
Veri�cation 1Agreement Problem� Motivation� Transaction commit� Main di�culty: failures� process failures� link failures� Di�erent fault models� initially dead, fail-stop, omission, byzantine� Surprising result: Even in presence of one unannouncedprocess death, agreement problem is impossible to solve.� No Byzantine failures� Reliable messages� Processing is completely asynchronousc
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 2Consensus Problem� Every process starts with an initial value of f0,1g� A non-faulty process decides by entering a decision state� Require that some process eventually make a decision

c
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 3System Model� Processes are modeled as automata (possibly in�nite state)� communication using messages� Atomic step� attempt to receive a message� perform local computation� send a �nite set of messages to other processes

c
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 4Consensus Protocol� N processes� one bit input register� output register with values f0; 1; bg initially b� output register write-once� unbounded storage� message system: a bu�er with� send(p,m): places (p;m) in the bu�er� receive(p): deletes (p,m) and return m or return ;� Condition on the message system� If receive(p) is performed in�nitely times, then every message is even-tually delivered.c
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 5Global State� Con�guration� de�ned by local states. message bu�er� initial con�guration� step = primitive step by one process� step determined by the pair e = (p;m)� Application of an event e to C� Schedule from C� �nite or in�nite sequence � of events� when � �nite �(C): result of application� reachable con�guration
c
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 6Commutativity Property� Lemma 1: If two schedules are disjoint, then they can becommuted.� decision value of C� Partially correct consensus protocol� no accessible con�guration has more than one value� for each v 2 f0; 1g, some accessible con�guration has decision valuev
c
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 7Faults� faulty vs nonfaulty process� faulty = takes only �nite number of steps� admissible run� at most one process is faulty� all messages sent to non-faulty process eventually delivered� deciding run� some process reaches a decision state� Totally correct protocol� Partially correct� every admissible run is deciding

c
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 8Main Result� Theorem: No consensus protocol is totally correct in spite ofone fault.� Proof: main idea. To show that there exists an admissiblerun which remains forever indecisive.� there is an initial such con�guration� there exists a method to keep the system indecisive. The system doesnot take the \commit" step.� Bi-valent vs univalent con�gurations� if univalent, 0-valent or 1-valent

c
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 9Initial ambiguity� Lemma: The protocol P ha a bivalent initial con�guration.� there exist adjacent 0-valent and 1-valent con�gurations� apply schedule in which p takes no steps.

c
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 10Remaining indecisive� Lemma: Let C be a bivalent con�guration of P. Let e =(p;m) be applicable to C. Let C be the set of con�gurationsreachable from C. Let D = e(C). Then D contains a bi-valent con�guration.� Pf: Assume if possible D contains no bi-valent con�gs.� claim: D contains both 0-valent and 1-valent states.� claim: exists neighbors C0, C1 such that� D0= e(C0) is 0-valent� D1= e(C1) is 1-valent� w.l.o.g. let C1 = e'(C0), where e'=(p',m')� case 1: p di�erent from p'� contradiction� case 2: p = p'� consider any �nite deciding run in which p takes no stepsc
Vijay K. Garg Distributed Systems Spring 96



Veri�cation 11Constructing admissible non-deciding run� Maintain a queue of processes� maintain message bu�er a FIFO queue� in each stage the process at the head of the queue receivesthe earliest message� Move the process to the back of the queue� Now use earlier lemmas
c
Vijay K. Garg Distributed Systems Spring 96


