
1

THIS IS THE PARALLEL BOOK VERSION
©Vijay K. Garg, 2019

2

A Systematic Approach to Parallel Algorithms

Vijay K. Garg
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084

To my family

vi

©Vijay K. Garg, 2019

Contents

1 Introduction 3
1.1 Introduction . 3
1.2 Computing Performance . 5
1.3 The Parallel Random Access Machine . 7
1.4 Reduce . 7
1.5 Brent’s Scheduling Principle . 8
1.6 Parallel Complexity: Class NC . 9
1.7 Problems . 10
1.8 Bibliographic Remarks . 10

2 Lattice Linear Predicate Detection 11
2.1 Introduction . 11
2.2 Lattice-Linear Predicates . 11
2.3 Notation . 15
2.4 Simple Examples of LLP Programs . 16
2.5 A Sequential Implementation of LLP Algorithm . 16
2.6 Properties of the LLP Algorithm . 18
2.7 Problems . 19
2.8 Bibliographic Remarks . 20

3 The Stable Marriage Problem 21
3.1 Introduction . 21
3.2 Proposal Vector Lattice . 22
3.3 Gale-Shapley Algorithm . 22
3.4 An LLP Algorithm for the Stable Matching Problem . 23
3.5 Algorithm ↵: Upward Traversal . 24

3.5.1 Additional Constraints on Stable Matchings . 26
3.5.2 Advantages of the LLP Algorithm . 28

3.6 Summary . 28
3.7 Bibliographic Remarks . 28

4 Parallel Reduce Algorithms 29
4.1 Introduction . 29
4.2 Reduce . 29
4.3 Accelerated Cascading Technique . 31

vii

viii CONTENTS

4.4 LLP-Reduce Algorithm . 31

4.5 A Fast Parallel Common CRCW Algorithm with suboptimal work 32

4.6 A Doubly Logarithmic height tree common CRCW Algorithm 33

4.7 A Work-Optimal Common CRCW Algorithm with O(log log n) time 33

4.8 Summary . 33

4.9 Problems . 33

4.10 Bibliographic Remarks . 34

5 Parallel Prefix Algorithms 35

5.1 Introduction . 35

5.2 A Parallel Prefix Sum algorithm with O(n log n) work . 35

5.3 A Work-Optimal Parallel Prefix Sum Algorithm . 36

5.4 LLP based Parallel Prefix-Sum . 39

5.5 Applications . 40

5.6 Summary . 40

5.7 Problems . 40

5.8 Bibliographic Remarks . 41

6 Sorting Algorithms 43

6.1 Introduction . 43

6.2 Searching . 43

6.3 Sorting Algorithms based on Swapping Consecutive Entries 43

6.4 Merge Sort . 46

6.5 Quicksort . 46

6.6 Bitonic Sort . 48

6.7 BitonicSort Complexity Analysis . 52

6.8 Radix Sort . 52

6.9 Summary . 53

6.10 Problems . 53

6.11 Bibliographic Remarks . 53

7 List Ranking and Pointer Jumping Algorithms 55

7.1 Introduction . 55

7.2 Pointer Jumping . 55

7.3 Applications of Pointer Jumping . 58

7.4 LLP Algorithm for List Ranking . 59

7.5 A Randomized Algorithm for List Ranking . 59

7.6 Vertex Coloring in a Ring . 59

7.7 Summary . 60

7.8 Problems . 61

7.9 Bibliographic Remarks . 61

CONTENTS ix

8 Basic Graph Algorithms 63
8.1 Introduction . 63
8.2 General Traversal in a Graph . 63
8.3 Breadth First Search Tree in a Directed Graph . 64
8.4 Topological Sort of a Directed Acyclic Graph . 65
8.5 Connected Components in an Undirected Graph: Slow Algorithm 67
8.6 Connected Components: A Faster Algorithm . 68
8.7 Summary . 69
8.8 Problems . 69
8.9 Bibliographic Remarks . 71

9 The Shortest Path Problem 73
9.1 Introduction . 73
9.2 Dijkstra’s Algorithm . 73
9.3 Constrained Single Source Shortest Path Algorithm . 75
9.4 Delta-Stepping Algorithm . 79
9.5 Graphs with Negative Weights: Johnson’s Algorithm . 80
9.6 Bellman-Ford’s Algorithm . 82
9.7 Matrix Multiplication . 83
9.8 Transitive Closure of a Matrix . 84
9.9 All Pairs Shortest Path . 85
9.10 Summary . 85
9.11 Problems . 86
9.12 Bibliographic Remarks . 87

10 The Minimum Spanning Tree Problem 89
10.1 Introduction . 89
10.2 Kruskal’s Algorithm . 90
10.3 Prim’s Algorithm . 91
10.4 An LLP based algorithm for Prim . 92
10.5 Boruvka’s Algorithm: Sequential Implementation . 95
10.6 Boruvka’s Algorithm: Parallel Implementation . 95
10.7 LLP-Boruvka Algorithm . 99
10.8 Summary . 100
10.9 Problems . 100
10.10Bibliographic Remarks . 100

11 Parallel Algorithms on Trees 101
11.1 Introduction . 101
11.2 Constructing DFS tree rooted at a given node r . 102
11.3 Postorder Numbering of a Tree rooted at u . 104
11.4 Computing Vertex Level for a Tree rooted at u . 104
11.5 Compute Size of Subtree for Each Node . 105
11.6 Problems . 105
11.7 Bibliographic Remarks . 106

x CONTENTS

12 Dynamic Programming 107
12.1 Introduction . 107
12.2 Longest Increasing Subsequences . 108
12.3 Optimal Binary Search Tree . 110
12.4 Chain Matrix Multiplication . 112
12.5 Knapsack Problem . 112
12.6 Summary . 114
12.7 Problems . 114
12.8 Bibliographic Remarks . 114

13 Divide and Conquer 115
13.1 Introduction . 115
13.2 Splittable Predicates . 115
13.3 Quicksort . 115
13.4 Mergesort . 116
13.5 Planar Convex Hull . 117
13.6 Summary . 118
13.7 Problems . 118

14 Greedy Algorithms 119
14.1 Introduction . 119
14.2 Activity Selection Problem . 119
14.3 Hu↵man Tree . 121
14.4 Fractional Knapsack Problem . 122
14.5 Bibliographic Remarks . 122

15 The Housing Allocation Problem 123
15.1 Introduction . 123
15.2 Gale’s Top Trading Cycle Algorithm . 123
15.3 Applying LLP Algorithm to the Housing Market Problem 124
15.4 An E�cient Parallel Algorithm for the Housing Market Problem 126
15.5 Problems . 130
15.6 Bibliographic Remarks . 130

16 The Assignment Problem 131
16.1 Introduction . 131
16.2 Problem Formulation . 131
16.3 Market Clearing Price . 132
16.4 Constrained Market Clearing Price . 133
16.5 Problems . 135
16.6 Bibliographic Remarks . 135

17 Bipartite Matching 137
17.1 Introduction . 137
17.2 Sequential Algorithm . 137
17.3 Problems . 140

CONTENTS xi

18 Horn and 2-SAT Satisfiability 141
18.1 Introduction . 141
18.2 Horn Satisfiability . 141
18.3 LLP Algorithm for HornSat . 142
18.4 Arithmetization of Horn Clauses . 143
18.5 2-SAT . 143
18.6 Problems . 144

19 Stable Marriage Problem with Ties 147
19.1 Introduction . 147
19.2 Superstable Matching . 147
19.3 Strongly Stable Matching . 150
19.4 Problems . 151
19.5 Bibliographic Remarks . 151

20 The Predicate Detection Problem 153
20.1 Introduction . 153
20.2 Detecting Conjunctive Predicates . 153
20.3 A Work-E�cient Parallel Algorithm . 154
20.4 An NC Algorithm for Conjunctive Predicate Detection . 154
20.5 Conjunctive Predicate at Level k . 157
20.6 Bibliographic Remarks . 158

21 Complexity Of Predicate Detection 159
21.1 Introduction . 159
21.2 Predicate Detection Problem . 159
21.3 Recognizing Lattice-Linear and Regular Predicates . 160
21.4 E�cient Advancement Property . 161
21.5 Problems . 162
21.6 Bibliographic Remarks . 162

22 Enumeration Algorithms 163
22.1 Introduction . 163
22.2 Birkho↵’s Theorem . 163
22.3 Slicing . 164
22.4 Computing All Stable Matchings . 165
22.5 Problems . 167
22.6 Bibliographic Remarks . 167

23 Early Fixing Algorithms 169
23.1 Introduction . 169
23.2 An Early Fixing Algorithm for the Stable Marriage Problem 169
23.3 Housing Allocation . 171
23.4 Minimum Spanning Tree . 172
23.5 Shortest Path Problem . 172
23.6 Early Fixing Algorithm SP3: Using Lower Bounds with Upper Bounds 174

xii CONTENTS

23.7 A Parallel Shortest Path Algorithm . 177
23.8 HornSAT . 177
23.9 Assignment Problem . 179
23.10Problems . 179

24 Appendix: List of Lattice Linear Predicates 181
24.1 List of All Linear Predicates . 181
24.2 List of Lattices . 185

25 Equilevel Predicate Detection 195
25.1 Introduction . 195
25.2 Equilevel Predicates . 196
25.3 Equilevel Predicates with The Helpful Property . 198
25.4 Equilevel Predicates with the Independently Helpful Property 201
25.5 Solitary Predicates . 201
25.6 Solitary Predicates with E�cient Advancement Property . 202
25.7 Solitary Predicates with NC Advancement Properties . 205

26 Weak and Strong Predicate Detection 209
26.1 Introduction . 209
26.2 Weak Lattice-Linear . 209
26.3 Strong Lattice-Linear . 210
26.4 Problems . 212
26.5 Bibliographic Remarks . 212

27 Bipartite Matching 213
27.1 Introduction . 213
27.2 Sequential Algorithm . 213
27.3 A Parallel Algorithm for Bipartite Matching . 216
27.4 Vertex Cover in a Bipartite Graph . 218
27.5 Chain Partition of a Poset . 219
27.6 Max Flow Algorithm . 220
27.7 Randomized Parallel Algorithm to Check for Perfect Matching 221
27.8 Problems . 222

28 The GCD Problem 223
28.1 Introduction . 223
28.2 Parallel Greatest Common Divisor (GCD) Algorithm: First Algorithm 223
28.3 Parallel Greatest Common Divisor (GCD) Algorithm: Second Algorithm 224
28.4 Chinese Remainder Theorem . 225
28.5 Viewing Numbers as Distributive Lattice . 226

29 March to Optimality 229
29.1 Introduction . 229
29.2 Greedoids and Matroids . 229
29.3 Lattice-Greedoid and Lattice-Matroid Predicates . 230

CONTENTS xiii

29.4 Lattice-Matroid . 233
29.5 Viewing Lattice-Linear Predicates as Lattice-Matroids . 234
29.6 Duality of Lattice-Matroids . 235
29.7 Finding Basis of Lattice-Greedoids . 235
29.8 Parallel Lattice-Greedoid Algorithms . 236

29.8.1 Applying Parallel-Greedoid Algorithm to the Uniform Matroid 237
29.9 A Parallel-Greedoid Algorithm for the Partition Matroid . 237
29.10A Parallel-Greedoid Algorithm for the Transversal Matroid 237
29.11A Parallel-Greedoid Algorithm for the Linear Matroid . 238
29.12A Parallel-Greedoid Algorithm for the Minimum Spanning Tree Problem 238
29.13Applying Parallel-Greedoid Algorithm to the Problem of finding the connected component

containing the vertex r . 239
29.14Bibliographic Remarks . 239

30 Range Minima 241
30.1 Introduction . 241
30.2 Least Common Ancestor Problem . 242

31 Additional Topics on the Shortest Path Problem - V2 243
31.1 Introduction . 243
31.2 Early Fixing Algorithm SP1: Using Predecessors . 243
31.3 Early Fixing Algorithm SP2: Using Weights of Incoming edges 247
31.4 Early Fixing Algorithm SP3: Using Lower Bounds with Upper Bounds 249
31.5 A Parallel Shortest Path Algorithm . 252
31.6 Problems . 254
31.7 Bibliographic Remarks . 254

