
Detection of Weak Unstable Predicates inDistributed ProgramsVijay K. Garg, Brian WaldeckerAbstract|This paper discusses detection of global predicatesin a distributed program. Earlier algorithms for detectionof global predicates proposed by Chandy and Lamport workonly for stable predicates. A predicate is stable if it doesnot turn false once it becomes true. Our algorithms de-tect even unstable predicates without excessive overhead.In the past, such predicates have been regarded as too di�-cult to detect. The predicates are speci�ed using a logic de-scribed formally in this paper. We discuss detection of weakconjunctive predicates which are formed by conjunction ofpredicates local to processes in the system. Our detectionmethods will detect if such a predicate is true for any in-terleaving of events in the system, whether the predicateis stable or not. Also, any predicate which can be reducedto a set of weak conjunctive predicates is detectable. Thisclass of predicates captures many global predicates that areof interest to a programmer. The message complexity ofour algorithm is bounded by the number of messages usedby the program. The main application of our results arein debugging and testing of distributed programs. Our al-gorithms have been incorporated in a distributed debuggerwhich runs on a network of Sun Workstations under SunOS.Keywords|Unstable Predicates, Predicate Detection, Dis-tributed Algorithms, Distributed DebuggingI. IntroductionA distributed program is one that runs on multiple pro-cessors connected by a communication network. The stateof such a program is distributed across the network andno process has access to the global state at any instant.Detection of a global predicate, i.e. a condition that de-pends on the state of multiple processes, is a fundamentalproblem in distributed computing. This problem arises inmany contexts such as designing, testing and debugging ofdistributed programs.A global predicate may be either stable or unstable. Astable predicate is one which never turns false once it be-comes true. Some examples of stable predicates are dead-lock and termination. Once a system has terminated itwill stay terminated. An unstable predicate is one with-out such a property. Its value may alternate between trueand false. Chandy and Lamport [3] have given an elegantalgorithm to detect stable predicates. Their algorithm isbased on taking a consistent global snapshot of the systemand checking if the snapshot satis�es the global predicate.If the snapshot satis�es the stable predicate, then it canbe inferred that the stable predicate is true at the end ofThis work was supported in part by the NSF Grant CCR 9110605, theNavy Grant N00039-91-C-0082, a TRW faculty assistantship award, andIBM Agreement 153.V.K. Garg is with the Electrical and Computer EngineeringDept, University of Texas at Austin, Austin, TX 78712-1084. vi-jay@pine.ece.utexas.edu B. Waldecker is with Austin System Center ofSchlumberger Well Services, Austin, TX 78720.

the snapshot algorithm. Similarly, if the predicate is falsefor the snapshot, then it was also false at the beginning ofthe snapshot algorithm. By taking such snapshots period-ically a stable property can be detected. Bouge [2] , andSpezialetti and Kearns [22] have extended this method forrepeated snapshots. This approach does not work for un-stable predicate which may be true only between two snap-shots and not at the time when the snapshot is taken. Anentirely di�erent approach is required for such predicates.In this paper, we present an approach which detects alarge class of unstable predicates. We begin by de�ninga logic that is used for speci�cation of global predicates.Formulas in this logic are interpreted over a single run of adistributed program. A run of a distributed program gen-erates a partial order of events, and there are many totalorders consistent with this partial order. We call a formulastrong if it is true for all total orders, and weak if there ex-ists a total order for which it is true. We consider a specialclass of predicates de�ned in this logic in which a globalstate formula is either a disjunction, or a conjunction of lo-cal predicates. Since disjunctive predicates can simply bedetected by incorporating a local predicate detection mech-anism at each process, we focus on conjunctive predicates.In this paper, we describe algorithms for detection of weaktypes of these predicates. Detection of strong predicates isdiscussed in [10] .Many of our detection algorithms use timestamp vectorsas proposed by Fidge [6] and Mattern [17]. Each processdetects its local predicate and records the timestamp as-sociated with the event. These timestamps are sent toa checker process which uses these timestamps to decideif the global predicate became true. We show that ourmethod uses the optimal number of comparisons by provid-ing an adversary argument. We also show that the checkingprocess can be decentralized, making our algorithms usefuleven for large networks.The algorithms presented in this paper have many appli-cations. In debugging a distributed program, a program-mer may specify a breakpoint on a condition using our logicand then detect if the condition became true. Our algo-rithms can also be used for testing distributed programs.Any condition that must be true in a valid run of a dis-tributed program may be speci�ed and then its occurrencecan be veri�ed. An important property of our algorithmsis that they detect even those errors which may not man-ifest themselves in a particular execution, but may do sowith di�erent processing speeds. As an example, consider1

