Goals of the lecture

• Relations

• Posets

• A run or a distributed computation

• Happened-before relation

Model of Distributed systems

• events

- beginning of procedure foo
- termination of bar
- send of a message
- receive of a message
- termination of a process
- happened-before relation

Relation

• X = any set

a binary relation R is a subset of $X \times X$.

• Example:
$$X = \{a, b, c\}$$
, and
 $R = \{(a, c), (a, a), (b, c), (c, a)\}.$

Relation [Contd.]

Reflexive: If for each $x \in X$, $(x, x) \in R$.

• Example: X is the set of natural numbers, and $R = \{(x, y) \mid x \text{ divides } y\}.$

Irreflexive: For each $x \in X$, $(x, x) \notin R$.

• Example: X is the set of natural numbers, and $R = \{(x, y) \mid x \text{ less than } y\}$.

Relation [Contd.]

Symmetric: $(x, y) \in R$ implies $(y, x) \in R$.

• Examples: is sibling of, $x \mod k = y \mod k$.

Anti-symmetric: $(x, y) \in R, (y, x) \in R$ inplies x = y.

• Examples: \leq , divides.

Asymmetric: $(x, y) \in R$ implies $(y, x) \notin R$.

• Examples: is child of, <.

Transitive: $(x, y), (y, z) \in R$ implies $(x, z) \in R$.

• Examples: is reachable from, <, divides.

Puzzle: Example of a symmetric and transitive but not reflexive relation.

Examples:

- X: Ground Set, $(2^X, \subset)$ is a irreflexive partial order
- $(\mathcal{N}, \text{ divides})$ is a reflexive partial order
- (\mathcal{R}, \leq) is a reflexive partial order (also a total order)
- causality in a distributed system (later ..)

©Vijay K. Garg

Posets [Contd.]

Let $Y \subseteq X$, where (X, \leq) is a poset.

Infimum: $m = \inf(Y)$ iff

- $\forall y \in Y : m \leq y$
- $\bullet \ \forall x \in X : (\forall y \in Y : x \leq y) \Rightarrow x \leq m$

m is also called glb of the set Y.

Supremum: $s = \sup(Y)$ iff (s is also called lub)

- $\forall y \in Y : y \leq s$
- $\forall x \in X : (\forall y \in Y : y \le s) \Rightarrow s \le x$

We denote the glb of $\{a, b\}$ by $a \sqcap b$, and lub by $a \sqcup b$.

$$X = \{a, b, c, d, e, f\}$$

$$R = \left\{ (a, b), (a, c), (b, d), \\ (c, f), (c, e), (d, e) \right\}$$

©Vijay K Garg

Lattices

Lattices Lattices Poset

- Let S be any set, and 2^S be its power set. The poset $(2^S,\subseteq)$ is a lattice.
- Set of rationals with usual \leq .
- Set of global states
- A lattice is an algebraic system (L, □, □) where □ and □ satisfy commutative, associative and absorption laws.

Monotone functions

A function $f : X \to Y$ is monotone iff $\forall x, y \in X : x \leq y \Rightarrow f(x) \leq f(y).$

• Examples

- union, intersection
- addition, multiplication with positive number
- clocks in distributed systems

Down-Sets and Up-Sets

Let (X, <) be any poset.

• We call a subset $Y \subseteq X$ a down-set (alternatively, order ideal) if

$$f \in Y \land e < f \Rightarrow e \in Y.$$

Similarly, we call Y ⊆ X an up-set (alternatively, order filter) if

$$e \in Y \land e < f \Rightarrow f \in Y.$$

• We use $\mathcal{O}(X)$ to denote the set of all down-sets of X. We now show a simple but important lemma.

Lemma 1 Let (X, <) be any poset. Then, $(\mathcal{O}(X), \subseteq)$ is a *lattice*.

Run

- Each process P_i in a run generates an execution trace
 s_{i,0}e_{i,0}s_{i,1}...e_{i,l-1}s_{i,l}, which is a finite sequence of local states
 and events in the process P_i.
 - state = values of all variables, program counter
 - event = internal, send, receive
- A run r is a vector of traces with r[i] as the trace of the process P_i .

Relations

- $s \prec_1 t$ if and only if s immediately precedes t in the trace r[i].
 - s.next = t or t.prev = s whenever $s \prec_1 t$.
 - \prec = irreflexive transitive closure of \prec_1 .
 - \leq = reflexive transitive closure of \prec_1 .
- event e in the trace $r[i] \rightsquigarrow$ event f in the trace r[j] if e is the send of a message and f is the receive event of the same message.

13

Relations [Contd.]

causally precedes relation \equiv the transitive closure of union of \prec_1 and \rightsquigarrow . That is, $s \rightarrow t$ iff

1.
$$(s \prec_1 t) \lor (s \rightsquigarrow t)$$
, or
2. $\exists u : (s \rightarrow u) \land (u \rightarrow t)$

s and t are concurrent (denoted by s||t) if $\neg(s \rightarrow t) \land \neg(t \rightarrow s)$.