors to cooperate in search of a minimum solu-tion. Each processor reduces its search space by using theknown bound on the required solution. In our descriptionof the algorithm, we assume that search (knownbound) pro-cedure searches for a solution for some number of steps andreturns the value of its current minimumsolution. The cru-cial problem then, is the computation of the global boundand its dissemination to all processes. To solve this prob-lem, we apply the results obtained in Section V which per-mit us to use the same permutation for the gather tree andthe broadcast tree. This permutation is implemented bymeans of tosend and torec functions as described earlier.The function tosend returns -1 if no message needs to besent in the current time step. In the algorithm describedbelow, we have assumed that at most one message can bereceived in one time step.Process i;varknownbound, mymin, hismin: real;step, numsteps, dest:integer;beginInitialization:knownbound := infinity;for step:=0 to numsteps dobeginmymin := search(knownbound);dest = tosend(i, step);if (dest <> -1) thensend(dest, mymin)else beginreceive(torec(i, step), hismin);knownbound := min(mymin, hismin);end;(* else *)end; (* for *)end;(* process i *);

Each process uses tosend and torec to �nd out when andwith whom it should communicate. From Theorem 6, eachprocess receives a global minimum bound every 2:log(N)steps, and sends/receives an equal number of messages.A static hierarchical algorithm for this problem requires2(N � 1) messages per computation of a global function:N � 1 messages for the gather-tree, and N � 1 messagesfor the broadcast tree. Each message is of constant sizerequired to represent the minimal solution known to thesender. Our algorithm requires only N=2 messages, whichis about four times less expensive than the static hierarchi-cal algorithm. The reduction in the number of messagesdoes not lead to any increase in the size of messages. It isobtained by reusing a message for multiple global functioncomputations. Moreover, our algorithm exhibits a totallyfair workload distribution - each process has to send andreceive an equal number of messages.B. Asynchronous Distributed Computation of Fixed PointsThis problem exempli�es the class of asynchronous globalfunctions which do not allow reduction of information atinternal nodes. Assume that we are given N equations inN variables. We are required to �nd a solution of this setof equations. Formally, we have to determine xi such that,xi = fi(x1; x2; :::; xN) for all 1 � i � N:This problem arises in many contexts, such as compu-tation of stationary probability distributions for discreteMarkov chains. Moreover, an iterative asynchronous com-putation of these equations will yield their solution underconditions posed in [4] We assume that equations are ondi�erent processors, and every processor computes one co-ordinate of the x vector. In the algorithm given below, wehave used an array t to record the time step at which valuesof x coordinates are computed.Process i;var(* N is the number of processes *)x, hisx: array[1..N] of real;t, hist: array[1..N] of integer;(* t[j] = time step for which x[j] is known *)j,step: integer;beginstep := 0;x[i] := initial; t[i] := step;(* values of x[j] are not known at time 0 *)for j:=1 to N doif (j<>i) x[j],t[j]:=0,-1;11

while (not fixed_point) dobegindest = tosend(i, step);if (dest <> -1) thensend(dest, x,t)else beginreceive(torec(i, step), hisx, hist);(* update coordinates of my vector *)for j:=1 to N doif hist[j] > t[j] thenx[j], t[j] := hisx[j], hist[j];(* recompute my coordinate *)x[i] := f_i[x];t[i] := step;end;(* else *)step := step + 1;end;(* while *)end;(* process i *);Each process in the above algorithm sends or receives thex vector using tosend and torec primitives. On receiving anx vector, it updates the value of any coordinate x[j] whichhas its t[j] less than the received hist[j]. These steps are re-peated till the computation reaches a �xed point. We havenot considered the detection of �xed point in the above al-gorithm. To detect the �xed point, it is su�cient to notethat if a process on becoming root �nds that its x vectorhas not changed since the last time, then the computationmust have reached its �xed point. To ensure that all pro-cesses terminate at the same step, any process that detects�xed point should broadcast a time step when all processesmust stop. The details are left to the reader.The algorithm requires N/2 messages per computationand broadcast of the global computation. The messagesize in this algorithm is of order O(N) assuming that itrequires a constant number of bits to encode state of oneprocess. This size can be reduced at the expense of timerequired for propagation of a change as follows. In theabove algorithm, a change in any coordinate is propagatedto all processes within 2log(N) steps. This is because anychange in a process is gathered in log(N) steps by a rootprocess due to tournament constraints, and propagated toall other processes in another log(N) steps due to broadcastconstraints. We observe that even if broadcast constraintsare not used, every process will receive the change in O(N)steps due to fairness constraints. This property can beexploited to reduce the message size by requiring everyprocess to send states of only a selected set of processesinstead of the entire system. Let there be N = 2n processesin the system. At every time step, 2j processes need to sendstates of only 2n�j�1 processes for values of j between 0and n � 1. That is, one process needs to send states ofN/2 processes, two processes need to send states of N/4processes, and so on. Therefore, the total number of bitssent in any time step isnXi=0 2i:(N=2i+1) = O(nN) = O(N log(N))

Thus, on an average a message is of O(log(N)) size.VII. ConclusionsWe have presented a general technique for repeated com-putation of global functions in a distributed environment.Our technique is based on a new dynamic hierarchical scheme.This hierarchical scheme determines the messages that needto be sent at any given time. As the computations evolve,the hierarchy changes in such a way that it results in anequitable distribution of work among all processes.Our techniques, when applied to a large class of dis-tributed algorithms, not only result in an even workload,but also lower communication overheads by reducing thetotal number of messages. We have successfully appliedthese techniques to problems such as distributed branch-and-bound and distributed asynchronous �xed-point com-putation.Some related issues still need to be resolved. First, thechoice of a permutation, on which the message patternsgenerated depends, is not unique. Recollect that the logi-cal neighbors for communication is given by the set CDScorresponding to the chosen permutation. An implemen-tation issue is to keep this set small and easily mapableonto the physical interconnection network. A systematicscheme for including connectivity considerations in select-ing a permutation remains an open problem.We have assumed error-free transmission of messages inthis paper. Generalization of our techniques in the presenceof faulty communication channels or malicious processes isa topic of future research.AcknowledgementsWe would like to thank anonymous referees for theirhelpful suggestions on an earlier version of this paper.References[1] S.G.Akl, The Design and Analysis of Parallel Algorithms, Pren-tice Hall, 1989.[2] J-C. Bermond, J-C. Konig, and M. Raynal, \General and Ef-�cient Decentralized Consensus Protocols," Distributed Algo-rithms, 2nd International Workshop, Amsterdam 1987, LectureNotes in Computer Science 312, Springer Verlag 1988, pp 41-56.[3] J-C. Bermond, and J-C. Konig, \General and E�cient Decen-tralized Consensus Protocols II," Parallel and Distributed Al-gorithms, International Workshop, Paris 1988, North Holland1989, pp 199-210.[4] D.P.Bertsekas and J. Tsitsiklis, Parallel and Distributed Com-putation, Prentice Hall, 1989.[5] L. Bouge, \Repeated Snapshots in Distributed Systems withSynchronous Communication and their implementation inCSP," Theoretical Computer Science, Vol. 49, 1987, pp 145-169.