a distributed mutual exclusion algorithm. In some run, itmay be possible that two processes do not access criticalregion even if they both had permission to enter the criticalregion. Our algorithms will detect such a scenario undercertain conditions described in the paper.Cooper and Marzullo [5], and Haban and Weigel [11] alsodescribe predicate detection, but they deal with generalpredicates. Detection of such predicates is intractable sinceit involves a combinatorial explosion of the state space. Forexample, the algorithm proposed by Cooper and Marzullo[5] has complexity O(kn) where k is the maximumnumberof events a monitored process has executed and n is thenumber of processes. The fundamental di�erence betweenour algorithm and their algorithm is that their algorithmexplicitly checks all possible global states, whereas our al-gorithm does not. Miller and Choi [19] discuss mainlylinked predicates. They do not discuss detection of con-junctive predicates (in our sense) which are most usefulin distributed programs. Moreover, they do not make dis-tinction between program messages and messages used bythe detection algorithm. As a result, the linked predi-cate detected by Miller and Choi's algorithm may be truewhen the debugger is present but may become false whenit is removed. Our algorithms avoid this problem. Hur�n,Plouzeau and Raynal [12] also discuss methods for detect-ing atomic sequences of predicates in distributed computa-tions. Spezialetti and Kearns [23] discuss methods for rec-ognizing event occurrences without taking snapshots. How-ever, their approach is suitable only for monotonic eventswhich are similar to stable properties. An overview of theseand some other approaches can be found in [20].This paper is organized as follows: Section II presentsour logic for describing unstable predicates in a distributedprogram. It describes the notion of a distributed run, aglobal sequence and the logic for speci�cation of globalpredicates. Section III discusses a necessary and su�cientcondition for detection of weak conjunctive predicates. Italso shows that detection of weak conjunctive predicatesis su�cient to detect any global predicate on a �nite stateprogram, or any global predicate that can be written as aboolean expression of local conditions. Section IV presentsan algorithm for detection of a weak conjunctive predicate.Section V describes a technique to decentralize our algo-rithm. Section VI gives some details of an implementationof our algorithms in a distributed debugger. Finally, sec-tion VII gives conclusions of this paper.II. Our ModelA. Distributed RunWe assume a loosely-coupled message-passing system with-out any shared memory or a global clock. A distributedprogram consists of a set of n processes denoted byfP1,P2,...,Png communicating solely via asynchronous mes-sages. In this paper, we will be concerned with a singlerun r of a distributed program. Each process Pi in thatrun generates a single execution trace r[i] which is a �-nite sequence of states and actions which alternate begin-

ning with an initial state. The state of a process is de-�ned by the value of all its variables including its programcounter. For example, the process Pi generates the tracesi;0ai;0si;1ai;1 : : :ai;l�1si;l, where si's are the local statesand ai's are the local actions in the process Pi. There arethree kinds of actions - internal, send and receive. A sendaction denoted by send(< i; j; � >) means the sending of amessage � from the process Pi to the process Pj. A receiveaction denoted by receive(< i; j; � >) means the receivingof a message � from the process Pi by the process Pj. Weassume in this paper that no messages are lost, altered orspuriously introduced. We do not make any assumptionsabout FIFO nature of the channels. A run r is a vector oftraces with r[i] as the trace of the process Pi. From thereliability of messages we obtainreceive(< i; j; � >) 2 r[j], send(< i; j; � >) 2 r[i]We also de�ne a happened-before relation (denoted by!)between states similar to that of Lamport's happened-beforerelation between events .De�nition 1 The state s in the trace r[i] happened-before(!) the state t in the trace r[j] if and only if one of thefollowing holds:1. i = j and s occurs before t in r[i].2. The action following s is the send of a message and theaction before t is the reception of that message.3. There exists a state u in one of the traces such thats! u and u! t.The relation ! is a partial order on the states of the pro-cesses in the system. As a result of rules 2 and 3 in theabove de�nition, we say that there is a message path fromstate s to state t if s! t and they are in di�erent processes.A run can be visualized as a valid error-free process timediagram [16].Example 2 Consider the following distributed program:Process P1; Process P2;var x:integer initially 7; var y,z:integer initially (0,0);begin beginl0: send(x) to P2; m0: receive(y) from P1;l1: x := x-1; m1: receive(z) from P1;l2: send(x) to P2; m2:l3:end; end;Labels l0; :::; l3 and m0; :::;m2 denote possible values ofprogram counters. A distributed run r is given by:r[1] = ((l0; 7); send(1; 2; 7); (l1; 7); internal;(l2; 6); send(1; 2; 6); (l3; 6))r[2] = ((m0; 0; 0); receive(1; 2; 7); (m1; 7; 0);receive(1; 2; 6); (m2; 7; 6))Another run r0 can be constructed when two messages sentby the process P1 are received in the reverse order.r0[1] = ((l0; 7); send(1; 2; 7); (l1; 7); internal;(l2; 6); send(1; 2; 6); (l3; 6))r0[2] = ((m0; 0; 0); receive(1; 2; 6); (m1; 6; 0);receive(1; 2; 7); (m2; 6; 7))2

B. Global SequenceA run de�nes a partial order (!) on the set of actionsand states. For simplicity, we ignore actions from a runand focus just on states in traces. Thus, r[i] denotes thesequence of states of Pi. In general, there are many totalorders that are consistent with (or linearizations of) thispartial order. A global sequence corresponds to a view ofthe run which could be obtained given the existence of aglobal clock. Thus, a global sequence is a sequence of globalstates where a global state is a vector of local states. Thisde�nition of a global state is di�erent from that of Chandyand Lamport which includes states of the channels. In ourmodel, a channel is just a set of all those messages thathave been sent but not received yet. Since this set can bededuced from all the local states, we do not require thestate of channels to be explicitly included in the globalstate. We denote the set of global sequences consistentwith a run r as linear(r). A global sequence g is a �nitesequence of global states denoted as g = g0g1 : : : gl, wheregk is a global state for 0 � k � l. Its su�x starting withgk (i.e., gk:gk+1 : : : gl) is denoted by gk. Clearly, if theobserver restricts his attention to a single process Pi, thenhe would observe r[i] or a stutter of r[i]. A stutter of r[i] isa �nite sequence where each state in r[i] may be repeated a�nite number of times. The stutter arises because we havepurposely avoided any reference to physical time. Let sktmean that s 6! t^ t 6! s. Then, a global sequence of a runis de�ned as:De�nition 3 g is a global sequence of a run r (denoted byg 2 linear(r)) if and only if the following constraints hold:(S1): 8i : g restricted to Pi = r[i] (or a stutter of r[i])(S2): 8k : gk[i]kgk[j] where gk[i] is the state of Pi in theglobal state gkExample 4 Some global sequences consistent with the runr in Example 2 are given below:g = [(l0; 7;m0; 0; 0); (l1; 7;m0; 0; 0); (l2; 6;m1; 7; 0);(l3; 6;m1; 7; 0); (l3; 6;m2; 7; 6)]h = [(l0; 7;m0; 0; 0); (l1; 7;m0; 0; 0); (l2; 6;m0; 0; 0);(l3; 6;m1; 7; 0); (l3; 6;m2; 7; 6)]Our model of a distributed run and global sequences doesnot assume that the system computation can always bespeci�ed as some interleaving of local actions. The nextglobal state of a global sequence may result from multipleindependent local actions.C. Logic OperatorsThere are three syntactic categories in our logic - bool,lin and form. The syntax of our logic is as follows:form ::= A: lin j E: linlin ::= 2 lin j 3 lin j lin ,! lin j lin ^ lin jlin _ lin j :lin j boolbool ::= a predicate over a global system stateA bool is a boolean expression de�ned on a single globalstate of the system. Its value can be determined if theglobal state is known. For example, if the global state has(x = 7; y = 0), then the bool (x � y) is true. Here x