32 Additional Topics on the Stable Marriage 255
32.1 Introduction . 255
32.2 Algorithm �: Downward Traversal . 255
32.3 An Early Fixing Algorithm . 257
32.4 Constrained Stable Matching Problem . 259
32.5 Hospital Residents Problem . 264
32.6 Typed Stable Matching Problem . 265
32.7 Generalized Median Feasible States . 265
32.8 Path to Stability . 266
32.9 Problems . 267

33 Linear Programming 269
33.1 Introduction . 269
33.2 Strong Duality . 270
33.3 Weak Duality . 270
33.4 Complementary Slackness Conditions . 271
33.5 Maximum Matching Problem As Linear Program . 271
33.6 The Transportation Problem . 272
33.7 The Stable Marriage Problem . 272

xiv CONTENTS

33.8 The Shortest Path Problem . 272
33.9 Comparison of Linear Programming with Lattice-Linear Predicates 275

34 Certificate of the Solution 277
34.1 Introduction . 277
34.2 Stable Marriage Problem . 277
34.3 Shortest Path Problem . 277
34.4 Minimum Spanning Tree . 277
34.5 Dynamic Programming Problems . 277
34.6 Horn Clauses . 277
34.7 Sorting . 278
34.8 Housing Problem . 278
34.9 Assignment Problem . 278

35 Combinatorics 279
35.1 Introduction . 279
35.2 Boolean Algebra and Set Families . 279
35.3 Set families of Size k . 280
35.4 Integer Partitions . 280
35.5 Permutations . 284
35.6 Problems . 286
35.7 Bibliographic Remarks . 286

36 Distributed LLP Algorithms 287
36.1 Introduction . 287
36.2 Distributed LLP Algorithm . 287
36.3 Using Dependency List: A Distributed Implementation of Job Scheduling Algorithm 287
36.4 A Distributed Implementation of Horn Satisfiability . 287
36.5 A Distributed Algorithm for the constrained Stable Matching Problem 288

Bibliography 291

Index 297

List of Figures

1.1 Search space with feasible solutions. The feasible solutions are shown in red. The solution
x is the least feasible solution. 4

1.2 A parallel system . 6
1.3 A distributed system . 6
1.4 Computing the maximum of an array using the Reduce operation. 8

2.1 LLP Parallel Program for (a) job scheduling problem using forbidden predicate (b) job
scheduling problem using ensure clause and (c) the shortest path problems 16

3.1 Stable Matching Problem with men preference list (mpref) and women preference list (wpref). 21

4.1 A Summation Tree . 30
4.2 A Summation Tree for LLP Reduce . 31

5.1 Blelloch Scan Algorithm applied to Parallel Prefix Puzzle 39

6.1 Sorting Network for Odd-Even Sort . 49
6.2 Replacing inputs of a sorting network . 49
6.3 Bitonic Merge Lemma . 50
6.4 Example of a Bitonic Sorting network on four inputs. 51
6.5 Example of a Bitonic Sort on eight inputs. 52

7.1 Execution of Pointer Jumping Algorithm . 56
7.2 Pointer Jumping (a) Initial Tree (b) Tree after first iteration (c) Tree after second iteration

(d) Star tree after the third iteration . 57

8.1 A directed graph . 63
8.2 An undirected graph . 67
8.3 (a) vmax for every node in Fig. 8.2 . (b) Pointing to largest vmax to get Rooted-trees (c)

Rooted-stars at the end of first iteration. 70

9.1 (a) A Weighted Directed Graph (b) The parent structure for G = (0, 2, 3, 5, 8) (c) The parent
structure for G = (0, 10, 3, 14, 8). Since every non-source node has at least one parent, G is
feasible. 76

9.2 Algorithm ShortestPath to find the minimum cost assignment vector less than or equal
to T . 78

xv

xvi LIST OF FIGURES

9.3 A High-Level Algorithm to find the transitive closure of a matrix 84
9.4 A Synchronous Parallel Algorithm with time O(log n) to find the transitive closure of a

matrix A . 85
9.5 A High-Level Algorithm to find the shortest cost matrix for a directed graph with positive

weights . 86
9.6 A Synchronous Parallel Algorithm with O(log2 n) time and O(n3 log n) work to find the

Shortest Cost Matrix of a Graph . 86

10.1 An undirected weighted graph . 91
10.2 (a) Pseudo-tree from the graph in Fig. 10.1 . (b) Rooted-trees (c) Rooted-stars 97
10.3 Graph after all rooted stars are contracted. 97

11.1 A tree T . 102
11.2 The adjacency lists of the tree T . 102
11.3 The circular adjacency lists of tree T with additional pointers 103
11.4 Tree with the root as node 1 . 103

13.1 An example of Planar Convex Hull . 117
13.2 Using Divide and Conquer for Planar Convex Hull . 118

14.1 LLP Parallel Program for Activity Selection problem . 120
14.2 LLP Parallel Program for Activity Selection problem . 120

15.1 Housing Market and the Matching returned by the Top Trading Cycle Algorithm 124
15.2 The top choice graph at the first stage. 124

16.1 The computation graph for a market with three items and three bidders. The valuation of
and price for any item is a number between 0 and 4. 133

16.2 Algorithm ConstrainedMarketClearingPrice to find the minimum cost assignment
vector . 134

16.3 The computation graph for a market with three items and three bidders. The valuation of
and price for any item is a number between 0 and 4. The computation graph models the
constraint B ⌘ (p[2] � 2) p[1] � 3) ^ (p[1] � 2) p[3] � 1) 135

17.1 Various Structures and Transformations between them . 138
17.2 A Bipartite Graph . 138
17.3 A Matching M shown with dashed edges in the Bipartite Graph 139

18.1 Implication Graph of the predicate B ⌘ (¬x1 _ x2) ^ (x1 _ ¬x3) ^ (¬x2 _ x3) 143

20.1 State-Based Model of a Distributed Computation . 154
20.2 Conjunctive Predicate Detection Algorithm. 155
20.3 The ParallelCut algorithm to find the first consistent cut. 156
20.4 State Rejection Graph of a computation shown in dashed arrows 157

21.1 Transformation from SAT to global predicate detection . 160
21.2 Transformation for Theorems 21.2 and 21.3. 160

LIST OF FIGURES xvii

22.1 (a) An example of a distributive lattice (b) its partial order representation. 164
22.2 (a) P : A partial order (b) the lattice of ideals. (c) the directed graph P 0 165
22.3 An e�cient algorithm to compute the slice for a regular predicate B 166

23.1 Algorithm SP3: Using upper bounds as well as lower bounds 176
23.2 Algorithm SP4: A Bellman-Ford Style Algorithm with both upper and lower bounds . . . 178

25.1 Various Classes of Predicates. Equilevel predicates are the ones that are true on elements of
a lattice at a single level. Solitary predicates are the ones that are true on a single element
in the lattice. 195

25.2 A graph G = ({a, b, c, d}, {(a, b), (b, c), (a, c), (c, d)}). 197
25.3 Hasse diagram of the vertex powerset, ordered by inclusion. 197

26.1 Various Predicate Classes . 209
26.2 Closure of Predicate Classes under Boolean Operations . 210
26.3 Search space with feasible solutions. The feasible solutions are shown in red. The solution

x is the least feasible solution. There is no requirement for other feasible solutions. 210

27.1 Various Structures and Transformations between them . 214
27.2 A Bipartite Graph . 214
27.3 A Matching M shown with dashed edges in the Bipartite Graph 215
27.4 A poset . 219
27.5 A Strict Split of the Poset in Fig. 27.4 . 219

28.1 Algorithm GCD to find the greatest common divisor of a set of numbers 224
28.2 Algorithm GCD to find the greatest common divisor of a set of numbers 224
28.3 Algorithm GCD to find the greatest common divisor of a set of numbers 225
28.4 Poset representations for µ and �. The value for �(pk) is pk � pk�1. Thus, the third entry

for prime 3 is 32 � 31 = 6. 227

29.1 Search space with feasible solutions. The feasible solutions are shown in red. G and H are
maximal feasible solutions. 231

31.1 Algorithm SP1 . 245
31.2 Algorithm SP2: Algorithm SP1 with processEdge2 . 248
31.3 Algorithm SP3: Using upper bounds as well as lower bounds 251
31.4 Algorithm SP4: A Bellman-Ford Style Algorithm with both upper and lower bounds . . . 253

32.1 Algorithm �: An Algorithm that returns the woman-optimal marriage less than or equal to
the given proposal vector I. 256

32.2 An Implementation of Algorithm � with O(mn) complexity. 258
32.3 Stable Matching Problem with men preference list (mpref) and women preference list (wpref).262
32.4 The first graph models the standard SMP problem. Men’s preferences are shown in blue

solid edges. Preferences of women 1 and 2 are shown in dashed green edges. The second
constrained SMP Graph corresponds to constraint that the regret for P2 is less than or equal
to that of P1. It also shows the preference of w3 of P4 over P3. 262

LIST OF FIGURES 1

32.5 An e�cient algorithm to find the man-optimal constrained stable matching less than or
equal to T . 263

32.6 Algorithm � with O(m2) complexity. 267

35.1 Graphs and slices for generating subsets of X when |X| = 4. 279
35.2 Slice for the predicate “does not contain consecutive numbers” 281
35.3 Ferrer’s diagram for the integer partition (4, 2, 1) for 7. 281
35.4 An Application of Ferrer’s diagram. 282
35.5 Young’s lattice for (3, 3, 3) . 282
35.6 The poset corresponding to Ferrer’s diagram of (3, 3, 3) . 283
35.7 Slice for �2 = 2 . 284
35.8 Slice for “distinct parts” . 284
35.9 Poset T (5) . 285
35.10Slice for subsets of permutations . 286

36.1 A Distributed Algorithm to find the minimum completion time vector for job scheduling . . 288
36.2 A Distributed Algorithm to find the minimum satisfying assignment for Horn Formula . . 288
36.3 A di↵using distributed computation algorithm for constrained SMP for men Pi and women

Qi . 290

2 LIST OF FIGURES

Chapter 1

Introduction

1.1 Introduction

This book is on parallel algorithms. The goal of the book is to present a unified treatment of a wide variety
of algorithms. Liinear programming, or integer programming, serves as a tool for providing insights into a
large class of problems. The shortest path problem, the max-flow problem, the stable marriage problem,
the weighted bipartite matching problem can all be modeled and analyzed using linear programming
techniques. Linear programming formulation provides additional insights into the problem such as notions
of dual problems, certificates for optimality, and lower and upper bounds on the objective function. In this
book, we present another general technique called lattice-linear predicate detection that can solve many
problems. We use this method to solve generalization of many fundamental problems in combinatorial
optimization including the stable marriage problem [GS62], the shortest path problem [Dij59], and the
assignment problem [Mun57]. Due to the importance and applications of these problems, each one of them
has been the subject of numerous books and thousands of papers. The classical algorithms to solve these
problems are Gale-Shapley algorithm [GS62] for the stable marriage problem, Dijkstra’s algorithm [Dij59]
for the shortest path problem, and Kuhn’s Hungarian method [Mun57] to solve the assignment problem
(or equivalently, Demange, Gale, Sotomayor auction-based algorithm [DGS86] for market clearing prices).
Could there be a single e�cient algorithm that solves all of these problems?

