#### Goals of the lecture

• Knowledge Hierarchy

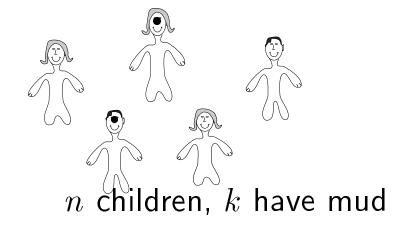
• Relevance to Distributed Systems

• Impossibility of achieving common knowledge

#### Puzzle

- Father : at least one of you have mud on your forehead (S)
- He repeatedly asks the question: Do you know if you have mud on your forehead ?
- What happens ?





## Solution

First 
$$k - 1$$
 times : all say "No".  
 $k^{th}$  time : dirty children say "Yes".

**Proof:** (by induction on k)

$$k = 1, 2$$
$$k = i \to i + 1$$

| k = 1      | k = 2      | k = 3 |
|------------|------------|-------|
| $\bigcirc$ | • b        | • b   |
| a • •      | a • •      | a • • |
| $\bigcirc$ | $\bigcirc$ | • C   |

 Let k > 1 ⇒ Father did not tell the children anything they did not know.

• What if S was not stated ?

• What is the role of S ?

## Assumptions

- Knowledge is monotone
  - no forgetting
  - p is true at  $t_0 \Rightarrow p$  is always true.

- Processes are not faulty
  - honest processes

©Vijay K. Garg

## Definitions

## $K_i p \equiv \text{individual } \underline{i} \text{ knows } \underline{p}$

#### Knowledge Axiom

$$K_i p \Rightarrow p$$

## G: group of individuals

#### Levels of Knowledge

**Implicit Knowledge** :  $I_G p$  $\begin{cases} K_i q \\ K_j (q \Rightarrow p) \end{cases} \Rightarrow I_G p$ 

Someone Knows :  $S_G p$  $S_G p \equiv \bigvee_{i \in G} K_i p$ 

**Everyone Knows** :  $E_G p$  $E_G p \equiv \bigwedge_{i \in G} K_i p$ 

#### Levels of Knowledge [Contd.]

Everyone<sup>k</sup> Knows : 
$$E_G^k p$$
  
 $E_G^1 p \equiv E_G p$   
 $E_G^{k+1} p = E_G E_G^k p$ 

# **Common Knowledge** : $C_G p$ $C_G p \equiv p \land E_G p \land E_G^1 p \land E_G^2 p \land \cdots$

m: There are children with mud on their forehead.

#### Before S

- k = 2: m (true), Em (true),  $E^2m$  (false)
- k = 3: m (true), E m (true),  $E^2 m$  (true),  $E^3 m$  (false).

Check : with  $E^k m$  dirty children can prove  $E^{k-1} m$  they cannot.

After S

$$C m \Rightarrow E^k m$$

## Knowledge and Distributed Systems

• Knowledge hierarchy

$$C p \Rightarrow \dots \Rightarrow E^{k+1} p \Rightarrow \dots \Rightarrow E p \Rightarrow S p \Rightarrow I p \Rightarrow p$$

How does the level of knowledge of a fact p changes ?

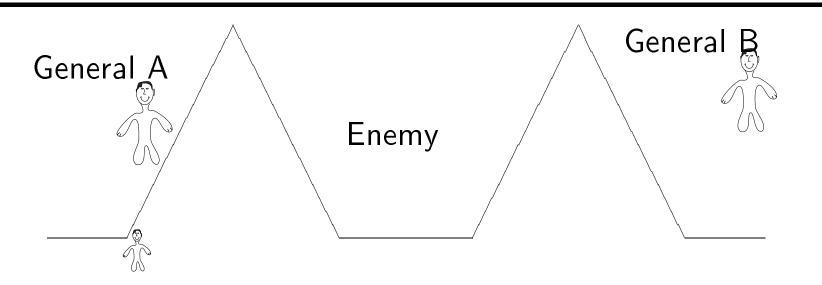
- Examples:
  - fact discovery ( $I_p$  to  $S_p$ )

deadlock detection

- fact publication ( $S_p$  to  $C_p$ )

new common protocol

## **Coordinated Attack Problem**



Message Delivery not guaranteed

Q: Can the generals coordinate their attack ?