and y could be variables in di�erent processes. A lin isa temporal formula de�ned over a global sequence. 3 linmeans that there exists a su�x of the global sequence suchthat lin is true for the su�x [21]. We also use 2 as the dualof 3. We have also introduced a binary operator (,!) tocapture sequencing directly. p ,! q means that there existssu�xes gi and gj of the global sequence such that p is trueof the su�x gi, q is true of the su�x gj, and i < j. A formis de�ned over a set of global sequences and it is simply alin quali�ed with the universal (A:) or the existential (E:)quanti�er. Thus, the semantics of our logic is as follows:g j= bool i� g0 j= boolg j= :lin i� :(g j= lin)g j= lin1 ^ lin2 i� g j= lin1 ^ g j= lin2g j= lin1 _ lin2 i� g j= lin1 _ g j= lin2g j= 2lin i� 8i : gi j= ling j= 3lin i� 9i : gi j= ling j= lin1 ,! lin2 i� 9i; j : (i < j) ^ gi j= lin1 ^ gj j= lin2r j=A:lin i� 8g : g 2 linear(r) : g j= linr j=E:lin i� 9g : g 2 linear(r) : g j= linA, and E quantify over the set of global sequences thata distributed run may exhibit given the trace for each pro-cess. A:p means that the predicate p holds for all globalsequences and E:p means that the predicate p holds forsome global sequence. We call formulas starting with A:as strong formulas and formulas starting with E: as weakformulas. The intuition behind the term strong is that astrong formula is true no matter how fast or slow the in-dividual processes in the system execute. That is, it holdsfor all execution speeds which generate the same trace foran individual process. A weak formula is true if and onlyif there exists one global sequence in which it is true. Inother words, the predicate can be made true by choosingappropriate execution speeds of various processors.The di�culty of checking truthness of a global predicatearises from two sources. First, if there are n processes inthe system, the total number of global sequences (in whicha global state is not repeated) is exponential in n and thesize of the traces. Secondly, the global state is distributedacross the network during an actual run. Thus, detectionof any general predicate in the above logic is not feasiblein a distributed program. To avoid the problem of com-binatorial explosion, we focus on detection of predicatesbelonging to a class that we believe captures a large sub-set of predicates interesting to a programmer. We use theword local to refer to a predicate or condition that involvesthe state of a single process in the system. Such a condi-tion can be easily checked by the process itself. We detectpredicates that are boolean expressions of local predicates.Following are examples of the formulas detectable by ouralgorithms:1. Suppose we are developing a mutual exclusion algo-rithm. Let CSi represent the local predicate that the pro-cess Pi is in critical section. Then, the following formuladetects any possibility of violation of mutual exclusion for3

a particular run: E : 3(CS1 ^ CS2)2. In the example 4, we can check ifE : 3(x = 6) ^ (P2 at m0)Note that 3(x = 6) ^ (P2 at m0)is not true for the global sequence g, but it is true for theglobal sequence h. Our algorithm will detect the abovepredicate to be true for the run r even though the globalsequence executed may be g.3. Assume that in a database application, serializability isenforced using a two phase locking scheme [15]. Furtherassume that there are two types of locks: read and write.Then, the following formula may be useful to identify anerror in implementation:E : 3(P1 has read lock) ^ (P2 has write lock)III. Weak Conjunctive PredicatesA weak conjunctive predicate (WCP) is true for a givenrun if and only if there exists a global sequence consistentwith that run in which all conjuncts are true in some globalstate. Practically speaking, this type of predicate is mostuseful for bad or undesirable predicates (i.e. predicates thatshould never become true). In such cases, the programmerwould like to know whenever it is possible that the badpredicate may become true. As an example, consider theclassical mutual exclusion situation. We may use a WCPto check if the correctness criterion of never having two ormore processes in their critical sections at the same time ismet. We would want to detect the predicate \process x is inits critical section and process y is in its critical section". Itis important to observe that our algorithms will report thepossibility of mutual exclusion violation even if it was notviolated in the execution that happened. The detectionwill occur if and only if there exists a consistent cut inwhich all local predicates are true. Thus, our techniquesdetect errors that may be hidden in some run due to raceconditions.A. Importance of Weak Conjunctive PredicatesConjunctive predicates form the most interesting class ofpredicates because their detection is su�cient for detectionof any global predicate which can be written as a booleanexpression of local predicates. This observation is shownbelow:Lemma 5 Let p be any predicate constructed from localpredicates using boolean connectives. Then, E : 3p can bedetected using an algorithm that can detect E : 3q where qis a pure conjunction of local predicates.Proof: We �rst write p in its disjunctive normal form.Thus, E: 3 p = E: 3 (m1 _ : : : _ ml) where each mi isa pure conjunction of local predicates. Next, we observe

