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Observation and Control 3Outline of the talk� Introduction: our model� Observation: Main ideas� Lack of shared clock� Lack of shared memory� Combinatorial Explosion� Observation: Algorithms� WCP algorithm, Channel predicates� Detecting regular expressions� Control� Delaying events: o�ine� Delaying events: online� Controlling order: o�ine� Controlling order: onlinec
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Observation and Control 4Characteristics of Distributed Systems� Lack of shared clock� order of events partial� Lack of shared memory� meaning of global state� need messages for observing "global state"� Multiple processes� Combinatorial explosion� non-determinism
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Observation and Control 5Model of a Distributed Program
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� messages: asynchronous, reliable, no FIFO assumption� no shared clock or memory� local states� Lamport's causally precede relation, concurrency relationc
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Observation and Control 6Motivation for ObservationDear Watson, you see but you do not observe...� Distributed Debugging, Testing� stop when the predicate q is true� predicate q = (P1 is in critical section) and (P2 is in critical section).� Detect if the program violates any invariant� Fault-tolerance� Monitoring while the program is operational� Distributed Active Rules� On global condition p, trigger rule a� General paradigm for observing Distributed Algorithms� Termination detection, deadlock detection, loss of tokenc
Vijay K. Garg



Observation and Control 7Lack of shared clock� Problem: de�ne truthness of the predicate CS1 ^ CS2� based on real time� based on causality� Real-time considered harmful in distributed system.� My clock synchronization algorithm achieves 10 ms� programs should work independent of processor speeds� Reject linear time, accept vector time� Lamport 78, Fidge 89, Mattern 89� Simultaneity vs Concurrency
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Observation and Control 8Clock in a Distributed System
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Observation and Control 9Lack of shared state
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� consistent global state� if the receive of an event is recorded, then send must be recorded
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Observation and Control 10Camera: Chandy and Lamport's Algorithm� Algorithm to compute a snapshot of a computation: S�� S� is a possible global state in the computation� Stable predicate: once true stays true� e.g. termination detection, deadlock detection� To monitor stable predicates: repeatedly take the snapshots� Disadvantages of CL Algorithm for predicate detection� Not useful for unstable predicates� Does not return the �rst cut� How often should the snapshot be taken ?� Assumes FIFOc
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Observation and Control 11Unstable Predicates
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s� Multiple timed executions consistent with one runc
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Observation and Control 12Two interpretations of predicates� Two modalities: [Cooper and Marzullo 91], [Garg and Waldecker91]� Possibly:q (also called weak predicates)� exists a path from the initial state to the �nal state along which q is true on somestate� De�nitely:q (also called strong predicates)� for all paths from the initial state to the �nal state q is true on some state
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Observation and Control 13Communication Complexity� Consider evaluation of the predicate q(x1; x2)� only P1 knows all the values taken by x1� only P2 knows values taken by x2� Is q(x1; x2) true for some value of x1 and x2� Key question: number of values that need to be communi-cated� one value per internal event, or� one value per external event
c
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Observation and Control 14Monotonicity� De�nition� Assume x1 takes values from a totally ordered set� q is monotone w.r.t. �rst argument if8a; b; x2 : (a < b)) (q(a; x2)) q(b; x2))� Examples� q = (x1 > x2): monotonic w.r.t x1 and x2� q = l1 ^ l2: monotonic� q = (x1 = x2): not monotonic.
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Observation and Control 15Multiple Processes� Intractability of the Global Predicate Detection Problem� Given: an execution S of N processes, N variables x1; : : : ; xN , anda predicate q de�ned on x.� Is there a consistent cut G 2 S such that q(G) is true.� Theorem [Chase and Garg 95]: The predicate detection prob-lem is NP-Complete.� Proof: By reduction from SAT ((x1 _ �x2 _ x3) ^ ( �x1 _ x2) ^ : : :)
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HG

