
The Dissertation Committee for Vinit Arun Ogale
certifies that this is the approved version of the following dissertation:

Detecting and Tolerating Faults in Distributed Systems

Committee:

Vijay K. Garg, Supervisor

Aristotle Arapostathis

Craig Chase

Mohamed G. Gouda

Sarfraz Khurshid

Alper Sen

Detecting and Tolerating Faults in Distributed Systems

by

Vinit Arun Ogale, B.E., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2008

Dedicated to my parents and my little niece, Sakshi.

Acknowledgments

I am greatly indebted to Vijay K. Garg for making my time in graduate

school a truly wonderful experience. It is impossible for me to express my

gratitude for him in mere prose. If I was a poet, I could have written an

ode describing how he encouraged and guided me. If I could paint, I could

have perhaps portrayed how he was instrumental in igniting my passion for

research. However, I’ll just have to be content by thanking him for being such

a great teacher, supervisor and friend.

I would also like to thank my committee members Ari Arapostathis,

Craig Chase, Mohamed Gouda, Sarfraz Khurshid and Alper Sen for their feed-

back which help me shape this dissertation. I consider myself lucky that I had

to chance to work with, and learn from, Craig Chase. Working as a teaching

assistant for him was one of the best jobs that I ever had and I hope I have

the chance to work again with him again in the future. I would also like to

thank Alper for his guidance and help throughout my PhD.

Working in the lab was never boring thanks to Selma, Bharath, Arindam

and Anurang. It is a pleasure to work with motivated people like them and I

always had a critical ear available whenever I needed it. I would like to thank

Bharath for helping me proofread this dissertation and for being such a great

friend.

iv

An equally important part of my life has been my friends in graduate

school. I would like to thank Tanmay Patel for almost everything under the

sun, from being a project partner in a class to going on long treks with me

to remote mountains. I am incredibly lucky to have met Suvid Nadkarni and

I have always counted on his unwavering support and friendship whenever

times were rough. Research might have become boring if it was not for the

uncountable coffee breaks and the humor of Sundar Subramanian. I will al-

ways remember fondly all those fun discussions on the weirdest of topics, from

Math to Literature to Philosophy. Thanks to Ripple, Sriram, Mihir, Nachiket,

Murat, Harshal, Yuklai, Romi, and Jay for being such wonderful friends and

the fun times we had together.

A special thanks to Rucha for her encouragement and also for prodding

me on whenever I was bored or lazy while writing this thesis.

I would have never completed my PhD or even become an engineer,

if it was not for the motivation and support of my brother, Anil Ogale, and

my parents. I would like to thank my brother for always believing in me and

helping me stand up again whenever I stumbled. I would also like to thank my

parents, Arun and Nanda, for their unconditional love and support through

all these years.

v

Detecting and Tolerating Faults in Distributed Systems

Publication No.

Vinit Arun Ogale, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Vijay K. Garg

This dissertation presents techniques for detecting and tolerating faults

in distributed systems.

Detecting faults in distributed or parallel systems is often very difficult.

We look at the problem of determining if a property or assertion was true in

the computation. We formally define a logic called BTL that can be used to

define such properties. Our logic takes temporal properties in consideration

as these are often necessary for expressing conditions like safety violations and

deadlocks.

We introduce the idea of a basis of a computation with respect to a

property. A basis is a compact and exact representation of the states of the

computation where the property was true. We exploit the lattice structure of

the computation and the structure of different types of properties and avoid

brute force approaches. We have shown that it is possible to efficiently detect

all properties that can be expressed by using nested negations, disjunctions,

vi

conjunctions and the temporal operators possibly and always. Our algorithm

is polynomial in the number of processes and events in the system, though it

is exponential in the size of the property.

After faults are detected, it is necessary to act on them and, whenever

possible, continue operation with minimal impact. This dissertation also deals

with designing systems that can recover from faults. We look at techniques for

tolerating faults in data and the state of the program. Particularly, we look at

the problem where multiple servers have different data and program state and

all of these need to be backed up to tolerate failures. Most current approaches

to this problem involve some sort of replication. Other approaches based on

erasure coding have high computational and communication overheads.

We introduce the idea of fusible data structures to back up data. This

approach relies on the inherent structure of the data to determine techniques

for combining multiple such structures on different servers into a single backup

data structure. We show that most commonly used data structures like arrays,

lists, stacks, queues, and so on are fusible and present algorithms for this.

This approach requires less space than replication without increasing the time

complexities for any updates. In case of failures, data from the back up and

other non-failed servers is required to recover.

To maintain program state in case of failures, we assume that pro-

grams can be represented by deterministic finite state machines. Though this

approach may not yet be practical for large programs it is very useful for small

concurrent programs like sensor networks or finite state machines in hardware

vii

designs. We present the theory of fusion of state machines. Given a set of such

machines, we present a polynomial time algorithm to compute another set of

machines which can tolerate the required number of faults in the system.

viii

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Detecting Faults . 2

1.1.1 Contribution . 4

1.2 Tolerating Faults . 5

1.2.1 Fusible Data Structures 7

1.2.1.1 Contribution 8

1.2.2 Fault Tolerance in Finite State Machines 10

1.2.2.1 Contribution 11

1.3 Overview of the Dissertation 15

Chapter 2. Background 16

2.1 Representing Partial Orders 17

2.2 Lattices . 20

Chapter 3. Predicate Detection 23

3.1 Overview . 23

3.2 Related Work . 24

3.3 Model and Notation . 25

3.3.1 Logic Model (BTL) . 28

3.3.2 Types of Predicates . 30

3.4 Basis of a Computation . 32

ix

3.4.1 Semiregular Predicates and Structures 36

3.4.2 Algorithm . 42

3.5 An Example . 46

3.6 Complexity Analysis . 49

3.7 Implementation . 52

3.8 Remarks . 53

Chapter 4. Fusible Data Structures for Fault-Tolerance 54

4.1 Introduction . 54

4.2 Fusible Data Structures . 58

4.3 Array Based Data Structures 63

4.3.1 Array Based Stacks and Queues 65

4.4 Dynamic Data Structures: Stacks, Queues, Linked Lists 68

4.4.1 Stacks . 68

4.4.2 Queues . 70

4.4.2.1 Fused Queues 71

4.4.3 Dequeues . 75

4.4.4 Efficient Fused Queues Using an Auxiliary List 75

4.4.5 Linked lists . 79

4.4.5.1 Performance Considerations 80

4.4.6 Hash Tables . 82

4.5 Experimental Evaluation . 82

4.5.0.1 Fault-Tolerant Lock Based Application 83

4.5.0.2 Simulation Results 84

4.6 Fusion Operators and Tolerating Multiple Faults 86

4.6.1 Reed-Solomon Coding [50] 89

4.7 Remarks . 89

Chapter 5. Faults in Finite State Machines 91

5.1 Overview . 91

5.2 Related Work . 92

5.3 Model and Notation . 93

5.3.1 Closed Partition Lattice 97

x

5.4 Fault Tolerance of Machines 99

5.5 Theory of Fusion Machines . 105

5.6 Algorithms . 110

5.7 Implementation and Results 115

5.8 Remarks . 116

Chapter 6. Conclusion 118

6.1 Summary . 118

6.1.1 Predicate Detection . 118

6.2 Tolerating Faults . 120

Bibliography 122

Index 132

Vita 133

xi

List of Tables

3.1 Time complexities (n = number of processes) 25

4.1 Experimental results: (space used by replication)/(space used
by fusion) . 57

xii

List of Figures

1.1 Partial And Total Orders . 3

1.2 System of Four Independent Servers 9

1.3 Mod 3 Counters . 12

1.4 Finite State Machines . 14

2.1 Hasse diagrams . 17

2.2 Representing computations . 18

2.3 Multiple Hasse diagrams of the same poset 18

2.4 Different representations of the same computational poset . . . 19

2.5 Distributive and non-distributive lattices 21

3.1 A computation and the lattice of its consistent cuts 26

3.2 Predicates . 31

3.3 Representing stable predicates 35

3.4 A join-closed predicate may not be semiregular 38

3.5 Computing a basis . 43

3.6 Computing a Basis . 47

4.1 Stacks . 65

4.2 Fusion of Stacks . 66

4.3 Recovery from faults . 67

4.4 List based stacks . 69

4.5 The resultant data structure is not a valid fusion 71

4.6 Example of a fused queue . 72

4.7 Queues with Reference Counts 73

4.8 Algorithm for insertTail . 76

4.9 Algorithm for deleteHead . 77

4.10 Fused queues with auxiliary list 78

xiii

4.11 Linked Lists . 79

4.12 Linked Lists . 81

4.13 Stacks . 84

4.14 Queues . 85

4.15 Priority Queues . 86

4.16 Sets . 87

4.17 Linked Lists . 88

5.1 DFSMs, Homomorphism and Reachable cross product 96

5.2 Closed Partition Lattice For Figure 5.1 100

5.3 Fault Graph, G(>, {A}), for machines shown in figure 5.2 . . 103

5.4 Fault Graphs, G(>,M), for sets of machines shown in figure 5.2 103

xiv

Chapter 1

Introduction

Rapid improvements in hardware and communication infrastructure

have propelled distributed and parallel systems from a niche to the main-

stream of the computing world. Software tools and programming paradigms

have been slower to adapt to this change in the underlying hardware and com-

munication infrastructure. Even today, specialized tools and languages like

Erlang for distributed or parallel programs are far from popular. The inherent

non-determinism in distributed programs and presence of multiple threads of

control make it difficult to write correct distributed software using conventional

paradigms. To compound this problem, most currently known techniques for

fault detection and fault handling of sequential programs do not scale grace-

fully in distributed systems. Hence the effects of faults, whether the result of

the environment or a human mistake, are amplified in the case of distributed

systems.

Our research approaches two problems faced in designing and deploying

any distributed or parallel system: detecting faults and tolerating faults.

1

1.1 Detecting Faults

Fault detection encompasses a myriad of approaches from model check-

ing to manual program testing, each with its own pros and cons. We focus on

detecting if a distributed program executed correctly. In many distributed sys-

tems, it is often desirable to have a formal guarantee that the program output

is correct. One approach is to model check the entire program with respect to

the given specification. This is impractical even for most moderately complex

programs. For many applications, predicate detection offers a simple and effi-

cient alternative over model checking the entire program. Predicate detection

involves verifying the execution trace of a distributed program with respect to

a given property (for example, violation of mutual exclusion). For example, in

scientific computing, it may be vital to verify that the result of a computation

was valid, and if it was invalid due to a rare ‘chance’ bug, the program can be

re-executed. In some cases (especially for transient bugs) it maybe possible to

automatically add extra synchronization to the program so that the bug does

not recur. Predicate detection provides a formal guarantee on the validity of

the computation (assuming that the specifications are correct).

A distributed computation, i.e., the execution trace of a distributed

program, can either be modeled as a total order, or as a partial order on the set

of events in the computation. Representing the computation as a total order

can mask some of the bugs in other possible consistent interleavings. A partial

order, in contrast, captures all the possible causally consistent interleavings.

We use a partial order representation based on Lamport’s happened before

2

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

e1 e2 f1 f2

f2
f1

e1 e2

e1 f1 f2 e2

Process2

Process1

¬inCriticalSection1

inCriticalSection2(i) Partially ordered trace
(iii) Consistent total order with mutex violation

inCriticalSection1

¬inCriticalSection2

(ii) Consistent total order without mutex violation
Figure 1.1: Partial And Total Orders

relation [33]. For example, consider the partial order trace in figure 1.1(i)

and the corresponding totally ordered traces in figures 1.1(ii) and 1.1(iii). If

the bug to be detected is represented by the predicate inCriticalSection1 ∧
inCriticalSection2 then we can see that the total order in figure 1.1(ii) masks

the bug that is seen in the total order in figure1.1(iii). Hence, it is better to

maintain a partial ordered trace that represents all possible total interleavings

rather than maintaining one of the totally ordered traces.

The drawback of using a partial order trace model is that the number

of global states of the computation is exponential in the number of processes.

This makes predicate detection a hard problem in general [5, 63]. A number

3

of strategies like symbolic representation of states and partial order reduction

have been explored to tackle the state explosion problem [11, 20, 41, 49, 62, 64,

71].

1.1.1 Contribution

We present a technique to efficiently detect all temporal predicates

that can be expressed in, what we call, Basic Temporal Logic or BTL. An

example of a valid BTL predicate would be a property based on local predicates

and arbitrarily placed negations, disjunctions and conjunctions along with the

possibly(♦) and invariant(¤) temporal operators (the EF and AG operators

defined in [8]).

Our algorithm is based on computing a basis which is a compact rep-

resentation of the subset of the computational lattice containing exactly those

global states (or cuts) that satisfy the predicate. In general, it is hard to effi-

ciently compute a basis for an arbitrary predicate. We utilize the fact that the

set of global states of a computation forms a distributive lattice and restrict

the predicates to BTL formulas. The basis introduced in this paper is a union

of smaller sets of cuts called semiregular structures.

Note that, without any restrictions on the predicate formula form, pred-

icate detection is NP-complete with respect to the formula size, and for arbi-

trary predicates the time complexity could be exponential in the formula size.

However, if the input formula is in a ‘DNF like’ form after pushing in nega-

tions, our technique detects it in polynomial time with respect to the formula

4

size.

Note that other known approaches, like model checking of traces, for

detecting a similar class of predicates, are inefficient and require exponential

time with respect to the number of processes. Slicing , introduced in [43] can

be thought of as a special case of our approach.

We validate the practical utility of our technique with experimental

studies. The algorithm for computing bases of a computation has been im-

plemented in a prototype tool BTV. BTV is a program agnostic tool, that

is it accepts compatible traces generated by a program in any language or

platform. The working of the tool is independent of the program generating

the traces. The tool accepts traces and the predicate as the input and returns

the output of our predicate detection algorithm. To generate traces for testing

and to test its utility for real world scenarios, we modified the SystemC kernel

(SystemC [30] is a high level hardware design language which is popular for

SoC designs). Thus any concurrent hardware model in SystemC can be tested

by using this modified kernel along with the BTV tool.

1.2 Tolerating Faults

Once a fault is detected, the program can be halted (and possibly

restarted) or the fault could be circumvented. For example, the computa-

tion could be rolled back and re-executed if the fault is known to be transient.

In other circumstances, when the exact cause of the fault is known, the pro-

gram execution can be modified (for example, adding extra synchronization)

5

to prevent the halt from recurring.

Another way of handling faults is to design the system to expect and

act on faults. This is typically achieved by adding a certain level of redundancy

to the data or the program. Data and program replication are often used to

tolerate faults and recover from them.

We will focus on fault tolerant data structures and fault tolerance in

deterministic finite state machines . Replication is a commonly used technique

to achieve fault-tolerance in face of various failures in a distributed system. It

is almost considered a self-evident truth that, to tolerate crash of t servers, one

must have t + 1 copies of identical processes. This approach, for example, is

the underlying assumption in the work on replicated state machine approach

[12, 34, 48, 53, 61, 65, 70]. In that work, if all t + 1 state machines (or servers)

start with the identical state, are completely deterministic in execution, and

agree on the set and the order of commands they execute, then they will have

the identical state at all times. This means that failure of t of them will leave

at least one copy available. The optimality of this approach has generally not

been questioned.

We initiate study of fusible data structures that allow practical tech-

niques for fault-tolerance with lower space and communication overhead than

replication.

6

1.2.1 Fusible Data Structures

In data storage and communication, coding theory is extensively used

to recover from faults. For example, RAID disks use disk striping and parity

based schemes (or erasure codes) to recover from the disk faults [7, 47, 50].

As another example, network coding [3, 40] has been used for recovering from

packet loss or to reduce communication overhead for multi-cast. In these

applications, the data is viewed as a set of data entities such as disk blocks for

storage applications and packets for network applications.

By using coding theory techniques [38], one can get much better space

utilization than, for example, simple replication. To tolerate crash failures for

servers, one can view the memory of the server as a set of pages and apply

coding theory to maintain code words. This approach, however, may not be

practical because a small change in data may require re-computation of the

backup for one or more pages. Since this technique is oblivious to the structure

of the data, the details of actual operations on the data are ignored and the

coding techniques simply recompute the entire block or page of data.

Hence currently used techniques suffer from one of these two drawbacks:

• (Replication techniques) They require a large number of redundant servers.

• (Coding theory) They are data oblivious and may require higher com-

putational and communication overhead.

7

1.2.1.1 Contribution

We introduce the concept of fusible data structures that enable us to

efficiently maintain fault tolerant data in parallel or distributed programs. Our

technique revolves around the actual structure of the data and the operations

used to change the data. We exploit our knowledge of the data structure and

the permitted operations to reduce the space and communications overhead

and, at the same time, allowing incremental updates to the data. In a way, our

technique is a hybrid of replication and coding theory approaches. The trade-

off is that this technique depends on the specific type of data structure used and

different algorithms will be required for various data structures. Another part

of this research includes discovering efficient algorithms for fusion of commonly

used data structures and developing a library for these structures so that

distributed system programmers can transparently use fusion-backed up data

structures without additional effort or change in the program logic.

As a concrete example, consider a lock server in a distributed system

that maintains and coordinates the use of a lock. Figure 1.2 shows such a

system with four lock servers, each servicing some clients independently. Each

lock server maintains the record of the process that has the lock and maintains

the queue of all pending requests. Assume that the size of the pending request

queue is nmax. Traditionally, if fault-tolerance from a crash is required, we

would keep two copies of the queue. If there are k such lock servers in the

system, and each one is replicated, we require a space overhead of knmax.

Instead fusible data structures, allow us to keep a single back-up data structure

8

Lock Server 2

Lock Server 3 Lock Server 4

Lock Server 1

Request Queue 2

Request Queue 3

Request Queue 4

Request Queue 1

Figure 1.2: System of Four Independent Servers

9

for all k servers. This back up that is obtained by fusing the original queues. In

this case, the notion of fusion roughly corresponds to xoring the individual data

cells together, while maintaining some additional information like the heads

of the queues. As we shall discuss later, the fused queue uses O(nmax) space,

supports recovery and can be updated efficiently when any of the primary

queue gets updated. This technique results in k-fold savings.

1.2.2 Fault Tolerance in Finite State Machines

Along with tolerating faults in data, it is also important to recover the

program state in case of a failure. A distributed system may be viewed as

a set of distinct and independent DFSMs. Hence, we look at the problem of

recovering the state of one or more failed DFSMs among the original set of

DFSMs. For example, consider a small sensor network with three different

sensors measuring the heat, light and humidity in the environment. Assume

that these sensors can be modeled as DFSMs and if one of the sensors fail, we

need to determine its value (that is, the current state of the DFSM representing

the sensor).

Consider the DFSMs shown in figures 1.3(i) and 1.3(ii). These machines

model mod-3 counters operating on different inputs, I0 and I1. Assume that

one of these machines fail, i.e., the current state of the machine is lost. In

case of such a failure, we would like to recover the state of the failed machine.

