
Detection of Strong Unstable Predicates in DistributedPrograms 1,Vijay K. Garg Brian WaldeckerElectrical and Computer Engineering Dept Austin Systems CenterUniversity of Texas at Austin Schlumberger Well ServicesAustin, TX 78712-1084 P.O. Box 200015garg@ece.utexas.edu Austin, TX 78720-0015AbstractThis paper discusses detection of global predicates in a distributed program. Arun of a distributed program results in a set of sequential traces, one for each process.These traces may be combined to form many global sequences consistent with the singlerun of the program. A strong global predicate is true in a run if it is true for all globalsequences consistent with the run. We present algorithms which detect if the givenstrong global predicate became true in a run of a distributed program.1 IntroductionDetection of global predicates is a fundamental problem in distributed computing. It arisesin the designing, debugging and testing of distributed programs. Global predicates canbe classi�ed into two types - stable and unstable. A stable predicate is one which neverturns false once it becomes true. An unstable predicate is one without such a property.Its value may alternate between true and false. Detection of stable predicates has beenaddressed in the literature by means of global snapshots of a distributed computation[ChaLam85, SpeKea86, Bouge87]. Any stable property can be detected by taking globalsnapshots periodically. This approach does not work for an unstable predicate which mayturn true only between two snapshots and not at the time when the snapshot is taken. Anentirely di�erent approach is required for such predicates [WalGar91, CooMar91, GarWal92,SchMat92, GarWal94, BabMar93, TomGar93, HPR93].We have earlier presented an approach to detect a class of unstable predicates calledweak predicates [GarWal94]. In this paper, we continue our investigation of detection for adi�erent class of unstable predicates. The reader is referred to [GarWal94] for a discussion ofrelated work and the background. Two types of predicates are discussed in this paper. The�rst type, called strong linked predicates, refers to a causal sequence of local predicates. Thesecond type, called strong conjunctive predicates, correspond to existence of a global statein which all local predicates are true simultaneously. We introduce the notion of overlappingintervals which is used to detect predicates of this type. Cooper and Marzullo [CooMar91]also describe strong predicate detection (they call such predicates de�nitely). However,they deal with general predicates, i.e., they propose detection of de�nitely : p where p is anypredicate de�ned on a global state. In this paper, we have restricted p to conjunction of localpredicates. Detection of general predicates is intractable since it involves a combinatorial1This work was supported in part by the NSF Grant CCR 9110605, the Navy Grant N00039-91-C-0082,a TRW faculty assistantship award, and IBM Agreement 153.1



explosion of the state space. For example, the algorithm proposed by Cooper and Marzullo[CooMar91] has complexity O(kn) where k is the maximum number of events a monitoredprocess has executed and n is the number of processes. The fundamental di�erence betweenour algorithm and their algorithm is that their algorithm explicitly checks all possible globalstates, whereas our algorithm does not.Spezialetti and Kearns [SpeKea89] also discuss a notion of simultaneity which, however,is di�erent from the one discussed in this paper. They use simultaneity in the sense ofa possible consistent global state. Their notion is closer to weak predicates discussed in[GarWal94].This paper is organized as follows: Section 2 presents our logic for speci�cation of globalpredicates in a distributed program. It describes the notion of a distributed run, a globalclock, a global sequence and the logic. Section 3 discusses detection of linked predicates.Section 4 discusses strong conjunctive predicates. It gives necessary and su�cient conditionsfor strong conjunctive predicates to hold. It also describes algorithms for detecting strongconjunctive predicates. Section 5 presents techniques to decentralize these algorithms.2 Our ModelWe assume a loosely-coupled message-passing system without any shared memory or a globalclock. A distributed program consists of a set of n processes denoted by fP1; P2; :::; Pngcommunicating solely via asynchronous messages. We do not make any assumptions on theordering or reliability of messages.A. RunWe will be concerned with a single run r of a distributed program. Each process Pi inthat run generates an execution trace si;0si;1 : : : si;l, which is a �nite sequence of local statesin the process Pi. A run r is a vector of traces with r[i] as the trace of the process Pi.We de�ne a relation locally precedes denoted by �im between states in the trace of a singleprocess Pi as follows: s �im t if and only if s immediately precedes t in the trace r[i]. Wealso say that s:next = t or t:prev = s whenever s �im t. We use � for irre
exive transitiveclosure and � for for re
exive transitive closure of �im. States s and t in the traces r[i]and r[j] respectively are de�ned to be related by ; if and only if a message is sent by Piresulting in the state s which is received by Pj resulting in the state t. Figure 1 illustratesa run.We also de�ne a causally precedes relation as the transitive closure of union of �im and;. That is,s! t i�1. (s �im t) _ (s; t), or2. 9u : (s! u) ^ (u! t)Our ! is similar to Lamport's happened-before relation [Lamp78] except that causally pre-cedes is de�ned between states rather than events. We say that s and t are concurrent(denoted by sjjt) if :(s! t) ^ :(t! s). 2
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r[2] Figure 1: An example of a runWe extend the run r to r0 by adding arti�cial states ?i and >i at the beginning andthe end of each trace r[i] respectively. The event at ?i(>i) corresponds to the beginning(termination) of the execution of Pi. The addition of these arti�cial states model the factthat processes begin their execution asynchronously. Thus, in absence of any synchroniza-tion (external events) it may be possible that one process may have terminated while theother one has yet to begin the execution. Let Si be the set of all states in the sequence r[i],and S 0i = Si [ f?i;>ig. Our de�nitions imply that 8s 2 Si : ?i ! s ^ s! >i. We de�neS = Si Si and S0 = Si S0i. We also use s:p to denote the process in whose trace s occurs.That is, s:p = i if and only if s 2 S0i.B. Global ClockA global clock C is a map from S0 to N (the set of natural numbers) with the followingconstraint: 8s; t 2 S : s �im t _ s;t) C(s) < C(t)We use C to denote the set of all global clocks which satisfy the above constraint. Theinterpretation of C(s) for any s 2 S is that the process s:p enters the state s when the clockvalue is C(s). Thus, it stays in the state s from time C(s) to C(s:next)� 1. This constraintmodels the sequential nature of execution at each process and the physical requirement thatany message transmission requires a non-zero amount of time. From the de�nition of !, itis equivalent to 8s; t 2 S : s! t) 8C 2 C : C(s) < C(t) (CC)The condition (CC) is widely used as the de�nition of a logical clock since its proposal byLamport[Lamp78]. It can be shown that the set C also satis�es the converse of (CC), i.e.,8s; t 2 S : s 6! t) 9C 2 C : :(C(s) < C(t))The reader is referred to [GarWal94b] for the proof. This leads to the following pleasantcharacterization of !: 8s; t 2 S : (s! t, 8C 2 C : C(s) < C(t))3