The book presents a technique that solves not only these problems but more general versions of each
of the above problems. We seek the optimal solution for these problems that satisfy additional constraints
modeled using a lattice-linear predicate [CG98]. When there are no additional constraints (i.e., when the
set of constraints is empty), our approach reverts to addressing the classical versions of these problems.

Our technique requires the underlying search space to be viewed as a distributive lattice [Bir67, DP90].
Common to all these seemingly disparate combinatorial optimization problems is the structure of the
feasible solution space. The set of all stable marriages, the set of all feasible rooted trees for the shortest
path problem, and the set of all market clearing prices are all closed under the meet operation of the
lattice. If the order is appropriately defined, then finding the optimal solution (the man-optimal stable
marriage, the shortest path cost vector, the minimum market clearing price vector) is equivalent to finding
the infimum of all feasible solutions in the lattice.

We note here that it is well-known that the set of stable marriage and the set of market clearing price

3

4 CHAPTER 1. INTRODUCTION

x

Figure 1.1: Search space with feasible solutions. The feasible solutions are shown in red. The solution x is
the least feasible solution.

vectors form distributive lattices. The set of stable marriages forms a distributive lattice is given in [Knu97]
where the result is attributed to Conway. The set of market clearing price vectors forms a distributive
lattice is given in [SS71]. However, the algorithms to find the man-optimal stable marriage and the
minimum market clearing price vectors are not derived from the lattice property. In our method, once the
lattice-linearity of the feasible solution space is established, the algorithm to find the optimal solution falls
out as a consequence. The reference [Gar20] derives Gale-Shapley’s algorithm, Dijkstra’s algorithm and
Demange-Gale-Sotomayor’s algorithm from a single algorithm by exploiting the lattice property.

The lattice-linear predicate detection method to solve the combinatorial optimization problem is as
follows. The first step is to define a lattice of vectors, L, such that each vector is assigned a point in the
search space. For the stable marriage problem, the vector corresponds to the assignment of men to women
(or equivalently, the choice number for each man). For the shortest path problem, the vector assigns a
cost to each node. For the market clearing price problem, the vector assigns a price to each item. The
comparison operation () is defined on the set of vectors such that the least vector, if feasible, is the
extremal solution of interest. For example, in the stable marriage problem if each man orders women
according to his preferences and every man is assigned the first woman in the list, then this solution is the
man-optimal solution whenever the assignment is a matching and has no blocking pair. Similarly, in the
shortest path problem and the minimum market clearing price problem, the zero vector would be optimal
if it were feasible.

The second step in our method is to define a boolean predicate B that models feasibility of the vector.
For the stable marriage problem, an assignment is feasible i↵ it is a matching and there is no blocking
pair. For the shortest path problem, an assignment is feasible i↵ there exists a rooted spanning tree at the
source vertex such that the cost of each vertex is greater than the cost of traversing the path in the rooted
tree. For the minimum market clearing price problem, a price vector is feasible i↵ it is a market clearing
price vector.

The third step is to show that the feasibility predicate is a lattice-linear predicate [CG98]. Lattice-
linearity property allows one to search for a feasible solution e�ciently. If any point in the search space
is not feasible, it allows one to make progress towards the optimal feasible solution without any need
for exploring multiple paths in the lattice. Moreover, multiple processes can make progress towards the
feasible solution independently. In a finite distributive lattice, it is clear that the maximum number of
such advancement steps before one finds the optimal solution or reaches the top element of the lattice is
equal to the height of the lattice. Once this step is done, we get the following outcomes.

1.2. COMPUTING PERFORMANCE 5

First, by applying the lattice-linear predicate detection algorithm to unconstrained problems, we get
Gale-Shapley algorithm for the stable marriage problem, Dijkstra’s algorithm for the shortest path problem
and Demange, Gale, Sotomayor’s algorithm for the minimum market clearing price. In fact, the lattice-
linear predicate detection method yields a parallel version of these algorithms and by restricting these to
their sequential counterparts, we get these classical sequential algorithms.

Second, we get optimal solutions for the constrained version of each of these problems, whenever the
constraints are lattice-linear. We solve the Constrained stable marriage Problem where in addition to
men’s preferences and women’s preferences, there may be a set of lattice-linear constraints. For example,
we may require that Peter’s regret [GI89] should be less than that of Paul, where the regret of a man in a
matching is the choice number he is assigned. We note here that some special cases of the constrained stable
marriage problems have been studied. Dias et al [DdFdFS03, CM16] study the stable marriage problem
with restricted pairs. A restricted pair is either a forced pair which is required to be in the matching,
or a forbidden pair which must not be in the matching. Both of these constraints are lattice-linear and
therefore can be modeled in our system. The constrained shortest path problem asks for a rooted tree at
the source node with the smallest cost at each vertex that satisfies additional constraints of the form “the
cost of reaching node x is at least the cost of reaching node y”, “the cost of reaching x must be equal to
the cost of reaching y”, and “the cost of reaching x must be within � of the cost of reaching y”. For the
market clearing price problem, we consider constraints on the clearing prices of the form that item i must
be priced at least as much as item j, or the di↵erence in prices for item i and j must not exceed �.

Third, by applying a constructive version of Birkho↵’s theorem on finite distributive lattices [Bir67,
DP90], we give an algorithm that outputs a succinct representation of all feasible solutions. In particular,
the join-irreducible elements [DP90] of the feasible sublattice can be determined e�ciently (in polynomial
time). For the constrained stable marriage problem, we get a concise representation of all stable marriages
that satisfy given constraints. Thus, our method yields a more general version of rotation posets [GI89] to
represent all constrained stable marriages. Analogously, we get a concise representation of all constrained
integral market clearing price vectors.

1.2 Computing Performance

Parallel algorithms are a crucial aspect of today’s technology. At one time, computer processing power
got faster every year. However, this is no longer the case. Increased performance is now typically achieved
by adding processors. Even smartphones are multi-core. There are two main styles of using multiple
processors to accomplish computing goals: distributed and parallel computing systems.

Distributed computing systems contain multiple processors, with their own memory spaces, that are
connected by a communication network. Typically, a single task is divided amongst individual computers,
and they all communicate and collaborate with each other by passing messages via the network.

On the other hand, parallel computing systems consist of multiple processors, referred to as processing
elements (PE), which communicate using a shared memory space. This book focuses on algorithms that
use and optimize parallel computing systems. Actual implementation of parallel computing systems is
more detailed and complex than the diagram in Fig.1.2. For instance, each PE typically has its own cache
memory. We use the simplified model for this book.

6 CHAPTER 1. INTRODUCTION

Shared memory

Local Local Local Local

memory memory memory memory

CPU CPU CPU CPU CPU

Local

memory

Figure 1.2: A parallel system

Communication network

Figure 1.3: A distributed system

1.3. THE PARALLEL RANDOM ACCESS MACHINE 7

1.3 The Parallel Random Access Machine

When multiple processing elements (PE) are accessing the shared memory space, it is straightforward to
understand when they are accessing di↵erent memory locations at each point in time. However, what
happens when multiple PEs try to read and write to the same memory location?

To describe simultaneous memory access between two or more PE, we use the following letters to
describe that access:

• E = Exclusive

• C = Concurrent

• R = Read

• W = Write

Parallel computing machines will be referred to as PRAM (Parallel Random Access Machine). PRAMs
can be group into four main categories describing the model’s behavior for simultaneous access to the same
memory location:

• EREW (Exclusive Read Exclusive Write) - This is the most restrictive model in which only one PE
can read or write to a memory location at a time.

• CREW (Concurrent Read Exclusive Write) - This is the most frequently used model in which
multiple PEs can read a memory location at the same time, but only one can write at a time.

• ERCW (Exclusive Read Concurrent Write) - In this model, multiple PEs can write on a memory
location but the read is exclusive. This model is generally not useful.

• CRCW (Concurrent Read Concurrent Write) - Multiple PEs can both read and write to a memory
location simultaneously.

It is understandable in modern computing that multiple PEs reading from the same memory location
simultaneously should not cause an issue, but concurrent writes could. Therefore concurrent writes are
further defined as:

• Common - All values being written by the multiple PEs are all the same (common), and therefore
allowed.

• Priority - A predetermined priority of the PEs is used to determine which value gets written.

• Arbitrary - A random value is picked to be written.

We use CREW and CRCW type PRAM models in this book.

1.4 Reduce

Let us now take a look at how parallel algorithms can be used to solve a simple problem example. Consider
the array A of size n = 8, A = [8, 2, 9, 1, 3, 5, 11, 7]. To find the maximum entry in the array A using a
sequential algorithm, one starts at the beginning of the array and compares each entry keeping track of

8 CHAPTER 1. INTRODUCTION

Figure 1.4: Computing the maximum of an array using the Reduce operation.

the maximum value along the way, until the end of the array is reached. The time complexity for this
sequential algorithm is O(n).

This problem can be solved in a parallel algorithm by allowing each PE to compute a pairwise maximum
value as shown in Fig. 1.4. In this example, the first time step entails four PEs computing the pairwise
maximum on the values of the original array. The result is that problem has now been reduced from eight
elements in the array to only four elements. During the second time step, two PEs compute the pairwise
maximum of the values computed in the previous step. Finally, the overall maximum value is calculated
from the two values from the previous step. This algorithm is called Reduce. The time complexity for
this parallel algorithm is O(log n).

Notice that themax operator is associative, meaning that the order in which the operators are performed
does not matter. It turns out that this same Reduce algorithm can be used with any operator that is
associative including the minimum, the sum, the multiplication, the logical AND, and the logical OR
operators. There are no concurrent writes in this algorithm and can be easily implemented on a CREW
PRAM.

In addition to the time complexity, it is also useful to analyze the amount of work being done by our
algorithms. The work complexity can be thought of as the sequential time complexity of the algorithm.
In our example of computing the maximum of an array, we do O(n) work even though the parallel time
complexity is O(log n). Notice that, in comparison to the sequential algorithm, the Reduce algorithm
reduces the time complexity (from O(n) to O(log2 n)), and adds no additional work complexity. We define
such a parallel algorithm as work optimal; its work complexity matches that of the best known sequential
algorithm for the problem.

1.5 Brent’s Scheduling Principle

So far our simplified analysis of parallel algorithms has assumed that there are an unlimited number of PEs
available for the parallel algorithm. However, this may not always be realistic, so it is useful to analyze
the time performance considering hardware limitations.

To accomplish this, in addition to n (the problem size), we introduce another variable p as the number
of available PEs (or cores). We define T (n) as the unbounded time complexity of problem size n, W (n) as
the work complexity of n, and T (n, p) as the bounded time complexity due to both problem size n and a
certain number of available PE p. Brent’s Scheduling Principle states:

T (n, p) = O(
W (n)

p
+ T (n)) (1.1)

1.6. PARALLEL COMPLEXITY: CLASS NC 9

This can be derived by summing the work performed at each parallel time step:

T (n, p) =

T (n)X

i=1

(
W i(n)

p
+ 1)

=
1

p

T (n)X

i=1

W i(n) +

T (n)X

i=1

(1)

=
W (n)

p
+ T (n)

(1.2)

Now let us apply this principle to the Reduce algorithm. We observed that the unbounded time
complexity T (n) = O(log2 n), and work W (n) = O(n). We used p = n/ log2 n cores, so let us apply
Brent’s Scheduling Principle using this number of cores:

T (n, p) = O(
W (n)

p
+ T (n))

= O(
n

n/ log2 n
+ log2 n)

= O(log2 n)

(1.3)

We see here that Brent’s Scheduling principle gives the same answer as the unbounded time complexity
when the number of cores is set to n/ log2 n.

1.6 Parallel Complexity: Class NC

We now turn our attention to the parallel complexity of the problems. The class NC is the set of problems
that can be solved “e�ciently” on a parallel computer. For the formal definition, we first define a language
L to be a subset of strings over the alphabet ⌃ = {0, 1}. The language-recognition problem is a binary
decision problem that takes an arbitrary string s and decides whether the string belongs to L.

