Observation and Control 1

Observation and Control for Debugging Distributed
Computations

Vijay K. Garg
Electrical and Computer Engineering Department
University of Texas at Austin,

Austin, TX 78712

http://maple.ece.utexas.edu/"vijay/

(©Vijay K. Garg

Observation and Control 2

Acknowledgments

e Collaborators on various ideas C. M. Chase, E. Fromentin,
R. Kilgore, M. T.

Raghunath, M. Raynal,

(©Vijay K. Garg

Observation and Control

Outline of the talk

Introduction: our model

Observation: Main ideas

. Lack of shared clock

« Lack of shared memory
« Combinatorial Explosion

Observation: Algorithms

« WCP algorithm, Channel predicates
« Detecting regular expressions

Control

« Delaying events: offline
« Delaying events: online

« Controlling order: offline

« Controlling order: online

(©Vijay K. Garg

Observation and Control

Characteristics of Distributed Systems

e Lack of shared clock

. order of events partial

e Lack of shared memory

. meaning of global state

. need messages for observing " global state”

e Multiple processes

« Combinatorial explosion

« non-determinism

(©Vijay K. Garg

Observation and Control

Model of a Distributed Program

pc, X 0,1 1,3 2,3 3,2

X 1= X+2 - sepd(x) X 1= x-1
r[1] O - -

a OOt O 1t ()

pc,y 0,1 1,4 2,3 3,6

e messages: asynchronous, reliable, no FIFO assumption
e no shared clock or memory
e |ocal states

e Lamport’'s causally precede relation, concurrency relation

(©Vijay K. Garg

Observation and Control

Motivation for Observation

Dear Watson, you see but you do not observe...

e Distributed Debugging, Testing

« stop when the predicate q is true

. predicate ¢ = (P1 is in critical section) and (P2 is in critical section).

« Detect if the program violates any invariant

e Fault-tolerance

« Monitoring while the program is operational
e Distributed Active Rules
« On global condition p, trigger rule a
e General paradigm for observing Distributed Algorithms

« lermination detection, deadlock detection, loss of token

(©Vijay K. Garg

Observation and Control

Lack of shared clock

e Problem: define truthness of the predicate C'S71 A C55

« based on real time

« based on causality

e Real-time considered harmful in distributed system.

« My clock synchronization algorithm achieves 10 ms

« programs should work independent of processor speeds

e Reject linear time, accept vector time
« Lamport 78, Fidge 89, Mattern 89

« Simultaneity vs Concurrency

(©Vijay K. Garg

Observation and Control

Clock in a Distributed System

P1

(},\0,0,0) (2,1.00) (31.00)

N

)) Ja
P2 s

0100 70,2,0,0) (2331)

/AR

(0,0,1,0) (0,0.2,1) (2131 \(J2,1,4,1)

P4 = e
(00,0,) (0,0,0,2)

o Property: s — t iff s.vo < t.v.

(©Vijay K. Garg

Observation and Control

Lack of shared state

C1l C2

P1

e consistent global state

« If the receive of an event is recorded, then send must be recorded

(©Vijay K. Garg

Observation and Control 10

Camera: Chandy and Lamport’s Algorithm

e Algorithm to compute a snapshot of a computation: S,

« S, iIs a possible global state in the computation

e Stable predicate: once true stays true

. e.g. termination detection, deadlock detection
e To monitor stable predicates: repeatedly take the snapshots

e Disadvantages of CL Algorithm for predicate detection

Not useful for unstable predicates

Does not return the first cut

How often should the snapshot be taken ?