Intuitively, the above formula says that s causally precedes t in a run r if and only if allpossible observers of the run agree that s happened before t.C. Global SequenceA global state is a vector of local states. This de�nition of global state is di�erent fromthat of Chandy and Lamport which includes states of channels. In our model, a channelis just the set of all those messages that have been sent but not received yet. Since thisset can be deduced from all the local states, we do not require the state of channels to beexplicitly included in the global state. Given a run r, and a global clock C, seq(r; C) de�nesa sequence of global states called global sequence g = g0g1 : : : gm for some m wheregk[i] = maxffs 2 S0ijC(s) � kg [ f?igg; 1 � k � m; 1 � i � nNote that gk[i] is well de�ned as the argument of max is a non-empty totally ordered (under�) �nite set. It may evaluate to ?i which would mean that the process Pi has not begunits execution. Similarly, if it evaluates to >i, then process Pi has already terminated itsexecution. The kth pre�x of g, i.e. g0g1 : : : gk�1 is denoted by gk.We de�ne findex(g; u) = minfkjgk[u:p] = ug, i.e., the �rst index in g which has u in itsglobal state. We de�ne the set of global sequences consistent with a run r as linear(r), i.e.g 2 linear(r), 9C 2 C : g = seq(r; C)The following theorem gives an alternative characterization of the set linear(r). Givenany g 2 linear(r) if the observer restricts his attention to a single process Pi, then he wouldobserve r[i] or a stutter of r[i]. A stutter of r[i] is a �nite sequence where each state in r[i]may be repeated a �nite number of times.Lemma 1 For any run r, g 2 linear(r) if and only if the following constraints hold:(S1): 8i : g restricted to Pi = r[i] (or a stutter of r[i])(S2): 8s; t 2 S : s! t) findex(g; s) < findex(g; t).Proof: ())Let G 2 linear(r). This implies that 9C : g = seq(r; C). Since C(s) is greater than 0 forall s 6= ?i, we get that g0[i] = ?i. Further, gk[i] = s) gk+1[i] 2 fs; s:nextg by de�nition ofseq(r; C). Finally, gC[>i ][i] = >i. Thus (S1) holds. To see (S2), let s ! t. From (CC), weget that C(s) < C(t). This implies that findex(g; s) < findex(g; t).(()We de�ne C as follows: C(s) = findex(g; s)C satis�es (CC) due to (S2).In our earlier paper[GarWal94], we have directly de�ned the notion of global sequences.In this paper, we have chosen the condition (CC) based on global clocks as it is intuitivelyeasier to justify. 4