## **Coordinated Attack [Contd.]**

**Theorem 1** There is no protocol for attaining common knowledge if communication is not guaranteed.

**Proof:** no message delivered

Q: How about any run of protocol instead of all runs of protocol ?

**Theorem 2** If q is not common knowledge then no run of any protocol ever attains C q.

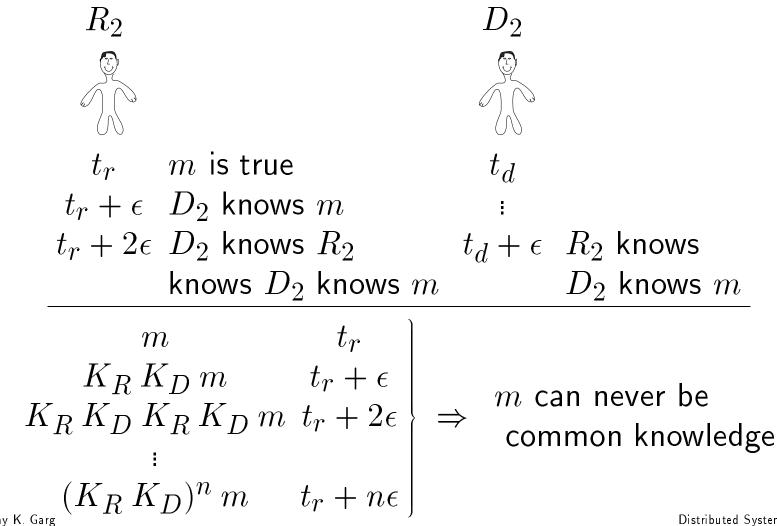
**Proof:** Let p have n messages. Induction on n.

Q: What if communication is guaranteed ?

• any message takes either 0 time or  $\epsilon$  time.

# **Coordinated Attack [Contd.]**

**Theorem 3** Common knowledge is still unattainable **Proof:** 



Distributed Systems Fall-94

## *e*-Common Knowledge

**Common Knowledge** : any message will arrive in at most  $\epsilon$  time.

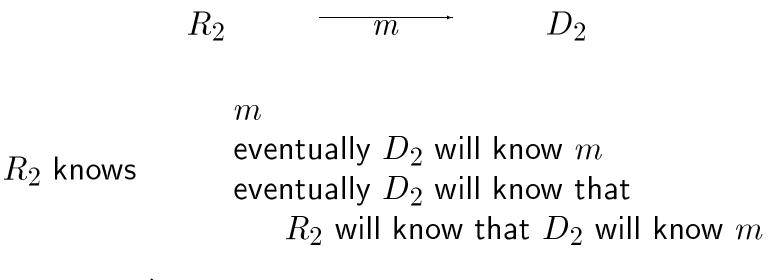
- $R_2$  initially knows m.
- within  $\epsilon$  both will know  $m \equiv m_1$
- within  $\epsilon$  both will know  $m_1$

 $O^{\epsilon} = \epsilon$  time units later

$$C^{\epsilon} p \equiv p \wedge O^{\epsilon} E p \wedge \dots \wedge (O^{\epsilon} E)^n p \dots$$

## **Asynchronous Communication**

Every message sent will eventually reach



$$C^{\diamondsuit} p \equiv p \land \diamond E p \land \dots \land (\diamond E)^n p \land \dots$$

 $\diamond \equiv$  eventually

#### $R_2$ sends "C m" instead of "m" and asserts C m.

# message takes 0 time message takes $\epsilon$ time

both assert C m simultaneously

inconsistency for  $\epsilon$  time

#### Weak Common Knowledge

#### Examples:

- within  $\epsilon$
- eventually
- with probability  $\pi$
- likely
- can be attained

• and then you can cheat to get common knowledge.

## Conclusions

#### Common Sense may be uncommon <u>but</u>

# Common Knowldege is Impossible (in a distributed system)