that E: 3 (m1 _ : : :_ml)= f semantics of E and 3 g9g : 9i : gi j= (m1 _m2 : : :_ml)= f semantics of _g9g : 9i : (gi j= m1 _ gi j= m2 _ : : : gi j= ml)= f distribute 9 over _ twiceg9g : 9i : gi j= m1 _ : : : _ 9g : 9i : gi j= ml= f semantics of E and 3 gE: 3m1 _ E:3m2 _ : : : _ E3mlThus, the problem of detecting E : 3p is reduced to solvingl problems of detecting E : 3q where q is a pure conjunc-tion of local predicates.Our approach is most useful when the global predicatecan be written as a boolean expression of local predicates.As an example, consider a distributed program in whichx; y and z are in three di�erent processes. Then,E:3even(x) ^ ((y < 0) _ (z > 6))can be rewritten asE:3(even(x) ^ (y < 0))_ E:3(even(x) ^ (z > 6))where each part is a weak conjunctive predicate.We note that even if the global predicate is not a booleanexpression of local predicates, but it is satis�ed by only a�nite number of possible global states, then it can again berewritten as a disjunction of weak conjunctive predicates.For example, consider the predicate E : 3(x = y), wherex and y are in di�erent processes. (x = y) is not a localpredicate as it depends on both processes. However, if weknow that x and y can only take values f0; 1g, then theabove expression can be rewritten asE : 3((x = 0) ^ (y = 0)) _ ((x = 1) ^ (y = 1)).This is equivalent to(E : 3(x = 0) ^ (y = 0)) _ (E : 3(x = 1) ^ (y = 1)).Each of the disjunct in this expression is a weak conjunctivepredicate.We observe that predicates of the form A : 2bool canalso be easily detected as they are simply duals ofE : 3boolwhich can be detected as shown in Section .In this paper, we have emphasized conjunctive predi-cates and not disjunctive predicates. The reason is thatdisjunctive predicates are quite simple to detect. To de-tect a disjunctive predicate E:3LP1 _ LP2 _ : : :_ LPm, itis su�cient for the process Pi to monitor LPi. If any ofthe process �nds its local predicate true, the disjunctivepredicate is true.B. Conditions for Weak Conjunctive PredicatesWe use LPi to denote a local predicate in the process Pi,and LPi(s) to denote that the predicate LPi is true in thestate s. We say that s 2 r[i] if s occurs in the sequencer[i].Our aim is to detect whether E: 3(LP1^LP2^ : : :LPm)holds for a given r. We can assume m � n because LPi ^LPj is just another local predicate if LPi and LPj belongto the same process. We now present a theorem which4

states the necessary and su�cient conditions for a weakconjunctive predicate to hold.Theorem 6 E: 3(LP1 ^LP2 ^ : : :LPm) is true for a runr i� for all 1 � i � m 9si 2 r[i] such that LPi is true instate si, and si and sj are incomparable for i 6= j. That is,r j= E: 3(LP1 ^ LP2 ^ : : :LPm) , 9s1 2 r[1]; s2 2r[2]; :::; sm 2 r[m] such that< 8i : 1 � i � m : LPi(si) > ^ < 8i; j : 1 � i < j � m :(siksj) >Proof: First assume that E: 3(LP1 ^ LP2 ^ : : :LPm) istrue for the run r. By de�nition, there is a global sequenceg 2 linear(r) which has a global state, g� where all localpredicates are true. We de�ne si = g�[i] for all i. Clearly,8i : LPi(si) ^ (si 2 r[i]). Now consider any two distinctindices i and j between 1 andm. Since si and sj correspondto the same global state, si and sj must be incomparableby (S2). Therefore, 9s1 2 r[1]; s2 2 r[2]; :::; sm 2 r[m] :<8i : 1 � i � m : LPi(si) > ^ < 8i; j : 1 � i < j � m :(siksj) >.We prove the other direction (() for m = 2. The prooffor the general case is similar. Assume that there existstates s1 2 r[1] s2 2 r[2] such that states s1 and s2 areincomparable, and LP1(s1) ^ LP2(s2). This implies thatthere is no message path from s1 to s2 or vice-versa. Thus,any message received in or before s2 could not have beensent after s1 and any message received in or before s1 couldnot have been sent after s2. Fig. 1. illustrates this. Thus
1. 1.

2.

1 2s s

P1 2P

2. P1 freezes at s1 and
P2 executes until s2.

2.

step 1. P1 and P2 execute until
P1 at s1 and P2 before s2Fig. 1. Incomparable States Producing A Single GlobalStateit is possible to construct the following execution (globalsequence):1. Let both processes execute consistent with the run runtil either P1 is at s1 and P2 is before s2, or P2 is at s2and P1 is before s1. Assume without loss of generalitythat the former case holds.2. Freeze P1 at s1 and let P2 execute until it is at s2.This is possible because there is no message sent afters1 and received before s2.We now have a global state g� = (s1; s2) such that bothLP1 and LP2 are true in g�.IV. Detection of Weak Conjunctive Predicates

1

2

PPP1 2 3

1

1

[1,0,0]
[0,1,0] [0,0,1]

[1,1,0]
[0,2,0]

[1,2,1]

[1,2,2][0,3,0]

[2,1,0] [1,1,1]

[2,2,1] Fig. 2. Examples of lcmvectorsTheorem 6 shows that it is necessary and su�cient to�nd a set of incomparable states in which local predicatesare true to detect a weak conjunctive predicate. In thissection, we present a centralized algorithm to do so. Later,we will see how the algorithm can be decentralized. Inthis algorithm, one process serves as a checker. All otherprocesses involved in WCP are referred to as non-checkerprocesses. These processes, shown in Fig. 3, check for localpredicates.Each non-checker process keeps its own local lcmvector(last causal message vector) of timestamps. These times-tamp vectors are slight a modi�cation of the virtual timevectors proposed by [6,17]. For the process Pj, lcmvec-tor[i] (i 6= j) is the message id of the most recent messagefrom Pi (to anybody) which has a causal relationship toPj. lcmvector[j] for the process Pj is the next message idthat Pj will use. To maintain the lcmvector information,we require every process to include its lcmvector in eachprogram message it sends. Whenever a process receives aprogram message, it updates its own lcmvector by takingthe component-wise maximumof its lcmvector and the onecontained in the message. Fig. 2 illustrates this by show-ing P1's lcmvector in each interval. Whenever the localpredicate of a process becomes true for the �rst time sincethe most recently sent message (or the beginning of thetrace), it generates a debug message containing its localtimestamp vector and sends it to the checker process.One of the reasons that the above algorithm is practicalis that a process is not required to send its lcmvector everytime the local predicate is detected. A simple observationtells us that the lcmvector need not be sent if there hasbeen no message activity since the last time the lcmvectorwas sent. This is because the lcmvector can change itsvalue only when a message is sent or received. We nowshow that it is su�cient to send the lcmvector once aftereach message is sent irrespective of the number of messagesreceived.Let local(s) denote that the local predicate is true instate s. We de�ne the predicate first(s) to be true i�the local predicate is true for the �rst time since the mostrecently sent message (or the beginning of the trace). We5

