
Clocks 1Goals of the lecture� Logical Clocks (Lamport's clocks)� Concurrency vs Simultaneity� Total Ordering� Physical Clocks� Vector ClockscVijay K. Garg Distributed Systems Fall 94



Clocks 2Logical ClocksA global clock C: S ! N that satis�es:8s; t 2 S : s �1 t _ s ; t) C(s) < C(t)C : the set of all global clocksEquivalent to :8s; t 2 S : s! t) 8C 2 C : C(s) < C(t) (CC)� Lemma: C is non-empty i� (S;!) is an irreexive partialorder.� happened-before relation
cVijay K. Garg Distributed Systems Fall 94



Clocks 3Concurrency � simultaneity for some observer8u; v 2 S : ujjv ) 9C 2 C : (C(u) = C(v))If two local states are concurrent, ) there exists a global clocksuch that both states are assigned the same timestamp. Thiswill show the converse of (CC), i.e.,8s; t 2 S : s 6! t) 9C 2 C : :(C(s) < C(t))3 7 9 122 10 13 15m m um m- - -m m mv m- - -������	 ������	 3 7 10 132 10 13 16m m um m- - -m m mv m- - -������	 ������	Transitivity ?cVijay K. Garg Distributed Systems Fall 94



Clocks 4Logical Clock� Useful for various algorithms� Actions taken for each event type:For any initial state s:s:c = 0;Rule for a send event (s; snd; t): /* s.c is sent as part of msg */t:c := s:c+ 1;Rule for a receive event (s; rcv(u); t):t:c := max(s:c; u:c) + 1;Rule for an internal event (s; int; t):t:c := s:c+ 1;The following claim is easy to verify: (Converse ?)8s; t 2 S : s! t) s:c < t:ccVijay K. Garg Distributed Systems Fall 94



Clocks 5Ordering the events totally� Extend the logical clock with process number� the timestamp of any event is a tuple < e:c; e:p >� the total order < is obtained as:(e:c; e:p) < (f:c; f:p),(e:c < f:c) _ ((e:c = f:c) ^ (e:p < f:p)):

cVijay K. Garg Distributed Systems Fall 94



Clocks 6Physical Clocks� What if some messages do not follow the algorithm ?� Given approximately correct physical clocks, one can syn-chronize clocks such that u! v implies C(u) < C(v).� � = upper bound on the drift rate of any clock� � = minimum transmission time for any message� t = physical time at which the message is sentWe require Ci(t+ �) > Cj(t) for all i; j; t:From the bound on the drift we know thatCi(t+ �) > Ci(t) + (1� �)�:Thus, we need Ci(t) + (1� �)� > Cj(t).That is, Cj(t)� Ci(t) < (1� �)�.cVijay K. Garg Distributed Systems Fall 94



Clocks 7Clock Synchronization AlgorithmThe synchronization constant (�) < (1� �)�.� Algorithm:� send out a timestamped message along its outgoing link at least every� seconds.� Every message takes time between � and �+ �.� On receipt of a message timestamped with Tm, the clock is updatedas maximum of the previous value and Tm + �.� Let the network be strongly connected with d as the diam-eter. Then, it can be shown that � = d(2�� + �) for allt > t0 + �d assuming that �+ � << � .hh h h h hhh������� AAAAAAU ���� @@@R6@@@I ����6 ���������-cVijay K. Garg Distributed Systems Fall 94



Clocks 8Vector Clocks� Logical clocks satisfys! t) s:c < t:c:However, the converse is not true.� Vector clock satisfy:s! t, s:v < t:v:

cVijay K. Garg Distributed Systems Fall 94



Clocks 9Consistent Cuts� (E;�)� down-set Y in this partial order will be called a pre�x.� The set of all pre�xes is a lattice.� supY for any pre�x Y is called a cut.� (E;!) where ! is the causal-precedes.� A down-set Y in this partial order is called a consistent pre�x.� Similarly, supY is called a consistent cut.� The set of all consistent pre�xes is also a lattice.F � E is a consistent cut i� 8e; f 2 F : :(e! f).----HHHHHHjHHHHHHj���������1������*Cut ACut B
cVijay K. Garg Distributed Systems Fall 94



Clocks 10Vector Algorithm� Let there be N processes� Algorithm:For any initial state s:(8i : i 6= s:p : s:v[i] = 0) ^ (s:v[s:p] = 1)Rule for an internal event (s; int; t):t:v := s:v;t:v[t:p] + +; s0BBB@ 0100 1CCCA s0BBB@ 1100 1CCCAs0BBB@ 0011 1CCCAs0BBB@ 0200 1CCCA s0BBB@ 2100 1CCCA s0BBB@ 2121 1CCCAs0BBB@ 0002 1CCCA s0BBB@ 2131 1CCCA s0BBB@ 2331 1CCCAs0BBB@ 0001 1CCCA
---

-������� AAAAAAAAAAAAU������� �������P1P2P3P4cVijay K. Garg Distributed Systems Fall 94



Clocks 11Vector Algorithm [Contd.]Rule for a send event (s; snd; t):t:v := s:v;t:v[t:p] + +;Rule for a receive event (s; rcv(u); t):for i := 1 to Nt:v[i] := max(s:v[i]; u:v[i]);t:v[t:p] + +; s0BBB@ 0100 1CCCA s0BBB@ 1100 1CCCAs0BBB@ 0011 1CCCAs0BBB@ 0200 1CCCA s0BBB@ 2100 1CCCA s0BBB@ 2121 1CCCAs0BBB@ 0002 1CCCA s0BBB@ 2131 1CCCA s0BBB@ 2331 1CCCAs0BBB@ 0001 1CCCA
---

-������� AAAAAAAAAAAAU������� �������P1P2P3P4cVijay K. Garg Distributed Systems Fall 94



Clocks 12Properties of the Vector Clock AlgorithmLemma 1 Let s 6= t. Then,s 6! t) t:v[s:p] < s:v[s:p]Proof:� t:p = s:p: then it follows that t � s.� s:p 6= t:p. Since s:v[s:p] is the local clock of Ps:p and Pt:p could nothave seen this value as s 6! tTheorem 1 s! t i� s:v < t:v.Proof: (s! t)) (s:v < t:v)� s! t: there is a message path from s to t. Therefore,8k : s:v[k] � t:v[k]. Furthermore, since t 6! s, from lemma 1t:v[j] > s:v[j].� The converse follows from Lemma 1.cVijay K. Garg Distributed Systems Fall 94



Clocks 13OptimizationRecall x < y if and only if(8i : x[i] � y[i]) ^ (9j : x[j] < y[j]). If we know theprocesses the vectors came from, the comparisonbetween two states can be made in constant time.Lemma 2 s! t i�(s:v[s:p] � t:v[s:p]) ^ (s:v[t:p] < t:v[t:p])s0BBB@ 0100 1CCCA s0BBB@ 1100 1CCCAs0BBB@ 0011 1CCCAs0BBB@ 0200 1CCCA s0BBB@ 2100 1CCCA s0BBB@ 2121 1CCCAs0BBB@ 0002 1CCCA s0BBB@ 2131 1CCCA s0BBB@ 2331 1CCCAs0BBB@ 0001 1CCCA
---

-������� AAAAAAAAAAAAU������� �������P1P2P3P4cVijay K. Garg Distributed Systems Fall 94