Traditional approaches to this problem require some form of replication. One

commonly used technique, which forms the basis of the work done in [12, 34, 48,

10

53, 61, 70], involves replicating the server DFSMs and sending client requests

in the same order to all the servers. Another approach, seen in [2, 65], involves

designating one of the servers as the primary and all the others as backups.

Client requests are handled by the primary server until it fails, and then one

of the backups take over. In both these approaches, to tolerate f faults in n

different DFSMs, we need to maintain f extra copies of each DFSM, resulting

in a total of n.f backup DFSMs.

Another way of looking at replication in DFSMs is to construct a ma-

chine which contains all states obtained by computing the product set of the

states of the original DFSMs. Such a DFSM is called the cross-product of the

original DFSMs. We would need one such machine to tolerate a single fault.

However, the cross product machine could have a large number of states and

would be equivalent to maintaining one copy each of the original DFSMs in

terms of complexity.

1.2.2.1 Contribution

In the example shown in figure 1.3(i) and 1.3(ii), we can intuitively see

that a machine which computes I0 + I1 mod 3 (or I0 − I1 mod 3) could be

used to tolerate a single fault in the system. If machine A that counts I0 mod

3 fails, then by using machine B (I1 mod 3) and the machine F1 (I0 + I1 mod

3) we can compute the current state of the failed machine A. Note that, in

this case F1 is much smaller than the reachable cross productwith respect to

the number of states.

11

I0

I1

a0 a2

I0

I1

I0

a1

(i) A (mod-3 counter)
I1

I0

I1

a0 a2

I0

I1

I0

a1

(i) A (mod-3 counter)
I1

I0/I1

I1

b0 b2
I0

I1

b1

(ii) B (mod-3 counter)
I0

f 0

1 f 1

1
f 2

1

I0/I1

I0/I1

I0

I1

I0

I1 I1

I0

I1

I0

f 2

2
f 0

2 f 1

2

(iii) F1 (mod-3 I0 + I1 counter)

(iv) F2 (mod-3 I0 − I1 counter)
Figure 1.3: Mod 3 Counters

12

In the previous example, it was easy to deduce the backup machine

purely by observation. For any general set of DFSMs, it is not straightforward

to generate such backup machines. Unlike the example in figure 1.3, it is

not intuitive whether the machines A and B in figure 1.4 can be efficiently

backed up. The main objective of this research is to automate the generation

of efficient backup machines like F1 for any given set of machines and formalize

the underlying theory. Some of the questions that need to be answered are:

• Given a set of original machines, does there exist a more efficient backup

machine than the reachable cross product?

• Could we have multiple backup machines enabling design of systems that

tolerate multiple faults? (For example, in figure 1.3, DFSMs A and B

along with F1 and F2 can tolerate two faults. Is it possible to tolerate

three faults by adding another machine?).

• What is the minimum number of backup machines required to tolerate

f faults?

• Is it possible to compute such backup machines efficiently?

We introduce an approach called (f, m)-fusion, that addresses these

questions. Given n different DFSMs, we tolerate f faults by having m (m ≤
n.f) backup DFSMs as opposed to the n.f DFSMs required in the replication

based approaches. We call the backup machines, fusions corresponding to the

given set of machines. Replication is just a special case of our approach with

13

Event 0
Event 1

b
1

b
2

a
0

a
1

a
2(i) A

b
0 (ii) B

Figure 1.4: Finite State Machines

m = n.f . We assume a system model that has fail-stop faults [52]. Note that,

the technique discussed in this paper deals with determining the current state

of the failed machines and not the entire DFSM (which is usually stored on

some form of failure-resistant permanent storage medium).

We look at the underlying theory behind this approach and also present

an efficient algorithm for generating the minimum number of backup machines

required to tolerate f faults. Note that, in some cases the most efficient fusion

could be the reachable cross product machine. However, our experiments

suggest that there exist efficient fusions for many of the practical DFSMs in

use. This can result in enormous savings in space, especially when a large

number of machines need to be backed up. For example, consider a sensor

network with 100 sensors, each running a mod-3 counter counting changes to

different environmental parameters like temperature, pressure, humidity and

so on. To tolerate a fault in such a system, replication based approaches would

demand 100 new sensors for backup. Fusion, on the other hand, could possibly

14

tolerate a fault by using only one new backup sensor with exactly three states.

In this dissertation we addresses all the questions that were posed ear-

lier. To summarize:

• We introduce the concept of (f,m)-fusion, formalize the idea and explore

the theory of such machines.

• Using this theory, we present an efficient algorithm for generating the

smallest set of backup machines, to tolerate f faults in a given set of

machines. We have implemented this algorithm and tested it with real

world DFSMs.

1.3 Overview of the Dissertation

The remainder of this dissertation is organized as follows. In chapter

2, we go over some of the background concepts used in our research. This

deals with lattice theory concepts and partial ordered representation of com-

putations. In chapter 3, we introduce the predicate detection algorithm using

bases. Chapter 4 deals with fusible data structures. In chapter 5, the algo-

rithms to fuse state machines for efficient backups are discussed. We conclude

the dissertation and enlist avenues for future research in chapter 6.

15

Chapter 2

Background

In this chapter we present some of the background of the concepts and

define notation that will be used later in this dissertation.

A relation R over any set C is a subset of CxC. A partial order over

a set is any relation that is both irreflexive and transitive. A set, along with

a partial order on its elements, is denoted by 〈C,≤〉 and is called a partially

ordered set or a poset.

We now define the concept of a covering element.

Definition 2.0.1. Given a partially ordered set C and let x, y ∈ C. We say

that x covers y if x < y and x ≤ z < y implies x = z.

This leads to the definitions of lower and upper covers.

Definition 2.0.2. (Covers) Given a poset C, a lower cover of x ∈ C is the set

Lx = {y|y ∈ C ∧ x covers y}. Similarly the upper cover is the set Ux = {y|y ∈
C ∧ y covers x}.

16

Figure 2.1: Hasse diagrams

2.1 Representing Partial Orders

It is often convenient to represent partial orders graphically. In this dis-

sertation we shall use a representation commonly called the Hasse diagram[9].

A Hasse diagram of the set C is constructed as follows:

1. Each element of C is represented by a small circle or a dot.

2. If x covers y in C then x is visually above y in the diagram.

3. There is a line connecting x and y iff x covers y or y covers x.

Some examples of Hasse diagrams are shown in figure 2.1.

In chapter 3, we shall deal with posets representing the execution traces

of distributed or parallel computations. We use a graphical notation similar

in concept to Hasse diagrams for these posets. To construct the diagrams

representing a computation C:

1. Each element of C is represented by a small circle or a dot.

17

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

Figure 2.2: Representing computations

a b

c
d

c
d

b

a

Figure 2.3: Multiple Hasse diagrams of the same poset

2. If x covers y in C then x is visually to the right of y in the diagram.

3. There is a directed arrow from x to y iff y covers x.

Figure 2.1 shows some examples of computational posets. Note that

there may be multiple visual representations consistent with the definitions

above for both Hasse diagrams and computations.

For example, figures 2.1 and figure 2.1 show different representations

of the same poset.

We now define some lattice theoretic concepts.

18

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

e f

a b c d

g h
(i)

e f

a b c

g

h

d

(ii)

Figure 2.4: Different representations of the same computational poset

19

2.2 Lattices

First we introduce two operators on the elements of a poset.

Definition 2.2.1. (Join and Meet of two elements) Let a, b ∈ C where 〈C,≤〉
is a poset.

For any element c ∈ C, we say that c is the join of a and b, i.e., c = a∪b

iff

1. a ≤ c and b ≤ c

2. ∀c′ ∈ C, (a ≤ c′ ∧ b ≤ c′) ⇒ c ≤ c′.

The meet of two elements is defined dually. For any c ∈ C, we say that

c is the meet of a and b, i.e., c = a ∩ b iff

1. c ≤ a and c ≤ b

2. ∀c′ ∈ C, (c′ ≤ a ∧ c′ ≤ b) ⇒ c′ ≤ c.

A lattice is a poset that is closed under meets and joins. Figures 2.2(i),

2.2(ii) and 2.2(iii) are some examples of lattices. In figure 2.2(i) the join of

elements c and g is the element i while their meet is b.

Definition 2.2.2. (Lattice) A poset (C,≤) is a lattice iff ∀a, b ∈ C, a ∪ b ∈ C

and a ∩ b ∈ C.

A lattice is distributive if the meet and join operators distribute over

each other.

20

e

d

j

k l

m

h
i

f

g

b

c

a

a

b c

d e

f

a

b

c

d e f

g

(ii)
(iii)

(i)

Figure 2.5: Distributive and non-distributive lattices

21

Definition 2.2.3. (Distributive Lattice) A poset (C,≤) is a distributive lattice

iff ∀a, b, c ∈ C : a ∪ (b ∩ c) = (a ∪ c) ∩ (a ∪ c)

Definition 2.2.4. (Sublattice) Let C be a lattice and S ⊆ C. S is a sublattice

of C if a, b ∈ S implies a ∪ b ∈ S and a ∩ b ∈ S.

The structure in figure 2.2(i) is an example of a distributive lattice.

Figures 2.2(ii) and (iii) are non-distributive lattices.

Elements c, e, i, k, l and m form a sublattice. The elements a, e, g and

k on the other hand do not form a sublattice since the meet of e and g (i.e.,

b) is absent.

Theorem 2.2.1. [9] A sublattice of a distributive lattice is also distributive.

Definition 2.2.5. (Ideals and Filters of a Lattice) A sublattice J of a lattice

C is called an ideal if a ∈ C, b ∈ J and a ≤ b ⇒ a ∈ J .

Dually, a sublattice J of a lattice C is called a filter if a ∈ C, b ∈ J and

a ≥ b ⇒ a ∈ J .

For example, in figure 2.2(i), the subset {a, b, c, d, f} is an ideal of the

lattice. Note that the maximal element in the ideal of a lattice, i.e. f in this

case, is sufficient to uniquely define and represent the corresponding ideal.

22

Chapter 3

Predicate Detection

In this chapter we describe our algorithm for predicate detection in

polynomial time with respect to the number of processes and events, though

it is exponential in the size of the predicate.

3.1 Overview

We examine the problem of detecting nested temporal predicates given

the execution trace of a distributed program and present a technique that al-

lows efficient detection of a reasonably large class of predicates which we call

the Basic Temporal Logic or BTL predicates. Examples of valid BTL pred-

icates are nested temporal predicates based on local variables with arbitrary

negations, disjunctions, conjunctions and the possibly (EF or ♦) and invari-

ant(AG or ¤) temporal operators. Our technique is based on the concept of a

basis, a compact representation of all global cuts which satisfy the predicate.

We present an algorithm to compute a basis of a computation given any BTL

predicate and prove that its time complexity is polynomial with respect to the

number of processes and events in the trace although it is not polynomial in

the size of the formula. We do not know of any other technique which detects

23

a similar class of predicates with a time complexity that is polynomial in the

number of processes and events in the system. We have implemented a predi-

cate detection toolkit based on our algorithm that accepts offline traces from

any distributed program.

3.2 Related Work

A number of approaches for checking computations using temporal logic

are known in the verification and testing community. Temporal Rover [10],

MaC [31] and JPaX [24] are some of the available tools. Many of the tools are

based on total ordering of events and hence cannot be directly compared to

our approach. These tools can miss potential bugs which would be detected

by partial order representations. JMPaX [59] is based on a partial order model

and supports temporal properties but its time complexity is exponential in the

number of processes in the computation.

Another available option to verify computation traces is to use a model

checking tool like SPIN [25, 26]. The computation trace needs to be converted

to the SPIN input computation and verification takes exponential time in the

number of processes.

Computational slicing [43] based approaches can efficiently detect reg-

ular predicates. POTA [57] is such a partial order based tool which uses com-

putational slicing to detect predicates. POTA guarantees polynomial time

complexity only if the predicate can be expressed in a subset of CTL [8] called

Regular CTL or RCTL [56]. Disjunctions and negations are not allowed in

24

SPIN POTA BTV
RCTL exponential in n polynomial in n polynomial in n
BTL exponential in n exponential in n polynomial in n

Table 3.1: Time complexities (n = number of processes)

RCTL. If POTA is used with a logic that allows disjunctions or negations (like

BTL), it uses a model checking algorithm to explore the reduced state space.

Hence the asymptotic time complexity using POTA is exponential in the num-

ber of processes when the predicate contains disjunctions. Table 3.1 compares

the time complexities of SPIN, POTA and our algorithms implemented in the

BTV tool.

3.3 Model and Notation

We assume a loosely coupled, message-passing, asynchronous system

model. A distributed program consists of n sequential programs P1, P2, . . . , Pn.

A computation is a single execution of such a program. A distributed com-

putation (〈E,→〉) is modeled as a partial order on the set of events E, based

on the happened before relation (→) [33]. The size of the computation is the

total number of events, |E|, in the computation.

Definition 3.3.1. (Consistent Cut) A consistent cut C is a set of events in the

computation which satisfies the following property: if an event e is contained

in the set C, then all events in the computation that happened before e are

contained in C.

25

∀e1, e2 ∈ E : (e2 ∈ C) ∧ (e1 → e2) ⇒ e1 ∈ C.

In figure 3.1(i) the set {e1, f1} is a consistent cut, while {e1, e2} is not.

In the following discussion, we mean ‘consistent cut’ whenever we simply say

‘cut’.

For notational convenience, we simply mention the maximal elements

on each process that are elements of the cut to represent that cut. For example,

the cut {e1, e2, f1, f2, f3} is written as {e2, f3}. The set of all consistent cuts

in a computation is denoted by C. This set, C, forms a distributive lattice [9]

(also called the computational lattice) under the less than equal to relation

defined as follows.

Definition 3.3.2. Cut C1 is less than or equal to cut C2 if and only if, C1 ⊆ C2.

{}

{e1, f2}

{e2, f2}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

e1

f2 f3
f1

e2 e3

(i)
(ii)

Process2

Process1

{e3, f3}

{e2, f3}

{e1, f3}

Figure 3.1: A computation and the lattice of its consistent cuts

Figure 3.1(i) depicts a computation. The lattice formed by all consis-

tent cuts of this computation is shown in figure 3.1(ii). Note, the number of

26

consistent cuts in the computational lattice may be exponential in the number

of events and processes in the computation.

A cut C, in a computation E, satisfies a predicate P if the predicate is

true in the global state represented by the cut. This is denoted by (C, E) |= P

or simply C |= P where the context is clear.

The join of two cuts is simply defined as their union, and the meet of

two cuts corresponds to the intersection of those two cuts.

Birkhoff’s representation theorem [9] states that a distributive lattice

can be completely characterized by the set of its join irreducible elements.

Join irreducibles are elements of the lattice that cannot be expressed as the

join of any two elements. Commonly, the bottom element is not considered to

be a join irreducible element. However, in this discussion, for notational con-

venience, we include the bottom element (the initial cut {}) in the set of join

irreducible elements. For example consider figure 3.1 showing a computation

and the distributive lattice formed by all the consistent cuts in the computa-

tion. In figure 3.1(ii), cuts {}, {f1}, {f2}, {f3}, {e1, f1}, {e2, f1}, {e3, f1} are

join irreducible. The cut, {e1, f2} is not join irreducible because it can be

expressed as the join of cuts {f2} and {e1, f1}.

The initial cut is the least cut, i.e., the empty set {} and the final cut

is the greatest cut, i.e, the set of all events E, in the computational lattice.

27

3.3.1 Logic Model (BTL)

We now formally define Basic Temporal Logic (BTL), such that any

predicate expressible in BTL can be efficiently detected using the algorithm

presented later in this chapter. The atomic propositions in BTL are local

predicates, i.e., properties that depend on a single process in the computation.

Local predicates and their negations are regular predicates. Let AP be the

set of all atomic propositions. Given the set of all consistent cuts, C, of a

computation, a labeling function λ : C → 2AP assigns to each consistent

cut, the set of predicates from AP that hold in it. The operators ∧ and

∨ represent the boolean conjunction and disjunction operators as usual, ¬
represent the negation of a predicate and we define the possibly (♦) temporal

operator (called EF in [41]).

Definition 3.3.3. If C is the set of all consistent cuts of the computation,

then ♦P holds at consistent cut C, if and only if, there exists C ′ ∈ C such

that P is true at C ′ and C ⊆ C ′.

The formal BTL syntax is given below.

Definition 3.3.4. A predicate in BTL is defined recursively as follows:

1. ∀l ∈ AP , l is a BTL predicate

2. If P and Q are BTL predicates then P ∨Q, P ∧Q, ♦P and ¬P are BTL

predicates

28

We formally define the semantics of BTL.

• (C,E, λ) |= l ⇔ l ∈ λ(C) for an atomic proposition l

• (C,E, λ) |= P ∧Q ⇔ C |= P and (C,E, λ) |= Q

• (C,E, λ) |= P ∨Q ⇔ C |= P or (C,E, λ) |= Q

• (C,E, λ) |= ♦P ⇔ ∃C ′ ∈ C : (C ⊆ C ′ and (C ′, E, λ) |= P)

• (C,E, λ) |= ¬P ⇔ ¬((C, E, λ) |= P)

We use (C,E) |= P or simply C |= P in the rest of the discussion when

E and λ are obvious from the context. Note that, the AG of a predicate P

(¤P) operator in CTL [41] can be written as ¬♦(¬(P)) in BTL.

We also define the operator EG recursively as follows:

Definition 3.3.5. (C,E, λ) |= EG(P) if (C,E, λ) |= P and :

1. C is the top (maximal) element of C or

2. ∃C ′ ∈ C : (C ′ covers C and (C, E, λ)′ |= EG(P))

The operator AF on a predicate P is defined as ¬EG(¬P).

Detecting a predicate in a distributed computation is determining if

the initial cut of the computation satisfies the predicate.

29

3.3.2 Types of Predicates

Definition 3.3.6. (Join-closed, Meet-closed and Regular Predicates) A pred-

icate P is join-closed if all cuts that satisfy the predicate are closed under

union.

i.e., (C1 |= P ∧ C2 |= P) ⇒ (C1 ∪ C2) |= P .

Similarly a predicate P is meet-closed if all the cuts that satisfy the

predicate are closed under intersection. A predicate is regular if it is join-closed

and meet-closed.

If cuts C1 and C2 satisfy a regular predicate, then by definition, C1∪C2

and C1∩C2 also satisfy that predicate. For example, the predicate “No process

has the token and the token in not in transit” is regular. All conjunctions of

local predicates are regular.

Lemma 3.3.1. [13] Join-closed predicates are closed under conjunction.

Similarly,

Lemma 3.3.2. [13] Meet-closed predicates are closed under conjunction.

From lemmas 3.3.1 and 3.3.2 we can conclude that

Lemma 3.3.3. [43] Regular predicates are closed under conjunction.

A predicate is stable if, once it becomes true, it remains true [4]. A

stable predicate is always join-closed.