Definition 1.1 A langauge L is in NC if there exists a PRAM algorithm that can decide for any input
string s of size n whether s belongs to L in O(logk n) time for a fixed k using O(nc) processors for some
fixed c.

Since a single processor can simulate behavior of multiple processors, it is clear that NC ✓ P . Is the
converse true? This is a major open problem in communication complexity. The current belief is that the
converse is false and there are problems for which there do not exist any e�cient parallel algorithms. In a
manner analogous to P vs NP question, we define a subclass of problems in P , called P -complete that we
think are the hardest to parallelize.

We first define the notion of NC-reductions. A language L1 is NC-Reducible to L2, if there exists an
NC algorithm to transform an input string s1 of L1 to a string s2 such that s1 2 L1 i↵ s2 2 L2. Clearly,
if L1 is NC-reducible to L2, then any NC algorithm for L2 can be converted to an NC algorithm for L1.
Hence, L2 is at least as hard as L1. It is clear that the notion of NC-reducible is transitive.

We can now define the notion of P -completeness.
Formally,

10 CHAPTER 1. INTRODUCTION

Definition 1.2 A language L is P -complete if it is in P and every language in P is NC-reducible to L.

It follows that if L is P-complete, then L 2 NC implies NC = P .
Hence, it is unlikely that there exists any NC algorithm for any P -complete problem (similar to the

belief that it is unlikely that there exists any polynomial time algorithm for any NP-complete problem).
We now list some P -complete problems.

• Circuit Value Problem (CVP): Given a boolean circuit consisting of ¬, _ and ^ gates, and the input
x1, x2, xn, determine if the value of the circuit is 1.

• Ordered depth-first-search: Given a directed graph and three vertices s, u and v, determine if u is
visited before v when a depth-first-search is started at s.

• Maxflow: Given a directed graph with two distinguished vertices s and t and the maximum capacity
of each edge, determine if the maxflow in the graph is odd.

• Linear Inequalities: Given an n ⇥m matrix and a n-dimensional vector b, determine if there exists
a vector x such that Ax  b.

A proof of P -completeness of these problems is available in [JáJ92].

1.7 Problems

1. Model the problem of finding a satisfying assignment of a boolean expression as searching for an
element in an appropriate distributive lattice.

2. Model the problem of finding the cost of reaching a vertex from a given vertex in a weighted graph
as a search for a feasible element in a distributive lattice.

1.8 Bibliographic Remarks

There are many books on sequential and parallel algorithms. For sequential algorithms, the reader is
referred to [CLRS01, KT06, HSR01]. For parallel algorithms, the reader is referred to [JáJ92, LB00,
SMDD19]

Chapter 2

Lattice Linear Predicate Detection

2.1 Introduction

In this chapter we discuss a general method called Lattice-Linear Predicate (LLP) algorithm that can be
used to solve a wide variety of problems including the stable marriage problem, the shortest path problem,
the assignment problem, the minimum spanning tree problem and the housing allocation problem.

2.2 Lattice-Linear Predicates

Let L be the lattice of all n-dimensional vectors of reals greater than or equal to zero vector and less than
or equal to a given vector T where the order on the vectors is defined by the component-wise natural .
The minimum element of this lattice is the zero vector. The lattice is used to model the search space of
the combinatorial optimization problem. For simplicity, we are considering the lattice of vectors of non-
negative reals; later we show that our results are applicable to any distributive lattice. The combinatorial
optimization problem is modeled as finding the minimum element in L that satisfies a boolean predicate
B, where B models feasible (or acceptable solutions). We are interested in parallel algorithms to solve the
combinatorial optimization problem with n processes. We will assume that the systems maintains as its
state the current candidate vector G 2 L in the search lattice, where G[i] is maintained at process i. We
call G, the global state, and G[i], the state of process i.

Finding an element in lattice that satisfies the given predicate B, is called the predicate detection prob-
lem. Finding the minimum element that satisfies B (whenever it exists) is the combinatorial optimization
problem. We now define lattice-linearity which enables e�cient computation of this minimum element.
Lattice-linearity is first defined in [CG98] in the context of detecting global conditions in a distributed
system where it is simply called linearity. We use the term lattice-linearity to avoid confusion with the
standard usage of linearity.

A key concept in deriving an e�cient predicate detection algorithm is that of a forbidden state. Given
a predicate B, and a vector G 2 L, a state G[i] is forbidden (or equivalently, the index i is forbidden) if
for any vector H 2 L , where G  H, if H[i] equals G[i], then B is false for H. Formally,

Definition 2.1 (Forbidden State [CG98]) Given any distributive lattice L of n-dimensional vectors of
R�0, and a predicate B, we define forbidden(G, i,B) ⌘ 8H 2 L : G  H : (G[i] = H[i])) ¬B(H).

11

12 CHAPTER 2. LATTICE LINEAR PREDICATE DETECTION

We define a predicate B to be lattice-linear with respect to a lattice L if for any global state G, B is
false in G implies that G contains a forbidden state. Formally,

Definition 2.2 (lattice-linear Predicate [CG98]) A boolean predicate B is lattice-linear with respect
to a lattice L i↵ 8G 2 L : ¬B(G)) (9i : forbidden(G, i,B)).

We now give some examples of lattice-linear predicates.

1. Job Scheduling Problem: Our first example relates to scheduling of n jobs. Each job j requires
time tj for completion and has a set of prerequisite jobs, denoted by pre(j), such that it can be
started only after all its prerequisite jobs have been completed. Our goal is to find the minimum
completion time for each job. We let our lattice L be the set of all possible completion times. A
completion vector G 2 L is feasible i↵ Bjobs(G) holds where Bjobs(G) ⌘ 8j : (G[j] � tj) ^ (8i 2

pre(j) : G[j] � G[i] + tj). Bjobs is lattice-linear because if it is false, then there exists j such that
either G[j] < tj or 9i 2 pre(j) : G[j] < G[i] + tj . We claim that forbidden(G, i,Bjobs). Indeed, any
vector H � G cannot be feasible with G[j] equal to H[j]. The minimum of all vectors that satisfy
feasibility corresponds to the minimum completion time.

2. Prefix Sum Problem: Our second example relates to (exclusive) prefix sum of an array A with
non-negative reals. We are required to output an array G such that G[j] equals sum of all entries in
A from 0 to j � 1. We define G to be feasible i↵ Bprefix holds where Bprefix ⌘ (8j > 0) : (G[j] �
G[j � 1] +A[j � 1]). Again, it is easy to verify that Bprefix is lattice-linear. The minimum vector G
that satisfies Bprefix corresponds to the exclusive prefix sum of the array A.

3. Continuous Optimization Problem: We are required to find minimum nonnegative x and y such
that B ⌘ (x � y2/4 + 5) ^ (y � x � 4). We view this problem as finding minimum (x, y) pair such
that B holds. It is easy to verify that B is lattice-linear. If the first conjunct is false, then x is
forbidden. Unless x is increased the predicate cannot become true, even if other variables (y for
this example) increase. If the second conjunct is false, then y is forbidden. In this case, x = 6 and
y = 2 is the pointwise minimum solution. For some predicates, there may not be any solution. For
example, when B ⌘ (x � 2y2+5)^ (y � x� 4), there is no nonnegative (x, y) pair such that B holds
(verify this!). The predicate B is still lattice-linear but by advancing along x and y we go beyond
any bounded (x, y).

4. A Non Lattice-Linear Predicate As an example of a predicate that is not lattice-linear, consider
the predicate B ⌘

P
j G[j] � 1 defined on the space of two dimensional vectors. Consider the vector

G equal to (0, 0). The vector G does not satisfy B. For B to be lattice-linear either the first index
or the second index should be forbidden. However, none of the indices are forbidden in (0, 0). The
index 0 is not forbidden because the vector H = (0, 1) is greater than G, has H[0] equal to G[0] but
it still satisfies B. The index 1 is also not forbidden because H = (1, 0) is greater than G, has H[1]
equal to G[1] but it satisfies B.

The following Lemma is useful in proving lattice-linearity of predicates.

Lemma 2.3 Let B be any boolean predicate defined on a lattice L of vectors.
(a) Let f : L ! R�0 be any monotone function defined on the lattice L of vectors of R�0. Consider the
predicate B ⌘ G[i] � f(G) for some fixed i. Then, B is lattice-linear.
(b) Let LB be the subset of the lattice L of the elements that satisfy B. Then, B is lattice-linear i↵ LB is

2.2. LATTICE-LINEAR PREDICATES 13

closed under meets.
(c) If B1 and B2 are lattice-linear then B1 ^B2 is also lattice-linear.

Proof: (a) Suppose B is false for G. This implies that G[i] < f(G). Consider any vector H � G such
that H[i] is equal to G[i]. Since G[i] < f(G), we get that H[i] < f(G). The monotonicity of f implies that
H[i] < f(H) which shows that ¬B(H).
(b) This is shown in [CG98]. Assume that B is not lattice-linear. This implies that there exists a global
state G such that ¬B(G), and 8i : 9Hi � G : (G[i] = Hi[i]) and B(Hi). Consider Y = [i{Hi}. All elements
of Y 2 LB. However, inf Y which is in G is not an element of LB. This implies that LB is not closed
under the infimum operation. Conversely, let Y = {H1, H2, . . . , Hk} be any subset of LB such that its
infimum G does not belong to LB. Since G is the infimum of Y , for any i, there exists j 2 {1 . . . k} such
that G[i] = Hj [i]. Since B(Hj) is true for all j, it follows that there exists a G for which lattice-linearity
does not hold.

(c) Follows from the equivalence of meet-closed predicates with lattice-linearity and that meet-closed
predicates are closed under conjunction. For a more direct proof, suppose that ¬(B1 ^ B2). This implies
that one of the conjuncts is false and therefore from the lattice-linearity of that conjunct, a forbidden state
exists.

For the job scheduling example, we can define Bj as G[j] � max(tj ,max{G[i] + tj | i 2 pre(j)}). Since
fj(G) = max(tj ,max{G[i] + tj | i 2 pre(j)}) is a monotone function, it follows from Lemma 2.3(a) that
Bj is lattice-linear. The predicate Bjobs ⌘ 8j : Bj is lattice-linear due to Lemma 2.3(c). Also note that
the problem of finding the minimum vector that satisfies Bjobs is well-defined due to Lemma 2.3(b).

We now discuss detection of lattice-linear predicates which requires an additional assumption called the
e�cient advancement property [CG98] — there exists an e�cient (polynomial time) algorithm to determine
the forbidden state. This property holds for all the problems considered in this book. Once we determine
j such that forbidden(G, j,B), we also need to determine how to advance along index j. To that end, we
extend the definition of forbidden as follows.

Definition 2.4 (↵-forbidden) Let B be any boolean predicate on the lattice L of all assignment vectors.
For any G, j and positive real ↵ > G[j], we define forbidden(G, j,B,↵) i↵

8H 2 L : H � G : (H[j] < ↵)) ¬B(H).

Given any lattice-linear predicate B, suppose ¬B(G). This means that G must be advanced on all in-
dices j such that forbidden(G, j,B). We use a function ↵(G, j,B) such that forbidden(G, j,B,↵(G, j,B))
holds whenever forbidden(G, j,B) is true. With the notion of ↵(G, j,B), we have the algorithm LLP
shown in Fig. LLP. The algorithm LLP has two inputs — the predicate B and the top element of the
lattice T . It returns the least vector G which is less than or equal to T and satisfies B (if it exists). When-
ever B is not true in the current vector G, the algorithm advances on all forbidden indices j in parallel.
This simple parallel algorithm can be used to solve a large variety of combinatorial optimization problems
by instantiating di↵erent forbidden(G, j,B) and ↵(G, j,B).

