Goals of the lecture

- Relations
- Posets
- A run or a distributed computation
- Happened-before relation

Model of Distributed systems

- events
- beginning of procedure foo
- termination of bar
- send of a message
- receive of a message
- termination of a process
- happened-before relation

Relation

- $X=$ any set
a binary relation R is a subset of $X \times X$.
- Example: $X=\{a, b, c\}$, and

$$
R=\{(a, c),(a, a),(b, c),(c, a)\} .
$$

Relation [Contd.]

Reflexive: If for each $x \in X, \quad(x, x) \in R$.

- Example: X is the set of natural numbers, and $R=\{(x, y) \mid x$ divides $y\}$.

Irreflexive: For each $x \in X, \quad(x, x) \notin R$.

- Example: X is the set of natural numbers, and $R=\{(x, y) \mid x$ less than $y\}$.

Reflexive or irreflexive ?

Relation [Contd.]

Symmetric: $(x, y) \in R$ implies $(y, x) \in R$.

- Examples: is sibling of, $x \bmod k=y \bmod k$.

Anti-symmetric: $(x, y) \in R,(y, x) \in R$ inplies $x=y$.

- Examples: \leq, divides.

Asymmetric: $(x, y) \in R$ implies $(y, x) \notin R$.

- Examples: is child of, $<$.

Relation [Contd.]

Transitive: $(x, y),(y, z) \in R$ implies $(x, z) \in R$.

- Examples: is reachable from, $<$, divides.

Puzzle: Example of a symmetric and transitive but not reflexive relation.

Partially Ordered Sets [Posets]

Examples:

- X : Ground Set, $\left(2^{X}, \subset\right)$ is a irreflexive partial order
- (\mathcal{N}, divides) is a reflexive partial order
- (\mathcal{R}, \leq) is a reflexive partial order (also a total order)
- causality in a distributed system (later ..)

Posets [Contd.]

Let $Y \subseteq X$, where (X, \leq) is a poset.
Infimum: $m=\inf (Y)$ iff

- $\forall y \in Y: m \leq y$
- $\forall x \in X:(\forall y \in Y: x \leq y) \Rightarrow x \leq m$ m is also called $g l b$ of the set Y.

Supremum: $s=\sup (Y)$ iff (s is also called $l u b$)

- $\forall y \in Y: y \leq s$
- $\forall x \in X:(\forall y \in Y: y \leq s) \Rightarrow s \leq x$

We denote the glb of $\{a, b\}$ by $a \sqcap b$, and lub by $a \sqcup b$.

$$
\begin{aligned}
X & =\{a, b, c, d, e, f\} \\
R & =\left\{\begin{array}{l}
(a, b),(a, c),(b, d), \\
(c, f),(c, e),(d, e)
\end{array}\right\}
\end{aligned}
$$

Lattices

sups and infs for finite sets

Lattices
Poset

- Let S be any set, and 2^{S} be its power set. The poset $\left(2^{S}, \subseteq\right)$ is a lattice.
- Set of rationals with usual \leq.
- Set of global states
- A lattice is an algebraic system (L, \sqcup, \sqcap) where \sqcup and \sqcap satisfy commutative, associative and absorption laws.

Monotone functions

A function $f: X \rightarrow Y$ is monotone iff

$$
\forall x, y \in X: x \leq y \Rightarrow f(x) \leq f(y)
$$

- Examples
- union, intersection
- addition, multiplication with positive number
- clocks in distributed systems

Down-Sets and Up-Sets

Let $(X,<)$ be any poset.

- We call a subset $Y \subseteq X$ a down-set (alternatively, order ideal) if

$$
f \in Y \wedge e<f \Rightarrow e \in Y
$$

- Similarly, we call $Y \subseteq X$ an up-set (alternatively, order filter) if

$$
e \in Y \wedge e<f \Rightarrow f \in Y
$$

- We use $\mathcal{O}(X)$ to denote the set of all down-sets of X. We now show a simple but important lemma.
Lemma 1 Let $(X,<)$ be any poset. Then, $(\mathcal{O}(X), \subseteq)$ is a lattice.

Run

- Each process P_{i} in a run generates an execution trace $s_{i, 0} e_{i, 0} s_{i, 1} \ldots e_{i, l-1} s_{i, l}$, which is a finite sequence of local states and events in the process P_{i}.
- state $=$ values of all variables, program counter
- event = internal, send, receive
- A run r is a vector of traces with $r[i]$ as the trace of the process P_{i}.

Relations

- $s \prec_{1} t$ if and only if s immediately precedes t in the trace $r[i]$.
- s.next $=t$ or t.prev $=s$ whenever $s \prec_{1} t$.
- $\prec=$ irreflexive transitive closure of \prec_{1}.
- $\preceq=$ reflexive transitive closure of \prec_{1}.
- event e in the trace $r[i] \leadsto$ event f in the trace $r[j]$ if e is the send of a message and f is the receive event of the same message.

Relations [Contd.]

causally precedes relation \equiv the transitive closure of union of \prec_{1} and \sim. That is, $s \rightarrow t$ iff

1. $\left(s \prec_{1} t\right) \vee(s \sim t)$, or
2. $\exists u:(s \rightarrow u) \wedge(u \rightarrow t)$
s and t are concurrent (denoted by $s \| t)$ if $\neg(s \rightarrow t) \wedge \neg(t \rightarrow s)$.