From the above two properties of global sequences, we can also deduce (S3):8X � S : (8u; v 2 X : ujjv)) 9g 2 linear(r) 9k8u 2 X : (gk[u:p] = u) ^ (gk�1[u:p] 6= u)(S3) says that for any set X of concurrent states there exists a global sequence g whichgoes through a global state gk such that all local states in X occur in gk, and none occur ingk�1.D. Logic for Global PredicatesWe now describe our logic for speci�cation of global predicates. There are three syntacticcategories in our logic - bool, lin and form. The syntax of our logic is as follows:form ::= A: lin j E: linlin ::= 3 lin j lin ,! lin j lin ^ lin j :lin j boolbool ::= a predicate over a global stateA bool is a boolean expression de�ned on a single global state of the system. Its value can bedetermined if the global state is known. For example, if the global state has (x = 3; y = 6),then the bool (x � y) is true. Here x and y could be part of di�erent processes. A lin is atemporal formula de�ned over a global sequence. A bool is true in a global sequence if it istrue in the last state of g. 3 lin means that there exists a pre�x of the global sequence suchthat lin is true for the pre�x. We also use 2 and _ as duals of 3 and ^. We have introduceda binary operator (,!) to capture sequencing directly. p ,! q means that there exist pre�xesgi and gj of the global sequence such that p is true of pre�x gi, q is true of pre�x gj , andi < j.A form is de�ned for a run and it is simply a lin quali�ed A, and E quantify over theset of global sequences that a run may exhibit, given the traces for each process. A:p meansthat predicate p holds for all global sequences and E:p means that predicate p holds for someglobal sequence. We call formulas starting with A: as strong formulas and formulas startingwith E: as weak formulas. The intuition behind the term strong is that a strong predicateis true no matter how fast or slow the individual processes in the system execute so longas the execution is consistent with the run. That is, it holds for all execution speeds whichgenerate the same trace for an individual process. A weak predicate is true if and only ifthere exists at least one global sequence in which it is true. In other words, the predicatecan be made true by choosing appropriate execution speeds of various processors.Semantics de�ned in this paper is slightly di�erent from that in [GarWal94]. In [GarWal94]bool is de�ned to be true on a global sequence if it is true in the �rst global state in thesequence. In this paper, bool is required to be true in the last global state. The currentversion is more useful and easier to understand. Intuitively, the logic in [GarWal94] is basedon future while the logic in this paper is based on past. Since the past is known at any pointof execution, it is easier to evaluate the formula in the current state.Following are some examples of the strong formulas detectable by our algorithms.1. Suppose we have developed an algorithm which works in phases. Assume that thesystem has three nodes and that there are three phases in the algorithm. Let predicate5



phasei;j denote that the process Pi is in phase j. The following formula ensures that theprocess P2 is in phase 3, only after all the processes have been through phase 2.(A : phase1;2 ,! phase2;3) ^ (A : phase2;2 ,! phase2;3) ^ (A : phase3;2 ,! phase2;3)2. Suppose we were testing a commit protocol. Let Readyi denote the local predicatethat the process Pi is ready to commit. Then, the following formula would check that therewas a certain point in the execution when all processes were ready to commit.A : 3(Ready1 ^ Ready2 : : : ^Readyn)3. Suppose we wanted to test a distributed minimum spanning tree algorithm. LetKi represent the local predicate that the process Pi knows its parent. Then, the followingformula would indicate that the system has reached a state in which all nodes in the networkknow their parents. A : 3(K1 ^K2 ^ : : : ^Kn):3 Linked PredicatesThis class of predicates is useful in detecting a sequence of events in a distributed program.We use LPi to denote a local predicate in some process, and LPi(s) to denote that thepredicate LPi is true in the state s. We assume that the local predicate LPi is constructedfrom only the local variables of that process. This means that the truthness of LPi canchange only through an internal event. In other words, external events cannot make anylocal predicate change from true to false or vice-versa. Thus, a predicate such as \a messagehas been sent from P to Q" is not considered a valid LP . Although this appears to be alimitation, the above predicate can be easily modeled in our framework by assuming that aninternal event records the send of the message in some boolean variable such as msg sent.The condition msg sent is a valid local predicate. The above assumption is equivalent tothe following:(A1) If (LP (s) ^ :LP (s:next)) _ (:LP (s) ^ LP (s:next)) then1. t! s i� t! s:next, and2. s! t i� s:next! t for all t di�erent from s and s:next.(A1) says that if s and s:next di�er in their evaluation of LP , then their causal relationshipswith other states is identical.We also use the following assumption.(A2) All LP 's evaluate to false in the arti�cial states ?i and >i for all i. This assumptionis also not a restriction. It just captures the intent of de�ning ?i and >i states.A predicate of the form A:LPi ,! LPj means that for all global sequences, there existsan instance where LPi is true before LPj . A:(LPi ,! LPj) ,! LPk means that for all globalsequences there exists an instance where LPi is true before LPj which is true before LPk.We treat ,! as a left associative operator and leave out the parentheses. We call a formulaof the form A: LP1 ,! LP2 ,! � � � ,! LPm a strong linked predicate. The following theorem6



is used in designing the algorithm for the detection of such predicates. Note that one sideof the proof (() is obvious. The converse, which is more di�cult, has not been addressedin the literature. This is one of the main results of this section.Theorem 2 Let LP1 and LP2 be local predicates on processes i and j respectively. Then,for any run r, there exist states si in r[i] and sj in r[j], such that si ! sj , LP1(si) andLP2(sj) if and only if A : LP1 ,! LP2.Proof: ()) Since si 2 Pi and sj 2 Pj , from (S1) we conclude that any global sequenceg 2 linear(r) has states gk and gl such that gk[i] = si and gl[j] = sj. From (S2), we knowthat findex(g; si) < findex(g; sj). Thus, g j= LP1 ,! LP2 is true.(() We show that if such states do not exist, then the formula A : LP1 ,! LP2 isfalse (that is :LHS ) :RHS). If LP1 (or LP2) is not true for any state in r[i] ([r[j],respectively), then the formula is trivially false. Consider the �rst state in r[i] in which LP1is true. We call this state si. Similarly, sj is de�ned using the last state in r[j] in whichLP2 is true. The negation of left hand side implies that si 6! sj. Consider the state sj:next.This state exists by (A2); it may be >j. Let t be de�ned ast = mins2S0ifsksj:nextgNote that t could possibly be ?i. See Fig. 2.
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Lp1 Lp1Figure 2: Linked PredicatesWe now do case analysis.Case 1: si � tThis means that si is not concurrent with sj:next by the de�nition of t. Since si 6! sj, weget that si 6! sj:next from (A1). This implies that sj:next! si which in turn implies thatsj:next! t, a contradiction.Case 2: t � siSince t is concurrent with sj:next, by Lemma (S3), there exists a global sequence g in whicht and sj :next occur in the same global state for the �rst time. The predicate LP1 is not truefor all preceding global states and LP2 is false for all following global states. Thus, there areno two global states x, y such that LP1(x), LP2(y) and x occurs before y in g.7