30

Definition 3.3.7. A predicate P is stable, if ∀C1, C2 ∈ C : C1 |= P ∧ C1 ≤
C2 ⇒ C2 |= P .

Some examples of stable predicates are loss of a token, deadlocks, and

termination.

From the semantics of the definition of ¤, it follows that:

Lemma 3.3.4. [8] Given a predicate P , ¤P is a stable predicate.

meet closed predicatejoin closed predicate(i) stable predicate(iii)regular predicate(ii)

{}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

{e1, f2}

{e2, f2}

{}

{e3, f2}

{f2}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

{e1, f2}

{e2, f2}

{f3}

{}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

{e1, f2}

{e2, f2}

Figure 3.2: Predicates

Figure 3.2 depicts examples of the cuts satisfied by meet-closed, join-

closed, regular and stable predicates.

Lemma 3.3.5. Stable predicates are closed under conjunction, i.e., if P and

Q are stable predicates then P ∧Q is a stable predicate.

31

Proof. Given that P and Q are stable, we need to prove that

∀C1, C2 ∈ C : C1 |= (P ∧Q) ∧ C1 ≤ C2 ⇒ C2 |= (P ∧Q)

{ from the definition of the ∧ operator }
≡ ∀C1, C2 ∈ C : (C1 |= P ∧ C1 |= Q) ∧ C1 ≤ C2 ⇒ (C2 |= P ∧ C2 |= Q)

RHS is true since P and Q are stable predicates.

3.4 Basis of a Computation

We now introduce the concept of a basis of a computation. Informally,

a basis is an exact compact representation of the set of cuts which satisfy the

predicate.

Definition 3.4.1. (Basis) Given a computational lattice C, corresponding to

a computation E, and a predicate P , a subset S[P] of C is a basis of P if

1. (Compactness) The size of S[P] is polynomial in the size of computation

that generates C.

2. (Efficient Membership) Given any cut (global state) C ∈ C, there exists

a polynomial time algorithm that takes S[P], E and C as inputs and

determines if (C, E) |= P .

We denote the basis with respect to a predicate P as S[P]. Given a

32

predicate P , a cut C belongs to a basis S[P], if C satisfies that predicate. i.e.,

C ∈ S[P] ⇔ C |= P .

Note that direct enumeration of all the states satisfied by a predicate

is, in general, not a basis since it is not compact and determining if a cut is a

member of that set could take exponential time.

For a simple example of an basis, consider a class of predicates, such

that the cuts satisfying a predicate in that class form an ideal in the compu-

tational lattice. (An ideal is a sublattice that contains every cut that is less

than the maximal cut in the sublattice.) A basis, for such a class of predicates,

is just the maximal cut of the ideal. It can be efficiently determined if a cut

C ∈ Cp by checking if the cut is less than or equal to the maximal cut.

Computational slicing, introduced in [43], is a technique to compute an

efficient predicate structure for regular predicates.

Definition 3.4.2. (Slice) The slice slice[P] of a computation with respect to

a predicate P is the poset of the join irreducible consistent cuts representing

the smallest sublattice that contains all consistent cuts satisfying P .

Though the number of consistent cuts satisfying the predicate may be

large, the slice of a predicate can be efficiently represented by the set of the

join irreducible cuts in the slice. Slicing is the operation of computing the

slice for the given predicate.

When the predicate is regular, the computed slice represents exactly

those cuts that satisfy the predicate. Given the slice with respect to a predi-

33

cate, it is possible to efficiently detect if a cut satisfies that predicate. There-

fore, a slice is an efficient basis for regular predicates. However, using slicing

for predicate detection of non-regular predicates can take exponential time.

In the remainder of this section, we explore a technique to compute a

basis for a more general class of predicates, that we call BTL, which can have

arbitrary negations, disjunctions, conjunctions and the temporal possibly(♦)

operator. Since a BTL predicate can be non-regular, a slice of a BTL predicate

is not a valid basis. One naive approach to compute a predicate structure is

to maintain a set of slices instead of a single slice. Though this is polynomial

in the number of processes n, it results in a large number of slices (O(n2k
)),

where k is the size of the predicate. In this paper, we introduce a semiregular

structure which can efficiently represent a more general class than regular

predicates. A BTL predicate can be represented by using a set of semiregular

structures.

We start off by looking at the representation of a stable predicate.

Figure 3.3 shows an example of a stable predicate. The set of states satisfying

a stable predicate can be considered to be the union of a set of filters of the

computational lattice. Thus, a stable predicate can be represented by the set

of minimal cuts that satisfy the predicate.

Another representation is to identify a set of ideals, I = {I1, I2, . . .} of

the computational lattice such that all the cuts satisfying the stable predicate

are contained in the complement of
⋃

I∈I I. The stable predicate in figure 3.3

can be represented by two ideals as seen in the figure. We use the set of ideals

34

Ideal with max cut c2

Ideal with max cut c1

Stable Predicate
c2

c1

Figure 3.3: Representing stable predicates

representation in this paper for computational efficiency while dealing with

BTL predicates.

Definition 3.4.3. (Stable Structure) Given a stable predicate P and the

computational lattice C, a stable structure is the set of ideals I such that

a cut satisfies P iff it does not belong to any of the ideals in I. Therefore,

C |= P ⇔ ¬(C ∈ ⋃
I∈I I).

A cut C is said to belong to the stable structure if C does not belong

to
⋃

I∈I I. Note that, any ideal is uniquely and efficiently represented by its

maximal cut. In the remainder of this paper we use I to represent a set of

ideals representing the stable predicate and simply maxCuts to denote the set

containing the maximal cut from each ideal in I.

Note that, this representation is not a basis since, the set of ideals could

35

be very large in general. However, we see later, that this leads to an efficient

representation when the predicate is expressed in BTL.

3.4.1 Semiregular Predicates and Structures

The conjunction of a stable predicate and a regular predicate is called

a semiregular predicate and is more expressive than either of them.

Definition 3.4.4. P is a semiregular predicate if it can be expressed as a

conjunction of a regular predicate with a stable predicate.

We now list some properties of semiregular predicates.

1. A regular predicate is semiregular.

Proof. true is a stable predicate

p ∧ true = p

Hence any regular predicate p can be expressed as a conjunction of a

regular predicate and a stable predicate(true).

2. Similarly, any stable predicate is semiregular.

Proof. true is a regular predicate

p ∧ true = p

Hence any stable predicate p can be expressed as a conjunction of a

regular predicate(true) and a stable predicate

3. Semiregular predicates are join-closed.

36

Proof. Since regular and stable predicates are join-closed, it follows that

their conjunction, a semiregular predicate, is also join-closed.

4. Note that not all join-closed predicates are semiregular. Figure 3.4 shows

a join-closed predicate that is not semiregular.

5. Semiregular predicates are closed under conjunction, i.e., if P and Q are

semiregular then P ∧Q is semiregular.

Proof. Let P = Pr ∧ Ps and Q = Qr ∧Qs, where Pr, Qr are regular and

Ps, Qs are stable.

P ∧Q = (Pr ∧Qr) ∧ (Ps ∧Qs)

From lemma 3.3.3 (Pr ∧ Qr) is regular and lemma 3.3.5 implies that

(Ps ∧Qs) is stable.

6. A semiregular predicate has a unique maximal element.

Proof. This follows from the property that a semiregular predicate is

join-closed.

7. If P is a semiregular predicate then ♦P is regular.

Proof. P is a semiregular predicate then P has a unique maximal ele-

ment, say C.

From the definition of ♦, ♦P is an ideal of the computational lattice.

Hence it is regular.

37

8. If P is a semiregular predicate then ¤P is semiregular.

Proof. From lemma 3.3.4 we know that ¤P is stable.

Predicate is true

{}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

{e1, f2}

{e2, f2}

Figure 3.4: A join-closed predicate may not be semiregular

We now present an alternative characterization of a semiregular predi-

cate that offers a different insight into the structure of the cuts satisfying such

a predicate.

Lemma 3.4.1. Predicate P is semiregular iff

• P is join-closed, i.e, C1 |= P ∧ C2 |= B ⇒ (C1 ∪ C2) |= P and

• The meet of two cuts that satisfy P is C, and C does not satisfy P ,

then any cut smaller than C does not satisfy P . i.e., (C1modelsP) ∧
(C2modelsP) ⇒ (C1 ∩ C2) |= P ∨ (∀C ′ ≤ (C1 ∩ C2) : ¬(C ′ |= P)).

Proof. ⇒
Let P = Pr ∧ Ps where Pr is a regular predicate and Ps is a stable predicate

38

• P is join-closed follows from the properties of semiregular predicates.

• {(C1 |= P ∧ C2 |= P) ⇒ (C1 ∩ C2) |= Pr}
(C1 |= P ∧ C2 |= P ∧ (C1 ∩ C2) |= ¬P) ⇒ (C1 ∩ C2) |= ¬Ps)

{from the definition of stable predicates}
⇒ (∀C ′ ≤ (C1 ∩ C2) : ¬(C ′ |= Ps)

{P = Ps ∧ Pr} ⇒ (∀C ′ ≤ (C1 ∩ C2) : ¬(C ′ |= P))

⇐ Given P that satisfies the two conditions in the lemma statement, we

construct Pr and Ps such that P = Pr ∧ PS.

• Let Cmin be the set of minimal cuts that satisfy P . Then Ps is defined

as follows: C |= Ps ⇔ ∃C ′ ∈ Cmin : C ′ ≤ C.

• Pr is the meet closure of P , i.e., C |= Pr ⇔ C |= P ∨ (∃C1, C2 |= P :

C = C1 ∩ C2).

We now show that C |= P ⇔ C |= Pr ∧ Ps.

1. C |= P

{P ⊆ Ps ∧ P ⊆ Pr}
⇒ C |= Ps ∧ Pr

2. C |= Pr ∧ Ps ⇒ C |= P :

We show that C |= Ps ⇒ ∃C ′ ∈ Cmin : C ′ ≤ C. ≡ C |= Ps ∧ C |= Pr

39

{ manipulation and basic predicate calculus }
≡ (C |= P) ∨ (C |= Ps ∧ C |= Pr ∧ C |= ¬P)

{ from definition of a stable predicate }
≡ (C |= P) ∨ (∀C ′ ∈ Cmin : C ′ ≤ C ∧ C |= Pr ∧ C |= ¬P)

{since Pr is constructed by taking the meet-closure of P }
≡ (C |= P) ∨ (∀C ′ ∈ Cmin : C ′ ≤ C ∧ (∃M = {m |= P} ∧ ∩(M) =

C ∧ C |= ¬P))

{ the second property in the lemma implies that there can be no ele-

ment less than C that satisfies P }
≡ (C |= P) ∨ (∀C ′ ∈ Cmin : C ′ ≤ C ∧ ∀C ′ ∈ Cmin : C ′ � C)

{ second term in the disjunction evaluates to false } ≡ (C |= P)∨ false

It is also interesting to note that semiregular predicates are closed under

the EG operator. More generally, if P is a join closed predicate, ♦P, ¤P and

EG(P) are semiregular predicates.

A few examples of semiregular predicates are listed below.

40

• All processes are never red concurrently at any future state and process

0 has the token. That is P = ¬♦(
∧

redi) ∧ token0.

• At least one process is beyond phase k (stable) and all the processes are

red.

We now define a representation for semiregular predicates.

Definition 3.4.5. (Semiregular Structure) A semiregular structure, g, is rep-

resented as a tuple (〈slice, I〉) consisting of a slice and a stable structure, such

that the predicate is true in exactly those cuts that belong to the intersection

of the slice and the stable structure.

Hence C ∈ g ⇔ (C ∈ slice) ∧ ¬(C ∈ ⋃
I∈I I).

Note that, a cut is contained in a semiregular structure if it belongs to

the slice and the stable structure in the semiregular structure. The maximal

cut in a semiregular structure is the maximal cut in the slice if the semiregular

structure is nonempty.

We see later that any BTL predicate can be expressed as a basis con-

sisting of a union of semiregular structures. A semiregular structure enables

us to easily handle predicates of the form ¬♦P . Such a predicate can be rep-

resented by n slices or by a single stable structure or a semiregular structure.

We use this in our algorithms and prove that it is possible to compute an

efficient basis representation for any BTL predicate.

41

3.4.2 Algorithm

We present an algorithm to compute a basis for any predicate expressed

in BTL. The computed basis consists of a set of semiregular structures such

that a cut belongs to the basis if it belongs to any semiregular structure in

that set.

Definition 3.4.6. Given a BTL predicate P , we define a representation S

of the predicate that consists of a set of semiregular structures such that

C |= P ⇔ (∃g ∈ S : C ∈ g).

We assume that the input predicate has negations pushed in to the

local predicates or the ♦ operators. In the following discussion, we often treat

¬♦ as single operator. We see later that our algorithm returns an efficient

predicate structure which allows polynomial time detection of the predicate.

Each semiregular structure, g, is represented as a tuple 〈slice, maxCuts〉
where g.slice is the slice in g and g.maxCuts is the set of cuts corresponding

to the ideals representing the stable structure. The use of ideals instead of

filters is very important and results in the 2k bound (see theorem 3.6.2) on the

size of the stable structure. (The stable structures calculated by the algorithm

could require nk filters to represent it.)

Figure 3.5 outlines the main algorithm to compute a basis of the com-

putation for any BTL predicate. For predicate detection, we simply check if

the initial cut of the computation is contained in the computed basis. To de-

termine if a cut is contained within the basis, we need to examine if it belongs

42

/*The input predicate Pin has all negations pushed
- inside to the ♦ operator or to the atomic propositions */
/* each semiregular structure is represented as a tuple 〈slice, maxCuts〉
- where maxCuts is the set of maximal cuts
- of the ideals I representing the stable structure */

function getBasis(Predicate Pin)
output: S[Pin], a set of semiregular structures

Case 1. (Base case: local predicates) : Pin = l or Pin = ¬l
S[Pin] := {〈slice(P), {}〉}

Case 2. Pin = P ∨Q
S[P] := getBasis(P); S[Q] = getBasis(Q);
S[Pin] := {S[P] ∪ S[Q]};

Case 3. Pin = P ∧Q
S[P] := getBasis(P); S[Q] = getBasis(Q);
S[Pin] :=

⋃
gp∈S[P],gq∈S[Q]{(〈gp.slice ∧ gq.slice, gp.maxCuts ∪ gq.maxCuts〉)};

Case 4. Pin = ♦P
S[P] := getBasis(P);
S[Pin] :=

⋃
g∈S[P]{〈♦(g.slice), {}〉};

Case 5. Pin = ¬♦P
S[P] := getBasis(P);
/* sliceorig is the original computation */
S[Pin] := {〈sliceorig,∪g∈S[P]{maxCutIn(g.slice)}〉};

Remove all empty semiregular structures from S[Pin];
return S[Pin]

Figure 3.5: Computing a basis

43

to any semiregular structure in the basis. A basis is nonempty if the predicate

is true in any consistent cut of the computation. Note that, in case we need

to check whether a predicate P is true at any cut in the computation (and not

just the initial cut), we can either apply our algorithm on the predicate ♦P

or alternatively apply the algorithm on P and check if the returned basis is

nonempty.

The algorithm computes the basis by recursively processing the predi-

cate inside out.

• The base case is a local predicate. Note that, the negation of a local

predicate is also local. We know that for each atomic proposition li,

slice[li] can be computed in polynomial time. Efficient algorithms to

compute slice[li] (or slice[¬li]) when the atomic propositions are local

predicates, can be found in [43]. The basis of a local predicate has a

single semiregular structure that consists of a slice and an empty set of

ideals. (A local predicate and its negation are regular predicates and

hence a slice is an efficient basis for such predicates).

• The second case handles disjunctions. If the input predicate Pin is of the

form P ∨Q the basis is the structure containing all the cuts in S[P] and

S[Q] and is obtained by computing the union of the sets S[P] and S[Q].

• When the input predicate is of the form P ∧ Q, the resultant basis is

the pairwise intersection of each semiregular structure in S[P] and S[Q].

Each semiregular structure consists of a slice and a stable structure.

44

The intersection of two semiregular structures, say gp and gq, is the

tuple 〈gp.slice∩ gq.slice, gp.stable structure∩ gq.stable structure〉 . The

grafting algorithm described in [43] describes a technique to compute

the intersection of two slices. Since we use ideals to represent stable

structures, the intersection of the stable structures is represented by the

union of the sets gp.maxCuts and gq.maxCuts.

• The fourth case in the algorithm handles predicates of the form Pin =

♦P . S[P] is the union of a set of semiregular structures. The resultant

basis is obtained by computing ♦g for each g in S[P] and taking the

union. Note that ♦g is equivalent to ♦(g.slice) and the algorithm for

EF of a regular predicate in [56] can be used to determine ♦(g.slice).

• Since ¬♦P is stable, the basis corresponding to ¬♦P contains a single

semiregular structure g. The slice in this semiregular structure is the

original computation while the ideals are represented by the maximal

cuts of the slice in each of the semiregular structures that belong to

S[P]. In this case, it becomes clear that using the ‘set of ideals repre-

sentation’ for stable structures is more efficient. The number of ideals is

guaranteed to be k if S[P] had k semiregular structures. Using another

representation like maintaining a set of filters would have resulted in

expensive operations since the number of filters could be nk in this case.

After each step, the algorithm checks if any of the semiregular structures are

empty and discards the empty semiregular structures. A semiregular structure

45

is empty, if the maximal element of the slice is less than or equal to each cut

in g.maxCuts.

It can be seen that the structure returned by our algorithm contains

exactly those cuts which satisfy the input predicate. We show in section 3.6

that the number of semiregular structures and the number of ideals required to

represent the stable structures returned by our algorithm is polynomial in n.

This enables us to check whether a cut belongs to the structure in polynomial

time and hence the structure is efficient. We now illustrate the basic idea of

our algorithm with an example.