� Forbidden predicate: forbidden(G,i) i�� 8H : G � H : (G[i] = H[i])) :q(H)� Predicate q is linear w.r.t. a computation S if� 8G : :q(G) ) 9i : forbidden(G; i)� Examples� l1 ^ l2 ^ ::: ^ ln� x+ y � k, x is non-increasing� channel is emptyc
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Observation and Control 17Summary of Observation: Problems and Solutions�Characteristic Problem Idea BonusNo shared clock ordering events causality avoid race errorsNo shared memory message/state change monotonicity extremal functionsmultiple processes combinatorial explosion linearity �rst cut
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Observation and Control 18Cooper and Marzullo's Algorithm� Possibly:p� construct the lattice of global states, check each global state for truthness of p� De�nitely:p� for all paths from the initial state to the �nal state p is true on some state� construct the lattice of global states� remove states satisfying p� Is last state reachable from the initial state� Complexity: O(kn) where� k: Number of local states per process� n: Number of processes
c
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Observation and Control 19Weak Conjunctive Predicates� WCP � Possibly:l1 ^ l2 ^ : : : ^ ln� useful for bad or undesirable predicates� Example: the classical mutual exclusion problem.� Example: (John is sleeping) and (Mary is sleeping) and (Robert issleeping)� detect errors that may be hidden in some run due to raceconditions.
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Observation and Control 20Importance of Weak Conjunctive Predicates� Su�cient for detection of any boolean expression� which can be expressed as a disjunction of a small number of con-junctions.� Example x; y and z are in three di�erent processes. Then,even(x) ^ ((y < 0) _ (z > 6))�(even(x) ^ (y < 0))_ (even(x) ^ (z > 6))� the global predicate is satis�ed by only a �nite number ofpossible global states.� Example, x and y are in di�erent processes.� (x = y) is not a local predicatec
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Observation and Control 21Conditions for Weak Conjunctive Predicates

local predicate is false

local predicate is true

Predicate is true on this cut
� Possibly (l1 ^ l2 ^ : : : ln) is true i� there exist si in Pi suchthat li is true in state si, and si and sj are incomparable fordistinct i; j.� Key problems and solutions� number of states satisfying local predicates may be large: Use mono-tonicity (at most one state per message)� combinatorial explosion when combining them together: Use Linearityc
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Observation and Control 22Weak Conjunctive Predicates: Centralized Algorithm

Application
Process 1

Application Application
Process 2 Process n

queue 1
queue n

Process

Checker

Checker� Each non-checker process maintains its local vector� send to the checker process the vector clock whenever� local predicate is true� at most once in each message interval.� Optimization: Su�cient to send the vector once after each messageis sentc
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Observation and Control 23Checker Process
local predicate is false

local predicate is true

Predicate is true on this cut

� Steps� Begin with the initial global state� Eliminate any state that happened before any other state along the current cut.� Predicate true for the �rst time� if no states can be eliminated.� Predicate false� if we eliminate the �nal state from any processc
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Observation and Control 24Overhead: Non-checker processes� Space complexity� the array vector: O(n).� message complexity� O(ms) where ms is the number of program messages sent.� In addition, program messages have to include time vectors.� Time complexity� detection of local predicates� maintain vector clock (O(n)=message).
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Observation and Control 25Overhead: Checker processes� Space complexity� n queues, each containing at most m vectors� Time complexity� The algorithm for checker requires at most O(n2m) comparisons.� Any algorithm which determines whether there exists a set of incom-parable vectors of size n in n chains of size at most m, makes at leastmn(n� 1)=2 comparisons.[Garg and Waldecker 94]
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Observation and Control 26Disadvantages of above algorithm� Centralized� Checker process may become a bottleneck� Space requirements� Queues at the checker process may grow large� Message complexity� may result in too many additional messages
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Observation and Control 27Other WCP algorithms� token based algorithm [Garg and Chase 95]� eliminate centralized checker process� Completely distributed algorithm [Garg and Chase 95]� Uses Scholten and Dijkstra's termination detection� Distributed O�ine-algorithm [Venkatesan and Dathan 92]� assume FIFO and o�-line� Keeping queues shorter [Chiou and Korfhage 95]� eliminate vectors that are useless� Avoiding control messages[Hur�n, Mizuno et al 96]� piggyback info/token with application messagesc
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Observation and Control 28Channel Predicates: Observing hallways� Many properties require channels� termination detection: all processes are idle and all channels are empty� A channel predicate: a boolean function on the state of thechannel� uni-directional� memoryless. i.e. channel state = sequence of messages sent - set ofmessages received� Linearity: Given any channel state in which the predicate is false,then � cannot be made true by sending more messages without receiving any messages, or� cannot be made true by receiving more messages without sending any messages.c
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Observation and Control 29Linear Channel Predicates� Empty channels� If false, then it cannot be made true by sending more messages,� Channel has exactly three red messages� If less than three, then it cannot be made true by receiving moremessages,� If more than three, then it cannot be made true by sending moremessages,
c
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Observation and Control 30Non-linear Channel Predicates� Channel has an odd number of messages