The above result can be generalized to a sequence of more than two local predicates[GarWal94b].The intuition behind the algorithm to detect the strong linked predicate (in Fig. 3) isas follows. A:LP1 ,! LP2 is true only if the state in which LP1 has occurred happenedbefore (!) the state in which LP2 occurs. If both predicates are in the same process, thenoccurrence of LP1 would be known when LP2 occurs. If LP2 is in the di�erent process thenby the de�nition of ! we know that there must be a message path to the second process.We use the same message path to inform the second process about occurrence of LP1.Pi::vardetect
ag : boolean always (true i� curpred = m+ 1);pred list: list of findex:1..m; pred:local predicate g/* predicates local to this process;*/curpred: integer initially 1;2 Upon (head(pred list):index = curpred) ^ (head(pred list):pred = true)begin /* update what predicate is the next one this process is to detect*/curpred++;pred list := tail (pred list);end;2 Upon rcv (prog, hiscurpred, : : : ) from Pscurpred:=max(curpred, hiscurpred);2 To send /* we include curpred in message */send(prog, curpred, : : : ) to destin;Figure 3: Algorithm for strong linked predicatesThe implementation of the algorithm is as follows. The variable pred list in each processkeeps the list of logical predicates local to that process in the increasing order of indices inwhich they appear in strong linked predicate. The variable curpred keeps the index of thenext local predicate in the strong linked predicate which needs to be detected (as currentlyknown by the process). If curpred becomes m + 1 in any process, then the strong linkedpredicate is detected.We now show the correctness of the above algorithm. Let link(s; j) = 9s1; s2; :::; sj�1 :(s1 ! s2)^ (s2 ! s3)^ :::^ (sj�1 ! s)^LP1(s1)^ : : :^LPj�1(sj�1) for j > 1. The predicatelink(s; 1) is de�ned to be true for all s. We also use s:x to refer to the value of the variablex in the state s.The following lemma describes an assertion on the variable curpred.Lemma 3 For all local states s:s:curpred = maxfj j link(s; j)gProof: We show that the above assertion is true for the initial state and is maintained bythe program. Since curpred is initially 1, the assertion is trivially true for the initial state of8



any process. For the induction case, let s �im t. We assume that the assertion holds for s,and show it to be true for t. we consider two cases:Case 1: The event executed at s is not a receiveSince assertion holds for s, link(s; s:curpred) holds. Further, if LPs:curpred(s) is true thenlink(t; s:curpred+ 1) holds as s �im t. It is also easy to see that s:curpred+ 1 is the maxi-mum j such that link(t; j) holds. By incrementing s:curpred the assertion is maintained for t.Case 2: A message is received at s which was sent from the state uThis part of the proof follows from the observation that link(s; j) ^ s ! t implies thatlink(t; j). If the assertion holds for s and u, then it is maintained by taking max of s:curpredand u:curpred.Theorem 4 At the termination of the algorithm, there exists a process for which detect
ag= true if and only if the A: LP1 ,! LP2 ,! � � � ,! LPm is true.Proof: We �rst show that if the strong linked predicate is true, then it is detected by thealgorithm. Let the strong linked predicate be true. This means that at the termination thereexists a state s such that link(s;m + 1) is true. From Lemma 3, s:curpred = m + 1. Itfollows that the process which has state s will have its detect
ag set.Conversely, assume that s:detectflag is true, i.e., s:curpred = m+1. Again from Lemma3, this means that link(s;m+1) holds. From Theorem 2, this can happen only if A : LP1 ,!LP2 : : : ,! LPm is true.The above algorithm requires no extra messages but does require each message to containthe value of curpred. Hence, each message grows in size by O(logm) bits where m is thenumber of local predicates in the linked predicate.The above algorithm can also be used to detect A : DP1 ,! DP2 ,! � � � ,! DPm, whereeach DPi is a disjunction of local predicates. The only di�erence in detection of such apredicate from the strong linked predicate is that an index may occur in pred list of morethan one process.Miller and Choi [Mill88] have also proposed a similar algorithm for linked predicates.In their algorithm, a process p sends out a predicate marker along each channel directedaway from p on detecting the local predicate. Thus, the algorithm assumes that underlyingcommunication channels are FIFO. Note that this assumption is also exploited in stoppingthe program in a consistent state using an algorithm similar to that of Chandy and Lamport[ChaLam85].4 Strong Conjunctive PredicatesConjunctive predicates form the most interesting class of predicates in our logic. A strongconjunctive predicate is true if and only if the system will always reach a global state such9