var lcmvector: array [1..n] of integer;init 8i : i 6= id :lcmvector[i] = 0;lcmvector[id] = 1;/* last causal msg rcvd from process 1 to n*/�rst
ag: boolean init true;local pred: Boolean Expression;/*the local pred. to be tested by this process*/2 For sending dosend (prog, lcmvector, : : :);lcmvector[id]++ ; �rst
ag:=true;2 Upon receive (prog, msg lcmvector, : : :) do8i :lcmvector[i]:=max(lcmvector[i], msg lcmvector[i]);2 Upon (local pred = true)^ �rst
ag do�rst
ag := false;send (dbg, lcmvector) to the checker process;Fig. 3. Algorithm for weak conjunctive predicates -nonchecker process Pidsay wcp(s1; s2; :::; sm) is true if s1; s2; :::sm are the statesin di�erent processes making the wcp true (as in Theorem6).Theorem 7 9s1; :::; sm : wcp(s1; s2; :::sm),< 9s01; ::; s0m : wcp(s01; s02; :::; s0m)^8i : 1 � i � m : first(s0i) >Proof: (() is trivially true. We show ()). By symme-try it is su�cient to prove the existence of s01 such thatwcp(s01; s2; :::; sm) ^ first(s01). We de�ne s01 as the �rststate in the trace of P1 since the most recently sent mes-sage or the beginning of the trace such that local(s01) istrue. As s1 exists, we know that s01 also exists. By ourchoice of s01, first(s01) is true. Our proof obligation is toshow that wcp(s01; s2; :::; sm). It is su�cient to show thats01ksj for 2 � j � m. For any sj , s1 6! sj and there isno message sent after s01 and before s1; therefore, s01 6! sj .Also sj 6! s01, otherwise sj ! s01 and s01 ! s1 would implythat sj ! s1, a contradiction. Therefore, we conclude thats01ksj for any 2 � j � m.We now analyze the complexity of non-checker processes.The space complexity is given by the array lcmvector andis O(n). The main time complexity is involved in detectingthe local predicates which is the same as for a sequentialdebugger. Additional time is required to maintain timevectors. This is O(n) for every receive of a message. Inthe worst case, one debug message is generated for eachprogram message sent, so the worst case message complex-ity is O(ms) where ms is the number of program messagessent. In addition, program messages have to include timevectors.We now give the algorithm for the checker process whichdetects the WCP using the debug messages sent by otherprocesses. The checker process has a separate queue foreach process involved in the WCP. Incoming debug mes-sages fromprocesses are enqueued in the appropriate queue.We assume that the checker process gets its message fromany process in FIFO order. Note that we do not require

FIFO for the underlying computation. Only the detec-tion algorithm needs to implement FIFO property for ef-�ciency purposes. If the underlying communication is notFIFO, the checker process can ensure that it receives mes-sages from non-checker processes in FIFO by using se-quence numbers in messages.The checker process applies the following de�nition todetermine the order between two lcmvectors. For any twolcmvectors, u and v, u < v if and only if (8i : u[i] �v[i]) ^ (9j : u[j] < v[j]). Furthermore, if we know theprocesses the vectors came from, the comparison betweentwo lcmvectors can be made in constant time. Let Proc :Nn ! f1; 2; :::; ng map a lcmvector to the process it be-longs to. Then, the required computation to check if thelcmvector u is less than the lcmvector v is(u[Proc(u)] � v[Proc(u)])^(u[Proc(v)]< v[Proc(v)]) (P1)Lemma 8 Let s and t be states in processes Pi and Pj withlcmvectors u and v, respectively. Then, s! t i� u < v.Proof: (s! t)) (u < v)If s ! t, then there is a message path from s to t. There-fore, since Pj updates its lcmvector upon receipt of a mes-sage and this update is done by taking the component-wisemaximum, we know the following holds: 8k : u[k] � v[k].Furthermore, since v[j] is the next message id to be usedby Pj, Pi could not have seen this value as t 6! s. Wethereby know that v[j] > u[j]. Hence, the following holds:(8k : u[k] � v[k]) ^ (u[j] < v[j]) Thus, (s! t)) (u < v).We now show that :(s ! t)) :(u < v). First, :(s !t) , (t ! s) _ (skt). If (t ! s) then (v < u) by the �rstpart of this theorem. If (skt)) then there is no messagepath from the state s to the state t or vice-versa. Hence,when Pi is at s and Pj is at t,(1) (u[j] < v[j]) and,(2) (v[i] < u[i]).Therefore, (skt))) :(u < v).Thus, the task of the checker process is reduced to check-ing ordering between lcmvectors to determine the orderingbetween states. The following observation is critical for re-ducing the number of comparisons in the checker process:Lemma 9 If the lcmvector at the head of one queue isless than the lcmvector at the head of any other queue,then the smaller lcmvector may be eliminated from furtherconsideration in checking to see if the WCP is satis�ed.Proof: In order for the WCP to be satis�ed, we must �nda set of lcmvectors, one from each queue, such that each isincomparable with all the others in the set. If the lcmvectorat the head of one queue (qi) is less than that at the head ofanother queue (qj), we know it will be less than any otherlcmvectors in qj because the queues are in increasing orderfrom head to tail. Also any later arrivals into qj must begreater than that at the head of qi. Hence, no entry in qjwill ever be incomparable with that at the head of qi so thehead of qi may be eliminated from further consideration inchecking to see if the WCP is satis�ed.6

