Self Stabilization

Goals of the lecture: Self-stabilization

e Fault-tolerance
e Definition of self-stabilizing

e Algorithm with K-state Machines

« Proof

e Algorithm with 3-state Machines

« Proof

References: Dijkstra 74, Dijkstra 86

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization 2

Fault-tolerance

e systems which recover from faults

e self-stabilization: highly fault-tolerant

. a fault can change any data
e system viewed as consisting of legal and illegal states

e self-stabilzation: should reach a legal state in finite moves

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization 3

Terminology

e Underlying topology: connection graph
e neighbors

e privilege: boolean function of
« Own state,

. states of its neighbors

e legal state: application dependent

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization 4

Requirements on legal state

e In each legal state, one or more privileges
e any move from a legal state leads to a legal state
e cach privilege present in at least one legal state

e for any pair of legal states, there exist a sequence of trans-
ferring moves

Definition of self-stabilzation: Regardless of initial state,
and privilege selected each time, the system Is guaranteed to
reach a legal state after a finite number of moves.

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization 5

Example: Mutual Exclusion

legal state: exactly one privilege
e N+1 machines numbered 0..N
e L S R: states of left, self, right
e bottom machine: machine 0

e format:
if privilege then corresponding move fi

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization

Algorithm |: K-state machine (K > N)

Bottom:
if (L=S) then S := S+1 mod K fi

For other machines:
if (L #S5)thenS :=Lfi

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization

Example
4
9 1
A 3
3
4
9 4
4 4
4

©Vijay K. Garg

—

e

<= +

(N

e

Distributed Systems Fall 94



Self Stabilization 8

Proof

Lemma O: If the system is in a legal state, then it will stay legal.

Lemma 1: A sequence of moves in which Bottom does not
move is finite.

Lemma 2: Given any configuration, either
(1) no other machine has the same state as the bottom, or
(2) there exists a value which is different from all machines.

Lemma 3: With in a finite number of moves, part one of Lemma
2 will be true.

Theorem 1: Within finite number of moves, the system will
reach a legal state.

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization 9

Algorithm Il: 3-state machine

Ring of at least 3 machines
Bottom: B, Normal: N, Top: T
configuration viewed as a string of 0,1,2

Bottom:
if (B+1=R)then B:= B + 2;

Normal:
if (L=S+1)or(R=5+41)then S:=5+1;

Top:
if (L=B)and (T #B+1)thenT:=B+1

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization

Viewing the string with arrows

10

y = # of left-pointing + 2# of right-pointing

Bottom :
(0) B «+ R

Normal Machine:

(1) L — S

gEer
Tl

numumvm O
TLT

5

Top Machine (privilege also depends on B):
L « T
L « T

(6) L — T
(7) L T

(©Vijay K. Garg

R
R
R
R
R

to

to
to
to
to
to

to
to

B —- R

- r—

T
noum u;vm O N

_>

1

T
A 0 0 0 0

Ay = +1
Ay =10
Ay =10
Ay = —3
Ay = —3
Ay =10
Ay = +1
Ay = +1

Distributed Systems Fall 94



Self Stabilization 11

Example

1 — 0 — 2 — 0
® @ @ @
B T
1 1 — 2 — 0
® @ @ @
B T
1 — 2 2 — 0
® @ @ @
B T
0 — 2 2 — 0
® @ @ @
B T
0 0 — 2 — 0
® @ @
B T
0 0 0 0
@ @ @
B T
0 0 0 — 1
® @ @ @
B T

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization 12

Proof

Claim: Single arrow implies it stays that way.
Claim: string free from arrow creates one in a single move.

Now show that if multiple arrow then y will be decreased in
finite moves.

(©Vijay K. Garg Distributed Systems Fall 94



Self Stabilization 13

Proof contd

Lemma 0: Between two successive moves of Top at least one
move of Bottom takes place.

Lemma 1: A sequence of moves in which Bottom does not
move is finite. Proof: sufficient to consider normal machines.
(3),(4),(5) decrease number of arrows. (1) and (2) moves finite
due to topology.

Theorem: Within finite moves, there is one arrow in the string.
Proof:between successive moves of bottom, falsification of “left-
most arrow exists and points to the right” happen in (3), (4),
or (6). if (6) then done. If (3) or (4), y decreases by 3. y can
Increase by at most 2 per move of Bottom, thus y is decreased
by 1.

(©Vijay K. Garg Distributed Systems Fall 94