that all of the given local predicates are true in that state. Formally, a strong conjunctivepredicate is of the form: A : 3(LP1 ^ : : : ^ LPm), where LPi for 1 � i � m are localpredicates. Practically speaking, strong conjunctive predicates are most useful for good ordesirable predicates (i.e. predicates which the programmer would like to be true at somepoint in the program). For example, in the case of a distributed two-phase commit protocol,if the master decides to commit a transaction, then it must be true that the program was ina global state where all the slaves were \ready" to commit. If the program is executed andcommits, but a global state where all slave processes are \ready" does not occur, then theprogram has an error in it.In this section, we present the conditions that are necessary and su�cient for a strongconjunctive predicate to hold. This is one of the main results of this paper. These conditionsuse the notion of intervals. An interval, I, is de�ned as a sequence of consecutive states of atrace having a beginning state (designated as I:lo) and an ending state (designated as I:hi).It is convenient to assume that I:lo and I:hi are distinct such that I:lo � I:hi. This is not arestriction. To model an interval with a single state it is su�cient to stutter that state once.A set of intervals, I1; : : : ; Im, each belonging to a di�erent process trace is said to overlap,represented by, overlap(I1; I2; : : : Im), if and only if the following holds:8i; j : i; j 2 f1 : : :mg : Ii:lo! Ij:hiIntuitively, the notion of overlapping intervals means that all the interval lo's are orderedbefore all the interval hi's.We assume that m � n and LP1; : : : ; LPm are local predicates in di�erent processes,P1; : : : ; Pm. (because LP1 ^LP2 is just another local predicate if LP1 and LP2 belong to thesame process). We use LP (I) to denote that the local predicate LP is true for the entireinterval I.The following Lemma shows that existence of overlapping intervals is su�cient to ensurethat all global sequences go through a global state in which (LP1 ^ : : : ^ LPm) is true.Lemma 5 9I1; : : : ; Im : LP1(I1)^ : : :^ LPm(Im) ^ overlap(I1; : : : ; Im)) A : 3(LP1 ^ : : :^LPm)Proof: Using the de�nition for overlapping intervals we know that:8i; j : i; j 2 f1 : : :mg : Ii:lo! Ij:hiThis means that all lo0s must appear before all hi0s in any global sequence. Therefore, everypossible global sequence has a state greater than or equal to all lo0s and less than or equalto all hi0s. In this state, the boolean expression LP1 ^ : : : ^ LPm is true. Hence, the strongconjunctive predicate A: 3(LP1 ^ : : : ^ LPm) is true.We now show that these conditions are also necessary. Our obligation is to show that ifthese conditions are violated, then there exists a global sequence in which the strong conjunc-tive predicate is false. Our proof of the existence of such a global sequence is constructive.The global sequence we construct will have the property that it does not go through anyglobal state in which all LPi are true. We call such a global sequence pure. Formally,10



De�nition 6 A global sequence g = g1; g2; :::; gm is pure i� 8k : :gk j= LP1^LP2^: : :^LPmWe will construct a pure global sequence by concatenating together multiple pure globalsubsequences. Let g be a global sequence of the run from a consistent global state x to aconsistent global state y (i.e. x is the �rst global state in g and y is the last global state ing) and h be a global sequence from the global state y to a global state z. Then, it is easy tosee that g concatenated with h is also a global sequence from x to z. In constructing a pureglobal sequence we use intermediate states which satisfy certain properties.Let x be any global state. We denote by first(x) the m-tuple of intervals (I1(x); I2(x); : : : ; Im(x))where Ik(x) is the �rst interval in r[k] which ends after the state x[k] in which LPk is true.first(x) may not exist if for some process Pk, LPk never becomes true after x[k]. A globalstate is called consistent if 8i; j : x[i]jjx[j]. We will use only consistent global states in ourdescription. The intermediate (consistent) global states that we use to construct our pureglobal sequence satisfy an admissibility property.De�nition 7 x is an admissible intermediate global state if and only if either first(x) doesnot exist or there exist k; l such that Ik(x):lo 6! Il(x):hi ^ :LPk(x[k]).In other words, there exists two intervals Ik and Il such that they do not overlap (Ik(x):lo 6!Il(x):hi) and LPk is not true in the state x[k].Now, we are ready to show that:Lemma 8:9I1; : : : ; Im : LP1(I1) ^ : : : ^ LPm(Im) ^ overlap(I1; : : : ; Im)) :A : 3(LP1 ^ : : : ^ LPm)Proof:
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I(x) = { (a,c,d), (b,c,d), (a,c,e), (b,c,e) }

first(x) = (a,c,d)Figure 4: I(x) and first(x)Let I(x) for any global state x be the set of all m-tuple of intervals in which LPi is truefor the ith trace (see Fig. 4) after the local state x[i]. We show that if none of these m-tupleof intervals satisfy overlapping condition, then there exists a global sequence in which thedistributed program is never in any m-tuple in X.Our aim is to construct a pure global sequence g from start = (?1;?2; ::::?m) to stop =(>1;>2; ::::>m). Let x be any global state such that we have built a pure global sequence11