Theorem 2.5 Suppose there exists a fixed constant � > 0 such that ↵(G, j,B) � G[j] � � whenever
forbidden(G, j,B). Then, the parallel algorithm LLP finds the least vector G  T that satisfies B, if one
exists.

14 CHAPTER 2. LATTICE LINEAR PREDICATE DETECTION

Algorithm LLP: Algorithm LLP to find the minimum vector at most T that satisfies B

1 vector function getLeastFeasible(T : vector, B: predicate)
2 var G: vector of reals initially 8i : G[i] = 0;
3 while 9j : forbidden(G, j,B) do
4 for all j such that forbidden(G, j,B) in parallel:
5 if (↵(G, j,B) > T [j]) then return null;
6 else G[j] := ↵(G, j,B);
7 endwhile;
8 return G; // the optimal solution

Proof: Since G[j] increases by at least � for at least one forbidden j in every iteration of the while loop,
the algorithm terminates in at most

P
idT [i]/�e number of steps.

We show that the algorithm maintains the invariant (I1) that for all indices j, any vector V such that
V [j] is less than G[j] cannot satisfy B. Formally, the invariant (I1) is

8j : (8V 2 L : (V [j] < G[j])) ¬B(V)).

Initially, the invariant holds trivially because G is initialized to 0. Suppose forbidden(G, j,B). Then, we
increase G[j] to ↵(G, j,B). We need to show that this change maintains the invariant. Pick any V such
that V [j] < ↵(G, j,B). We now do a case analysis. If V � G, then ¬B(V) holds from the definition of
↵(G, j,B). Otherwise, there exists some k such that V [k] < G[k]. In this case ¬B(V) holds due to (I1).

We can now show Theorem 2.5 using the invariant. First, suppose that the algorithm LLP terminates
because ↵(G, j,B) > T [j]. In this case, there is no feasible vector in L due to the invariant (because the
predicate B is false for all values of G[j]). Now suppose that the algorithm terminates because there does
not exist any j such that forbidden(G, j,B). This implies that G satisfies B due to lattice-linearity of B.
It is also the least vector that satisfies B due to the invariant (I1).

For the job scheduling example, we get a parallel algorithm to find the minimum completion time
by using forbidden(G, j,Bjobs) ⌘ (G[j] < tj) _ (9i 2 pre(j) : G[j] < G[i] + tj), and ↵(G, j,Bjobs) =
max{tj ,max{G[i] + tj |i 2 pre(j)}}.

For the prefix sum example, we get a parallel algorithm by using forbidden(G, j,Bprefix) ⌘ (G[j] <
G[j � 1] +A[j � 1]) and ↵(G, j,Bprefix) = G[j � 1] +A[j � 1] for all j > 0.

We now show, on account of Lemma 2.3(c), that if we have a parallel algorithm for a problem, then we
also have one for the constrained version of that problem.

Lemma 2.6 Let LLP be the parallel algorithm to find the least vector G that satisfies B1 if one exists.
Then, LLP can be adapted to find the least vector G that satisfies B1 ^B2 for any lattice-linear predicate
B2.

Proof: The algorithm LLP can be used with the following changes:
forbidden(G, j,B1 ^B2) ⌘ forbidden(G, j,B1) _ forbidden(G, j,B2), and
↵(G, j,B1 ^B2) = max{↵(G, j,B1),↵(G, j,B2)}.

2.3. NOTATION 15

For example, suppose that we want the minimum completion time of jobs with the additional lattice-
linear constraint that B2(G) ⌘ (G[1] = G[2]). B2 is lattice-linear with forbidden(G, 1, B2) ⌘ (G[1] < G[2])
and forbidden(G, 2, B2) ⌘ (G[2] < G[1]). By applying, Lemma 2.6, we get a parallel algorithm for the
constrained version.

The job scheduling problem and the prefix sum problem are special cases of the following optimization
problem: minimize G such that 8i : Gi � fi(G) where each of fi is a monotone function on the lattice of
reals. When the predicate B is of the form 8i : Gi � fi(G), the problem is closely related to finding the
least fixed point in a lattice using Knaster-Tarski’s fixed point theorem [Tar55, LNS82].

The algorithm in Fig. LLP can be viewed as repeated iteration of a monotone function on the bottom
element of a lattice similar to a constructive version of Knaster-Tarski’s theorem. In particular, let L be
any lattice with the bottom element ?, the top element > and f a monotone function from L to R�0.
Consider the set F ✓ L defined as {x | x � f(x)}. If there exists k such that fk(?) = fk+1(?), then
x⇤ = fk(?) is the minimum element in L that satisfies the predicate (x � f(x)). Our work di↵ers from
such earlier work in many respects. First, B may not have the form 8i : Gi � fi(G); instead we only
require B to be closed under meets. Second, Knaster-Tarski’s fixed point theorem (and many variants)
requires the function to be from the lattice L to itself. In that case, the solution to the equation x � f(x)
always exists for a complete lattice because > � f(>). We do not assume that the range of the function
is the lattice itself. Therefore, there is no guarantee of the existence of the fixed point. Indeed, for the job
scheduling example, if the prerequisites have a cycle and weights are positive, then there is no solution and
the algorithm LLP returns null.

Observe that Algorithm LLP does not access the entire lattice L. It has access to only the current
vector G. In particular, it does not access the parts of the lattice L that is not less than G. This allows
the LLP algorithm to be used even when the lattice L is not fixed or known initially. Thus, in many
applications, it is useful to consider the property of lattice linearity applicable to a set of lattices rather
than a single lattice. Formally, a boolean predicate B is lattice-linear with respect to a set of lattices, L
i↵ it is lattice-linear with respect to all lattices L 2 L. All lattice linear predicates discussed in this book
satisfy this stronger version of lattice linearity where the forbidden function does not have access to the
elements of the lattice beyond G.

Note that the straightforward application of LLP may not give the most time-e�cient parallel algo-
rithm. The e�ciency of the algorithm may depend upon ↵(G, j,B) chosen for the predicate B. We will
later show such optimizations for many problems such as the shortest path algorithm.

2.3 Notation

We first go over the notation used in description of our parallel algorithms. We have a single variable G
in all the examples shown in Fig. 2.1. All other variables are derived directly or indirectly from G. G is
an array of objects such that G[j] is the state of thread j for a parallel program. There are three sections
of the program.

The init section is used to initialize the state of the program. All the parts of the program are applicable
to all values of j. For example, the init section of the job scheduling program in Fig. 2.1 specifies that
G[j] is initially t[j]. Every thread j would initialize G[j].

The always section defines additional variables which are derived from G. The actual implementation
of these variables are left to the system. They can be viewed as macros.

The third section gives the desirable predicate either by using the forbidden predicate or ensure
predicate. The forbidden predicate has an associated advance clause that specifies how G[j] must be

16 CHAPTER 2. LATTICE LINEAR PREDICATE DETECTION

Pj : Code for thread j
// common declaration for all the programs below
shared var G: array[1..n] of 0..maxint;
job-scheduling:

input: t[j] : int, pre(j): list of 1..n;
init: G[j] := t[j];
forbidden: G[j] < max{G[i] + t[j] | i 2 pre(j)};
advance: G[j] := max{G[i] + t[j] | i 2 pre(j)};

job-scheduling:
input: t[j] : int, pre(j): list of 1..n;
init: G[j] := t[j];
ensure: G[j] � max{G[i] + t[j] | i 2 pre(j)};

shortest path from node s: Parallel Bellman-Ford
input: pre(j): list of 1..n; w[i, j]: int for all i 2 pre(j)
init: if (j = s) then G[j] := 0 else G[j] := maxint;
ensure: G[j]  min{G[i] + w[i, j] | i 2 pre(j)}

Figure 2.1: LLP Parallel Program for (a) job scheduling problem using forbidden predicate (b) job schedul-
ing problem using ensure clause and (c) the shortest path problems

advanced whenever the forbidden predicate is true. For many problems, it is more convenient to use the
complement of the forbidden predicate. The ensure section specifies the desirable predicates of the form
(G[j] � expr) or (G[j]  expr). The statement ensure G[j] � expr simply means that whenever thread j
finds G[j] to be less than expr; it can advance G[j] to expr. Since expr may refer to G, just by setting
G[j] equal to expr, there is no guarantee that G[j] continues to be equal to expr — the value of expr may
change because of changes in other components. We use ensure statement whenever expr is a monotonic
function of G and therefore the predicate is lattice-linear.

2.4 Simple Examples of LLP Programs

In this section, we show how various problems can be recast as detecting lattice-linear predicates. Fig. 2.1
shows parallel algorithms for the job-scheduling and the shortest path problems.

2.5 A Sequential Implementation of LLP Algorithm

In this section we consider various implementation strategies for implementing the LLP Algorithm in a
sequential fashion. Algorithm LLP-SEQ gives LLPs, a general sequential implementation of LLP at a
high level. In the LLPs algorithm, we maintain S, a set of indices that are forbidden. We maintain the
following invariant for the while loop.

(I1) S is empty implies G is the optimal solution.

Observe that S may not contain all the forbidden indices so long as the invariant (I1) is true. Further-
more, it may even contain some indices that are not forbidden. When such an index j is removed from

2.5. A SEQUENTIAL IMPLEMENTATION OF LLP ALGORITHM 17

Algorithm LLP-SEQ: A Sequential Algorithm LLPs to find the minimum vector less than or
equal to T that satisfies B

1 vector function getLeastFeasible(T : vector, B: predicate)
2 var G: vector of reals initially 8i : G[i] = 0;
3 S: set of indices;

4 initialize(S,G); // add initial forbidden indices
5 while ¬S.empty() do
6 j := S.remove(G); // remove an index from S
7 float change := 0;
8 if forbidden(G, j,B) then change := ↵(G, j,B)�G[j];
9 if (G[j] + change > T [j]) then return null;

10 else G[j] := G[j] + change;
11 S.updateForbidden(G, j);
12 endwhile;
13 return G; // the optimal solution

the set, we continue to the next iteration of the while loop. If the index j is forbidden, we determine the
amount by which G[j] must be advanced with ↵(G, j,B) call. At this point, G has changed and we update
S using S.updateForbidden(G) function call.

There are many di↵erent issues to solve for an e�cient implementation:

1. How do we store S, the set of indices that are forbidden?

2. How do we initialize S?

3. On which indices should we evaluate the forbidden function to determine whether they are forbidden?

4. How do we update the set of forbidden indices, when the global state is updated?

Let us examine each of these questions next. The best strategy is dependent on the problem, but we
will outline some general strategies.

The first question pertains to storing the set of forbidden indices. Note that once an index is forbidden
it stays forbidden until the global state is advanced along that index. Formally,

8G,H : G  H : (G[i] = H[i]) ^ forbidden(G, j,B)) forbidden(H, j,B)

The set of indices that are forbidden may be stored in an appropriate container such as a linked list, a
queue, a stack, a dequeue, or a heap. The choice of the container may depend upon the strategy used for
removing an element from the set. The criterion for choosing the index to remove may depend upon some
key value associated with the index which may be used to order the container in a heap (or a tree). The
insertion of any index in the set is O(1) for data structures such as the linked list, queues, stacks, dequeues
etc. and O(log n) for data structures such as a heap or a balanced binary tree. For example, when we
consider the job scheduling problem in which the task structure is acyclic, it is more e�cient to store
indices such that if there is a path from index i to index j in the task structure, then the index i appears
before index j in the linked list. When we consider the shortest path problem, it may be advantageous to
store indices in a heap such that the key associated with index i is G[i].