Assumes FIFO

(©Vijay K. Garg

Observation and Control 11

Unstable Predicates

0 sl s2 s3

O O O O

O O O O
to t1 t2 t3

w
O
N
Jan
NP
M
NP
(D

N
O
N
Jan
NP
Jan
NP
(D

Jan
NP
D

-/ -/
00 1 2
e Multiple timed executions consistent with one run

(©Vijay K. Garg

Observation and Control 12

Two interpretations of predicates

e Two modalities: [Cooper and Marzullo 91], [Garg and Waldecke
91]
. Possibly:q (also called weak predicates)

. exists a path from the initial state to the final state along which q is true on some

state
. Definitely:q (also called strong predicates)

. for all paths from the initial state to the final state q is true on some state

(©Vijay K. Garg

Observation and Control 13

Communication Complexity

e Consider evaluation of the predicate ¢(x1, x2)
. only P, knows all the values taken by x;

. only P, knows values taken by x»

o Is q(x1,x2) true for some value of z; and x5

e Key question: number of values that need to be communi-
cated

« one value per internal event, or

« one value per external event

(©Vijay K. Garg

Observation and Control

Monotonicity

14

e Definition

« Assume x; takes values from a totally ordered set

« ¢ Is monotone w.r.t. first argument if
\V/CL, b7 Lo <CL < b) = <Q<CL, 332) = Q<b7 Zlfg))

e Examples
e q = (x1 > x2): monotonic w.r.t x; and x,

« q = [l Aly: monotonic

. q = (x1 = x2): not monotonic.

(©Vijay K. Garg

Observation and Control 15

Multiple Processes

e Intractability of the Global Predicate Detection Problem

« Given: an execution S of N processes, N variables x1,..., x5, and
a predicate ¢ defined on x.

o Is there a consistent cut G € S such that ¢(G) is true.

e Theorem [Chase and Garg 95]: The predicate detection prob-
lem is NP-Complete.

o Proof: By reduction from SAT ((zy V @2V x3) A (21 Vx2) A .. .)

x1 0 1
™ ™
N\ N\

xzm P
% W

X3 ~ ~
N N

(©Vijay K. Garg

Observation and Control

Linearity

16

G H

e Forbidden predicate: forbidden(G,i) iff
. YH:G< H:(Gli] = Hli]) = —q(H)

e Predicate ¢ is linear w.r.t. a computation S if
. VG : ~q(G) = Ji : forbidden (G, 1)

e Examples

e UAILA AL,

« T+ y >k, xis non-increasing
« channel is empty

(©Vijay K. Garg

Observation and Control 17

Summary of Observation: Problems and Solutions

Characteristic Problem |dea Bonus
No shared clock ordering events causality avoid race errors
No shared memory | message/state change monotonicity extremal functior
multiple processes |combinatorial explosion linearity first cut

(©Vijay K. Garg

Observation and Control

Cooper and Marzullo’s Algorithm

18

« Possibly:p

« construct the lattice of global states, check each global state for truthness of p
« Definitely:p

« for all paths from the initial state to the final state p is true on some state

« construct the lattice of global states

« remove states satisfying p

o Is last state reachable from the initial state
. Complexity: O(k") where

« k: Number of local states per process

« n: Number of processes

(©Vijay K. Garg

Observation and Control 19

Weak Conjunctive Predicates

o WCP = Possibly:ly Alo A... A,

e useful for bad or undesirable predicates
. Example: the classical mutual exclusion problem.
. Example: (John is sleeping) and (Mary is sleeping) and (Robert is
sleeping)

e detect errors that may be hidden in some run due to race
conditions.

(©Vijay K. Garg

Observation and Control

20

Importance of Weak Conjunctive Predicates

e Sufficient for detection of any boolean expression

« which can be expressed as a disjunction of a small number of con-
junctions.

« Example z,y and z are in three different processes. Then,
even(z) A ((y < 0)V (2 > 6))

N

even(x) A (y < 0))V (even(x) A (z > 6))

e the global predicate is satisfied by only a finite number of
possible global states.