from start to x, and the remaining task is to build a pure global sequence from x to stop.Initially, we choose x = start. We will show a pure global sequence from x to y such thatjI(y)j < jI(x)j. Thus, by continuing in this manner we will reach a global state z in whichjI(z)j = 0. From, that point all global sequences will be pure.The start state is admissible, because by assumption either first(start) does not exist orthere exist k; l such that Ik(start):lo 6! Il(start):hi. Moreover, LPk is false in ?k by (A2).Now suppose that we are given an admissible global state x such that jI(x)j > 0. For1 � j � m, let Ij be the �rst interval in r[j] in which LPj is true that ends after thestate x[j]. As x is admissible and first(x) exists (jI(x)j > 0), there exist k; l such thatIk(x):lo 6! Il(x):hi and :LPk(x[k]). We de�ne s to be the local state Il(x):hi:next. Thestate s exists because of (A2) (it may be >l). We construct a global sequence from xto another admissible global state y, where y is de�ned as the minimum consistent globalstate such that y[l] = s. Such a global state exists because the set of all consistent cuts(ideals) is a lattice [Matt89] and that ideals grow by adding one element at a time [DJR93].We �rst show that LPk is never true between x[k] and y[k]. It is su�cient to show thaty[k] � Ik(x):lo. We know that Ik(x):lo 6! Il(x):hi. Applying (A1) twice, it follows thatIk(x):lo:prev 6! Il(x):hi:next. Thus, there exists a consistent global state z containing ssuch that z[k] � Ik(x):lo:prev. As y is the minimum consistent global state with y[l] = s,we get that y[k] � Ik(x):lo:prev. This implies that LPk is never true between x[k] and y[k].Thus, all global sequences from x to y are pure. See Figure 5.
x

Ik

Il

y

Ik’

Il’

sFigure 5: Illustration of the proof of strong conjunctive predicatesWe still need to show that y is admissible. If first(y) does not exist, we are done.Otherwise, we know that there exist k0; l0 such that Ik0(y):lo 6! Il0(y):hi (see Fig. 5). If:LPk0(y[k0]), then y is an admissible state and we are done. Otherwise, y[k0] is inside theinterval Ik0(y). If Ik0(y):lo:prev 6! s, then we can �nd a consistent global state z such thatz[k0] � Ik0(y):lo:prev such that z[l] = s. Since y is the minimum state with y[l] = s andIk0(y):lo � y[k0], z cannot exist. Thus, Ik0(y):lo:prev ! s. From (A1) this is equivalent toIk0(y):lo! Il(x):hi.We now show that y is admissible because Il(y):lo 6! Il0(y):hi ^ :LPl(y[l]). The secondconjunct is clearly true by the de�nition of y. We show the �rst conjunct. From Ik0(y):lo!Il(x):hi, and Il(x):hi � Il(y):lo it follows that Ik0(y):lo ! Il(y):lo. Therefore, Il(y):lo !Il0(y):hi is inconsistent with Ik0(y):lo 6! Il0(y):hi. Thus, the �rst conjunct Il(y):lo 6! Tl0(y):hialso holds. 12



We see from the necessary and su�cient conditions for a strong conjunctive predicate tohold that the intervals delimited by lo0s (local predicate transitioning from false to true) andhi's (transitions from true to false) must overlap.At this point, we discuss the role of (A2). Consider a scenario in which two processesP1 and P2 are such that LP1 and LP2 are true throughout the execution of P1 and P2respectively. If P1 and P2 never communicate with each other, then there does not existoverlapping intervals for LP1 and LP2. However, it may seem to the reader that for anyglobal sequence there is a global state in which both LP1 and LP2 are true. The globalsequence for which there does not exist any global state satisfying the strong conjunctivepredicate is obtained by running one process to the completion before the other starts.Clearly, unless execution of both processes are synchronized in some manner, the abovesequence is a proper global sequence. By (A2) LP1 and LP2 are false at the initial state(before the process has begun execution) and at �nal state (after the process has �nished itsexecution).4.1 Algorithms for Detecting A Strong Conjunctive PredicateWe now describe algorithms to check whether intervals in which local predicates hold overlap.These algorithms are executed by two kinds of processes - nonchecker processes and checkerprocesses. They are based on a slight modi�cation of timestamp vectors as proposed byFidge[Fidge88] and Mattern [Matt89]. Each process detects its local predicate and recordsthe timestamp of the interval associated with the predicate. These intervals are sent to achecker process which uses them to decide if the strong conjunctive predicate became true.Each non-checker process (Fig.6) keeps its own local lcmvector of timestamps. For pro-cess Pj , lcmvector[i] (i 6= j) is the message id of the last message from Pi (to anybody) whichhas a causal relationship to Pj. lcmvector[j] for process Pj is the next message id that Pj willuse. Each time the local predicate of a process changes from false to true, the current valueof lcmvector is remembered as an interval lo. At the next true-to-false transition (denotedby # in the Fig. 6), the process sends the stored lcmvector (interval lo) and the currentlcmvector (interval hi) to the checker process in a debug message. We next observe that aprocess is not required to send its interval every time the local predicate is detected. Theinterval need not be sent if there has been no message activity since the last time the intervalwas sent. This is because the lcmvector can change its value only when a message is sentor received. We now show that it is su�cient to send a lcmvector once after any message isreceived irrespective of the number of messages sent.Let predicate firstlmr(I) be true i� the local predicate is true in I for the �rst timesince the last message was received (or the beginning of the trace). We say scp(I1; I2; :::; Im)is true if I1; I2; :::Im are the intervals in di�erent processes making the strong conjunctivepredicate true (as in Theorem 5).Theorem 9 9I1; :::; Im : scp(I1; I2; :::Im) ) 9J1; ::; Jm; scp(J1; J2; :::; Jm) ^ 8k : 1 � k � m :firstlmr(Jk) 13



