- Logical Clocks (Lamport's clocks)
- Concurrency vs Simultaneity
- Total Ordering
- Physical Clocks
- Vector Clocks

Logical Clocks

A global clock C: $S \to \mathcal{N}$ that satisfies:

$$\forall s, t \in S : s \prec_1 t \lor s \rightsquigarrow t \Rightarrow C(s) < C(t)$$

 $\ensuremath{\mathcal{C}}$: the set of all global clocks Equivalent to :

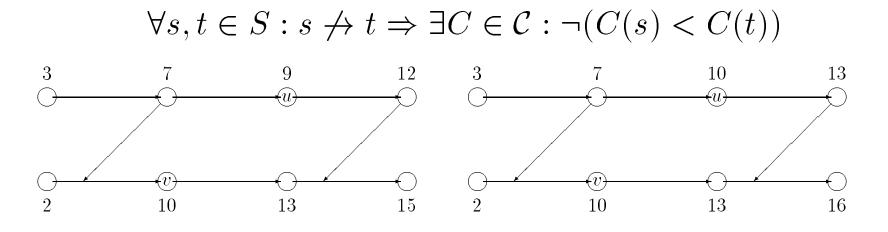
$$\forall s, t \in S : s \to t \Rightarrow \forall C \in \mathcal{C} : C(s) < C(t) \qquad (\mathbf{CC})$$

- Lemma: \mathcal{C} is non-empty iff (S, \rightarrow) is an irreflexive partial order.
- happened-before relation

Concurrency \equiv simultaneity for some observer

$$\forall u, v \in S : u || v \Rightarrow \exists C \in \mathcal{C} : (C(u) = C(v))$$

If two local states are concurrent, \Rightarrow there exists a global clock such that both states are assigned the same timestamp. This will show the converse of (CC), i.e.,



Transitivity ?

Logical Clock

- Useful for various algorithms
- Actions taken for each event type:

For any initial state s:

s.c = 0;

Rule for a send event (s, snd, t): /* s.c is sent as part of msg */ t.c := s.c + 1;

Rule for a receive event (s, rcv(u), t): $t.c := \max(s.c, u.c) + 1;$

Rule for an internal event (s, int, t): t.c := s.c + 1;

The following claim is easy to verify: (Converse ?)

$$\forall s, t \in S : s \to t \Rightarrow s.c < t.c$$

- Extend the logical clock with process number
 - the timestamp of any event is a tuple $\langle e.c, e.p \rangle$
- the total order < is obtained as:

$$\begin{array}{l} (e.c,e.p) < (f.c,f.p) \\ \Leftrightarrow \\ (e.c < f.c) \lor ((e.c = f.c) \land (e.p < f.p)). \end{array}$$

5

Physical Clocks

- What if some messages do not follow the algorithm ?
- Given approximately correct physical clocks, one can synchronize clocks such that $u \rightarrow v$ implies C(u) < C(v).
 - κ = upper bound on the drift rate of any clock
 - $\mu = \min \min t ransmission time for any message$
 - t = physical time at which the message is sent

We require

$$C_i(t + \mu) > C_j(t)$$
 for all i, j, t .

From the bound on the drift we know that

 $C_i(t + \mu) > C_i(t) + (1 - \kappa)\mu.$ Thus, we need $C_i(t) + (1 - \kappa)\mu > C_j(t)$. That is, $C_j(t) - C_i(t) < (1 - \kappa)\mu.$

⊙Vijay K. Garg

Distributed Systems Fall 94

Clock Synchronization Algorithm

The synchronization constant (ϵ) < $(1 - \kappa)\mu$.

- Algorithm:
 - send out a timestamped message along its outgoing link at least every τ seconds.
 - Every message takes time between μ and $\mu + \xi$.
 - On receipt of a message timestamped with T_m , the clock is updated as maximum of the previous value and $T_m + \mu$.
- Let the network be strongly connected with d as the diameter. Then, it can be shown that $\epsilon = d(2\kappa\tau + \xi)$ for all $t > t_0 + \tau d$ assuming that $\mu + \xi << \tau$.

Vector Clocks

• Logical clocks satisfy

$$s \to t \Rightarrow s.c < t.c.$$

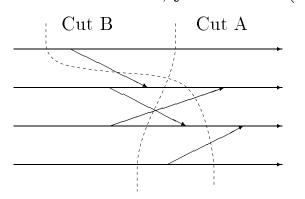
However, the converse is not true.