. Example, x and y are in different processes.

o (z =1y)is not a local predicate

(©Vijay K. Garg

Observation and Control 21

Conditions for Weak Conjunctive Predicates

Predicate is true on this cut
1

)
; / I O local predicate is false
® @ -

/ h . @ local predicate is true
N
® O &—O~

®
/o
1?
‘0.

e Possibly (I1 Ala A ...1ly,) is true iff there exist s; in P; such
that /; is true in state s;, and s; and s; are incomparable for
distinct 2, 5.

e Key problems and solutions

« number of states satisfying local predicates may be large: Use mono-
tonicity (at most one state per message)

. combinatorial explosion when combining them together: Use Linearity

(©Vijay K. Garg

Observation and Control 22

Weak Conjunctive Predicates: Centralized Algorithm

Application
Processn

Application
Process 1

Application
Process 2

e Each non-checker process maintains its local vector

« send to the checker process the vector clock whenever
. local predicate is true
. at most once in each message interval.

« Optimization: Sufficient to send the vector once after each message

Is sent
(©Vijay K. Garg

Observation and Control

Checker Process

23

Predicate is true on this cut
1

[
/)
~
T

/ O local predicate is false

/ R @ local predicate is true
N
@ O &—O>

« Steps
« Begin with the initial global state

« Eliminate any state that happened before any other state along the current cut.
 Predicate true for the first time
. if no states can be eliminated.

. Predicate false

« if we eliminate the final state from any process

(©Vijay K. Garg

Observation and Control

Overhead: Non-checker processes

24

e Space complexity
. the array vector: O(n).

e message complexity

. O(myg) where my is the number of program messages sent.

« In addition, program messages have to include time vectors.

e Time complexity

« detection of local predicates

. maintain vector clock (O(n)/message).

(©Vijay K. Garg

Observation and Control 25

Overhead: Checker processes

e Space complexity

« N queues, each containing at most m vectors

e Time complexity

. The algorithm for checker requires at most O(n’m) comparisons.

« Any algorithm which determines whether there exists a set of incom-
parable vectors of size n in n chains of size at most m, makes at least

mn(n — 1)/2 comparisons.

|Garg and Waldecker 94]

(©Vijay K. Garg

Observation and Control

Disadvantages of above algorithm

26

e Centralized

« Checker process may become a bottleneck

e Space requirements

« Queues at the checker process may grow large

e Message complexity

« may result in too many additional messages

(©Vijay K. Garg

Observation and Control

Other WCP algorithms

27

e token based algorithm [Garg and Chase 95]

« eliminate centralized checker process

e Completely distributed algorithm [Garg and Chase 95]

« Uses Scholten and Dijkstra’s termination detection

e Distributed Offline-algorithm [Venkatesan and Dathan 92]

. assume FIFO and off-line

e Keeping queues shorter [Chiou and Korfhage 95]

« eliminate vectors that are useless

e Avoiding control messages[Hurfin, Mizuno et al 96]

. piggyback info/token with application messages

(©Vijay K. Garg

Observation and Control 28

Channel Predicates: Observing hallways

e Many properties require channels

« termination detection: all processes are idle and all channels are empty

e A channel predicate: a boolean function on the state of the
channel

« uni-directional

« memoryless. i.e. channel state = sequence of messages sent - set of
messages received

« Linearity: Given any channel state in which the predicate is false,
then

« cannot be made true by sending more messages without receiving any messages, or

« cannot be made true by receiving more messages without sending any messages.

(©Vijay K. Garg

Observation and Control 29

Linear Channel Predicates

e Empty channels

. If false, then it cannot be made true by sending more messages,

e Channel has exactly three red messages

o If less than three, then it cannot be made true by receiving more
messages,

 If more than three, then it cannot be made true by sending more

messages,

(©Vijay K. Garg

Observation and Control

Non-linear Channel Predicates

30

e Channel has an odd number of messages

1] O 1]
- ‘ R ' -
® ®- -
O 2] 2]
o Key result: linearity = first cut is well defined.