Proof: By symmetry it is su�cient to prove the existence of J1 such that scp(J1; I2; :::; Im)^firstlmr(J1). Let J1 be the �rst interval in the trace of P1 such that LP (J1) is true. Sincefirstlmr(J1) is true, our proof obligation is to show that scp(J1; I2; :::; Im). It is su�cientto show that overlap(J1; Ik) for 2 � k � m. For any Ik, I1:lo ! Ik:hi and J1:lo ! I1:lo;therefore, J1:lo! Ik:hi. Also Ik:lo! I1:hi, because overlap(Ik; I1). Moreover, as there is nomessage received after J1:hi and before I1:hi, the last causal message that made Ik:lo! I1:hitrue must have arrived before J1:hi. Therefore, it is also true that Ik:lo! J1:hi. Hence, weconclude that overlap(J1; Ik).Process Pid::var lcmvector: array [1..n] of (0..MAXMID);init 8i:i 6=id: lcmvector[i] = 0, lcmvector[id] = 1;/* last causal msg rcvd from process 1 to n, respec. */Current Interval: record lo, hi : (0..MAXMID);end;�rst
ag: boolean init true;local pred: Boolean Expression; /*the local pred. to be tested by this process*/2 For sending dosend (prog, midgen, lcmvector, : : : );lcmvector[id]++ ;2 Upon receive (prog, mid, msg lcmvector, : : : ) do8i : lcmvector[i] := max (lcmvector[i], msg lcmvector[i]);�rst
ag := true;2 Upon (local pred ") ^ �rst
ag doCurrent Interval.lo := lcmvector;2 Upon (local pred #)^ �rst
ag doCurrent Interval.hi := lcmvector;send (dbg, Current Interval) to CHECKERPROC;�rst
ag := false;Figure 6: Algorithm for strong conjunctive processes - nonchecker process PidThe dominant space complexity of the above algorithm is due to the array \lcmvector"which is O(n). The main time complexity involves detecting the local predicates which isthe same as for a sequential debugger. In the worst case, one debug message is generated foreach program message received, so the worst case message complexity is O(mr) where mr isthe number of program messages received.We now give the algorithm for the checker process which detects the strong conjunctivepredicate using the debug messages sent by other processes. The checker process has a sep-arate queue for each process involved in the strong conjunctive predicate. Incoming debugmessages from processes are enqueued in the appropriate queue. We ensure that the checkerprocess gets its message from any process in a FIFO order. The required computation to14



var q1 : : : qm: queue of record lo, hi: timevector;end;changed, newchanged: set of f1,2,...,mg2 Upon recv(elem) from Pk doinsert(qk, elem);if (head(qk) = elem) then beginchanged := f k g;while (changed 6= �) beginnewchanged := fg;for i in changed, and j in [1,2,...,m] do beginif head(qj):lo 6< head(qi):hi thennewchanged:=newchanged [ fig;if head(qi):lo 6< head(qj):hi thennewchanged:=newchanged [ fjg;end; /* for */changed := newchanged;for i in changed do deletehead(qi);end;/* while */if 8i : :empty(qi) then found:=true;end; /* if */Figure 7: Algorithm for strong conjunctive checker processcheck if the lcmvector u is less than the vector v in a di�erent process is(u[u:p] � v[u:p])Lemma 10 Let I and J be intervals in processes Pi and Pj with vector pairs x and y,respectively. Then, overlap(I; J) i� (x:lo < y:hi) ^ (y:lo < x:hi).Proof: The proof follows from the fact that if s and t are states with time vectors u and v,then s! t i� u < v. See [Matt89, GarTom93].Thus, the task of the checker process is reduced to checking ordering between lcmvectorsto determine if the intervals overlap. Because of the above Lemma, we use terms intervalsand vector-pairs interchangeably. The following Lemma shows how the checker process canavoid checking all possible combinations of intervals.Lemma 11 Let x and y be two vector pairs at the head of their respective queues. If theydo not overlap, then at least one of them can be eliminated from further consideration inchecking to see if the strong conjunctive predicate is satis�ed.Proof: In order for the strong conjunctive predicate to be true, there must exist a set ofintervals, one from each queue, such that each overlaps with all the others in the set. Let twointervals x and y be at the head of their queues such that they do not overlap. This means15