The algorithm given in Fig. 4 is initiated whenever anynew lcmvector is received. If the corresponding queue isnon-empty, then it is simply inserted in the queue; other-wise, there exists a possibility that the conjunctive pred-icate may have become true. The algorithm checks forvarq1 : : : qm: queue of lcmvector;changed, newchanged: set of f1,2,...,mg2 Upon recv(elem) from Pk doinsert(qk, elem);if (head(qk) = elem) then beginchanged := f k g;while (changed 6= �) beginnewchanged := fg;for i in changed, and j in f1,2,...,m gdoif (:empty(qi) ^ :empty(qj)) thenbeginif head(qi) < head(qj) thennewchanged:=newchanged [fig;if head(qj) < head(qi) thennewchanged:=newchanged [fjg;end; /* if */changed := newchanged;for i in changed do deletehead(qi);end;/* while */if 8i : :empty(qi) then found:=true;end; /* if */Fig. 4. Algorithm for weak conjunctive predicates - thechecker processincomparable lcmvectors by comparing only the heads ofqueues. Moreover, it compares only those heads of thequeues which have not been compared earlier. For thispurpose, it uses the variable changed which is the set ofindices for which the head of the queues have been up-dated. The while loop maintains the invariant:(I) 8i; j 62 changed : :empty(qi) ^ :empty(qj))head(qi)jjhead(qj)This is done by �nding all those elements which are lowerthan some other elements and including them in changed.This means that there can not be two comparable ele-ments in f1; 2; :::;mg�changed. The loop terminates whenchanged is empty. At that point, if all queues are non-empty, then by the invariant I, we can deduce that all theheads are incomparable. Let there be m queues with atmost p elements in any queue. The next theorem dealswith the complexity of the above algorithm.Theorem 10 The above algorithm requires at most O(m2p)comparisons.Proof: Let comp(k) denote the number of comparisons re-quired in the kth iteration of the while loop. Let t denotethe total number of iterations of the while loop. Then, thetotal number of comparisons equals Ptk=1 comp(k). Letchanged(k) represent the value of changed at the kth it-eration. jchanged(k)j for k � 2 represents the number

of elements deleted in the k � 1 iteration of the whileloop. From the structure of the for-loops we get thatcomp(k) = O(m� jchanged(k)j). Therefore, the total num-ber of comparisons required arePtk=1 comp(k) = m �Ptk=1 jchanged(k)j� m � pm = O(m2p)The following theorem proves that the complexity of theabove problem is at least
(m2p), thus showing that ouralgorithm is optimal [8].Theorem 11 Any algorithm which determines whether thereexists a set of incomparable vectors of size m in m chainsof size at most p, makes at least pm(m�1)=2 comparisons.Proof: We �rst show it for the case when the size of eachqueue is exactly one, i.e. p = 1. The adversary will give tothe algorithm a set in which either zero or exactly one pairof elements are comparable. The adversary also choosesto answer \incomparable" to �rst m(m � 1)=2 � 1 ques-tions. Thus, the algorithm cannot determine if the set hasa comparable pair unless it asks about all the pairs.We now show the result for a general p. Let qi[k] denotethe kth element in the queue qi. The adversary will givethe algorithm qi's with the following characteristic:8i; j; k : qi[k] < qj[k + 1]Thus, the above problem reduces to p instances of the prob-lem which checks if any of the m elements is incompara-ble. If the algorithmdoes not completely solve one instancethen the adversary chooses that instance to show m queuesconsistent with all the its answers but di�erent in the �naloutcome.V. Decentralization of the Detection AlgorithmWe now show techniques for decentralizing the abovealgorithm. From the property (P1), we can deduce that ifa set of vectors S forms an anti-chain (that is all pairs ofvectors are incomparable), then the following holds:8 distinct s; t 2 S : s[Proc(s)] > t[Proc(s)] (P2)We denote this condition by the predicate inc(S). The fol-lowing theorem shows that the process of checking inc(S)can be decomposed into that of checking it for smaller sets.Theorem 12 Let S; T , and U be sets of lcmvectors, suchthat S = T [U . Let maxX represent the lcmvector formedby taking componentwise maximum of all vectors in the setX. Then,inc(S) i� inc(T) ^ inc(U) ^(8t 2 T : maxT [Proc(t)] > maxU [Proc(t)])^(8u 2 U : maxU [Proc(u)] > maxT [Proc(u)])Proof:()) inc(T) and inc(U) are clearly true becauseT; U � S. We show that(8t 2 T : maxT [Proc(t)] > maxU [Proc(t)])7

