Goals of the lecture

- Consistent State
- Algorithm
- Correctness
- Stable Properties

Reference: Chandy and Lamport

Case of the dubious dollars

picture taken here (\$400)
Send $\$ 100$ from A to B
picture taken here (\$400)

The total amount becomes $\$ 800$

Problem

To determine global system state

Each process can record its own state and messages it sends and receives.

No shared clock or memory

Analogy: group of photographers

Model of a Distributed System

- Finite set of processes
- Finite set of channels

Channel $:=$ FIFO, error free, and infinite buffer

Definition of a process

An event can change the state of P and at most one channel.

Global state and global sequence

$$
\operatorname{state}(D)=\times_{i} \operatorname{state}\left(p_{i}\right) \times \times_{i} \text { state }\left(c_{j}\right)
$$

$$
\operatorname{next}(s, e)=\text { global state immediately after } e
$$

$$
\text { seq }=\left(e_{i}: 0 \leq i \leq n\right) \text { is a computation of } D \text { iff }
$$

$$
\begin{aligned}
s_{0} & =\text { initial global state } \\
s_{i+1} & =\operatorname{next}\left(s_{i}, e_{i}\right) \quad 0 \leq i \leq n
\end{aligned}
$$

Example 1

Example 1 [Contd.]

$$
\operatorname{state}(p)=s_{1}
$$

$$
\begin{aligned}
\operatorname{state}\left(c_{1}\right) & =\langle\text { token }\rangle \\
\operatorname{state}\left(c_{2}\right) & =\langle \rangle \\
\operatorname{state}(q) & =s_{0}
\end{aligned}
$$

Global State Detection Algorithm

Sending Rule: For all channels c directed away from p, p sends one marker after p records its state and before it sends further messages along c.

Receiving Rule : On receiving a marker along c if q has not recorded its state
then records its state
marks c as empty
else state $(c)=\langle$ seq of messages \rangle received along c after the state was recorded and before marker is received.

Example 2

p

q

Example 2 [contd.]

S_{3}

Property of the recorded global state

$S^{*}=$ snapshot

- S^{*} is reachable from S_{α}
- S_{ϕ} is reachable from S^{*}

Recorded global state $\left(S^{*}\right)$

Property of the recorded global state [Contd.]

Theorem 1 There exists a computation seq ${ }^{\prime}=\left(e_{i}^{\prime}, 0 \leq i\right)$ where

1. For all i, where $i<\alpha$ or $i \geq \phi: e_{i}^{\prime}=e_{i}$, and
2. the subsequence $\left(e_{i}^{\prime}, \alpha \leq i<\phi\right)$ is a permutation of the subsequence $\left(e_{i}, \alpha \leq i<\phi\right)$, and
3. for all i where $i \leq \alpha$ or $i \geq \phi: S_{i}^{\prime}=S_{i}$, and
4. there exists some $k, \alpha \leq k<\phi$, such that $S^{*}=S_{k}^{\prime}$.

Colorful description (due to Dijkstra)

- Each machine, atomic action and message is either white or red
- $S_{0} \quad \Rightarrow \quad$ Snapshot (SS) $\quad \Rightarrow \quad S_{1}$ white red

Color Assignment

Atomic Action : same color as the machine
Message : same color as the machine that sends it

Snapshot state SSS consists of

- state when it made the transition from white to red
- the sequence of white messages accepted by a red machine

Proof

Summary

- Beautiful paper Beautiful algorithm
- Example of generalization of a problem