that either x:lo 6< y:hi or y:lo 6< x:hi. Assume the former without any loss of generality. Weshow that y can be eliminated in this case. If not, let x0 be another interval in the queueof x which overlaps with y. This implies that x0:lo! y:hi. Since x:lo! x0:lo, we concludethat x:lo! y:hi, a contradiction.The checker process receives debug messages containing timestamp pairs from the otherprocesses and executes the algorithm in Fig. 7. Each element of the queue is an interval,and the comparisons are done between hi0s and lo0s of these intervals. The checker processreduces the number of comparisons by deleting any vector-pair at the head of any queuewhose hi lcmvector is not greater than lo lcmvector of vector-pairs of head of all otherqueues. The checker process has detected the strong conjunctive predicate to be true if it�nds a set of intervals at the head of queues such that they are pairwise overlapping.This algorithm requires at most O(m2p) comparisons where m is the number of queueseach of length at most p.5 Decentralization of the AlgorithmWe now show techniques for decentralizing the above algorithm. If a set of intervals S issuch that all pairs of intervals overlap, then the following holds:8x; y 2 S : x:lo < y:hi (P1)We denote this by predicate overlap(S). Our aim is to show that the above condition canbe checked in a decentralized manner. For this, we need the concept of greatest lower boundof a set of intervals. Let X be set of all intervals, where each interval x is de�ned as a pairof vectors x:lo and x:hi such that x:lo � x:hi. We now de�ne an order v between elementsin this set as follows: x v y � (x:lo � y:lo) ^ (x:hi � y:hi)It can be easily checked that (X ;v) is a partial order. In this partial order, x u y =(max(x:lo; y:lo);min(x:hi; y:hi)). Then,overlap(x; y)) (x u y) 2 XFurther, if x1; x2; :::; xm are such that 8i; j : overlap(xi; xj), thenuixi 2 XThe following theorem shows that the process of �nding overlap(X) can be decomposedinto smaller sets.Theorem 12 Let X;Y , and Z be sets of intervals, such that X = Y [ Z. Then,overlap(X) i� overlap(Y ) ^ overlap(Z) ^ overlap(ufxjx 2 Y g;ufxjx 2 Zg)16



Proof:()) overlap(Y ) and overlap(Z) are clearly true because Y;Z � X. We need to showthat overlap(ufxjx 2 Y g;ufxjx 2 Zg)Let y� = ufxjx 2 Y g, and z� = ufxjx 2 Zg. Since overlap(Y ) and overlap(Z), y� and z�belong to X . To prove overlap(y�; z�), we need to show that (y�:lo < z�:hi)^ (z�:lo < y�:hi).We show just the �rst conjunct.From overlap(X), we get that8y; z 2 X : y:lo < z:hi.In particular,8y 2 Y; z 2 Z : y:lo < z:hi.Then, by de�nition of y� and z�, we conclude thaty�:lo < z�:hi(() We show that (P1) holds for X, i.e.8y; z 2 X : y:lo < z:hiIf both y and z belong either to Y and Z, then the above is true from overlap(Y ) andoverlap(Z). Let us assume without loss of generality that y 2 Y and z 2 Z. We need toshow that y:lo < z:hi. This is true because y:lo � y�:lo < z�:hi � z:hi. The �rst and thelast inequality follow from the de�nition of y� and z�; the middle inequality follows fromoverlap(y�; z�).Using the above theorem and the notions of a hierarchy, the algorithm for checkingthe strong conjunctive predicate can be decentralized as follows. We may divide the setof processes into two groups. The group checker process checks for the strong conjunctivepredicate within its group. On �nding one, it sends the greatest lower bound of all intervalsto a higher process in the hierarchy. This process checks the last conjunct of the abovetheorem. Clearly, the above argument can be generalized to a hierarchy of any depth.6 ApplicationsThe main application of our results are in debugging and testing of distributed programs. Wehave incorporated our algorithms in a distributed debugger [Hoagla92]. The online debuggeris able to detect global states or sequences of global states in a distributed computation.The architecture of this distributed debugger is shown in Figure 8. With each applicationprocess, we attach two processes - a gdb process and a monitor process. gdb is a sequentialdebugger that we use for detecting local predicates. monitor processes are responsible forattaching vector time information with all messages. They also report to the centralizedcoordinator process whenever an interval is detected. Monitor processes also detect stronglinked predicates using the algorithm outlined earlier. There is one coordinator process inthe system. It receives all the information from monitor processes and checks for strongand weak conjunctive predicates. The coordinator also provides a single user-interface tothe programmer. Our distributed debugger runs on a cluster of SUN workstations runningSUNOS. 17
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Figure 8: Architecture of Our Distributed DebuggerWe have also used our algorithms to implement a trace analyzer for distributed programs[Chin91]. Our analyzer monitors a distributed program and gathers enough information toform a distributed run. The user can then ask whether any global predicate became true.7 ConclusionsWe have discussed detection of global predicates in a distributed program. Earlier algorithmsfor detection of global predicates proposed by Chandy and Lamport work only for stablepredicates. Our algorithms detect even unstable predicates with reasonable time, space andmessage complexity.In this paper, we have emphasized conjunctive predicates and not disjunctive predicates.The reason is that disjunctive predicates are quite simple to detect. Disjunctive predicatesare of the form A:LP1 _ LP2 _ : : : _ LPm, or of the form E:LP1 _ LP2 _ : : : _ LPm. It turnsout that for the simple case considered here, both expressions are equivalent. To detect adisjunctive predicate A:LP1 _LP2 _ : : :_ LPm, it is su�cient for process Pi to monitor LPi.If any of the process �nds its local predicate true, the disjunctive predicate is true.We have also not discussed predicates of the form A : 2bool. These predicates are dualsof E : 3bool which have been discussed in [GarWal94].Algorithms given in this paper detect predicates of the form A:3bool, where bool is aconjunction of local predicates. It would be of great interest if these algorithms can begeneralized to detect predicates when bool is any boolean expression of local predicates.AcknowledgementsWe would like to thank Bryan Chin, Mohamed Gouda, Greg Hoagland, Jay Misra, MichelRaynal, and Alex Tomlinson for their comments on earlier versions of this work. We would18
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