18 CHAPTER 2. LATTICE LINEAR PREDICATE DETECTION

To initialize S, our obligation is that the invariant (I1) should hold at the while loop. One strategy is
to initially iterate over all indices and insert all the forbidden indices in S. Another strategy to ensure the
invariant (I1) is to insert all the indices in S initially. If an index is not forbidden, it will be removed from
the set inside the while loop. Yet another strategy could be to insert a subset of forbidden indices such that
it is guaranteed that any index that is forbidden in G but not in S is guaranteed to be inserted in S by the
function updateForbidden(G, j) before S becomes empty. For example, in the job scheduling problem, we
can initialize S with the tasks that do not have any prerequisites. If our update function ensures that tasks
that depend upon these initial tasks are inserted in S before S becomes empty, we maintain the invariant
(I1).

The remove function could be as simple as removing the index from the head of the queue. For some
problems, such as the shortest path, it may be more e�cient to remove an index such that once it is
removed from S and processed, it is guaranteed that the index will never be forbidden again. For this
reason, the set of forbidden indices may be organized in a priority queue rather than an ordinary queue.
In this case, the remove operation would have O(log n) time complexity.

The straightforward implementation of S.updateForbidden would be to reevaluate the set S again.
However, for most problems if any index j is the only component that has changed, then it may be easy to
determine the subset of indices that may turn forbidden. For example, in many graph problems, whenever
G changes for some node, only its neighbors may be a↵ected. We model this as a dependency list. For
every index j, the dependency list dependList(j) satisfies the following invariant.

(I2) For all G and H such that H is obtained from G by advancing in component j, then for any in-
dex i that is not in the dependList(j), its forbidden value stays the same.

Another optimization that we will frequently use is the notion of a fixed index. An index i is fixed
in the global state G, if i is not forbidden in G and is guaranteed to stay not forbidden for all global
states greater than G. Once an index i is fixed, it can be permanently removed from consideration during
evaluation of the forbidden function. For example, in the shortest path algorithm on a graph with non-
negative weights, an algorithm may determine that the current value of G[i] is such that it corresponds
to the final answer and it will never be forbidden, then that index is fixed. Once all indices are fixed, we
know that G is optimal. This optimization is esp. useful for parallel algorithms in which di↵erent threads
are responsible for advancing di↵erent indices. Any thread that is responsible for an index that becomes
fixed can terminate early.

To analyze the time complexity of the above algorithm, let us consider a problem on a lattice with
the following assumptions. Each element of the lattice is a n dimensional vector with each component
between 0 and m � 1 for some positive integer m. Thus, there are O(mn) elements in the lattice in the
worst case. We will assume an implementation in which S keeps only the forbidden indices. Every time a
forbidden index j is removed from S, the value of G[j] changes by at least one. Thus, the while loop can be
executed at most O(m) times for any index, or equivalently, O(mn) times overall. If each of the functions
in the while loop (remove, ↵, and updateForbidden) has O(n) time complexity, we get the overall time
complexity of O(mn2). In many problems, we would have O(1) time complexity of the functions in the
while loop giving us the time complexity of O(mn).

2.6 Properties of the LLP Algorithm

The LLP algorithm has many useful properties. We list them here so that the reader can apply them to
various problems studied in this book.

2.7. PROBLEMS 19

These properties are applicable to all the problems for which the LLP algorithm is used.

1. Nondeterminism in Evaluation of Forbidden Predicate: Given a global state G, there may
be multiple indices j for which G[j] is forbidden. The LLP algorithm is correct irrespective of the
order in which these indices are updated. The e�ciency of the algorithms may di↵er depending upon
the order in which these indices are updated, but the correctness is independent of the order. For
example, in the stable marriage problem, the final answer returned is independent of the order in
which men propose. In the shortest path problem, the final answer returned is independent of the
order in which the nodes update their estimates. It is important to note that the term answer is
with respect to the LLP algorithm. For the shortest path problem, the lattice is with respect to the
cost and not the actual paths. There may be multiple shortest paths to a vertex and the order of
evaluation of forbidden indices may result in the paths that are returned be di↵erent. However, they
would all have the same cost.

2. Parallel Evaluation of Forbidden Predicate: Suppose that G is shared among di↵erent threads
such that thread j is responsible for evaluating forbidden(G, j). While this thread is evaluating this
predicate other threads may have advanced on other indices, i.e., thread j may have old information
of G[i] for i 6= j. However, this would still keep the algorithm correct. For example, in the stable
marriage problem, men can propose to women in parallel. In the shortest path algorithm, multiple
vertices can update the estimate of their lower bounds and their parents in parallel.

3. No Lookahead Required for evaluation of Forbidden Predicate: The LLP algorithm deter-
mines whether an index j is forbidden depending upon only the current global state G. This means
that these algorithms are applicable in online settings where the future part of the lattice is revealed
only when a forbidden index needs to advance. For example, in the stable marriage problem, when
we are computing the man-optimal stable marriage, a man may not reveal his preference list. Only
when he is rejected (his state is forbidden), he needs to advance on his choices and therefore reveal
the next woman on his list. The same reasoning applies to the housing allocation problem. For
some problems, such as the shortest path problem, the weights on the edges is required to evaluate
forbidden predicate. Therefore, the graph must be known and static for the LLP algorithm.

4. The Optimal Feasible Global State is Optimal for Individual Nodes: Suppose that for the
stable marriage problem, one of the men, say m1 is interested in finding the stable marriage in which
he has the topmost choice possible for him. This man does not care how other men are paired.
If we take the solution derived from the LLP algorithm, then the woman m1 is paired with would
be identical to the woman m1 is paired with in any stable marriage that is optimal from just the
perspective of m1. More generally, let G be the global state that is feasible and optimal with respect
to index i, i.e., for all feasible H, G[i]  H[i]. Let Gllp be the global state computed by the LLP
algorithm, then G[i] = Gllp[i]. This follows from the meet-closure property of feasible states. If
G[i] < Gllp[i], then the global state given by G u Gllp is also feasible and strictly smaller than Gllp

contradicting that Gllp is the least global state that satisfies the feasibility predicate.

2.7 Problems

1. Let (X,) be a poset. A subset Y ✓ X is an order ideal if it satisfies

8u, v 2 X : (v 2 Y) ^ (u  v)) (u 2 Y)

20 CHAPTER 2. LATTICE LINEAR PREDICATE DETECTION

Let L be the boolean lattice of all subsets ofX. Show that the predicateB(Y) ⌘ Y is an order ideal of (X,
) is lattice-linear.

2.8 Bibliographic Remarks

The lattice-linearity property is described in [CG98]. Its application to stable matching is first shown in
[Gar17]. Its application to design of parallel algorithms is in [Gar20].

Chapter 3

The Stable Marriage Problem

3.1 Introduction

The Stable Matching Problem (SMP) introduced by Gale and Shaply [GS62] has wide applications in
economics, distributed computing, resource allocation and many other fields. In the standard SMP, there
are n men and n women each with their totally ordered preference list. The goal is to find a matching
between men and women such that there is no instability, i.e., there is no pair of a woman and a man such
that they are not married to each other but prefer each other over their partners.

We consider stable marriage instances with m men numbered 1, 2, . . . ,m and w women numbered
1, 2, . . . w. We assume that the number of women w is at least m; otherwise, the roles of men and women
can be switched. The variables mpref and wpref specify the men preferences and the women preferences,
respectively. Thus, mpref [i][k] = j i↵ woman j is kth preference for man i. Fig. 32.3 shows an instance of
the stable matching problem.

In this chapter, we first give the Gale-Shapley (GS) algorithm in Section 3.3. We then give a parallel
LLP version of the Gale-Shapley algorithm in Section 3.4. Section 3.5 presents Algorithm ↵ that takes
any proposal vector (and therefore any matching) to a stable proposal vector in O(m2+w) time such that
the resulting proposal vector has the least distance from the initial proposal vector of all stable proposal
vectors that are greater than initial proposal vector. This algorithm generalizes the GS algorithm which
assumes the initial proposal vector to be the top choices. Section 3.5.1 discusses the constrained stable
matching problem, where in addition to men’s preferences and women’s preferences, there may be a set of
additional lattice-linear constraints. For example, we may state that Peter’s regret [GI89] should be less
than that of Paul, where the regret of a man in a matching is the choice number he is assigned. As another
example, we may require the matching must contain some pairs called forced pairs, or must not contain
some pairs called forbidden pairs [DdFdFS03].

mpref wpref
m1 w2 w3 w1 w1 m1 m3 m2

m2 w1 w2 w3 w2 m2 m1 m3

m3 w3 w1 w2 w3 m1 m2 m3

Figure 3.1: Stable Matching Problem with men preference list (mpref) and women preference list (wpref).

21

22 CHAPTER 3. THE STABLE MARRIAGE PROBLEM

3.2 Proposal Vector Lattice

We use the notion of a proposal vector for our algorithms. A (man) proposal vector, G, is of dimension
m, the number of men. We view any vector G as follows: (G[i] = k) if man i has proposed to his kth

preference, i.e. the woman given by mpref [i][k]. If mpref [i][k] equals j, then G[i] equals k corresponds to
man i proposing to woman j. For convenience, let ⇢(G, i) denote the woman mpref [i][G[i]]. The vector
(1, 1, . . . , 1) corresponds the proposal vector in which every man has proposed to his top choice. Similarly,
(w,w, . . . , w) corresponds to the vector in which every man has proposed to his last choice. Our algorithms
can also handle the case when the lists are incomplete, i.e., a man prefers staying alone to being matched
to some women. However, for simplicity, we assume complete lists. It is clear that the set of all proposal
vectors forms a distributive lattice under the natural less than order in which the meet and join are given
by the component-wise minimum and the component-wise maximum, respectively. This lattice has wm

elements.

Given any proposal vector, G, there is a unique matching defined as follows: man i and ⇢(G, i) are
matched in G if the proposal by man i is the best for that woman in G. A man p is unmatched in G if
his proposal is not the best proposal for that woman in G. A woman q is unmatched in G if she does not
receive any proposal in G; otherwise, she is matched with the best proposal for her in G.

A proposal vector G represents aman-saturating matching i↵ no woman receives more than one proposal
in G. Formally, G is a man-saturating matching if 8i, j : i 6= j : ⇢(G, i) 6= ⇢(G, j). When the number
of men equals the number women, a man-saturating matching is a perfect matching (all men and women
are matched). When the number of men is less than the number of women, then G is a man-saturating
matching if every man is matched (but some women are unmatched). We say that a matching M1 (or a
marriage) is less than another matching M2 if the proposal vector for M1 is less than that of M2. Thus,
the man-optimal marriage is the least stable matching in the proposal lattice and woman-optimal marriage
is the greatest stable matching.

A proposal vector G may have one or more blocking pairs. A pair of man and woman (p, q) is a blocking
pair in G i↵ ⇢(G, p) is not q, man p prefers q to ⇢(G, p), and woman q prefers p to any proposal she receives
in G. Observe that this definition works even when woman q is unmatched, i.e. she has not received any
proposals in G. In this case, woman q prefers p to staying alone, and p prefers q to ⇢(G, p).

A proposal vector G is a stable marriage (or a stable proposal vector) i↵ it is a man-saturating matching
and there are no blocking pairs in G.

3.3 Gale-Shapley Algorithm

In this section, we first present an algorithm due to Gale and Shapley for this problem (also known as the
deferred-acceptance algorithm). In this algorithm, a free man proposes to women in his decreasing order
of preferences, i.e., he first proposes to his top choice. Only when a man is rejected by his top choice, he
would move to his next top choice. We maintain the list of all men who are not engaged in the variable
mList. Initially all men are free (not engaged) and are in this list.

When any woman z receives a proposal from a man i, she always accepts it if she is not engaged. In
this case, they both get engaged and the variable partner[z] is set to i. If the woman z is engaged then she
compares this proposal to her existing partner. If she prefers this proposal to her existing partner, then
she breaks the engagement with her existing partner and makes i as her partner. The previous partner
joins mList, the list of free men. If the woman z prefers her existing partner, then the proposal by man

3.4. AN LLP ALGORITHM FOR THE STABLE MATCHING PROBLEM 23

i is rejected and the man i goes back to mList. Algorithm Gale-Shapley shows the pseudo-code for these
steps.