3.5 An Example

Figure 3.6(i) shows a poset representing a computation and figure 3.6(ii)

shows the corresponding computational lattice. The states where a predicate

is true is shown by an area enclosing the states. Figure 3.6(ii) shows the states

satisfied by the local predicates pa, pb and pc respectively. The steps involved

in detecting the predicate ¬♦(pa ∨ pb) ∧ ♦pc are:

1. S[pa ∨ pb]: The predicate structure corresponding to pa ∨ pb is given

by S[pa] ∪ S[pb]. Since pa and pb are local predicates according to the

algorithm the basis for pa is {〈slice[pa], {}〉} and pb is {〈slice[pb], {}〉}.
Hence as seen in figure 3.6(iii), S[pa ∨ pb] is

{〈slice[pa], {}〉, 〈slice[pb], {}〉}

2. S[¬♦(pa ∨ pb)]: According to step 5 of the algorithm, the basis contains

46

pb

{e1, f2}

{e2, f2}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

(ii)

pc

{} pa

e1

f2 f3
f1

e2 e3

(i)

Process2

Process1

{}

{e1, f2}

{e2, f2}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f3}

{e2, f3}

{e3, f1}{e1, f3}

max(slice[pb])max(slice[pa])

{}

{e1, f2}

{e2, f2}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e3, f3}

{e2, f3}

{e1, f3}

slice[pa]

slice[pb]

(iii)S[pa ∨ pb] = {〈slice[pa], {}〉, 〈slice[pb], {}〉} (iv)S[¬♦a ∨ b] = {〈sliceorig_comp, {max(slice[pa], max(slice[p2]}〉}

{e1, f2}

{e2, f2}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e2, f3}

{e1, f3}

slice(♦pc)

(v)S[♦pc] = {〈slice[pc], {}〉}

{}

{e3, f3}

{e1, f2}

{e2, f2}

{e3, f2}

{f2}

{f3}

{f1}

{e1, f1}

{e2, f1}

{e3, f1}

{e2, f3}

{e1, f3}

slice(♦pc)

{}

{e3, f3}

(vi)S[(¬♦pa ∨ pb) ∧ ♦pc] = {〈slicepc
, {max(slice[pa], max(slice[p2]}〉}

Figure 3.6: Computing a Basis

47

a single semiregular structure. This semiregular structure is a tuple with

a slice representing the entire computation and the set of maximal cuts

of each semiregular structure in pa ∨ pb. As seen in the figure, it is given

by

{〈slice[orig computation], {max(slice[pa]),max(slice[pb])}〉}.

3. S[♦pc]: Since pc is a local predicate, the basis S[pc] has a single semireg-

ular structure that contains no ideals and just the slice corresponding to

pc. S[♦pc] is a structure that contains all cuts that are smaller than the

maximal cut in S[pc]. The area shaded in figure 3.6(v) shows all the cuts

that are contained in S[♦pc].

4. S[¬♦(pa ∨ pb) ∧ ♦pc]: The basis corresponding to the conjunction on

two predicates is given by the pairwise intersection of the semiregu-

lar structures in the bases corresponding to the predicates. In this

case S[¬♦(pa ∨ pb)] and ♦pc contain exactly one semiregular struc-

ture each so the final answer also has one semiregular structure. The

intersection of the slices slice[original computation] and slice[♦pc] is

simply the slice[♦pc] as shown in figure 3.6(vi). The set of ideals is

the union of the ideals in each semiregular structure and in this case is

{max(slice[pa]),max(slice[pb])}.

The final output of the algorithm is the basis:

{〈slice[♦pc], {max(slice[pa]),max(slice[pb])}〉}

48

The initial cut is not contained within this basis and hence the predicate

detection algorithm returns false as expected. Since the basis is not empty, it

is easy to conclude that the predicate is true somewhere in the computation

(albeit not at the initial state).

3.6 Complexity Analysis

The time taken by the algorithm in figure 3.5 depends on the number

of ideals representing the stable structure in each semiregular structure and

the total number of semiregular structures in the resultant basis (the size of

the basis). We first present a result on the bound on the size of computed

basis.

Theorem 3.6.1. The basis S[P] computed by the algorithm in Figure 3.5 for

a BTL predicate P with k operators has at most 2k semiregular structures.

Proof. Induction on k:

• (Case: S[P] = s[l]) |S| is always less than or equal to one in this case.

This is the base case (k = 1).

• (Case: S[P] = S1 ∨ S2) Let k1, k2 be the number of operators corre-

sponding to S1 and S2 respectively. |S| = |S1| + |S2| ≤ 2k1 + 2k2 ≤ 2k

(since k = k1 + k2 + 1)

• (Case: S[P] = S1 ∧ S2) |S| = |S1|.|S2| ≤ 2k1 .2k2 ≤ 2k (since k =

k1 + k2 + 1)

49

• (Case: S[P] = ♦S1) |S| = |S1| ≤ 2k (since k = k1 + 1)

• (Case: S[P] = ¬♦S1) |S| = 1

This leads to the following theorem.

Theorem 3.6.2. The total number of ideals |I| in the basis computed by the

algorithm in Figure 3.5 for a BTL predicate P is at most 2k.

Proof. We prove this by induction on k.

• (Case: |I| = 0) This is the base case (k = 1).

• (Case: S[P] = S1 ∨ S2) Let k1, k2 be the number of operators and |I1|,
|I2| be the number of ideals in S1 and S2 respectively. Then, |I| =

|I1|+ |I2| ≤ 2k1 + 2k2 ≤ 2k (since k = k1 + k2 + 1)

• (Case: S[P] = S1 ∧ S2) Let the bases S1 and S2 have |S1| and |S2|
semiregular structures respectively. Since the output basis is computed

by the cross product of the constituent semiregular structures, each ideal

in S1 repeats |S2| times in the output while each ideal in S2 appears |S1|
times in the output. Hence the total number of ideals I is |S2|.|I1| +
|S1|.|I2|. From Theorem 3.6.1, we know that |S1| ≤ 2k1 and |S2| ≤ 2k2 .

Also from the induction hypothesis, |I1| ≤ 2k1 and |I2| ≤ 2k2 . Therefore,

|I| ≤ 2k2+k1 + 2k1+k2 = 2k1+k2+1 = 2k as required (since k = k1 + k2 + 1).

50

• (Case: S[P] = ♦S1) |I| = 0 ≤ 2k

• (Case: S[P] = ¬♦S1) |I| = |S1| = 2k1 ≤ 2k

The time required to compute the conjunction of two slices with respect

to ∧ is O(|E|n) [43]. It takes O(|E|n) time to compute the slice with respect

to the ♦ operator.

Theorem 3.6.3. The time complexity of the algorithm in figure 3.5 is poly-

nomial in the number of events (|E|) and the number of processes (n) in the

computation.

Proof. The algorithm simplifies the predicate by computing the basis one op-

erator at a time. Hence, if there are k operators in all, it requires k steps to

compute the basis for the entire predicate.

Theorem 3.6.1 states that after the lth operator is processed at most 2l

new semiregular structures are generated. The generation of each semiregular

structure takes less than or equal to |E|n time. The time required to generate

all the semiregular structures is 2l.|E|n.

The algorithm compares each ideal to the maximal cut of a slice to

check if the semiregular structure is empty. There are at most 2l semiregular

structures (theorem 3.6.1) which implies that there are no more than 2l slices

(since each semiregular structure contains exactly one slice). The total number

51

of ideals is less than or equal to 2l (theorem 3.6.2). Since comparing two

cuts requires O(n) time, it takes (2l + 2l)n time to check which semiregular

structures are empty. Hence the time required to process the lth operator is

2l.(|E|n) + n(2l+1) , i.e, 2l+1.n.(2|E|+ 1))

Therefore the total time required is Σn
l=12

l+1.n.(2|E|+1) = O(2k|E|n).

If the input predicate is in a ‘DNF-like’ form then predicate detection

is even more efficient (polynomial in k).

Theorem 3.6.4. If the input predicate has conjunctions only over regular

predicates, then the size of the predicate structure and the total number of

ideals |I|, is at most k.

Since conjunctions are allowed over regular predicates, the resulting

predicate is regular and can be represented by exactly one semiregular predi-

cate with no ideals.

3.7 Implementation

We have implemented a toolkit to verify computation traces generated

by distributed programs. This toolkit accepts offline execution traces as its

input.

We used a Java implementation of the distributed dining philosophers

algorithm from [22] and checked for errors in the system. We injected faults in

52

the traces and verified the traces using, both, our toolkit and POTA [57]. Note

that, for predicates containing disjunctions, POTA reduces the computation

size and uses SPIN [26] to check for predicate violations. The POTA-SPIN

combination performs well when predicate is regular but it runs out of memory

for non-regular predicates when the number of processes is increased, especially

when configured to list all predicate violations. BTV, as expected, scales well

and we could use it to verify computations with large number of processes.

Note that the toolkit relies on offline traces and hence it is not necessary

for the program that is being tested to be implemented in Java. It can be used

with any arbitrary distributed program that outputs a compatible trace. The

toolkit includes a utility to convert traces from the POTA trace format.

3.8 Remarks

We see that it is possible to efficiently detect nested temporal predicates

containing disjunctions and negations (along with conjunctions and ♦). The

notion of a semiregular structure allows us to efficiently compute an efficient

basis given any BTL predicate. This has many practical applications which

require verification of traces. Apart from ensuring the validity of runs, the

technique discussed in this paper is also useful in distributed program debug-

gers. Since the computed basis contains exactly all states where the predicate

holds, it can be used to pinpoint the faults in the program.

53

Chapter 4

Fusible Data Structures for Fault-Tolerance

In this chapter, we introduce the concept of fusible data structures to

maintain fault-tolerant data in distributed programs.

4.1 Introduction

In distributed systems, it is often necessary for individual servers to

recover from faults. One of the important aspects in recovery is to ensure

that the dynamic data that was being used by the program, can be restored.

We look at the problem of maintaining fault-tolerant data structures in such

systems. One commonly used technique is replicating the server data [12,

34, 48, 53, 61, 65, 70]. Hence, to tolerate a single fault, the space requirements

are doubled. Although it requires a considerable amount of extra space, this

approach is efficient at run time since updating the back up data structures is

easy and efficient. Another approach is to use erasure coding approaches [7,

47, 50]. Though such approaches require less space than replication, their main

drawback is that they are data-agnostic. This results in high communication

overheard and expensive updates of the backup data.

We propose a new idea called fusible data structures with the aim to

54

have an approach that combines the desirable properties of both these ap-

proaches. Given a fusible data structure, it is possible to combine a set of

data structures into a single fused structure that is smaller than the combined

size of the original structures. When any of the original data structures is

updated, the fused structure can be updated incrementally using local infor-

mation about the update and does not need to be entirely recomputed. In case

of a failure, the fused structure, along with the correct original data structures,

can be used to efficiently reconstruct the failed structure.

Fusible data structures satisfy three main properties: recovery, space

constraint and efficient maintenance. The recovery property ensures that in

case of a failure, the fused structure, along with the remaining original data

structures, can be used to reconstruct the failed structure. The space con-

straint ensures that the number of nodes in the fused structures is strictly

smaller than the total number of nodes in the original structures. Finally,

the efficient maintenance property ensures that when any of the original data

structures is updated, the fused structure can be updated incrementally using

local information about the update and does not need to be entirely recom-

puted.

We show that many commonly used data structures like arrays, hash

tables, stacks and queues are fusible and present efficient algorithms to fuse

such structures. This approach often requires significantly less space than

conventional backups by replication and still allows efficient operations on the

regular data structures.

55

As a concrete example, we consider a lock server in a distributed system

that maintains and coordinates use of a lock. The lock server maintains the

record of the process that has the lock and the queue of all pending requests.

Assume that the size of the pending request queue is nmax. Traditionally, if

fault-tolerance from a crash is required, we would keep two copies of the queue.

If there are k such lock servers in the system, and each one is replicated, we

get the space overhead of knmax. In our proposal, we keep a single backup

queue for all k servers that is obtained by fusing the original queues. Our fused

queue uses O(nmax) space, supports recovery and can be updated efficiently

when any of the primary queues gets updated. This technique results in k-fold

savings.

We have experimentally evaluated our technique by implementing a

library supporting arrays, queues, stacks, sets, priority queues, linked lists and

hash tables in a distributed programming framework. A brief summary of our

experimental results is given in table 4.1. The space requirements are averaged

over multiple runs. For example, the space required by active replication of 50

queues is around 40 times more than the space required by fusion. For systems

with k servers, queues, arrays, stacks and sets require around k/2 times less

space than replication. The improvement is not so drastic for linked lists and

priority queues, but the space requirements are still reduced by a factor of two

or more when k is large.

We focus primarily on single crash failures. The ideas presented here

can be easily generalized to the case when there can be t concurrent failures

56

Number of processes 10 20 30 40 50

Queues 8.6 16.4 23.9 31.7 38.7
Stacks 9.6 18.3 26.7 34.8 43.7
Priority Queues 1.3 1.6 1.8 2.0 2.2
Sets 6.5 12.3 18.5 24.3 30.5
Linked Lists 1.5 1.8 2.1 2.4 2.6

Table 4.1: Experimental results: (space used by replication)/(space used by
fusion)

by using erasure codes (like Reed-Solomon codes [38]) as described in section

4.6.

In summary,we make the following contributions:

• We introduce the notion of fusible data structures that provide fault-

tolerance with reduced space overhead as compared to replication based

schemes that are widely used now.

• We present algorithms to efficiently fuse standard data structures includ-

ing arrays, stacks, queues, sets, priority queues and hash tables.

• We have a Java implementation of fusible data structures which can

be transparently used in distributed programs. Since the overhead is

minimal, this can also be used to easily increase reliability in programs

which inherently do not have any fault tolerance. For example, instead of

using the standard queue, the programmer can easily use the queue from

our implementation library and get fault tolerance without significant

programming effort or computational overhead.

57

• We apply our technique to an extensively studied problem of lock server

in distributed systems. Our experimental results show k-fold improve-

ment in space complexity for maintaining k lock servers in a fault-tolerant

manner.

The remainder of this chapter is organized as follows: we first define

and explain the idea of fusible data structures. We then present algorithms to

fuse commonly used data structures including arrays, stacks, queues, lists and

tables. Section 4.5 discusses the performance of fusible techniques in practical

applications. We then compare existing approaches using erasure codes or

replication with the fusion approach.

4.2 Fusible Data Structures

A data structure is a tuple consisting of a set of nodes and some aux-

iliary information. The auxiliary information may be implicit or explicit and

delineates the ‘structure’ of the data nodes. For example, every element of an

array is a node and the auxiliary information that is implicit in the definition

of the array specifies that the nodes are contiguous and in a specific order.

On the other hand, a linked list has explicit auxiliary data consisting of the

next and previous node pointers for each node along with the head and tail

pointers of the list.

Every data structure has a set of valid operations associated with it.

For example, push and pop are the valid operations on a stack. The data

58

structures may also have read-only operations, but we ignore them here since

they do not affect the backup data structure.

Given k instances of a data structure, our objective is to efficiently

maintain a more efficient backup of these structures than full replication based

schemes. If a failure occurs, it should be possible to reconstruct any structure

on the failed process using the backup and the remaining structures. We as-

sume that failures are restricted to crash failures. The recovered data structure

needs to have the exact values of the nodes and equivalent auxiliary data. For

example, the actual values of the pointers in a linked list will not be preserved

and the reconstruction will simply be a list with identical values in the same

order.

We define a fusible data structure X as follows.

Definition 4.2.1. Let x1, . . . , xk be instances of a data structure X where

k > 1 and each node in X has size s. Assume that each of x1, . . . , xk contain

n1, . . . , nk nodes respectively and let N = Σk
i=1ni. Then X is fusible if there

exists a data structure Y with an instance y such that:

1. (Recovery) Given any k−1 of x1, . . . , xk and y, there exists an algorithm

to recreate a missing xi.

2. (Space Constraint) The number of nodes in y is strictly less than N .

The size of any node in Y is O(k + s) and the space required for any

additional data maintained by Y is independent of N .

59

3. (Decentralized Maintenance) For any operation that updates one of

the xi, there exists an operation to update y using information only from

y and xi. The time required for the operation on y is of the same order

as the operation of x with respect to the number of nodes in xi and y.

The data structure Y is called a fusion of X. We refer to the process

of computing y as fusing the structures x1, . . . , xk and to the instance y as the

fused structure or fusion.

The recovery property is the crucial property required for fault-tolerance.

Whenever one of the xi is unavailable (for example, due to a process failure),

it should be possible to recreate xi with the remaining objects and y. When

the server that stores y crashes, then our requirement is slightly weaker. The

recovered object may even have different structure; the only requirement is

that it be a valid fusion of xi’s.

The space constraint property rules out trivial algorithms based on

simple replication. Note that, simple replication satisfies recovery property;

we can easily recover from one fault, but it does not satisfy the space constraint.

On the other hand, erasure coding is data structure oblivious and though it

results in space savings, it does not allow efficient update of data.

The decentralized maintenance property ensures that as any object xi

changes, there is a way to update y without involving objects other than xi

and y. The cost of maintenance is one of the main metrics for comparison

with standard erasure coding methods. For example, assume that we need to

60

maintain a fusion of linked lists. Consider the strategy of maintaining y as

simple xor of bit arrays corresponding to the memory pages that contain xi’s.

Any change in xi, say inserting a new node, requires the re-computation of y

with time complexity that may depend on the size of xi and y. With fusible

data structures, we exploit properties of the data structure so that the cost of

updating y is of the same order as of the cost of updating xi.

An obvious fusible data structure is a single bit. Assume that the

operations defined on the bit are: get and set, where get returns the value

of the bit and set sets the bit to the provided value. Let x1, . . . , xk be k bits.

The fused data structure is also a bit initialized to xor of all xi. Whenever

any operation set(b) is issued on xi, y is updated as :

y := y ⊗ xi ⊗ b

The fused bit satisfies our recovery property because the missing bit can be

obtained by xoring the remaining bits. It satisfies the space reduction property

because the sum of sizes of all objects is k bits, whereas the fused bit uses a

single bit. Finally, the maintenance of y requires values from xi and y only.

The single bit example can be easily generalized to any data structure

with a fixed number of bits like char, int, float etc.

In the previous example, the set operation requires information from

xi to update y. This is not always necessary and we could have data structures

with operations that do not require any input from the original structure to

update the fused structure.

61

Definition 4.2.2. (Independent operation) An operation is independent with

respect to a fusible data structure X, if its corresponding operation on the

fusion Y does not require any information from X

If all the operations on a data structure are independent the structure

is said to be independent.

The fused bit data structure described previously is not independent

because the set operation requires the value of xi to update its fusion y.

Now consider the single bit data structure permitting the operations get and

toggle with usual semantics. In this case, the maintenance operation for y

is even simpler. Whenever any xi is toggled, y is toggled as well. Thus no

information from X is required to update Y . Hence this data structure is

independent.

One more example of a fusible data structure is a counter with n bits

that takes values from 0 to 2n − 1. The operations on the data structure are

set, increment and decrement. Assume that both increment and decrement

operations are modulo 2n. Given k counters one can keep the fused counter

as xor of all the primary counters. This way the space overhead is n bits

(instead of kn bits required by replication). However, none of the operations

are independent. When a primary counter is updated, updating the fused

counter requires the previous value of the primary counter. A better fusion

method for the fused counter is to keep the modulo 2n sum of the k primary

counters . Given any k − 1 primary counters and the fused counter that has

62

sum modulo 2n, one can easily derive the value of the missing counter. Again,

we have the same space overhead of n bits. However, now the increment

and the decrement operations can be performed on the fused data structure

independently. The set operation is not independent. Note that, when the

operations in the counter are simply read and set, then keeping the sum would

not have any advantage over xor. The efficiency of a fusible data structure

crucially depends upon the operations.

In the next few sections we explore how standard data structures such

as arrays, stacks, queues and linked lists can be fused.