C[1] D[1]

D[2] C[2]� Key result: linearity = �rst cut is well de�ned.
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Observation and Control 31Relational Predicates� k tokens corresponding to k resources in the system� xi: number of token at Pi� �xi < k: loss of tokens� �xi > k: License violation problem� Predicate, global function� 9G : consistent(G) : Psi2G si:xi < K� minG : consistent(G) : Psi2G si:xi� Ideas:� max-
ow technique: [Chase and Garg 95]� Matrix clocks: detect predicate of the form x1 + x2 < k [Tomlinson and Garg 93]� Use Dilworth's theorem: [Tomlinson and Garg 96]c
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Observation and Control 32Other Algorithms� Conjunction of global predicates� Example:(x1 = x2) ^ (x3 > x4)Stoller and Scneider 95, Garg and Mitchell 96� Notion of �xed set [Stoller and Scneider 95]� set of variables such that on �xing them we get a WCP� �x x1 = 4 and x4 = 6, we get (4 = x2) ^ (x3 > 6)� evaluate all WCP obtained by using all values of �xed-set.� De�nitely True predicates� strong conjunctive predicates [Garg and Waldecker 93]
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Observation and Control 33Causal Predicates� Predicate based on control 
ow� useful for expressing and observing the 
ow of information.� Early work� sequence of local predicates [Miller and Choi 88]� l1 ! l2 ! : : : lm.� regular expression of local predicates [Fromentin, Raynal,Garg, Tomlinson 94]
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Observation and Control 34Detection of Regular Expression� Example of a regular expression ?� a+ cb�c� a regular expression is true in a run i� there exists a path inthe run (poset) which matches the expression� Complexity of problem� Many states� Many paths per state� Many strings per pathc
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Observation and Control 35Algorithm� Regular expression: a+ cb�c� convert it to non-deterministic �nite state machine (fsm)� simulate it during the execution (piggybacking state of the fsm)� keep z[1..m] with each process� z[i] = 1 i� there exists a causal path that takes the fsm to state i.

initial state

q3q2q1 c

b

a

c� De�ne one bit for each statez1 := initz2 := (c ^ � z1) _ (b ^ � z2)z3 := (a ^ � z1) _ (c ^ � z2)c
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Observation and Control 36Other Approaches� DAG patterns of local predicates [Garg, Tomlinson, Fro-mentin, Raynal 95]� Atomic Sequences [Hur�n, Plouzeau, Raynal 93]� li[ri]li+1� ri does not occur between li and li+1� Dynamic Properties [Babaoglu and Raynal 95]� Generalization of atomic sequences� Event Normal Form [Chiou and Korfhage 94]� sequences of conjunctive predicates� Recursive Poset Logic [Tomlinson and Garg 95]� Recursive combination of sequencing, conjunction, and linear predi-catesc
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Observation and Control 37Motivation for ControlWho controls the past controls the future, who controls thepresent controls the past...George Orwell, Nineteen Eighty-Four.� maintain global invariants or proper order of events� Examples: Distributed Debugging� ensure that busy1 _ busy2 is always true� ensure that m1 is delivered before m2� Resource Allocation� maintain :CS1 _ :CS2� Fault tolerance� On fault, rollback and execute under control� Adaptive policies� procedure A (B) better under light (heavy) loadc
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Observation and Control 38Models for Control� Is the future known ?� Yes: o�ine control� applications in distributed debugging, recovery, fault tolerance..� No: online control� applications: global synchronization, resource allocation� Delaying events vs Changing order of events� supervisor simply adds delay between events� supervisor changes order of events
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Observation and Control 39Delaying events: O�ine control
P1