Algorithm Gale-Shapley: Finding the man-optimal marriage.

1 input: A stable marriage instance: mpref , rank
2 output: man-optimal stable marriage

3 var
4 mList: list of 1..n; // list of men that are free initially includes all men;
5 partner: array[1..n] of 0..n initially partner[i] = 0 for all i //current fiance for woman i
6 G: array[1..n] of 0..n initially G[i] = 0 for all i //number of proposals made by man i

7 while (mList is nonempty)
8 remove a man i from mList
9 G[i] := G[i] + 1 //move to the next available top choice for man i

10 z := mpref [i][G[i]] // woman corresponding to that choice
11 if (partner[z] = 0) // the woman was not engaged
12 partner[z] := i
13 else if (rank[z][i] < rank[z][partner[z]])
14 add partner[z] to mList
15 partner[z] := i
16 else add i to get mList
17 endwhile;
18 return G;

It is easy to verify the following properties of the algorithm.

Lemma 3.1 1. As the algorithm progresses, the partner for a man can only worsen and the partner for
a woman can only improve.

2. Once a woman is engaged, she stays engaged.

3. If the number of men is less than or equal to the number of women, then the algorithm is guaranteed
to terminate.

3.4 An LLP Algorithm for the Stable Matching Problem

We now derive the algorithm for the stable matching problem using Lattice-Linear Predicates. We let G[i]
be the choice number that man i has proposed to. Initially, G[i] is 1 for all men. For convenience, let
⇢(G, i) denote the woman mpref [i][G[i]].

Definition 3.2 An assignment G is feasible for the stable marriage problem if (1) it corresponds to a
perfect matching (all men are paired with di↵erent women) and (2) it has no blocking pairs.

We show that the predicate “G is a stable marriage” is a lattice-linear predicate.

Lemma 3.3 The predicate that a vector G corresponds to a stable marriage is lattice-linear.

24 CHAPTER 3. THE STABLE MARRIAGE PROBLEM

Proof: Let z be ⇢(G, j), the woman that corresponds to choice G[j] for man j. We define j to be forbidden
in G if there exists a man i such that z prefers man i to man j and either man i has also been assigned
z in G or he prefers z to his current choice, i.e., man i and woman z would form a blocking pair in G.
Formally, forbidden(G, j) is defined as (9i : 9k  G[i] : (z = mpref [i][k]) ^ (rank[z][i] < rank[z][j])).

It is easy to see that G is not a stable marriage i↵ 9j : forbidden(G, j). If G is not a perfect matching
then there must be at least one woman who is assigned to two men. In that case, the less preferred man
is forbidden. If G is a perfect matching but has a blocking pair, then the partner of the woman in the
blocking pair is forbidden. Conversely, forbidden(G, j) implies that either G is not a perfect matching or
has a blocking pair.

We only need to show that if forbidden(G, j) holds, then there is no proposal vector H such that
(H � G) and (G[j] = H[j]) and H is a stable marriage.

Consider any H such that (H � G) and (G[j] = H[j]). We show that H is not a stable marriage.
Since G[j] is equal to H[j], ⇢(G, j) is equal to ⇢(H, j). Let i be such that 9k  G[i] : (z = mpref [i][k]) ^
(rank[z][i] < rank[z][j])). Since G  H, G[i]  H[i], we get that 9k  H[i] : (z = mpref [i][k]) ^
(rank[z][i] < rank[z][j])). Hence, forbidden(H, i) also holds.

Lemma 3.3 immediately gives us the Algorithm LLP-ManOptimalStableMarriage. The always section
defines variables which are derived from G. These variables can be viewed as macros. For example, for
any thread z = mpref [j][G[j]]. This means that whenever G[j] changes, so does z.

If man j is forbidden, it is clear that any vector in which man j is matched with z and man i is matched
with his current or a worse choice can never be a stable marriage. Thus, it is safe for man j to advance to
the next choice.

Algorithm LLP-ManOptimalStableMarriage: A Parallel Algorithm for Stable Matching

1 Pj : Code for thread j
2 input: mpref [i, k]: int for all i, k; rank[k][i]: int for all k, i;
3 init: G[j] := 1; // works for any initialization
4 always: z = mpref [j][G[j]];

5 forbidden: (9i : 9k  G[i] : (z = mpref [i][k]) ^ (rank[z][i] < rank[z][j]))
6 advance: G[j] := G[j] + 1;

3.5 Algorithm ↵: Upward Traversal

Algorithm ↵ generalizes Gale-Shapley algorithm in two fundamental ways.

• Arbitrary Initial proposal vector: Gale-Shapley algorithm always finds the man-optimal stable mar-
riage. Suppose that we are interested in finding a stable marriage such that the men are allowed to
propose such that the proposal vector is at least I. For example, if I = (3, 1, 2, 1), then the first man
cannot propose to his two top choices and the third man cannot propose to his top choice. Algorithm
↵ works even when the initial proposal vector is arbitrary instead of the top choice for each man,
i.e., I = (1, 1, . . . , 1). Observe that standard Gale-Shapley algorithm does not work as is when the
starting proposal vector is arbitrary. Simple Gale-Shapley algorithm would require men to make

3.5. ALGORITHM ↵: UPWARD TRAVERSAL 25

proposals and women to accept best proposals they have received so far. If the starting proposal
vector is a perfect matching but not stable, then each woman gets a unique proposal. All women
would accept the only proposal received, but the resulting marriage would may not be stable.

• Unequal number of men and women: We consider the case when the number of women exceeds the
number of men. If the number of men is greater than we can simply switch the roles in our algorithm.

If we started with the top choices of all men, then Gale-Shapley algorithm would still return a man-
optimal stable matching with the excess women unmatched. However, if we start from an arbitrary
proposal vector, we can end up with all women getting unique proposals but there may exist an
unmatched woman who is preferred by some man over his current match. To tackle this problem,
we first do a simple check on the initial proposal vector as given by the following Lemma.

Lemma 3.4 Given any stable marriage instance with m men and the initial proposal vector I there
is no stable marriage for any proposal vector G � I whenever the total number of unique women that
have been proposed in all vectors that are less than or equal to I exceeds m.

Proof: Consider any proposal vector G � I. Since the total number of men is m, there is at least
one woman q who has been proposed in the past of G who does not have any proposal in G. Suppose
that proposal was made by man p. Then, man p prefers q to ⇢(G, p) and q prefers p to staying alone.

Hence, in our algorithm we only consider I such that the total number of women proposed until I is
at most m.

Algorithm UpwardTraversal: An Algorithm that returns the man-optimal marriage greater
than or equal to the given proposal vector I.

1 input: A stable marriage instance, initial proposal vector I
2 output: smallest stable marriage greater than or equal to I (if one exists)

3 forbidden(G, i) holds if there exists another man j such that either (1) both i and j have proposed
to the same woman in G and that woman prefers j, or (2) (j, ⇢(G, i)) is a blocking pair for G.

4 if numw(I) > m then return null; // no stable matching exists
5 else G := I;
6 while there exists a man i such that forbidden(G, i)
7 find the next woman q in the list of man i s.t. i has the most preferred proposal to q until G,
8 if no such choice after G[i] or the number of women proposed including q exceeds m then
9 return null; // ”no stable matching exists”

10 else G[i] := choice that corresponds to woman q;
11 endwhile;
12 return G;

There are two main di↵erences from Gale-Shapley algorithm. The first di↵erence is the simple check
on the number of women that have been proposed until G. We require numw(G)  m. Clearly, if the

26 CHAPTER 3. THE STABLE MARRIAGE PROBLEM

number of women is equal to the number of men, then numw(G) can never exceed m and this check can be
dropped. Also, even if the number of women exceed the number of men but the initial proposal vector is
(1, 1, . . . , 1), the number of women proposed cannot exceed m. Indeed, Gale-Shaply algorithm terminates
exactly when mth woman is proposed. However, this check is required when the number of women exceed
m and the initial proposal vector is arbitrary.

The second di↵erence is in the definition of forbidden(G, i). In standard Gale-Shapley algorithm, a man
advances on his preference list only when the woman he has proposed to is either matched with someone
more preferable or receives a proposal from a more preferable man. Whenever Gale-Shapley algorithm
reaches a perfect matching, it is a stable matching. For any arbitrary I (for example, a perfect matching
that is not stable), it is important to take blocking pairs in consideration as part of the forbidden predicate.

The proof of correctness of the algorithm ↵ is left as an exercise.
The standard Gale-Shapley algorithm is easily implemented with O(mw) time by keeping two data

structures. First, GS maintains a list of men who must advance on their preference list. We also maintain
mList, a list of men that are forbidden in the current proposal vector. Second, GS maintains an array
partner such that partner[q] returns the partner for woman q in the proposal vector G. If there is no
partner for q, then we use the value 0. These data structures are not su�cient for e�cient implementation
of our algorithm because we also need to quickly determine if any man i is forbidden. We maintain an
additional array mostPref such that mostPref [q] returns the most preferred match for woman q among
all proposals such that proposal to woman q by man i is for a choice less than or equal to G[i]. Note that
if the most preferred match for q is before G, then partner[q] may be zero even though mostPref [q] is
nonzero.

The implementation shown in Fig. 32.2 takes as input a stable marriage instance specified by mpref
(men preferences) and rank (women preferences), and the initial proposal vector I. Step 1 goes over all
proposals made in G or before G and computes the most preferred proposal for every woman q. It also
counts the number of unique women who have received proposals. If that number exceeds m, the algorithm
returns null. Step 2 goes over all men whose proposals are not the most preferred proposals and inserts
them in mList. All man i in mList satisfy forbidden(G, i). Step 3 advances G over proposals that are
forbidden. It takes out an element i from mList. It advances to the next choice of woman q. If q does not
have any proposal and proposing to her does increase numw beyond m, or if i is preferred over the most
preferred proposal for q so far, we have succeeded in removing i from mList. If q had a partner, then that
man is added to mList. If the inner while loop terminates without finding a suitable proposal for man i,
then the algorithm returns null. If the outer while loop terminates, we have that there is no i such that
forbidden(G, i) and therefore G is a stable marriage and it is returned.

The algorithm takes O(mw) time which reduces to standard O(n2) time complexity of Gale-Shapley
algorithm when both m and w are equal to n.

3.5.1 Additional Constraints on Stable Matchings

We now present an algorithm to find stable marriages that satisfy additional constraints. Due to Lemma
2.6, we can use LLP algorithm to find the least stable marriage satisfying these constraints. The following
lemma proves lattice-linearity of many such constraints.

Lemma 3.5 The following constraints are lattice-linear.

1. The regret of man i is at most that of the regret of man j.

2. Man i cannot be married to woman j.

3.5. ALGORITHM ↵: UPWARD TRAVERSAL 27

Algorithm Algorithm-Alpha: An Implementation of Algorithm ↵ with O(mn) complexity.