• Vector clock satisfy:

$$s \to t \Leftrightarrow s.v < t.v.$$

Consistent Cuts

- (E, \prec)
 - down-set Y in this partial order will be called a prefix.
 - The set of all prefixes is a lattice.
 - $\sup Y$ for any prefix Y is called a *cut*.
- (E, \rightarrow) where \rightarrow is the causal-precedes.
 - A down-set Y in this partial order is called a consistent prefix.
 - Similarly, $\sup Y$ is called a consistent cut.
 - The set of all consistent prefixes is also a lattice. $F \subseteq E$ is a consistent cut iff $\forall e, f \in F : \neg(e \to f)$.



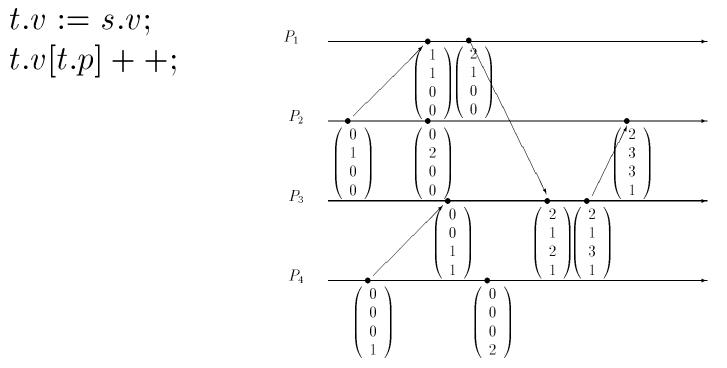
Vector Algorithm

- $\bullet\,$ Let there be N processes
- Algorithm:

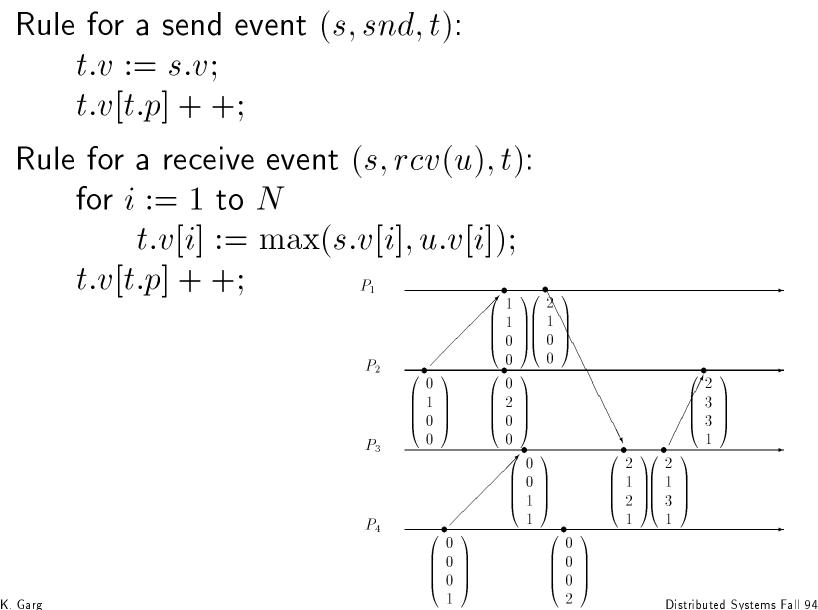
For any initial state s:

$$(\forall i: i \neq s.p: s.v[i] = 0) \land (s.v[s.p] = 1)$$

Rule for an internal event (s, int, t):



Vector Algorithm [Contd.]



Properties of the Vector Clock Algorithm

Lemma 1 Let $s \neq t$. Then,

$$s \not\rightarrow t \Rightarrow t.v[s.p] < s.v[s.p]$$

Proof:

- t.p = s.p: then it follows that $t \prec s$.
- $s.p \neq t.p$. Since s.v[s.p] is the local clock of $P_{s.p}$ and $P_{t.p}$ could not have seen this value as $s \not\rightarrow t$

Theorem 1 $s \to t$ iff s.v < t.v. **Proof**: $(s \to t) \Rightarrow (s.v < t.v)$

- $s \rightarrow t$: there is a message path from s to t. Therefore, $\forall k : s.v[k] \leq t.v[k]$. Furthermore, since $t \not\rightarrow s$, from lemma 1 t.v[j] > s.v[j].
- The converse follows from Lemma 1.

Optimization

Recall x < y if and only if $(\forall i : x[i] \leq y[i]) \land (\exists j : x[j] < y[j])$. If we know the processes the vectors came from, the comparison between two states can be made in constant time.

Lemma $2 s \rightarrow t$ iff