4.3 Array Based Data Structures

We first extend our example of a single bit to another simple fusible

data structure: a bit array of size n. Assume that the following operations are

allowed on an object of this class: get(j) that returns jth bit and set(j, b) that

sets jth bit to b. We maintain a fusion of k such arrays x1, . . . , xk by keeping

another bit array y. The ith bit of y is computed by xoring the ith bits from

each of x1, . . . , xk. This takes care of the efficient update property. If the sizes

of the arrays x1, . . . , xk are different then we take the largest of them as the

size of y and pad the smaller arrays with zeros. It follows that,

Lemma 4.3.1. The bit array data structure is fusible.

Proof. In a bit array structure each bit constitutes a node. We maintain a

fusion of k such arrays x1, . . . , xk by keeping another bit array y. The ith bit

63

of y is computed by xoring the ith bits from each of x1, . . . , xk. This takes

care of the efficient update property. If the sizes of the arrays x1, . . . , xk are

different then we take the largest of them as the size of y and pad the smaller

arrays with zeros. To recover any bit array, it is sufficient to compute xor of

the remaining bit arrays with y. The space constraint is satisfied since the

number of nodes in y is max(n1, . . . , nk) and this is always less than N .

When the source arrays are of different sizes, we also need to maintain

the sizes of the arrays in the fused structures, so that in case of a failure, the

correctly sized array is recovered. It is not necessary to store k distinct sizes in

the fused structure and a single value that is the xor of these values is stored.

We now generalize the bit array example.

Theorem 4.3.2. If a data structure is fusible, then any fixed size array of

that data structure is also fusible.

Proof. We consider each element of the array to be a node. A valid fusion is

another identical array, where the ith element is a fusion of all the ith nodes

from each of the arrays. This fusion exists since it is given that the original

data structure is fusible.

Thus, arrays of basic data types like short, int, float, double are fusible

as well.

64

4.3.1 Array Based Stacks and Queues

?

?

?

x1 x2 y

tos[1]

0

tos[2]

tos

tos

?: unknown data
a1

a2

b1

b2

b3 0 ⊗ b3

a1 ⊗ b1

a2 ⊗ b2

Figure 4.1: Stacks

In the rest of this chapter we will use the ⊗ operator to denote fusing

nodes in data structures. The actual nodes could be complex fusible objects

and in such cases instead of bitwise xoring, we mean computing the fusion of

those nodes. We use ⊗̄ to denote the recovery operation,i.e., the inverse of

the fusion. In case of xor both the fusion and recovery operators are identical.

For fusion by modulo n addition, the recovery operator would be modulo n

subtraction.

We now consider data structures that encapsulate some additional data

besides the array and support different operations. The array based stack data

structure maintains an array of data, an index tos pointing to the element

in the array representing the top of the stack and the usual push and pop

operations.

Lemma 4.3.3. The array based stack data structure is fusible given O(k)

additional storage. The push operation is independent.

Proof. For simplicity, the algorithms we discuss in the remainder of this chap-

ter do not include boundary checking for normal data structures unless it adds

65

to the discussion. We assume that all stacks are initially empty. The fused

stack consists of the fusion of the arrays from the source stacks. We keep all

the stack pointers at y individually. This additional O(k) additional storage is

required for the efficient maintenance property. The following push and pop

operations satisfy the efficient maintenance property.

function xi.push(newItem)
xi.array[xi.tos] := newItem;
xi.tos++;
y.push(i,newItem);

end function

function y.push(i, newItem)
y.array[y.tos[i]] := y.array[y.tos[i]] ⊗ newItem;
y.tos[i]++;

end function

function xi.pop()
x.tos[i] −−;
y.pop(i, xi.array[xi.tos]);
return xi.array[xi.tos];

end function

function y.pop(i, oldItem)
y.tos[i] −−;
y.array[y.tos[i]] := y.array[y.tos[i]] ⊗̄ oldItem;

end function

Figure 4.2: Fusion of Stacks

When an element is pushed onto one of the source stacks, xi, the source

stack is updated as usual and the request is forwarded to the fused stack. The

fused stack does not require any additional information from xi, i.e., the push

operation is independent. During a pop operation, we xor the corresponding

66

function y.recover(failedProcess)
/*Assume all source stacks have the same size*/

recoveredArray := new Array[y.array.size];
for j = 0 to tos[failedProcess]− 1

recItem := y[j];
foreach process p 6= failedProcess

if (j < tos[p]) recItem := recItem ⊗̄ xp.array[j];
recoveredArray[j] := recItem;

return 〈 recoveredArray, tos[failedProcess] 〉 ;
end function

Figure 4.3: Recovery from faults

value in y with the value that would be returned by xi.pop().

The number of elements, ny, in the array corresponding to the fused

stack is the maximum of n1, . . . , nk which is less than N . Therefore, the space

constraint is satisfied.

From the algorithm, it is obvious that any stack xfailedProc can be recov-

ered by simply xoring the corresponding elements of the other original stacks

with the fused stack.

Note that, in the usual implementation of stacks, it is not required

that the popped entry be zeroed. However, for fusible data structures it is

essential to clear the element during a pop operation to ensure that the next

push operates correctly.

It is easy to accommodate different sized stacks in the fused data struc-

67

ture. In this case, similar to the arrays example in lemma 4.3.3, the fusion y

contains an array that is as large as the biggest stack.

Circular array based queues can be implemented similarly by zeroing

out deleted elements and keeping the individual head and tail pointers.

4.4 Dynamic Data Structures: Stacks, Queues, Linked
Lists

So far, we have discussed data structures based on arrays. We now

move on to structures like stacks, queues and sets that are based on linked

lists. Instead of using a generic fusion algorithm for all structures based on

linked lists, we use specific properties of each structure to make the fusion

more efficient wherever possible.

4.4.1 Stacks

We start with the linked list based stacks, i.e., a linked list which sup-

ports inserts and deletes at only one end, say the tail. The fused stack is

basically another linked list based stack that contains k tail pointers, one for

each contributing stack xi.

When an element newItem is pushed onto stack xi, then

• if tail[i] is the last element of the fused stack, i.e, tail[i].next = null,

a new element is inserted at the end of the fused queue and tail[i] is

updated.

68

• otherwise, newItem is xored with tail[i].next and tail[i] is set to tail[i].next.

function y.push(i, newItem)
if(tail[i].next = null)

tail[i].next := new empty node();
tail[i] = tail[i].next;
tail[i].value := tail[i].value ⊗ newItem;

end function

function y.pop(i, oldItem)
tail[i].value := tail[i].value ⊗̄ oldItem;
oldTail := tail[i];
tail[i] := tail[i].previous;
if((oldTail.next = null) ∧(∀ j: tail[j] 6= oldTail))

delete from list(oldTail);
end function

Figure 4.4: List based stacks

When a node is popped from a stack xi, the value of that node is read

from xi and passed on to the fused stack. In the fused stack, the node pointed

to by tail[i] is xored with the old value. If tail[i] is the last node in the fused

list and no other tail[j] points to tail[i], then the node corresponding to tail[i]

can be safely deleted once the value of tail[i] is updated. Note that in this

case, a push takes O(1) time but a pop operation may require O(k) time,

since we check if any other tail points to the node being deleted. This satisfies

the efficient maintenance property of fusible structures since the time required

is independent of the size of the total number of nodes in the original data

structure. For constant time pop operations, the algorithm for fused queues

in section 4.4.2.1 can be applied for stacks.

69

The fusion of the list based stack requires no more nodes than the

maximum number of nodes in any of the source stacks. The size of each node

in the fused stack is the same as s, the size of the nodes in the original stack

X. The only extra space overhead is the k tail pointers maintained. If all the

stacks are approximately of the same size, the space required is k times less

than the space required by replication.

4.4.2 Queues

The fusion of list based queues is more involved than stacks since both

ends of the list are dynamic. We assume that elements in a queue are inserted

at the tail of any queue and only the head of a queue can be deleted.

We begin with examining why an algorithm similar to the list based

stacks cannot be used for queues. If we modify the algorithm so that it applies

to queues, we get a structure that seems to be a fused queue but does not

always satisfy the space constraint since it could have exactly N nodes in the

worst case. An example of when this could happen is shown in figure 4.5.

To ensure that it meets the space constraint, we need to merge nodes

head[i] and head[i].previous if possible after head[i] is deleted in the fused

structure. Determining if the nodes can be merged in the data structure

described above can take O(N) time, violating the efficient update property.

We now present an algorithm for fusing queues that satisfies the space

constraint and the efficient update property by maintaining an extra log(k)

bits at each node.

70

delete(a1)

insert(b1)

insert(a2)

insert(a1)

a1 a2 b1

0 ⊗ b1

x[2].tail x[1].head

Invalid Fusion (ny = N)
Queue x1

Queue x2

a2 ⊗ 0

x[1].tailx[2].head

Figure 4.5: The resultant data structure is not a valid fusion

4.4.2.1 Fused Queues

As in the previous algorithm, the fused data structure is implemented

as a linked list with each node in the list containing the xor of elements from

the original queues. Each node in the fused structure also contains an extra

variable, the reference count which is a count of the number of source queues

whose data is maintained by that node. The reference count enables us to

decide when a node in the fused structure can be safely deleted (when its

reference count is 0) or merged. The fused data structure Y contains a list of

head and tail pointers for each component queue, pointing to the corresponding

node in fused list. For example, in figure 4.6(ii), x[1].tail has a reference count

of 1 since it contains a value from only x1 while x[1].head contains the fusion

of values from x1 and x2 and hence has a count of 2.

As in the case of stacks, deleting a value from the fused structure re-

quires access to the old value that is to be deleted. The old value is xored

71

a1 ⊗ b1

2 a1 ⊗ b1

2
a2 ⊗ 0

1

x[1].head.prev

a1

b1

x[1].head

x[2].head

x[1].tail

x[2].tail

(i) (ii) insert_tail1

x[2].tail x[1].tail

x[1].head

x[2].head

x[2].head x[1].head

delete_head1

insert_tail1
a2 ⊗ b2

2
insert_tail2

1
insert_tail1

0 ⊗ b1
a3 ⊗ 0

1

a4 ⊗ 0

1

x[1].tailx[2].tail(iii)

x[2].head

0 ⊗ b1

1 1
0 ⊗ b2delete_head1

1
a3 ⊗ 0

x[1].head

x[2].tail
(iv) merge x[1].tail

1

a4 ⊗ 0

refCountvalue

Figure 4.6: Example of a fused queue

72

function y.insertTail(i, newItem)
if(tail[i].next = null)

tail[i].next := new empty node();
tail[i] = tail[i].next;
tail[i].value := tail[i].value ⊗ newItem;
tail[i].refCount ++ ;

end function

function y.deleteHead(i, oldItem)
oldHead := head[i];
oldHead.value := oldHead.value ⊗̄ oldItem;
oldHead.referenceCount −−;
head[i] := oldHead.next;
if(oldHead.refCount = 0) delete from list(oldHead);
else if (head[i].refCount = 1 ∧

head[i].previous.refCount = 1)
merge(head[i], head[i].previous);

end function

Figure 4.7: Queues with Reference Counts

with the value at head[i], head[i] is set to head[i].next and the reference count

is decremented by one. If the new reference count is 0 then the old node at

head[i] is deleted. The reference count also simplifies the merging. The new

head[i] and head[i].previous are merged when both their reference counts are

equal to one.

1. Figure 4.6(i) shows a fusion of two queues, x1 and x2 containing one

element each. In this case, the fused structure contains exactly one

node containing the xor of a1 and b1. The pointers x[1].head, x[1].tail,

x[2].head and x[2].tail point to this node and the reference count of this

73

node is two.

2. The insertion of a new element is similar to pushing an element in the

stack. Figure 4.6(ii) shows the fused structure after an element is inserted

in queue x1. A new node is created in the fused linked list and x[i].tail

is updated so that it points to this node. The reference count of the new

node is one.

3. Figure 4.6(iii) shows the fused queue after a sequence of two inserts and

a delete on queue x1 and an insert in queue x2.

4. Now if the head of queue x1 is deleted, the resulting fused queue is shown

in figure 4.6(iv). In this case, the reference count of both x[1].head and

x[1].head.previous is one. Hence each of these nodes contains data from

a distinct source queue and the nodes are merged together forming a

single node by xoring the values and setting the reference count to two.

Note that x[2].tail and x[1].head both point to the same newly merged

node.

Lemma 4.4.1. The number of nodes in the fused queue is less than N .

Proof. Since we delete empty nodes the maximum number of nodes in the fused

queue is bounded by N . N nodes in the fused queue implies that there are

adjacent nodes with a reference count of one containing data from different

processes (for example the scenario in figure 4.5). However, this can never

happen with the algorithm just described since adjacent nodes are always

74

merged after a delete whenever each of them contains elements from a different

process.

Hence the space constraint is satisfied. Note that, unlike the list based

stack algorithm discussed earlier, this algorithm requires O(1) time for inser-

tions as well as deletions. It requires an extra log(k) bits at every node of the

fused list.

4.4.3 Dequeues

Dequeues are a generalization of list based stacks and queues. The

reference count based fusion implementation of linked lists is easily extensible

to a dequeue allowing two new operations insert head and delete tail.

4.4.4 Efficient Fused Queues Using an Auxiliary List

It is possible to further modify the algorithm described in the previous

section so that it is not necessary to maintain log(k) extra bits at each node

(i.e., Nlog(k) bits in all).

The main idea is based on the observation that the reference count

changes only at nodes that are pointed to by a head or a tail pointer. Hence,

instead of maintaining a reference count at each node in the fused list, we

maintain the count only for those nodes pointed to by the heads and the tails.

We do this by adding another level of indirection by maintaining an auxiliary

75

function y.insertTail(i, newItem)
if(tail[i].pointer.next = null)

tail[i].pointer.next := new empty node();
newNode = tail[i].pointer.next;
newNode.value := newNode.value ⊗ newItem;
/* check if we need to
create new node in the auxiliary list */

if(tail[i].pointer.next != tail[i].next.pointer)
newTail := new node in aux list after(tail[i]) ;
newTail.referenceCount = tail[i].referenceCount;
tail[i].pointer := newNode;
newTail.auxCount := 1;

tail[i].auxCount −−;
if(head[i].auxCount = 0)

delete node in auxiliary list(tail[i]);
tail[i] := newTail;
tail[i].refCount ++;

end function

Figure 4.8: Algorithm for insertTail

linked list that contains the reference count and a pointer to the node in the

actual fused list.

Hence, in the fused queue, the head and the tail pointers point to an

auxiliary node which in turn points to the primary node containing the data.

From our algorithm we can see that auxiliary queue does not contain more

that 2k nodes at any time. Each node in the auxiliary queue has two counter

fields, one which maintains a reference count similar to that of the algorithm

in figure 4.7 and another which counts the number of head an tail pointers

pointing to that node in the auxiliary queue.

76

function deleteHead(i, oldItem)
oldHead.pointer.value := oldHead.pointer.value ⊗̄ oldItem;
/* check if we need to
create new node in the auxiliary list */

if(oldHead.pointer.next != oldHead.next.pointer)
newHead = new node in auxiliary list after(head[i]) ;
newHead.pointer := head[i].pointer.next;
newHead.refCount := head[i].refCount;
newHead.auxCount = 1;

head[i].auxCount −−;
head[i].referenceCount −−;
if(head[i].refCount = 0)

delete(head[i].primaryNode);
if(head[i].auxCount = 0)

delete node in auxiliary list(head[i]);
head[i] = newHead;
if [(head[i].referenceCount = 1) ∧

(head[i].previous.referenceCount = 1)]
merge aux and primary lists(head[i] , head[i].previous);

end function

Figure 4.9: Algorithm for deleteHead

77

a3 ⊗ b1a2 ⊗ 0a1 ⊗ 0 0 ⊗ b2

ref = 1

aux = 1

ref = 2

aux = 2

ref = 1

aux = 1

head1 head2 tail1
tail1

0 ⊗ b3

Figure 4.10: Fused queues with auxiliary list

To insert a new element at the tail of a process i, the value of taili

is used to obtain a node in the auxiliary list. As seen in figure 4.10, this

node contains a pointer to the actual node containing the data, along with a

reference counter and an auxiliary counter. The reference count is similar to

the reference count described earlier, except for that fact that we maintain it

in the few nodes of the auxiliary list. The auxiliary counter maintains a count

of the number of head or tail pointers pointing to that specific auxiliary node.

This enables us to delete unnecessary nodes in the auxiliary list. Using this

we can easily show that the maximum size of the auxiliary list is bounded by

2.k.

While deleting the heads, a similar double dereferencing is carried out.

Also if the reference count of an auxiliary node drops to zero, the corresponding

data node can be safely deleted. To check if adjacent data nodes can be

merged, we check the reference count of the neighbors in the auxiliary list

after every delete. Note that, if the adjacent data nodes are merged, we also

merge the corresponding nodes in the auxiliary list.

78

The pseudo code for insertion and deletion of elements in the queue is

outlined in figures 4.8 and 4.9 respectively.

4.4.5 Linked lists

0 001 1 1 1 1

b1 b2

a3a2a1

a1 ⊗ 0 a2 ⊗ b1 0 ⊗ b2 a3 ⊗ 0Fusion of x1 and x2

List x1

List x2

Figure 4.11: Linked Lists

We now examine a generic linked list. The fused structure for a linked

list is also valid for priority queues and sets. Linked lists can be fused together

in a manner similar to queues, except that we also maintain a bit array of size

k, at each node of the fused list, with a bit for every source linked list. Each

bit in the array enables us to determine if a node contains data from the list

corresponding to that bit. It also enables us to determine if adjacent nodes

can be merged.

It is not necessary to maintain a list of head or tail pointers correspond-

ing to each source list in this case. However in priority queues or sets, the head

or tail pointers can optionally be maintained to eliminate the search overhead

for deletes and inserts.

79

structure nodeInFusedList
pointers next, prev
boolean bitField[1 . . . numLists]
value

end structure

To insert or delete an element, the source list xi sends the element along with

its index in the source list. The algorithm examines the bit field of each fused

node, counting the number of nodes which have data from xi to determines the

location for the insert or delete. To insert a node after say the mth element of

the source list, the algorithm advances through the fused list till it encounters

m elements with their ith value in the bitfield set to nonempty. If the next

node does not have an empty space for source list i, a new node with the input

value is created.

4.4.5.1 Performance Considerations

Though the number of nodes in a fused linked list is guaranteed to be

less than the number of nodes in the source lists, the fused structure has an

overhead of k bits at each node. Hence in the adversarial case, the actual

space required by the fusion algorithm could be more than the space required

by a replication scheme.

