Objectives of this Lecture

- Course Objectives
- Course Contents
- Course format, grading etc.
- Why distributed systems ?
- Puzzles

Course Objective

- Cover fundamental concepts
- Details of my research interests
- How to do research in dist. systems ?
 - Mathematical tools
- Make friends
 - Instructor: Vijay Garg, ENS 527, 471-9424
 - email: garg@ece.utexas.edu
 - Office Hourse: TTh 3:30 5:00
- Have fun solve puzzles

Course Contents

- Global Time
- Global State and Knowledge
- Algorithms: Mutual Exclusion, Causal Ordering
- Fault-tolerance
- Distributed Operating Systems
- Security

Course Format

• Grading

- 25 % Assignments
- 20 % Mid-Term Exam
- 25 % Term Paper
- 30 % Final
- Lectures
 - Questions
- Feedback

Distributed Systems

- Essential characteristics of distributed systems
 - no shared clock
 - no shared memory

- Distributed systems vs Parallel systems
- Physical vs logical model

Advantages of Distributed Systems

- Scalability
- Sharing of resources
- Fault-tolerance
- Ease in programming
- Puzzle-like quality

Disadvantages of Distributed Systems

Existing Machines

System Features	Intel Paragon XP/S	nCUBE/2 6480	Parsys Ltd.	J Machine/MIT
			SuperNode1000	
Node Type and	50 MHz i860 XP	CISC 64-bit CPU	multiple T-800	Message-Driven
Memory	nodes with 16-128	with FPU, 14 DMA	Transputers/node	Processor
	Mbytes/node	1-64 Mbytes/node		
Network and	2-D Mesh with SCSI	13-dimensional	Reconfigurable	$8 \times 8 \times 8$ Mesh
I/O	HIPPI, VME, Ethernet	Hypercube of 8192	interconnect	
	custom I/O	nodes		
OS	4.3 BSD	Vertex/OS or UNIX	IDRIS/OS	wormhole routing
			UNIX compatible	
Application	Sparse Matrices	Scientific and	Scientific and	Academic
		database	academic	
Performance	5-300 Gflops peak	27 Gflop, 36	200 MIPS to 13	
	64-bit results	Gbytes/s I/O	GIPS peak	

Source: Advanced Computer Arch. by Kai Hwang and 1993 IEEE

Time

- clocks not synchronized
- How to define happed before

Time considered dangerous : replaced by causality

Reference: Lamport 79

©Vijay K. Garg

- Taking picture of sky
- Taking census in a country
- Counting number of tokens in a distributed system

Notion of physical state replaced by consistent state

Reference: Chandy and Lamport 85

Secrets

- Alice calls up Bob.
- Alice and Bob do not share any private information.
- How can Alice transmit a secret ?
- How to sign your email messages ?

Reference: Rivest, Shamir and Adleman 78

Knowledge

- Father: at least one of you have mud on your forhead
- He repeatedly asks the question: Do you know if you have mud on your forhead ?
- What happens ?

Knowing is different from knowing what is known

Reference: Hailpern and Moses 84

How to check violation of Mutual Exclusion

- A company buys a single copy of your program.
- can run the program on multiple machines
 - so long as there is a single copy of the program at any time.
- How will you detect any violation of the agreement
 - allowed access to a single computer at any time ?

This course will not deal with..

• Hardware issues

• Networking issues

• Parallel Algorithms

• Numerical Methods