[6] K.M. Chandy and L. Lamport, \Distributed Snapshots: Deter-mining global states of distributed systems",ACM Transactionson Computer Systems 3(1):63-75, February 1985.[7] K.M. Chandy, J. Misra, and L. Haas, \Distributed Deadlockdetection",ACM Transactions on Computer Systems 1(2):145-156, May 1983.[8] E.W. Dijkstra, W.H.J. Feijen and A.J.M. VanGasteren,\Derivation of a Termination Detection Algorithm for Dis-tributed Computation," Information Processing Letters, 16,June 1983, pp 217-219.[9] R.A. Finkel, and J.P. Fishburn, \Parallelism in alpha-betasearch," Arti�cial Intelligence 19,89-106.12

[10] V.K. Garg and J. Ghosh, \Symmetry In Spite of Hierarchy,"Proc. 10th IEEE International Conference on Distributed Com-puting Systems, Paris, France 1990, pp 4-11.[11] R. Gussella, \Tempo: A clock synchronization algorithm",Tech. Report, Computer Science Division, University of Cali-fornia, Berkeley, 1986.[12] I.N. Herstein, Topics in Algebra, Wiley Eastern Limited 1975.[13] T.V. Lakshman and A.K. Agrawala, \E�cient DecentralizedConsensus Protocols," IEEE Transactions on Software Engi-neering, vol. SE-12, no. 5, 1986, pp 600-607.[14] G. Le Lann. \Distributed Systems - Toward a Formal Ap-proach", Proc. AFIP Congress 77, 1977, pages 155-160.[15] D. Menasce and R.R. Muntz, \Locking and Deadlock Detectionin Distributed Data Bases". IEEE Transactions on SoftwareEngineering, SE-35, No. 3, May 1979, pp. 195-202.[16] M.L.Powell and D.L.Presotto, \Publishing - A reliable broad-cast communication mechanism", Operating Systems Review,17, 5, 100-109.[17] M.J.Quinn, Designing E�cient Algorithms for Parallel Com-puters, McGraw-Hill, 1986.[18] J. F. Shoch and J. A. Hupp. \The \worm" programs{Early ex-perience with a distributed computation " Communications ofthe ACM, 25(3):172-180, March 1982.[19] G. Tel, \Total Algorithms," Parallel and Distributed Algo-rithms, International Workshop, Paris 1988, North Holland1989, pp 187-198.[20] W.T.Tsai, \The design and maintenance of large hierarchicalnetworks", Ph.D. dissertation, University of California, Berke-ley, 1985.[21] A.M. Van Tilborg, and L.D.Wittie, \Wave Scheduling: Dis-tributed allocation of task forces in network computers," Proc.of the 2nd International Conference on Distributed ComputingSystems, IEEE, pp 337-347, 1981.Vijay K. Garg (S'84-M'89) receivedhis Bach-elor of Technology degree in computer engi-neering from the Indian Institute of Technol-ogy, Kanpur, in 1984. He continued his educa-tion at the University of California, Berkeleywhere he received his MS in 1985 and Ph.D. in1988 in Electrical Engineering and ComputerScience. He is currently an assistant profes-sor in the Department of Electrical and Com-puter Engineering at the University of Texas,Austin. His research interests are in the areasof distributed systems and supervisory control of discrete event sys-tems. He has authored or co-authoredmore than 50 research articlesin these areas. He has served as a program committee member ofthe IEEE International Conference on Distributed Computing Sys-tems and as an organizer of the minisymposium on Discrete EventSystems in the SIAM Conference on Control and Applications.Joydeep Ghosh (S'83-M'88) receiveda Ph.D.in Computer Engineering from the Universityof Southern California in 1988, where he wasthe �rst student in the School of Engineeringto be awarded an "All-University PredoctoralMerit Fellowship" for four years. He is cur-rently an Associate Professor in the Depart-ment of Electrical and Computer Engineeringat the University of Texas, Austin. Joydeep'sresearch interests include parallel computer ar-chitecture and arti�cial neural networks, andhe has over 50 refereed publications in this areas. He served as thegeneral chairman for the SPIE/SPSEConference on ImageProcessingArchitectures, SantaClara, Feb. 1990, and cochair for ANNIE'93. Heis a member of the editorial board of IEEE Computer Society Press,and of Pattern Recognition. Dr. Ghosh received the 1992 Darling-ton Award for best journal paper from IEEE Circuits and SystemsSociety. 13