P0
� Maintain at least one of the process is not red� Can add additional arrows in the diagram� the control relation should not interfere with existing causal-ity relation� otherwise, the system deadlocks
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Observation and Control 40Delaying events: O�ine control

P0

P1

P0

P1� Problem:� Instance: Given a computation and a boolean expression q of localpredicates� Question: Is there a non-interfering control relation that maintains q� This problem is NP-complete [Tarafdar and Garg 97]

c
Vijay K. Garg



Observation and Control 41Delaying events: disjunctive predicates

P1

P0
� E�cient algorithm for disjunctive predicates� Example: at least one of the philosopher does not have a fork� Result: a control strategy exists i� there is no set of overlappingfalse intervals� overlap(I1; I2) = (I1:lo! I2:hi) ^ (I2:lo! I1:hi)� Result: There exists an O(n2m) algorithm to determine the strategy� n = number of processes� m = number of states per processc
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Observation and Control 42Delaying events: Online control� Only the past is known� deadlock is impossible to avoid
P1

P0

� Assume: a process cannot block when its local predicate isfalse� maintaining l1 _ l2 _ ::: _ ln is equivalent to n � 1 mutual exclusionproblem� in CS = local predicate false� i.e., all n processes cannot be in the CS� can be solved using token which is a liability rather than privilegec
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Observation and Control 43Controlling order: O�ine control� Problem: Given a computation enforce an order of messagesin a repeated run� Same order� Replay of distributed execution (distributed debugging)� need to store messages or message order� Di�erent order� Testing of a distributed program [Kilgore, Chase 97]� Recovery of a distributed program� can change the order of two independent messages� the computation may change after �rst reorder
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Observation and Control 44Controlling order: Online control� Simple example: FIFO ordering of messages� External events:� invocation of a message� send of a message� receive of a message� delivery of a message� constraints on supervisor� invocation and receive events are uncontrollable� liveness requirement� if only events possible are send and delivery then at least one must be enabled.
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Observation and Control 45Limitations of Online Supervision� Speci�cation: set of computation possible with a �xed set ofmessages� Question: Is there a control strategy to meet the speci�cation ?� Assumption: Supervisor can send control messages and taguser messages� Control possible i� specs include all synchronously order computations[Murty and Garg 97]� Assumption: Supervisor can only tag user messages� control possible i� specs include all causally ordered computations[Murty and Garg 97]
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Observation and Control 46Online supervision: Algorithms� Forbidden predicate [Murty and Garg 97]� sub-structure that is not allowed in the computation� Example 1: Causal ordering� 9x; y : (x:s! y:s) ^ (y:r ! x:r)� Example 2: Local forward 
ush channels� (process(x:s) = process(y:s)) ^ (process(x:r) = process(y:r) ^ (color(x) =red) ^ (x:s! y:s) ^ (y:r ! x:r)� There exists an algorithm with� input: a forbidden predicate� output: either "not possible", or a protocol to meet specs
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Observation and Control 47Applications to Distributed Debugging� Additional command� do action when condition� Also assume run and rerun� Conditions� boolean predicate on the global state� requirement of (semi)-linearity� regular expression� Actions� stop pids� print expressions� maintain boolean predicate� maintain order-expressionc
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Observation and Control 48Summary� Observation� Use causality instead of time to de�ne "and"� Use monotonicity to reduce communication complexity� Global observation is quite e�cient for many practical cases� linearity for boolean predicates� regular expressions of local predicates� Control� desirable for many applications� o�ine vs online has implications on limitations� delay vs change of order model
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Observation and Control 49Future Work� Predicate detection under faulty environment� processes, channels or messages may fail� messages from di�erent incarnations� More complex model of control� plant variables vs control variables� unobservable events, uncontrollable events
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