If Ny is the number of nodes in the fused structure the space required by

the fused list is Ny(s+k). Fusion is advantageous when (s+k).Ny < s.N , i.e.,

N/Ny > (s+k)/s. Note that Ny is always less than N . When s >> k, N/Ny >

(s + k)/s is always satisfied and the fused structure outperforms replication

80

function y.insert(i, index, newItem)
node = y.head;
while(count ≤ index)

if(node.bitField[i]) count ++;
node := node.next;

if (node.next = null ∧ node.next.bitField[i] = notEmpty)
node := insert new node after(node);

else node = node.next;
node.value := node.value ⊗ newItem;
node.bitField[i] := notEmpty; /* notEmpty = 1 */

end function

function y.delete(i, index, oldItem)
node = y.head
while (count < index)

if(node.bitField[i]) count ++ ;
node := node.next;

node.value := node.value ⊗̄ oldItem;
node.bitField[i] := empty; /*empty = 0*/
mergeNodes(node);

end function

Figure 4.12: Linked Lists

based techniques. If we assume that s and k are approximately equal then the

N/Ny needs to be greater than two. Note that the actual value of N/Ny may

vary from run to run. In our simulations, N/Ny was always around two or

more when k was greater than ten. Thus it is reasonable to assume that the

fused linked list outperforms replication unless s is significantly less than k,

that is, when we have very small nodes in the linked list and a large number

of source lists.

81

Sets are special cases of linked lists in which the order of nodes does

not matter. Hence we always insert new nodes at one end of the list. In our

simulations, this drastically improved the performance of the fused structure

and the ratio Ny/N always hovered close to the theoretical maximal value

k. Therefore in practice, our fusion algorithm can always be applied to sets.

Priority queues, which allow insertions at any locations and deletions at one

end, perform similar to normal linked lists and the results for the general linked

list are applicable to priority queues too.

4.4.6 Hash Tables

A chained hash table can be constructed using a fixed sized array of

the sets. Sets are a special case of linked lists and a the fusion of a set can

be computed as described in subsection 4.4.5. Such a table is fusible and the

fusion consists an array of fused linked lists from the individual hash tables.

Lemma 4.4.2. Hash tables are fusible.

Proof. Sets are a special case of linked lists and linked lists are fusible. A

hash table is a fixed size array of such lists. Therefore, from theorem 4.3.2, it

follows that hash tables are fusible.

4.5 Experimental Evaluation

For some structures like stacks and simple arrays, it is clear from the

algorithms that fusion always performs much better than replication. However

82

for queues and other structures, in the worst case, only one node may be fused,

resulting in space requirements that are almost equivalent to active replication.

In the optimal scenario, however, the number of nodes required by the fused

structure is k times smaller than active replication.

We have implemented a library of common data structures for regular

use based on the distributed programming framework used in [14]. Using this,

we examined the performance of the data structures in different scenarios. We

also implemented a k-server lock based distributed application.

4.5.0.1 Fault-Tolerant Lock Based Application

We now look at a distributed computing application that uses queues

using fusion for backup. It consists of k lock servers that arbitrate access

to shared resources. Each lock server maintains a queue of pending requests

from clients. We use a single fused queue to backup the queues in all k servers.

Every time a server modifies its queue the changes are propagated to the fused

queue which is updated as described before.

We modified the lock server program [14] by simply substituting fusible

queues instead of the normal queues. The backup space required by k servers

was drastically lower, by a factor of more than k/2, as compared to active

replication.

83

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 n

od
es

Number of processes

Replication
Fusion

Figure 4.13: Stacks

4.5.0.2 Simulation Results

As seen in the lock server scenario, queues perform well in almost all

scenarios resulting in a savings factor of k/2 or more. We also tested queues

and other data structures by simulating random inserts and deletes and av-

eraging the results over multiple runs. To examine the performance when

the data structures are large, we biased the simulations to favor inserts over

deletes.

Like queues, sets and stacks showed noticeable and consistent savings

of around k/2. General linked lists and priority queues, however, do not show

consistently significant savings, requiring around half the number of nodes as

compared to replication. Stacks, queues and sets show a huge improvement

over replication. Table 4.1 lists the space saving due to fusion for these data

structures. Figure 4.13 compares the number of nodes in fused structures (the

total space required by all the processes in the system) with the number of

84

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 n

od
es

Number of processes

Replication
Fusion

Figure 4.14: Queues

nodes required by replication as the number of processes is varied. Note that

the total number of nodes across all the processes was kept constant and the

average number of nodes per process decreased, as the number of processes

increased.

It may seem that fusible data structures are not useful when the ap-

plication maintains a single queue, list, or a table. However, this is not true.

Assume that we have to maintain a single list L with n nodes in a distributed

system with three processors such that failure of any single processor is recov-

erable. A replication based scheme will maintain the primary copy of the list

L on one processor and its mirror on the other processor resulting in space

overhead of n nodes. Another possibility based on fusible data structures is to

split the list L into two lists L1 and L2 maintained by different processors and

store the fusion of these two lists on the third processor. This scheme may

result in space savings by a factor of two.

85

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 n

od
es

Number of processes

Replication
Fusion

Figure 4.15: Priority Queues

4.6 Fusion Operators and Tolerating Multiple Faults

So far we have used xor as the principal operator for fusing key parts of

the data structures. However, some different techniques may be more suitable

for different applications. For example, consider an application that maintains

counts of various events in the system. The operations on the data structure

are increment(j), reset(j) and decrement(j). Given k count tables, one may

use xor technique for fusion. However, in that case none of the operations are

independent. Another way to fuse data in this case is as follows. Assume that

each counter uses n bits, i.e., it stores a natural number between 0 and 2n− 1.

We keep as the fused data, sum of jth entry of all the count tables modulo 2n.

It is clear that any missing counter table can be recreated from the available

tables and the fused data. Moreover, both increment and decrement operations

can be performed on the fused data structure efficiently and independently.

Hence modulo-addition and modulo-subtraction can be used as fusion and

86

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 n

od
es

Number of processes

Replication
Fusion

Figure 4.16: Sets

inverse fusion operators instead of xor.

In general it is possible to have more complex fusion operators without

affecting most of the previous discussion and algorithms. Mainly the idea of

a fusible data structure can be loosely divided into the following parts.

1. Distinguishing between structural information and node data in a data

structure.

2. Identifying and maintaining a fused structure that allows us to save

storage space by fusing together nodes.

3. Techniques to fuse individual node data (throughout this paper we have

used bitwise xoring or modulo addition for this).

4. Updating the backup structure efficiently when operations on the source

structures modify some data.

87

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 n

od
es

Number of processes

Replication
Fusion

Figure 4.17: Linked Lists

It can be seen that error correcting codes deal exclusively with the

third item on the list, .i.e., fusing a set of data blocks into one or more backup

blocks allowing recovery in case of failures. We have used xoring which is

a parity based erasure coding, assuming only one failure. Our approach is

directly extensible to the case of t failures using t backup structures by using

other erasure coding techniques (like Reed-Solomon codes [38]) to fuse each

node together. The algorithms presented in this paper deal with steps 1, 2

and 4 and remain unchanged. Thus, fusion is orthogonal to error coding and

advances in error codes can be transparently included in the fusion techniques.

This is particularly interesting as it enables us to extend the fault tolerance

capability to more multiple faults without changing any of the algorithms

described before. We give an overview of Reed-Solomon codes since these are

suited for fusion when we need to tolerate multiple faults.

88

4.6.1 Reed-Solomon Coding [50]

RS coding employs a combination of an Identity and Singular matrix

and also performs all operations over a Galois Field.

Fusing (Encoding) : The basic algorithm comprises of a Vandermonde

matrix, that is a combination of an Identity and Singular matrix as shown

below. Let S be a Vandermonde matrix. Then we construct a matrix A of the

form, A =

[
I
S

]
Let D be the data matrix and E the encoded matrix obtained

after multiplying A with D.

A×D = E i.e., [
I
S

]
× [

D
]

=

[
D
C

]

where C is the set of check sums (the fused data) computed for the data set

D.

Recovery (Decoding) : In order to recover the data set D, we need to

get n of the (n + k) rows of matrix E. Then,

A′ ×D = E ′ ⇒ (A′)−1 × E ′ = D

Thus the data can be recovered in its entirety.

4.7 Remarks

It may seem that fusible data structures are not useful when the ap-

plication maintains a single queue, list, or a table. However, this is not true.

Assume that we have to maintain a single list L with n nodes in a distributed

89

system with three processors such that failure of any single processor is recov-

erable. A replication based scheme will maintain the primary copy of the list

L on one processor and its mirror on the other processor resulting in space

overhead of n nodes. Another possibility based on fusible data structures is to

split the list L into two lists L1 and L2 maintained by different processors and

store the fusion of these two lists on the third processor. This scheme may

result in space savings by a factor of two.

We have seen that the algorithms for fusing data structures, result in

better space utilization than replication. However, recovery of faulty processes

is much more efficient with replication. Hence, when failures are frequent,

using replication might be preferable to fusion techniques. Replication is easily

extensible for byzantine faults by increasing the number of backups [36, 54].

The fusion techniques discussed in this paper, in contrast, are not directly

applicable for byzantine errors. Also, the operations on the some of the fused

data structures, require more time than replication. For example, linked list

operations are slower by a factor of k.

90

Chapter 5

Faults in Finite State Machines

We now discuss the problem of tolerating faults in deterministic finite

state machines.

5.1 Overview

Given a set of n different deterministic finite state machines (DFSMs)

modeling a distributed system, we examine the problem of tolerating f crash

faults in such a system. The traditional approach to this problem involves

replication and requires n.f backup DFSMs. For example, to tolerate two

faults in three machines a replication based technique needs two copies of each

of the given machines, resulting in a system with six backup machines. We

question the optimality of such an approach and present a generic approach

called (f, m)-fusion that allows for more efficient backups. Given n different

DFSMs, it is possible to tolerate f faults using m additional machines (m ≤
n.f). We introduce the theory of fusion machines and provide an efficient

algorithm to generate the minimum set of backup machines required to tolerate

f faults in a given set of machines.

91

5.2 Related Work

The work presented in chapter 4 introduces the idea of fusible data

structures. It was shown that commonly used data structures such as arrays,

hash tables, stacks and queues can be fused into a single fusible structure,

smaller than the combined size of the original structures. Our idea is similar

to this approach in the sense that we generate a fused state machine that can

enable recovery of any state machine that has crashed. The work presented in

this chapter effectively presents an algorithm to compute a fusion operation

given a set of specific input machines.

Extensive work has been done [27, 29] on the minimization of completely

specified DFSMs. In these approaches, the basic idea is to create equivalence

classes of the state space of the DFSM and then combine them based on the

transition functions. Even though our approach is also focussed on reducing

the reachable cross product corresponding to a given set of machines, it is

important to note that the machines we generate need not be equivalent to

the combined DFSM. In fact, we implicitly assume that the input machines

to our algorithm are reduced a priori using these techniques.

Another area of research which is conceptually similar to our approach

is erasure coding [60]. An erasure code transforms a message of n data blocks

into a message with more than n blocks, such that the original message can

be recovered from a subset of those blocks. An (f, m)-fusion could be thought

of as an input dependent erasure code corresponding to given set of machines.

The central idea for generating these machines is analogous to the concept of

92

the minimum Hamming distance in an erasure code [21]. However, an erasure

code based approach would have required sending the state of each machine

in the system to the backup. The state space, is in general, very large and

transferring state information would result in a huge communication overload,

making the idea impractical for all but very small machines. The fundamental

difference in the fusion based approach introduced here is that the backup state

machines are designed to act on the same sequence of inputs as the original

machines without requiring any transfer of state during fault-free operation.

5.3 Model and Notation

We now discuss the system model, followed by the notation used in the

remainder of this chapter.

The system under consideration consists of deterministic finite state

machines (DFSMs) satisfying the following conditions:

• Every DFSM in the system has a current state associated with it. The

current state depends on the sequence of inputs received from the envi-

ronment.

• The system model assumes fail-stop failures [52]. A failure in any of the

DFSMs results in the loss of the current state but the underlying DFSM

remains intact. We assume that this failure can be detected and the goal

of the fault tolerant system is to determine the current state of the failed

machines.

93

• The DFSMs execute independently with no shared state or communica-

tion between them during a fault-free run.

• The DFSMs act concurrently on the same set of events. If some event

e is not applicable for a certain DFSM, we assume that e is ignored by

that DFSM. Note that, synchronous operation is not essential to the

underlying theory during normal conditions. The only requirement is

that when there are failures, all DFSMs have acted on the same sequence

of inputs before the state of the failed DFSM is recovered.

Definition 5.3.1. (DFSM) A DFSM, denoted by A, is a quadruple, (X, Σ, α, a0),

where,

• X is the finite set of states corresponding to A.

• Σ is the finite set of events common to all the DFSMs in the system.

• α : X × Σ → X, is the transition function corresponding to A. If the

current state of A is s, and an event σ ∈ Σ is applied on it, the next

state can be uniquely determined as α(s, σ).

• a0 is the initial state corresponding to A.

In the remainder of this discussion we interchangeably use the terms

DFSM or state machine or machine.

A state, s ∈ X, is reachable iff there exists a sequence of events, which,

when applied on the initial state a0, takes the machine to state s. This is de-

noted by s = αk(a0), where αk denotes a sequence of k operations, α1, . . . , αk

94

applied to the initial state a0. Our model assumes that all the states corre-

sponding to the machines are reachable.

The size of a machine A, is the number of states in X, and is denoted by

|A|. We now define homomorphism [19] that gives us a relation that partially

orders the set of all DFSMs.

Definition 5.3.2. (Homomorphism) A homomorphism from a machine A(XA, Σ, αA, a0)

onto a machine B (XB, Σ, αB, b0), is the mapping, ψ : XA → XB, satisfying

the following relationship:

• ψ(a0) = b0

• ∀s ∈ XA,∀σ ∈ Σ, ψ(αA(s, σ)) = αB(ψ(s), σ)

If such a homomorphism, ψ, exists from XA onto XB, B is said to be

homomorphic to A and we denote it as B ≤ A and say B is less than or equal

to A. Given that machine A is in state a, we can identify the state of machine

B as ψ(a).

The mapping, ψ, is called an isomorphsim if it is both one-one and

onto. In this case, B is said to be isomorphic to A and vice-versa. We denote

it as B = A.

Consider the two machines, R({A,B})(Xr, Σ, αr, r
0) and M1(X1, Σ, α1,m

0
1)

shown in figure 5.1(iii) and figure 5.1(iv) respectively. Let us define a mapping,

ψ : Xr → X1, such that, ψ(r0) = ψ(r2) = m0
1, ψ(r1) = m1

1 and ψ(r3) = m2
1.

For s = r0, σ = 0,

95

Event 0
Event 1

M1

b1 b2

a0 a1 a2

(i) A

{a0, b2}

{a0, b0} {a1, b1} {a2, b2}

(iii) R({A, B})

r0 r1 r2

r3

b0

(ii) B

r3r0, r2 r1

Figure 5.1: DFSMs, Homomorphism and Reachable cross product

96

ψ(αr(r
0, 0)) = ψ(r1) = m1

1 and α1(ψ(r0), 0) = α1(m
0
1, 0) = m1

1

It can be verified that,

∀s ∈ Xr,∀σ ∈ Σ, ψ(αr(s, σ)) = α1(ψ(s), σ)

Hence, M1 ≤ R({A,B}).

Consider any two machines, A (Xa, Σ, αa, a
0) and B (Xb, Σ, αb, b

0). Now

construct another machine which consists of all the states in the product set

of Xa and Xb with the transition function α′({a, b}, σ) = {αa(a, σ), αb(b, σ)}
for all {a, b} ∈ Xa ×Xb and σ ∈ Σ. This machine (Xa ×Xb, Σ, α′, {a0, b0})
may have states that are not reachable from the initial state {a0, b0}. If all

such unreachable states are pruned, we get the reachable cross product of A

and B, denoted R({A,B}).

Given a set of n machines, A = {A1, . . . , An}, their reachable cross

product is denoted by R(A). Every machine in A is less than or equal to

R(A). Hence, given the state of R(A), we can determine the state of any of

the machines in A.

Based on the partial order imposed by homomorphism, we define a

closed partition lattice corresponding to a given set of machines.

5.3.1 Closed Partition Lattice

A partition P , on the state set Xa of a DFSM, A (Xa, Σ, αa, a
0) is the

set {B1, . . . , Bk}, of disjoint subsets of the state set Xa, such that
⋃k

i=1 Bi = Xa

97

and Bi∩Bj = φ for i 6= j [37]. The elements Bi of a partition are called blocks

and a partition, P , is said to be closed if each event, σ ∈ Σ, maps a block of

P into another block.

A closed partition P , on the state set of machine A, corresponds to a

machine homomorphic to A. Hence each state s of such a machine corresponds

to a set of states in machine A. For example in figure 5.1, M1 corresponds to

a closed partition of the set of states of R({A,B}). M1 has 3 states, {r0, r2},
{r1} and {r3}, which we also refer to as the blocks of M1. The closed partitions

described here are also referred to as substitution property partitions or SP

partitions in other literature [23].

A partition P1 is greater than or equal to another partition P2 (P2 ≤ P1)

if each block of P1 is contained in a block of P2. If DFSMs X1 and X2 cor-

respond to partitions P1 and P2 respectively, then X1 ≤ X2 is equivalent to

P1 ≤ P2. Hence the ≤ relation between partitions corresponds to homomor-

phism in the resulting DFSMs. In Fig 5.1, each block of R({A,B}) is contained

in a block of M1 and hence, M1 ≤ R({A, B}).

Note that, the ≤ defines a partial order on the set of all closed parti-

tions. In fact, it can be seen that the set of all closed partitions corresponding

to a machine, form a lattice under the ≤ relation[23].

Given a set of n machines A, we consider the lattice of all closed par-

titions corresponding to R(A). Figure 5.2 shows the closed partition lattice

corresponding to R({A, B}) (denoted >), shown in figure 5.1(iii). An arrow

98

from one machine to another indicates that the former is less than the latter.

Both A (figure 5.1(i)) and B (figure 5.1(ii)) are contained in the lattice. The

bottom element (denoted ⊥) is always a single block partition containing all

the states of >. Henceforth, we use >(X>, Σ, α>, t0) or top to denote the

reachable cross product of the given set of machines in our system.

We now define the lower cover of a partition, a concept used later in

section 5.6.

Definition 5.3.3. (Lower Cover) The lower cover of a partition P of the set

of states of any machine A , is the set of maximal partitions of A that are less

than P .

The lower cover of P can be computed by combining any two blocks of

P at a time and computing the new largest closed partition which is smaller

than this new (possibly not closed) partition.

In our closed partition lattice, the lower cover of > is called the basis

of the lattice. In the lattice shown in figure 5.2, the machines A, B, M1 and

M2 constitute the basis.