The other conjunct is proved in a similar fashion.From (P2), we deduce that 8 distinct s; t 2 T : t[Proc(t)] >s[Proc(t)]. This means that maxT [Proc(t)] = t[Proc(t)]by the de�nition of maxT . From (P2), we also deducethat 8 u 2 U : t[Proc(t)] > u[Proc(t)]. This means thatt[Proc(t)] > maxU [Proc(t)] by the de�nition of maxU .From the above two assertions we conclude that (8t 2 T :maxT [Proc(t)] > maxU [Proc(t)])(() We will show that (P2) holds for S, i.e.8 distinct s; t 2 S : s[Proc(s)] > t[Proc(s)]If both s and t belong either to T and U , then the aboveis true from inc(T) and inc(U). Let us assume withoutloss of generality that t 2 T and u 2 U . We need to showthat t[Proc(t)] > u[Proc(t)] (the other part is proved sim-ilarly). From inc(T) we conclude that, maxT [Proc(t)] =t[Proc(t)]. And now frommaxT [Proc(t)] > maxU [Proc(t)]we conclude that t[Proc(t)] > u[Proc(t)].Using the above theorem and the notions of a hierar-chy, the algorithm for checking WCP can be decentralizedas follows. We may divide the set of processes into twogroups. The group checker process checks for WCP withinits group. On �nding one, it sends the maximum of alllcmvectors to a higher process in the hierarchy. This pro-cess checks the last two conjuncts of the above theorem.Clearly, the above argument can be generalized to a hier-archy of any depth.Example 13 Consider a distributed program with fourprocesses. Let the lcmvectors corresponding to these pro-cesses be S = f(4; 4; 6; 2); (3;6;4; 1); (3;5;7; 2); (2;5; 4; 3)g:Now instead of checking whether the entire set consists ofincomparable vectors, we divide it into two subsets T =f(4; 4; 6; 2); (3; 6;4;1)g, and U = f(3; 5; 7; 2); (2;5; 4; 3)g:We check that each one of them is incomparable. This com-putation can be done by group checker processes. Groupprocesses send maxT = (4; 6; 6; 2) and maxU = (3; 5; 7; 3)to the higher-level process. This process can check thatmaxT is strictly greater than maxU in the �rst two com-ponents and maxU is strictly greater than maxT in the lasttwo components. Hence, by Theorem 12, all vectors in theset S are pairwise incomparable.VI. Implementation: UTDDBThe main application of our results are in debuggingand testing of distributed programs. We have incorporatedour algorithms in the distributed debugger called UTDDB(University of Texas Distributed Debugger) [14]. The on-line debugger is able to detect global states or sequences ofglobal states in a distributed computation. UTDDB con-sists of two types of processes - coordinator and monitortype. There exists only one coordinator process, but thenumber of monitor processes is the same as the number ofapplication processes in the underlying distributed compu-tation.The coordinator process serves as the checker processfor WCP as well as the user-interface of UTDDB to the

programmer. It accepts input from the programmer suchas distributed predicates to be detected. It also reports tothe programmer if the predicate is detected.Monitor process are hidden from the programmer. Eachof the monitor processes, detects local predicates de�nedwithin the domain of the application process it is monitor-ing. This is done by single stepping the program. Aftereach step, the monitor examines the address space of theapplication process to check if any of the simple predicatesin its list are true. It is also responsible to implement algo-rithms described as a non-checker process in Section . Inparticular, it maintains the vector clock mechanism.In a distributed debugger, the delays between occurrenceof a predicate, its detection and halting of the programmaybe substantial. Thus, when the program is �nally halted,it may no longer be in a state the programmer is interestedin. Therefore, for the weak conjunctive predicate, UT-DDB gives the programmer the option of rolling back thedistributed computation to a consistent global state wherethe predicate is true. The coordinator uses the set of times-tamps that detected the WCP predicate to calculate thisglobal state which it then sends to all the monitors. As theapplication processes execute, they record incoming eventsto a �le. So, when a monitor receives a message telling it toroll back an application process, the monitor restarts theapplication process and replays the recorded events untilthe process reaches a local state that is part of the globalstate where the weak conjunctive predicate is true. Sucha restart assumes that the only non-determinism in theprogram is due to reordering of messages.Our algorithms are also used in a trace analyzer (anotherpart of UTDDB) for distributed programs [4]. Our ana-lyzer monitors a distributed program and gathers enoughinformation to form a distributed run as described in Sec-tion II. This approach reduces the probe e�ect that thedistributed program may experience if the detection wascarried out while the program was in execution. The usercan then ask UTDDB whether any predicate expressed in asubset of the logic described in this paper ever became true.We are currently extending these algorithms for detectionof sequences of global predicates [1,9,25], and relationalglobal predicates [24].VII. ConclusionsWe have discussed detection of global predicates in adistributed program. Earlier algorithms for detection ofglobal predicates proposed by Chandy and Lamport workonly for stable predicates. Our algorithms detect even un-stable predicates with reasonable time, space and messagecomplexity.Our experience with these algorithms has been extremelyencouraging. In the current implementation, the mainoverhead is in the local monitor process for checking localpredicates. By providing special hardware support eventhis overhead can be reduced. For example, most archi-tectures provide special hardware support such as break-point traps if certain location is accessed. This feature canbe used to make detection of local predicates of the form8