(©Vijay K. Garg

Observation and Control

Relational Predicates

31

e L tokens corresponding to k£ resources in the system

. Z;: number of token at P,

e 2x; < k: loss of tokens

« Xx; > k: License violation problem

e Predicate, global function
. JG : consistent(G) : Ts.eq 55 < K
. min G : consistent(G) : =, ¢ S

« ldeas:

. max-flow technique: [Chase and Garg 95]

« Matrix clocks: detect predicate of the form z; + 2y < k [Tomlinson and Garg 93]

o Use Dilworth’s theorem: [Tomlinson and Garg 96]

(©Vijay K. Garg

Observation and Control

Other Algorithms

32

e Conjunction of global predicates

. Example:(x; = x2) A (25 > 24)
Stoller and Scneider 95, Garg and Mitchell 96
e Notion of fixed set [Stoller and Scneider 95]

. set of variables such that on fixing them we get a WCP

o fixxy =4 and x, =6, we get (4 = x2) A (23 > 6)

. evaluate all WCP obtained by using all values of fixed-set.

e Definitely True predicates

. strong conjunctive predicates [Garg and Waldecker 93]

(©Vijay K. Garg

Observation and Control 33

Causal Predicates

e Predicate based on control flow

. useful for expressing and observing the flow of information.

e Early work

. sequence of local predicates [Miller and Choi 88]
o i =1l — ...,

e regular expression of local predicates [Fromentin, Raynal,
Garg, Tomlinson 94]

(©Vijay K. Garg

Observation and Control 34

Detection of Regular Expression

e Example of a regular expression ?

e a+ cbc

e a regular expression is true in a run iff there exists a path in
the run (poset) which matches the expression

e Complexity of problem

® Many states

® Many paths per state

® Many strings per path N

(©Vijay K. Garg

Observation and Control

Algorithm

35

« Regular expression: a + cb*c
. convert it to non-deterministic finite state machine (fsm)

. simulate it during the execution (piggybacking state of the fsm)

o keep z[1..m] with each process

o z[i] = 1 iff there exists a causal path that takes the fsm to state i.

initial state

. Define one bit for each state
21 = wnat
Zo = (¢ N oz1) V (b A O z)
z3 = (@ N oz1) V (¢ N o 2z)

(©Vijay K. Garg

Observation and Control 36

Other Approaches

e DAG patterns of local predicates [Garg, Tomlinson, Fro-
mentin, Raynal 95]

e Atomic Sequences [Hurfin, Plouzeau, Raynal 93]
. li[ﬁ']liﬂ
. 1r; does not occur between [; and [; 4
e Dynamic Properties [Babaoglu and Raynal 95]
« Generalization of atomic sequences
e Event Normal Form [Chiou and Korfhage 94]
« sequences of conjunctive predicates
e Recursive Poset Logic [Tomlinson and Garg 95]
« Recursive combination of sequencing, conjunction, and linear predi-

cates

(©Vijay K. Garg

Observation and Control 37

Motivation for Control

Who controls the past controls the future, who controls the
present controls the past...
George Orwell, Nineteen Eighty-Four.

. maintain global invariants or proper order of events

. Examples: Distributed Debugging

« ensure that busy; V busy, is always true
. ensure that my is delivered before m.
« Resource Allocation
« maintain =C'S; V =C'S5
. Fault tolerance
« On fault, rollback and execute under control
« Adaptive policies
. procedure A (B) better under light (heavy) load

(©Vijay K. Garg

Observation and Control

Models for Control

38

e |s the future known 7

« Yes: offline control

. applications in distributed debugging, recovery, fault tolerance..