5.4 Fault Tolerance of Machines

In this section, we introduce concepts that enable us to answer fun-

damental questions about the fault tolerance in a given set of machines. We

begin with the idea of a fault graph of a set of machines M, for a machine T ,

99

M2

t
0
, t

3
, t

2

t3t0, t2 t1

M4

t
0
, t

3
t
1
, t

2

t0 t
1
, t

2
, t

3

M5

t3t
0
, t

1
, t

2

M3

t1

>

t
3

t
2

t
1

t
0

⊥

t0 t1 t2, t3

B

t1 t2t0, t3

A

M6

M1

t0 t1, t2 t3

Figure 5.2: Closed Partition Lattice For Figure 5.1

100

where all machines in M are less than or equal to T . This is a weighted graph

and is denoted by G(T, M).

The fault graph is an indicator of the capability of the set of machines

in M to correctly identify the current state of T . As described in the previous

section, since all the machines in M are less than or equal to T , the set of

states of any machine in M corresponds to a closed partition of the set of

states of T . Considering the lattice shown in figure 5.2, we construct the fault

graph G(>, {A}). A has three states, {t0, t3}, {t1} and {t2}. Given just the

current state of machine A, it is possible to determine if > is in state t1(exact)

or t2 (exact) or one of t0 and t3(ambiguity). Hence, A distinguishes between

all pairs of states of T except (t0, t3). This information is captured by the fault

graph.

Every state of T corresponds to a node of the fault graph G(T, M) and

the graph is completely connected. The weight of the edge between nodes

corresponding to states ti and tj of the fault graph is the number of machines

in M that have states ti and tj in distinct blocks. Hence, in the fault graph

G(>, {A}), shown in figure 5.3, the edge (t0, t3) has weight 0 and all other

edges have weight 1.

Definition 5.4.1. (Fault Graph) Given a set of machines M and a machine

T (XT , Σ, α, t0) such that ∀M ∈ M : M ≤ T , the fault graph G(T, M) is a

weighted graph with |XT | nodes such that

• Every node of the graph corresponds to a state in XT

101

• The graph is completely connected

• The weight of the edge between two nodes (corresponding to any two

states ti and tj in XT) of the fault graph is the number of machines in

M that have states ti and tj in distinct blocks

If a machine M has the states ti and tj in distinct blocks, it is said to

cover the edge (ti, tj).

Assume there exists an edge (ti, tj), with weight 0, in G(T, M). Given

the states of all the machines in M, it is impossible to determine if T is in ti or

tj. Unless the weight of every edge in G(T, M) is 1 or more, it is not possible

to always determine the current state of T using M.

Given a fault graph, G(T, M), the lowest weight in the fault graph gives

us an idea of the fault tolerance capability of the set M. Consider the graph,

G(>, {A, B, M1,M2}), shown in figure 5.4 (ii). Since the lowest weight in the

graph is 3, we can remove any two machines from {A,B, M1,M2} and still

regenerate the current state of >. As seen before, given the state of >, we can

determine the state of any machine less than >. Therefore, the set of machines

{A,B, M1,M2} can tolerate two faults.

The lowest weight in G(T, M) is denoted w(T, M) and the edges with

this value are called the weakest edges of G(T, M).

Theorem 5.4.1. A set of machines M, can tolerate up to f faults iff w(T, M) >

f , where T is the reachable cross-product of all machines in M.

102

G(>, {A})

t3 t1

t0

t2

1

1

1

0

1

1

Figure 5.3: Fault Graph, G(>, {A}), for machines shown in figure 5.2

(iv) G({A, B, M6,>})

t3 t1

t0

t2

2

2

1

1

2

2

(i) G({A, B})

t3 t1

t0

t2

4

4

3

3

3

3

(ii) G({A, B, M1, M2})

t3 t1

t0

t2

4

4

3

3

4

3

(iii) G({A, B, M1,>})

t3 t1

t0

t2

3

4

3

3

3

3

Figure 5.4: Fault Graphs, G(>,M), for sets of machines shown in figure 5.2

103

Proof. ⇒ Given that w(T, M) > f , we show that any M−f machines from M

can accurately determine the current state of T . It is obvious that the current

state of any DFSM in M can be determined if the state of T is known. The

weight of any edge in fault graph G(T, M) is greater than f since w(T, M) > f .

i.e., f +1 or more machines separate any two states in the fault graph. Hence,

for any pair of states ti, tj in T , after f failures in M, there will always be

at least one machine remaining that can distinguish between ti and tj. This

implies that it is possible to accurately determine the current state of T by

using any M− f machines from M.

⇐We now show that the system can not tolerate f faults when w(T, M) ≤
f . w(T, M) ≤ f implies that there exists an edge, say (ti, tj) in G(T, M) with

weight, k where k ≤ f . Hence there exist exactly k machines (say the set M′ ⊂
of M in M) that can distinguish between states (ti, tj) in T . Assume that all

these k machines fail (since k ≤ f) when T is in either ti or tj. Using the

states of the remaining machines in M, it is not possible to determine whether

T was in state ti or tj. Therefore, it is not possible to exactly regenerate the

state of any machine in M using the remaining machines.

The set of machines in M are said to have a fault tolerance of f or are

f -fault tolerant.

Henceforth, we only consider machines less than or equal to the top

element of the closed partition lattice (>) corresponding to the input set of

104

machines A. So, for notational convenience, we use G(M) instead of G(>, M)

and w(M) instead of w(>,M). From theorem 5.4.1, it is clear that we can

determine the inherent fault tolerance in a given set of machines A, simply by

finding w(A).

Remark 5.4.1. Given a set of n machines A, the system can tolerate up to

w(A)− 1 faults.

Given the state of all the machines in A, we can identify the state of

>. Hence, w(A) is always greater than or equal to 1.

5.5 Theory of Fusion Machines

To tolerate faults in a given set of machines, we need to add backup

machines so that the fault tolerance of the system (original set of machines

along with the backups) increases to the desired value. In this section, we

characterize such backup machines based on the fault graph described in the

previous section.

Given a set of n machines A, we add m backup machines F, each less

than or equal to the top, such that the set of machines in A ∪ F can tolerate

f faults. We call the set of m machines in F, an (f,m)-fusion of A. From

theorem 5.4.1, we know that, w(A ∪ F) > f .

Definition 5.5.1. (Fusion) Given a set of n machines A, we call the set of m

machines F, an (f,m)-fusion of A, if w(A ∪ F) > f .

105

Any machine belonging to m is referred to as a fusion machine or just

a fusion. Note that, the top is also a fusion. Consider the set of machines,

A = {A,B}, shown in figure 5.2. From figure 5.4(i), w({A,B}) = 1. Hence

the set of machines, {A,B}, cannot tolerate even a single fault.

Let us assume that we want to generate a set of machines F, such

that, A ∪ F can tolerate 2 faults. It can been seen from figure 5.4(ii) that

w({A,B,M1,M2}) = 3, and hence the set of machines {A,B, M1,M2} can

tolerate up to 2 faults. In this case, the set {M1,M2} forms a (2, 2)-fusion of

{A,B}.

Based on the values of f and m, we discuss three cases of (f, m)-fusion:

• f = m: In this case, the number of fusion machines equals the number of

faults. As shown, {M1,M2} form a (2, 2)-fusion corresponding to {A,B}.

• f < m: The traditional approach of replication is the simplest example

for this case. To tolerate 2 faults in any 2 machines {A,B}, replication

will require 2 additional copies each of A and B. Hence, {A,A, B, B} is

a (2, 4)-fusion of {A,B}.

• f > m: From observation 5.4.1, if a system is inherently fault tolerant,

then no additional machines may be needed to tolerate faults. In the

example shown in figure 5.2, let us assume that the original set of ma-

chines are {A,B,M1}. Since, w({A,B, M1}) = 2, these machines can

tolerate one fault without any additional machine.

106

As we have seen before, w({A,B, M1,M2}) > 2. Any machine in the

set {A,B, M1,M2} can at most contribute 1 to the weight of any edge in the

graph G({A,B, M1,M2}). Hence, even if we remove one of the machines, say

M2, from this set, w({A,B,M1}) will still be greater than 1. This implies

that {M1} is a (1, 1)-fusion of {A, B}. Similarly, {M2} is also a (1, 1)-fusion

of {A,B}. This property is generalized in the following theorem.

Theorem 5.5.1. (Subset of a Fusion) Given a set of n machines A, and an

(f,m)-fusion F, corresponding to it, any subset F′ ⊆ F such that |F′| = m− t

is a (f − t,m− t)-fusion when t ≤ min(f,m).

Proof. Since, F is an (f, m)-fusion of A, according to the definition of (f, m)-

fusion, w(A ∪ F) > f .

Any machine, F ∈ F, can at most contribute a value of 1 to the

weight of any edge of the graph, G(A ∪ F). Similarly, t machines in the set

F can contribute a value of at most t to the weight of any edge of the graph,

G(A ∪ F). Therefore, even if we remove t machines from the set of machines

in F, w(A ∪ F) > f − t.

Hence, for any subset F′ ⊆ F, of size m − t, w(A ∪ F′) > f − t. This

implies that F′ is an (f − t,m− t)-fusion of A.

It is important to note that the converse of this theorem is not true. For

example, consider the machines M1 and M6 shown in figure 5.2. Even though

107

both {M1} and {M6} are (1, 1)-fusions of {A,B}, since w({A,B, M1,M6}) =

2, {M1,M6} is not a (2, 2)-fusion of {A,B}.

We now consider the existence of an (f,m)-fusion for a given set of

machines A. The top machine distinguishes between all the states of X>. So

the basic intuition is that, if the union of m top machines along with A cannot

tolerate f faults, then there cannot exist an (f, m)-fusion for A.

Let us consider the existence of a (2, 1)-fusion for the set of machines

{A,B}, shown in figure 5.2. From figure 5.4(i), w({A,B}) = 1. We need

exactly one machine F , such that, w({A,B, F}) > 2. Even if F was the

top machine, w({A,B,>}) = 2. Hence, there cannot exist a (2, 1)-fusion for

{A,B}. We formalize this in the following theorem.

Theorem 5.5.2. (Existence of an (f, m)-fusion) Given a set of n machines

A, there exists an (f, m)-fusion of A, iff, m + w(A) > f .

Proof. ⇒

Assume that there exists an (f, m)-fusion F for the given set of machines

A. We will show that m + w(A) > f .

Since, F is an (f, m)-fusion fusion of A, w(A ∪ F) > f . The m machines

in F, can at most contribute a value of m to the weight of each edge in

G(A ∪ F). Hence, m + w(A) has to be greater than f .

⇐

108

Assume that m + w(A) > f . We will show that there exists an (f, m)-

fusion for the set of machines A.

Consider a set of m machines F, containing m replicas of the top.

These m top machines, will contribute exactly m to the weight of each edge in

G(A ∪ F). Since, m + w(A) > f , w(A ∪ F) > f . Hence, F is an (f, m)-fusion

of A.

From this theorem, given a set of n machines A and an (f, m)-fusion

F, corresponding to it, |F| ≥ f − w(A).

Given a set of machines, we now define an order among (f,m)-fusions

corresponding to them.

Definition 5.5.2. (Order among (f, m)-fusions) Given a set of n machines A,

an (f,m)-fusion F = {F1, ..Fm}, is less than another (f,m)-fusion G (F < G)

iff the machines in G can be ordered as {G1, G2, ..Gm} such that ∀1 ≤ i ≤ m :

Fi ≤ Gi ∧ ∃j : Fj < Gj.

An (f, m)-fusion F is minimal, if there exists no (f,m)-fusion F′, such

that, F′ < F. From figure 5.4(iii), w({A,B, M1,>}) = 3, and hence, F′ =

{M1,>} is a (2, 2)-fusion of {A,B}. We have seen that F = {M1,M2}, is a

(2, 2)-fusion of {A,B}. Since F < F′, F′ is not a minimal (2, 2)-fusion. In the

lattice shown in figure 5.2, {M3,M4,M5,M6} are a set of minimal machines.

It can be seen that w({A,B, M3,M4,M5,M6}) > 2 and {M3, M4,M5,M6} is

a minimal (2, 4)-fusion of {A,B}.

109

5.6 Algorithms

In this section, we present a polynomial time algorithm to generate the

minimum set of machines required to tolerate f faults among a given set of

machines.

Algorithm 1 minMachines

Input: A : given set of machines, f : number of faults to be tolerated
Output: F : set of fusion machines
1: F ← φ ;
2: while w(A ∪ F) ≤ f do
3: E ← weakest edges in G(A ∪ F)
4: F ← F∪ {genFusion(E)}
5: return F

Algorithm 2 genFusion

Input: E: set of edges
Output: F : minimal machine
1: R ← >
2: while R 6= ⊥ do
3: C ← lower cover(R)
4: if ∃F ∈ C : F covers all edges in E then
5: R ← F
6: else
7: break
8: return R

Given a set of n machines A, algorithm 1 generates the smallest set of

machines F, such that, the set of machines in A ∪ F can tolerate f faults. In

each iteration of the while loop, we identify the set of weakest edges in the

graph G(A ∪ F) and denote it E. Algorithm 2, returns a minimal machine

in the closed partition lattice of >, which covers all the edges in E. The

110

addition of such a machine to F, increases w(A ∪ F) by 1. We continue till

w(A ∪ F) > f , and return the set of machines in F.

In algorithm 2, we start with the >, which clearly covers all the edges

in E. We then try to find such a machine in the lower cover of the >, and

continue traversing down the lattice, until we encounter the bottom machine

or till the lower cover does not contain such a machine.

When the set of machines in A execute along with the backup machines

in F, any f machines among them may crash. To recover the state of the f

machines which crash, we first generate the state of the top using the remaining

n + m − f machines. Given the state of the top, we can identify the state of

all the machines in A ∪ F. Hence, we can recover the state of all the crashed

machines. Note that, up to n + m− f machines may be required for recovery.

In contrast, recovery while using replication is simpler and requires examining

the execution state of no more than f machines.

Consider the example shown in figure 5.2, with A = {A,B}, and f = 2.

We need to find a set of machines F such that w(A ∪ F) > 2. Since F is

empty to begin with, G(A ∪ F) = G({A,B}), shown in figure 5.4(i). The

weakest edges are (t0, t3) and (t2, t3). Machine M1, belonging to the basis,

covers these edges, and so does machine M6, in the lower cover of M1. Since

M6, is a minimal machine of the lattice, algorithm 2 , returns M6. Since,

w(A∪{M6}) = 2, the next iteration of the loop proceeds and finally, algorithm

1, returns F = {M6,>}. From figure 5.4(iv), w({A,B, M6,>) > 2. Hence, F

is a (2, 2)-fusion of {A,B}.

111

It is important to note that, algorithm 1 may generate a trivial solution,

i.e., one including the top machine, even though there may exist other solutions

with a larger number of non-trivial machines.

We now proceed to prove the correctness of the algorithm. It can be

seen from the algorithm that every machine added, covers a set of edges. This

set of edges (the input to algorithm 2) is called the edge set of that machine.

The edge set of Fj is denoted by Ej.

Lemma 5.6.1. Given a set of n machines A, and the set F returned by al-

gorithm 1, let Fi ∈ F be the machine returned in the ith iteration. Then,

∀Fi, Fj ∈ F : i < j ⇒ Ei ⊆ Ej.

Proof. If F′ ⊆ F is the current fusion set during the execution of algorithm 1,

then the edge set for the next iteration consists of the minimal edges of the

fault graph G(A
⋃

F′). Every time a machine is added to F′, the weights of

the edges in G(A
⋃

F′) can increase by at most one and the weight of every

minimal edge is incremented by exactly one. Hence, after every iteration

the edge set for the next iteration can not decrease in size. This implies

∀Fi, Fj ∈ F : i < j ⇒ Ei ⊆ Ej.

Theorem 5.6.2. Given a set of n machines A, algorithm 1 returns the small-

est set of machines F, such that F is a minimal (f, |F|)-fusion of A.

Proof. 1. F is a fusion with the minimum number of elements.

112

We show that F is an (f, |F|)-fusion of A where, |F| = f − w(A). As

seen in the previous section, this is the minimum number of machines in

any (f, m)-fusion of A.

The addition of any machine, F ≤ >, to the set of machines in A ∪ F,

can increase w(A ∪ F) by at most 1. In each iteration of the loop in

algorithm 1, we find a machine covering the weakest edges in G(A ∪ F)

and add it to F. Hence, in each iteration of the while loop we increase

w(A ∪ F) exactly by 1 adding exactly one extra machine.

Initially, since F = φ, w(A ∪ F) = w(A), and finally, w(A ∪ F) = f .

Therefore, the number of machines added to F is f − w(A). Since,

w(A ∪ F) > f , F is a (f, |F|)-fusion of A.

2. F is a minimal fusion.

Lemma 5.6.1 implies that if an edge e occurs in the edge set of any

machine in F and there are k machines in F that cover e, then in any

valid (f, |F|)-fusion there are at least k machines that cover edge e.

Let there be an (f,m)-fusion G = {G1, ..Gm}, such that G is less than

(f, m)-fusion F (F = {F1, F2, ..., Fm}). Hence ∀j : Gj ≤ Fj.

Let Gi < Fi and let Ei be the set of edges that needed to be covered

by Fi. It follows from algorithm 1, that Gi does not cover at least one

edge say e in Ei (otherwise algorithm 1 would have returned Gi instead

of Fi). If e is covered by k DFSMs in F, then e has to be covered by k

machines in G.

113

We know that there is a pair of machines Fi, Gi such that Fi covers e

and Gi does not cover e. For all other pairs Fj, Gj if Gj covers e then Fj

covers e (since Gj ≤ Fj). Hence e can be covered by no more than k− 1

in G. This implies that G is not a valid fusion.

We now consider the time complexity for algorithm 2. The time com-

plexity to generate the lower cover of any machine R, less than the top, is

O(N2.|Σ|) [37]. While generating a machine in the lower cover, we can deter-

mine if the machines cover all the edges in E, without any additional time.

Since the number of machines in the lower cover is O(N2), each iteration of

the while loop in algorithm 2, is of time complexity O(N2.|Σ|) + O(N2) =

O(N2.|Σ|). As we traverse down the lattice, we combine at least two blocks of

F . Thus the while loop in algorithm 2 is executed at most N times. Hence,

the time complexity of algorithm 2 is O(N2.|Σ|) ∗O(N) = O(N3.|Σ|).

In algorithm 1, in each iteration of the loop, we identify the weakest

set of edges in G(A ∪ F) and generate a minimal machine separating these

edges, using algorithm 2. The time complexity for finding the weakest edges in

G(A ∪ F) is O(N2). Hence, the time complexity for each iteration in algorithm

1 is O(N3.|Σ|) + O(N2) = O(N3.|Σ|). Since the are f iterations of the loop,

the time complexity of algorithm 1 is O(N3.|Σ|.f). Therefore, algorithm 1

generates the set of fusion machines with a time complexity polynomial in the

size of the top machine.

114

5.7 Implementation and Results

We have implemented the algorithm specified in section 5.6 in Java

(JDK 6.0) on a machine with an Intel Core Duo processor, with 1.83 GHz

clock frequency and 1 GB RAM. We tested the algorithms for many practical

DFSMs including TCP and the MESI cache coherency protocol along with the

examples shown in figure 5.1 (denoted A and B in the results table).