(program at line x) very e�cient.We believe that algorithms presented in this paper shouldbe part of every distributed debugger because they incurlow overhead, and are quite useful in identifying errors inthe program. AcknowledgementsWe would like to thank Bryan Chin, Mohamed Gouda,Greg Hoagland, Jay Misra, William Myre, Don Pazel, andAlex Tomlinson for their comments and observations whichhave enabled us to strengthen this work. We would alsolike to thank Bryan Chin for implementing o�ine versionsof our algorithms and Greg Hoagland for incorporating ouralgorithms in UTDDB. We would also like to thank anony-mous referees for their meticulous review of an earlier ver-sion of the paper. References[1] P. Bates, \Distributed Debugging Tools for Heterogeneous Dis-tributed Systems", Proceedings of the 8-th International Con-ference on Distributed Computing Systems, San Jose, Califor-nia, pp. 308 { 315, June 1988.[2] L. Bouge, \Repeated Snapshots in Distributed Systems withSynchronous Communication and Their Implementation inCSP", Theoretical Computer Science, 49: 145-169, 1987.[3] K.M. Chandy and L. Lamport, \Distributed Snapshots: Deter-mining Global States of Distributed Systems", ACM Transac-tions on Computer Systems, Vol. 3, No. 1, pp. 63 { 75, February1985.[4] B. Chin, \An O�ine Debugger for DistributedPrograms", M.S.Thesis, Electrical and Computer Engineering, University ofTexas at Austin, December 1991.[5] R. Cooper and K. Marzullo, \Consistent Detection of GlobalPredicates",Proc. of the ACM/ONR Workshop on Parallel andDistributed Debugging, Santa Cruz, California, pp. 163 { 173,May 1991.[6] C. Fidge, \Partial Orders for Parallel Debugging", Proc. of theACM Workshop on Parallel and Distributed Debugging, Madi-son, Wisconsin, pp. 130 { 140, May 1988.[7] J. Fowler and W. Zwaenepoel, \Causal Distributed Break-points",Proc. of the 10-th Intl. Conference on Distributed Com-puting Systems, Paris, France, pp. 134 { 141, May 1990.[8] V. K. Garg, \Some Optimal Algorithms for Decomposed Par-tiallyOrdered Sets," Information Processing Letters 44, Novem-ber 1992, pp 39-43.[9] V. K. Garg and M.T. Raghunath, \Concurrent Regular Expres-sions and their Relationship to Petri Net Languages," Theoret-ical Computer Science 96 (1992) pp 285-304.[10] V.K. Garg and B. Waldecker, \Detection of Unstable Predicatein Distributed Programs," Proc. 12th Conference on the Foun-dations of Software Technology & Theoretical Computer Sci-ence, Lecture Notes in Computer Science 652, Springer-Verlag,Dec 1992, pp 253-264.[11] D. Haban andW. Weigel, \Global events and global breakpointsin distributed systems",Proc. of the 21-st Intl. Conf. on SystemSciences, Vol. 2, Jan 1988, pp 166 { 175. 1990, pp. 134 { 141.[12] M. Hur�n, N. Plouzeau, and M. Raynal, \Detecting AtomicSequences of Predicates in Distributed Computations," Proc.ACM/ONR Workshop on Parallel and Distributed Debugging,San Diego, California, May 1993.[13] J.-M. Helary, N. Plouzeau, and M. Raynal, \Computing Par-ticular Snapshots in Distributed Systems", Proceedings of the9-th annual International Phoenix Conference on Computersand Communications, Scottsdale Ariz., March 21 { 23, 1990,pp. 116 { 123.[14] G. Hoagland, \A Debugger for Distributed Programs", M.S.Thesis, Electrical and Computer Engineering, University ofTexas at Austin, August 1992.[15] H. Korth and A. Silberschatz, Database System Concepts,McGraw-Hill, 1986.

[16] L. Lamport, \Time, Clocks, and the Ordering of Events in aDistributed System", Communications of the ACM, Vol. 21,No. 7, July, 1978, pp. 558 { 565.[17] F. Mattern, \Virtual time and global states of distributed sys-tems", Parallel and Distributed Algorithms: Proceedings ofthe International Workshop on Parallel and Distributed Algo-rithms, Elsevier Science Publishers B. V., 1989, pp. 215{226.[18] C.E. McDowell and D.P. Helmbold, \Debugging ConcurrentPrograms",ACM Computing Surveys, vol. 21, no. 4, Dec. 1989,pp. 593 { 622.[19] B. P. Miller and J. Choi, \Breakpoints and Halting in Dis-tributed Programs",Proceedings of the 8-th International Con-ference on Distributed Computing Systems, San Jose, california,June 1988, pp. 316{323.[20] R. Schwartz and F. Mattern, \Detecting Causal Relationshipsin Distributed Computations: In Search of the Holy Grail",SFB124-15/92, Department of Computer Science, University ofKaiserslautern, Germany, December 1992.[21] A.P. Sistla and E.M. Clarke, \The Complexity of PropositionalLinear Temporal Logic", J. ACM, 1985, Vol. 32, No. 3, pp. 733{ 749.[22] M. Spezialetti and P. Kearns, \E�cient DistributedSnapshots",Proceedings of the 6-th International Conference on DistributedComputing Systems, 1986, pp. 382 { 388.[23] M. Spezialetti and P. Kearns, \A General Approach to Recog-nizing Event Occurrences in Distributed Computations", Proc.of the 9-th Interl Conference on Distributed Computing Sys-tems, 1988, pp. 300 { 307.[24] A.I. Tomlinson and V.K.Garg, \Detecting Relational GlobalPredicates in Distributed Systems," Proc. 3rd ACM/ONRWorkshop on Parallel and Distributed Debugging, San Diego,California, May 1993.[25] B. Waldecker, \Detection of Unstable Predicates in Debugging Dis-tributedPrograms",PhD. Dissertation, Dept. of Electrical and Com-puter Engineering, University of Texas at Austin, May 1991.Vijay K. Garg (S'84-M'89) receivedhis Bach-elor of Technology degree in computer engi-neering from the Indian Institute of Technol-ogy, Kanpur, in 1984. He continued his educa-tion at the University of California, Berkeleywhere he received his MS in 1985 and Ph.D. in1988 in Electrical Engineering and ComputerScience. He is currently an assistant profes-sor in the Department of Electrical and Com-puter Engineering at the University of Texas,Austin. He has authored or co-authored morethan 50 research articles. His research interests are in the areas ofdistributed systems and supervisory control of discrete event systems.He has served as a program committee member of the IEEE Inter-national Conference on Distributed Computing Systems and as anorganizer of minisymposium on Discrete Event Systems in the SIAMConference on Control and Applications. Prof. Garg is a recipient ofthe 1992 TRW faculty assistantship award.Brian Waldecker received the B.S.E.E andB.A. in computer science degrees from RiceUniversity in Houston, TX, in 1986, and theM.S. and Ph.D. degrees in electrical and com-puter engineering from the University of Texasat Austin, in 1988 and 1991, respectively. Heis currently with the Austin Systems Center ofSchlumbergerWell Services where he works onsoftware for oil�eld services. His interests in-clude distributed computing systems and dis-tributed program behavior. He is a member ofthe IEEE Computer Society, the Association for Computing Machin-ery, and the Society of Petroleum Engineers.9