« No: online control

. applications: global synchronization, resource allocation

e Delaying events vs Changing order of events

« supervisor simply adds delay between events

« supervisor changes order of events

(©Vijay K. Garg

Observation and Control 39

Delaying events: Offline control

PO [] | |
\ | [|

P1

e Maintain at least one of the process is not red

e Can add additional arrows in the diagram
e the control relation should not interfere with existing causal-
ity relation

« otherwise, the system deadlocks

(©Vijay K. Garg

Observation and Control 40

Delaying events: Offline control

PO PO
A_W | |
P1 —— e

P1

e Problem:

« Instance: Given a computation and a boolean expression ¢ of local
predicates

« Question: Is there a non-interfering control relation that maintains ¢

e This problem is NP-complete [Tarafdar and Garg 97]

(©Vijay K. Garg

Observation and Control 41

Delaying events: disjunctive predicates

PO [] []

P1 | |

e Efficient algorithm for disjunctive predicates
« Example: at least one of the philosopher does not have a fork

« Result: a control strategy exists iff there is no set of overlapping
false intervals

. overlap(l, I,) = (I,.lo — I,.hi) A\ (Iy.lo — I;.hi)

. Result: There exists an O(n*m) algorithm to determine the strategy

« 1 = number of processes

« m = number of states per process

(©Vijay K. Garg

Observation and Control 42

Delaying events: Online control

e Only the past is known

« deadlock is impossible to avoid
PO | |

P1 | |

e Assume: a process cannot block when its local predicate is
false

« maintaining [y VI,V ... V[, is equivalent to n — 1 mutual exclusion
problem

« in CS = local predicate false

o I.e., all n processes cannot be in the CS

 can be solved using token which is a liability rather than privilege

(©Vijay K. Garg

Observation and Control 43

Controlling order: Offline control

e Problem: Given a computation enforce an order of messages
In a repeated run

. Same order
. Replay of distributed execution (distributed debugging)

« need to store messages or message order

« Different order
. Testing of a distributed program [Kilgore, Chase 97]

« Recovery of a distributed program
. can change the order of two Independent messages

« the computation may change after first reorder

(©Vijay K. Garg

Observation and Control

Controlling order: Online control

44

e Simple example: FIFO ordering of messages

e External events:
. invocation of a message
. send of a message

. receive of a message
. delivery of a message

e constraints on supervisor

« Invocation and receive events are uncontrollable

« liveness requirement

. if only events possible are send and delivery then at least one must be enabled.

(©Vijay K. Garg

Observation and Control 45

Limitations of Online Supervision

e Specification: set of computation possible with a fixed set of
messages

« Question: Is there a control strategy to meet the specification ?

e Assumption: Supervisor can send control messages and tag
user messages

« Control possible iff specs include all synchronously order computations
[Murty and Garg 97]

e Assumption: Supervisor can only tag user messages

« control possible iff specs include all causally ordered computations
[Murty and Garg 97]

(©Vijay K. Garg

Observation and Control 46

Online supervision: Algorithms

e Forbidden predicate [Murty and Garg 97]
« sub-structure that is not allowed in the computation

« Example 1: Causal ordering

o dzyy:(z.s = y.s) A (yr — x.1)

« Example 2: Local forward flush channels

o (process(xz.s) = process(y.s)) A (process(x.r) = process(y.r) A (color(z) =

red) A\ (z.s = y.s) A (y.r — z.r)

e There exists an algorithm with
« input: a forbidden predicate

« output: either "not possible”, or a protocol to meet specs

(©Vijay K. Garg

Observation and Control

Applications to Distributed Debugging

47

e Additional command

« do action when condition
« Also assume run and rerun

e Conditions

. boolean predicate on the global state

. requirement of (semi)-linearity
. regular expression

e Actions
« stop pids
« print expressions

« maintain boolean predicate

« Maintain order-expression

(©Vijay K. Garg

Observation and Control

Summary

48

e Observation
« Use causality instead of time to define "and”
« Use monotonicity to reduce communication complexity

« Global observation is quite efficient for many practical cases

. linearity for boolean predicates

« regular expressions of local predicates

e Control
. desirable for many applications

. offline vs online has implications on limitations

. delay vs change of order model

(©Vijay K. Garg

Observation and Control

Future Work

49

e Predicate detection under faulty environment

« processes, channels or messages may fail

. messages from different incarnations

e More complex model of control

« plant variables vs control variables

. unobservable events, uncontrollable events

(©Vijay K. Garg