In the results table, along with the original machines, we have tabulated

the number of faults tolerated (f), the size of the top (|>|), sizes of the backup

fusion machines generated by algorithm 1 (|Backup Machines|),and the state

space required for our fusion based solution (|Fusion|).

Given a set of n machines, A = {A1, A2, . . . An}, in order to tolerate f

faults among them, replication will require f copies of each machine. Hence

the state space for replication is calculated as (
∏i=n

i=1 |Ai|)f . If the set of backup

machines generated by algorithm 1 is, F = {F1, F2, . . . Fm}, the state space for

fusion is simply calculated as
∏i=m

i=1 |Fi|.

115

Original Machines f |>| |Backup Machines| |Fusion|
MESI, One Counter, Zero
Counter, Shift Register

2 87 [39 39] 1521

Even Parity Checker, Odd
Parity Checker, Toggle
Switch, Pattern Generator,
MESI

3 64 [32 32 32] 32768

One Counter, Zero Counter,
Divider, A, B

2 82 [18 28] 504

MESI, TCP, A, B 1 131 [85] 85
Pattern Generator, TCP, A,
B

2 56 [44 56] 2464

The results indicate that there are many practical examples for which our

algorithm yields huge savings in state space compared to replication based

approaches. Since the largest running time for the execution of our program

was only 13.2 minutes, our algorithm can be used to generate backup machines

for larger, more complex machines within a feasible time frame.

5.8 Remarks

We develop the theory for (f,m)-fusion and present a polynomial time

algorithm to generate the minimum set of machines required to tolerate faults

among a given set of machines. We have also implemented and tested this

algorithm for real world DFSM models such as TCP and MESI.

The concept of (f,m)-fusion gives us a wide spectrum of choices for

fault-tolerance. Replication is just a special case of (f,m)-fusion fusion. Our

approach shows that there are many cases for which we can do better. Hence,

if we want to tolerate 5 faults among 1000 machines, replication will require

116

5000 extra machines. Using our algorithm we may achieve this with just 5

extra machines.

117

Chapter 6

Conclusion

6.1 Summary

This dissertation presents theory and algorithms to solve some of the

currently faced problems in detecting and tolerating faults in distributed and

parallel systems.

6.1.1 Predicate Detection

Predicate detection, i.e., determining formally if a distributed compu-

tation was faulty, is a hard problem in general. The state explosion forces

the use of heuristics or restricting the classes of faults that can be detected.

In this dissertation we introduce the idea of a basis and show that this can

be used to efficiently detect predicates containing arbitrarily nested temporal

operators ♦ and ¤ along with conjunctions, disjunctions and negations. Pre-

viously known techniques[57] could not handle disjunctions and negations in

polynomial time, thus restricting the class of bugs that could be detected.

A basis of a computation with respect to a predicate is an exact and

compact representation of all the consistent cuts in the computation that sat-

isfy the predicate. Given a basis and any consistent cut in the computation,

118

it is possible to determine in polynomial time if that cut satisfies the predi-

cate. Slicing introduced by Mittal and Garg [43] constitutes a special case of

computing a basis when the predicate to be detected is regular.

Like computation slicing, we exploit the structural properties of the

computational lattice and the predicate to avoid the state explosion prob-

lem. We introduce a new class of predicates called semiregular predicates.

A semiregular predicate is more representative than a regular predicate. We

show that any predicate expressible in BTL can be represented as a disjunction

of semiregular predicates. Further more the number of semiregular predicates

required to represent a BTL predicate is always polynomial in the number of

processed and events in the system. We provide an algorithm based on this

to compute the basis of a BTL predicate. This predicate detection technique

has been implemented as Java toolkit that can accept compatible traces from

programs in any language or platform.

This research has exciting applications, especially with the rapid growth

of parallel and distributed computing. The algorithms presented here can be

incorporated into an program development tool or a widely used IDE like

Eclipse[51]. Programmers will be able to specify assertions and test cases

and the tool can quickly pinpoint any concurrency or synchronization related

violations in the program. We see a numerous potential research avenues

in this direction. Another interesting avenue for research is controlling the

computation [69] so that, whenever possible, previously detected bugs can be

automatically in all future runs by adding extra synchronization.

119

6.2 Tolerating Faults

Reliability and the ability to recover from crashes without data loss is

essential for many distributed applications. Replication is the most commonly

used technique for tolerating faults. In this dissertation, we question the op-

timality of replication approaches used for server backups. For systems with

fixed resources fusion based techniques offer much higher reliability than repli-

cation. For example, if 20 servers are available and say the program needs to

maintain 10 name resolution tables each of which uses almost all the memory

in the server. Using replication, we would be able to tolerate just one 1 fault

in such a setup while fusion would allow up to 10 faults without any data loss.

For data back up, we take into consideration the structure and oper-

ations on data to develop fused data structures. Our experiments with the

lock server application indicate that as expected, fused data structures work

much better than replication. We have implemented a library with commonly

used data structures in Java. In distributed applications, it is very easy to

substitute standard data structures with the data structures from our library,

thus allowing programs to be fault tolerant without any significant overhead.

We have presented algorithms for the fusion of common data structures.

An interesting avenue for research would be to develop fusion techniques for

other application specific data structures. Also, the fused structure for linked

lists described in this paper does not perform as well as queues or sets. It

would be interesting to explore new fusion algorithms for linked lists. Another

important area of research is the effect of concurrency on the performance of

120

the fused data structures.

Backing up of program state is slightly more involved. We consider

a system where each program can be modeled as a deterministic finite state

machine. We introduce the theory of fusion machines that enables us to auto-

matically generate back up machines. The number of states required is often

much less than simply replicating the state machines. This makes it possible

to have reliable and low cost systems, like sensor networks.

In this dissertation, we have considered machines belonging to the

closed partition lattice of >. It is possible that machines outside the lattice

may provide more efficient solutions. Also, our algorithm returns the mini-

mum number of backup machines required to tolerate faults in a given set of

machines. We may be able to generate smaller machines if the system under

consideration permits a larger number of backup machines. Also, it would be

interesting to extend our approach to Byzantine faults.

121

Bibliography

[1] Bharath Balasubramanian, Vinit A. Ogale, and Vijay K. Garg. Fault

tolerance in finite state machines using fusion. In ICDCN, volume 4904

of Lecture Notes in Computer Science, pages 124–134. Springer, 2008.

[2] N. Budhiraja, K. Marzullo, F. Scneider, and S. Toueg. The Primary-

Backup Approach, chapter 8. ACM Press, Frontier Series. (S.J. Mullen-

der Ed.), 1993.

[3] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh

Rege. A digital fountain approach to reliable distribution of bulk data.

SIGCOMM Comput. Commun. Rev., 28(4):56–67, 1998.

[4] K. M. Chandy and L. Lamport. Distributed snapshots: Determining

global states of distributed systems. ACM Transactions on Computer

Systems, 3(1):63–75, February 1985.

[5] C. Chase and V. K. Garg. On techniques and their limitations for

the global predicate detection problem. In Proc. of the Workshop on

Distributed Algorithms, pages 303 – 317, Le Mont-Saint-Michel, France,

September 1995.

[6] C. Chase and V. K. Garg. Efficient detection of global predicates in a

distributed system. Distributed Computing, 11(4), 1998.

122

[7] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and

David A. Patterson. Raid: high-performance, reliable secondary storage.

ACM Comput. Surv., 26(2):145–185, 1994.

[8] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-

chronization skeletons using branching-time temporal logic. In Logic of

Programs, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[9] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.

Cambridge University Press, Cambridge, UK, 1990.

[10] D. Drusinsky. The temporal rover and the ATG rover. In Spin Model

Checking and Verification, volume 1885 of LNCS, pages 323–330, 2000.

[11] J. Esparza. Model checking using net unfoldings. In Science Of Com-

puter Programming, volume 23(2), pages 151–195, 1994.

[12] Eli Gafni and Leslie Lamport. Disk paxos. Distributed Computing,

16(1):1–20, 2003.

[13] V. K. Garg. Elements of Distributed Computing. Wiley & Sons, 2002.

[14] V. K. Garg. Concurrent and Distributed Computing in Java. Wiley &

Sons, 2004.

[15] V. K. Garg and C. Chase. Distributed algorithms for detecting con-

junctive predicates. In Proc. of the IEEE International Conference on

123

Distributed Computing Systems, pages 423–430, Vancouver, BC, Canada,

June 1995.

[16] V. K. Garg and N. Mittal. On slicing a distributed computation. In 21st

International Conference on Distributed Computing Systems (ICDCS’ 01),

pages 322–329, Washington - Brussels - Tokyo, April 2001. IEEE.

[17] V. K. Garg, N. Mittal, and A. Sen. Applications of lattice theory to

distributed computing. ACM SIGACT Notes, 34(3):40–61, September

2003.

[18] Vijay K. Garg and Vinit Ogale. Fusible data structures for fault toler-

ance. In ICDCS 2007: Proceedings of the 27th International Conference

on Distributed Computing Systems, June 2007.

[19] V M Glushkov. The abstract theory of automata. RUSS MATH SURV,

16(5):1–53, 1961.

[20] P. Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems, volume 1032 of Lecture Notes in Computer Science. Springer-

Verlag, 1996.

[21] Richard Hamming. Error-detecting and error-correcting codes. In Bell

System Technical Journal, volume 29(2), pages 147–160, 1950.

[22] S. Hartley. Concurrent Programming: The Java Programming Language.

Oxford University Press, 1998.

124

[23] J. Hartmanis and R. E. Stearns. Algebraic structure theory of sequen-

tial machines (Prentice-Hall international series in applied mathematics).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1966.

[24] K. Havelund and G. Rosu. Monitoring Java programs with Java PathExplorer.

In Runtime Verification 2001, volume 55 of ENTCS, 2001.

[25] Gerald Holzmann. The model checker SPIN. In IEEE transactions on

software engineering, volume 23.5, pages 279–295, 1997.

[26] Gerald Holzmann. The Spin Model Checker. Addison-Wesley Profes-

sional, 2003.

[27] John E. Hopcroft. An n log n algorithm for minimizing states in a finite

automaton. Technical report, Stanford, CA, USA, 1971.

[28] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages and Computation. Addison-Wesley Co., Reading,

Mass., 1978.

[29] David A. Huffman. The synthesis of sequential switching circuits. Tech-

nical report, Massachusetts, USA, 1954.

[30] Open SystemC Initiative. http://www.systemc.org.

[31] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC:

A run-time assurance tool for Java programs. In Runtime Verification

2001, volume 55 of ENTCS, 2001.

125

[32] Donald K. Knuth. The TEXbook. Addison-Wesley, 1984.

[33] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558–565, July 1978.

[34] Leslie Lamport. The implementation of reliable distributed multiprocess

systems. Computer networks, 2:95–114, 1978.

[35] Leslie Lamport. LATEX: A document preparation system. Addison-

Wesley, 2nd edition, 1994.

[36] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine

generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,

1982.

[37] David Lee and Mihalis Yannakakis. Closed partition lattice and machine

decomposition. IEEE Trans. Comput., 51(2):216–228, 2002.

[38] J. H. Van Lint. Introduction to Coding Theory. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1998.

[39] Witold Litwin, Rim Moussa, and Thomas J. E. Schwarz. Lh*rs - a highly-

available scalable distributed data structure. ACM Trans. Database

Syst., 30(3):769–811, 2005.

[40] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A.

Spielman, and Volker Stemann. Practical loss-resilient codes. In STOC

126

’97: Proceedings of the twenty-ninth annual ACM symposium on Theory

of computing, pages 150–159, New York, NY, USA, 1997. ACM Press.

[41] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

[42] N. Mittal and V. K. Garg. Software fault tolerance of distributed pro-

grams using computation slicing. In IEEE International Conference on

Distributed Computing Systems, pages 105 – 113, Baltimore, Maryland,

USA, 2003.

[43] Neeraj Mittal and Vijay K. Garg. Slicing a distributed computation:

Techniques and theory. In 5th International Symposium on DIStributed

Computing (DISC’01), pages 78–92, October 2001.

[44] Vinit Ogale and Vijay K. Garg. Brief announcement: Many slices are

better than one. In Proceedings of 20th International Symposium on

Distributed Computing:DISC, Stockholm, Sweden, 2006.

[45] Vinit Ogale and Vijay K. Garg. Detecting temporal logic predicates on

distributed computations. In Proceedings of 21st International Sympo-

sium on Distributed Computing:DISC, pages 420–434, Lemasos, Cyprus,

2007.

[46] Vinit A. Ogale, Bharath Balasubramanian, and Vijay K. Garg. A

fusion-based approach for tolerating faults in finite state machines. In

127

23rd IEEE International Parallel and Distributed Processing Symposium:

IPDPS (submitted), 2008.

[47] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for re-

dundant arrays of inexpensive disks (raid). In SIGMOD ’88: Proceedings

of the 1988 ACM SIGMOD international conference on Management of

data, pages 109–116, New York, NY, USA, 1988. ACM Press.

[48] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the

presence of faults. J. ACM, 27(2):228–234, 1980.

[49] D. Peled. All from one, one for all: On model checking using represen-

tatives. In 5th International Conference on Computer Aided Verification

(CAV), pages 409–423, 1993.

[50] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in

RAID-like systems. Software – Practice & Experience, 27(9):995–1012,

September 1997.

[51] Eclipse: An Open Development Platfrom. http://www.eclipse.org.

[52] Fred B. Schneider. Byzantine generals in action: implementing fail-stop

processors. ACM Trans. Comput. Syst., 2(2):145–154, 1984.

[53] Fred B. Schneider. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,

1990.

128

[54] Fred B. Schneider and Lidong Zhou. Implementing trustworthy services

using replicated state machines. IEEE Security and Privacy, 3(5):34–43,

2005.

[55] A. Sen and V. K. Garg. Detecting temporal logic predicates in the hap-

pened before model. In International Parallel and Distributed Processing

Symposium (IPDPS). IEEE, 2002.

[56] A. Sen and V. K. Garg. Detecting temporal logic predicates in distributed

programs using computation slicing. In 7th International Conference on

Principles of Distributed Systems, December 2003.

[57] Alper Sen and V. K. Garg. Partial order trace analyzer (POTA) for dis-

tributed programs. In Proceedings of the Third International Workshop

on Runtime Verification (RV), July 2003.

[58] Alper Sen, Vinit Ogale, and Magdy S. Abadir. Predictive runtime veri-

fication of multi-processor socs in systemc. In Design Automation Con-

ference (DAC), June 2008.

[59] Koushik Sen, Grigore Rosu, and Gul Agha. Detecting errors in multi-

threaded programs by generalized predictive analysis of executions. In

7th IFIP International Conference on Formal Methods for Open Object-

Based Distributed Systems (FMOODS’05), 2005.

[60] C. E. Shannon. A mathematical theory of communication. Bell Sys.

Tech. J., 27:379–423, 623–656, 1948.

129

[61] Swaminathan Sivasubramanian, Michal Szymaniak, Guillaume Pierre,

and Maarten van Steen. Replication for web hosting systems. ACM

Comput. Surv., 36(3):291–334, 2004.

[62] S. D. Stoller and Y. Liu. Efficient symbolic detection of global properties

in distributed systems. In 10th International Conference on Computer

Aided Verification (CAV), volume 1855 of LNCS, pages 264–279, 2000.

[63] S. D. Stoller and F. B. Schneider. Faster possibility detection by com-

bining two approaches. In Proc. of the 9th International Workshop

on Distributed Algorithms, pages 318–332, Le Mont-Saint-Michel, France,

September 1995. Springer-Verlag.

[64] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. Efficient Detection of

Global Properties in Distributed Systems Using Partial-Order Methods.

In Proceedings of the 12thInternational Conference on Computer-Aided

Verification (CAV), volume 1855 of Lecture Notes in Computer Science,

pages 264–279. Springer-Verlag, July 2000.

[65] Jeremy B. Sussman and Keith Marzullo. Comparing primary-backup

and state machines for crash failures. In PODC ’96: Proceedings of the

fifteenth annual ACM symposium on Principles of distributed computing,

page 90, New York, NY, USA, 1996. ACM Press.

[66] A. Tarafdar and V. K. Garg. Predicate control in distributed systems.

Technical Report TR-PDS-97-006, Parallel and Distributed Systems Lab-

oratory, The University of Texas at Austin, 1997.

130

[67] A. Tarafdar and V. K. Garg. Predicate control for active debugging of

distributed programs. In Proc. of the 9th Symposium on Parallel and

Distributed Processing, pages 763 – 769, Orlando, FL, April 1998. IEEE.

[68] A. Tarafdar and V. K. Garg. Software fault-tolerance of concurrent

programs using controlled reexecution. In Proceedings of the 13th Inter-

national Symposium on DIStributed Computing (DISC), pages 210 – 224,

Bratislava, Slovakia, September 1999.

[69] A. Tarafdar and V. K. Garg. Predicate control: synchronization in dis-

tributed computations with look-ahead. Journal of Parallel and Dis-

tributed Computing, 64(2):219–237, 2004.

[70] Fathi Tenzakhti, Khaled Day, and M. Ould-Khaoua. Replication algo-

rithms for the world-wide web. J. Syst. Archit., 50(10):591–605, 2004.

[71] A. Valmari. A stubborn attack on state explosion. In International

Conference on Computer Aided Verification (CAV), volume 531 of LNCS,

pages 156–165, 1990.

[72] Lin Yuan, Pushkin R. Pari, and Gang Qu. Finding redundant constraints

in fsm minimization. July 2004.

131

Index

Abstract, iii

AG, 4

auxiliary information, 59

Background, 16

Basic Temporal Logic, 4, 23

BTL, 4

Conclusion, 119

data-agnostic backup, 55

decentralized maintenance, 61

deterministic finite state machine, 6

EF, 4

Faults in Finite State MachinesFaults

in Finite State Machines, 92

finite state machine, 6

FSM, 6

fusible data structures, 6, 55

Fusible Data Structures for Fault-

Tolerance, 55

fusion, 61

Hasse diagram, 17

independent operation, 63

Introduction, 1

lower cover, 16

poset, 16

predicate detection, 2

Predicate DetectionPredicate Detec-

tion, 23

recovery, 60

replication, 55

slicing, 5

space constraint, 60

transient bug, 2

upper cover, 16

132

Vita

Vinit Ogale was born in Mumbai on the 3rd of August 1979, to Nanda

and Arun Ogale. He graduated in with a degree in Bachelor of Engineering,

majoring in Electronics from Datta Meghe College of Engineering, University

of Mumbai in 2001. He joined the graduate program in Electrical and Com-

puter Engineering department of the University of Texas in 2002. He was

awarded the Master of Science degree in 2004.

Permanent address: 4/29, Moreshwar Krupa CHS,
Datar Colony, Bhandup(East),
Mumbai 400042, India

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

133