1 input: Stable marriage instance mpref and rank, an initial proposal vector I
2 output: the smallest stable marriage greater than or equal to I (if one exists)

3 mList: list of men initially empty; // men who need to advance
4 partner: array[1..n] of 0..m initially 0; //current partner for a woman
5 mostPref :array[1..n] of 0..m initially 0; // most preferred proposal until G
6 numw: int initially 0; // number of women who have received proposals until G

7 G := I;

8 // Step 1: initialize mostPref , numw
9 for i 2 [1..m] do

10 for k 2 [1..G[i]] do
11 q := mpref [i][k];
12 if (mostPref [q] = 0) then
13 mostPref [q] := i; numw := numw + 1;
14 else if (rank[q][i] < rank[q][mostPref [q]]) then
15 mostPref [q] := i;
16 if (numw > m) return null; // ”no stable matching exists”

17 // Step 2: initialize mList, partner
18 for i 2 [1..m] do
19 q := mpref [i][G[i]];
20 if (mostPref [q] 6= i) then
21 append i to mList;
22 else partner[q] = i;

23 // Step 3: Advance on elements from mList
24 while (mList 6= {})
25 i := first element removed from mList;
26 found := false;
27 while (not found and (G[i] < m))
28 G[i] := G[i] + 1; // try the next choice
29 q := mpref [i][G[i]]; // woman for that choice number
30 if (mostPref [q] = 0) then
31 numw := numw + 1;
32 if (numw > m) then return null; // ”no stable matching exists”
33 found := true;
34 mostPref [q] := i;
35 else if (rank[q][i] < rank[q][mostPref [q]]) then
36 found := true;
37 mostPref [q] := i;
38 if (partner[q] 6= 0) append partner[q] to mList;
39 partner[q] := i;
40 endwhile;
41 if (not found) return null; // ”no stable matching exists”
42 endwhile;
43 return G;

28 CHAPTER 3. THE STABLE MARRIAGE PROBLEM

3. The regret of man i is equal to that of man j.

Proof: Let B be the predicate that G is a stable marriage and it satisfies the corresponding additional
constraint.

1. Suppose that G is a stable marriage but it does not satisfy B. This means that regret of man i is more
than the regret of man j. In this case, we have forbidden(G, j), because unless G[j] is advanced, the
predicate cannot become true.

2. If ⇢(G, i) = j, then forbidden(G, i) holds.

3. This condition is a conjunction of two lattice-linear conditions of type in part (1).

3.5.2 Advantages of the LLP Algorithm

We now enumerate advantages of the LLP algorithm.

1. It gives us a more general algorithm. Instead of starting from the initial vector, we can start from
any vector and find a stable marriage greater than or equal to that vector, if one exists.

2. We can use the LLP algorithm for finding a stable marriage that satisfies additional constraint such
as the regret of man i is at most that of the regret of man j.

3. We can automatically deduce that the intersection of two stable marriages is also a stable marriage.

4. The LLP algorithm is useful in the context of parallel computing. If two men are forbidden, then
both of them can advance in parallel.

5. The LLP algorithm is also useful in the context of distributed computing. The man i may not have
the most recent information about man j. Even then, the algorithm will terminate with the stable
marriage that is the least in the proposal vector lattice.

3.6 Summary

The following table lists all the algorithms discussed in this chapter.

Problem Algorithm Parallel Time Work
Stable Marriage Gale-Shapley O(n2) O(n2)
Stable Marriage LLP critical path length O(n2)
Stable Marriage ↵ critical path length O(m2)

3.7 Bibliographic Remarks

The stable matching problem has been studied extensively with multiple books and survey articles devoted on the
topic [GI89, Knu97, RS92, IM08].

Chapter 4

Parallel Reduce Algorithms

4.1 Introduction

In this chapter we illustrate some basic ideas in designing parallel algorithms by considering the example of computing
the maximum of an array of size n. These ideas would also be applicable to other operators such as computing the
sum, the product, the OR, and AND of a boolean array.

A sequential algorithm can solve this problem in O(n) time and O(n) work. We now show various parallel
algorithms to solve the same problem. For simplicity, we assume that n is a power of 2, i.e., n = 2k. We also assume
that all elements in the array are distinct. Exercise 2 requires you to extend these algorithms when entries may not
be distinct. We first present a simple algorithm that takes O(log n) time and O(n) work on an EREW PRAM. We
then consider a CRCW PRAM and present an algorithm that takes O(log log n) time and O(n) work.

4.2 Reduce

Suppose that we have an array A of size n and we want to compute the sum of all numbers. A simple for loop
achieves this in O(n) time. We now show a parallel algorithm that computes the sum in O(log n) time assuming
that we have n cores. The algorithm is best viewed as constructing a binary tree such that leaves of the tree consists
of the elements of the array and the internal nodes correspond to the sum of its children. Fig. 4.1 shows such a
tree. Clearly, the root of the tree has the sum of the entire array. Since the tree is binary, the height of the tree is
O(log n). Therefore, if the parallel algorithm can compute a level of the tree in parallel in O(1) time, then the entire
algorithm also has the time complexity of O(log n).

Algorithm ParReduce: A Parallel Algorithm for Reduce

1 input: A: array[1..n] of int // Assume n is a power of 2 for simplicity
2 for h = 1 to log n do
3 forall i in parallel do

4 if (i  n/2h) then
5 A[i] := A[2i� 1] +A[2i]
6 return A[1]

Algorithm ParReduce uses h to indicate the level of the tree. In the first iteration h equals 1 and the partial
sums are stored in the first half of the array A. The entry A[i] stores the sum of entries A[2i� 1] and A[2i]. In the

29

30 CHAPTER 4. PARALLEL REDUCE ALGORITHMS

21

9

3

1 2

6

2 4

12

5

1 4

7

2 5

Figure 4.1: A Summation Tree

second iteration, we reduce the size of the array that stores partial sum by an additional factor of 2. After log n
iterations, the total sum is stored in A[1]. We note here that in the description of the algorithm we have the step
A[i] := A[2i � 1] + A[2i] which is executed by all eligible i in parallel. This step may entail both reads and writes
to the same memory location. For all such steps in the parallel algorithms, we follow the interpretation that all
processes first do all the reads of the shared memory (into the private registers of the processors). When all reads
are finished, then all writes are performed.

Table 4.1 shows values of A array after various values of h.

i 1 2 3 4 5 6 7 8
A 1 2 2 4 1 4 2 5

h = 1 3 6 5 7 1 4 2 5
h = 2 9 12 5 7 1 4 2 5
h = 3 21 12 5 7 1 4 2 5

Table 4.1: Entries during Execution of the Parallel Reduce Algorithm

The total time taken by this algorithm is O(log n) and the total number of comparisons made by this algorithm
is O(n). Ignoring for now the question of how various threads determine which comparison to make at what time
step, we see that the total amount of work done by all threads is O(n).

Whenever we design parallel algorithms, we should check if we require concurrent reads or concurrent writes by
multiple processors in any step. Assuming that each of the processor knows when to read the labels of its children
and when to write its own label, there is no conflict in computation and the algorithm can be implemented on a
EREW PRAM.

It is also important to consider the cost of a PRAM algorithm. The cost of an algorithm is simply the product
of the number of processors used by the algorithm and its time complexity. In this case, we are using n processors;
therefore, the cost of this algorithm is O(n log n).

4.3. ACCELERATED CASCADING TECHNIQUE 31

G[1]

G[2]

G[4]

A[1] A[2]

G[5]

A[3] A[4]

G[3]

G[6]

A[5] A[6]

G[7]

A[7] A[8]

Figure 4.2: A Summation Tree for LLP Reduce

4.3 Accelerated Cascading Technique

We now show a technique that combines two di↵erent algorithms to reduce the cost (and sometimes the work)
of many PRAM algorithms. Instead of applying the binary tree algorithm on the entire array of size n, we first
divide the array into O(n/ log n) blocks of O(log n). Also, we use only O(n/ log n) processors so that each block can
be assigned to a single processor. Now, each processor can compute the maximum of its block using a sequential
algorithm. Since this step can be performed in parallel for di↵erent blocks, this step takes O(log n) time with the
total cost of O(n/ log n ⇤ n) = O(n). Now we have O(n/ log n) numbers and we need to compute the maximum of
these numbers. At this point, we apply the binary tree based algorithm. It will take us O(log n) time with O(n/ log n)
processors. Hence, the total cost of the second step would only be O(n). Combining the time, the work and the cost
of each of the steps, we get T (n) = O(log n), W (n) = O(n), and C(n) = O(n).

It can be shown that O(log n) time is required on a EREW PRAM. Also, since the work matches that of a
sequential algorithm, we have an optimal work-time algorithm on EREW PRAM.

4.4 LLP-Reduce Algorithm

The parallel reduce algorithm has two disadvantages: it destroys the original input array and it requires that all
threads synchronize after each iteration of the outer for loop. We can take care of the first problem by making a copy
of the original array. Note that this step can be carried out in O(1) time with the number of cores equal to the size
of the array. We now show a LLP based algorithm to compute the sum that takes care of both of these problems.
We again assume that the array size of A is a power of 2 for simplicity. We would like to compute an array G of size
n � 1 such that G[1] contains the sum of the entire array, G[2] contains the sum of the first half of the array, G[3]
contains the sum of the second half of the array, and so on.

Fig. 4.2 shows the arrays G and A for n equal to 8. Note that for 1  j < n/2, the children of node G[j] are the
nodes G[2j] and G[2j+1]. For n/2  j < n, the children of nodes G[j] are the nodes A[2j�n+1] and A[2j�n+2].
Then, the least vector G that satisfies

Bsum(G) ⌘ (8j : 1  j < n/2 : G[j] � G[2j]+G[2j+1])^ (8j : n/2  j  n�1 : G[j] � A[2j�n+1]+A[2j�n+2])

is equal to the recursive sum. The array G[1..n/2� 1] contains the sum of the left and the right children which are
in G itself. The array range G[n/2..n� 1] contains the sum of elements of A viewed as the leaves of the tree.

The parallel algorithm LLP computes G in O(log n) time. Instead of using +, we can use any other associative
operator such as min or max.

Table 4.2 shows values of the array G after various values of t, the iteration number. For simplicity, we consider
a maximally parallel execution in which any entry that can change does so at any iteration. However, the final

32 CHAPTER 4. PARALLEL REDUCE ALGORITHMS

Algorithm LLP-Reduce: A Parallel LLP Algorithm for Reduce

1 Pj :
2 input: A: array[1..n] of int // Assume n � 2 is a power of 2 for simplicity
3 shared var: G: array[1..n� 1] of int
4 init: G[j] := �1

5 ensure: G[j] � G[2j] +G[2j + 1] if 1  j < n/2
6 ensure: G[j] � A[2j � n+ 1] +A[2j � n+ 2] if n/2  j < n

answer remains the same even if the execution is not maximally parallel. There is no synchronization required for
this algorithm.

i 1 2 3 4 5 6 7
G �1 �1 �1 �1 �1 �1 �1

t = 1 �1 �1 �1 3 6 5 7
t = 2 �1 9 12 3 6 5 7
t = 3 21 9 12 3 6 5 7

Table 4.2: Entries during A Maximally Parallel Execution of the LLP-Reduce Algorithm

Although our discussion was for the sum, it is clear that any associative operation such as the product, the min,
the max, or the boolean operator such as the AND, the OR, or the XOR can be used.

4.5 A Fast Parallel Common CRCW Algorithm with suboptimal work

We now give a faster algorithm on common CRCW PRAM. This algorithm requires O(n2) processors. We have a
boolean array isBiggest of size n which is initialized to true for all i. We use one processor for every distinct i and
j which allows us to compare every distinct A[i] and A[j] in one time step. The processor assigned to (i, j) writes
false on isBiggest[i] if the entry for A[j] is bigger than A[i]. Note that multiple writers may access isBiggest[i] in
one time step. However, all of them would be writing the common value false to that memory location. This step
assumes common CRCW PRAM.

Algorithm FindingBiggest: A Common CRCW Parallel Algorithm for Finding the Maximum

1 var isBiggest: array[1..n] of boolean;

2 forall i in parallel do:
3 isBiggest[i] := true;

4 forall i, j: i 6= j: in parallel do:
5 if (A[j] > A[i]) then isBiggest[i] := false;

6 forall i: in parallel do:
7 if isBiggest[i] then output (max = A[i]);

We have: T (n) = O(1), and W (n) = O(n2).

4.6. A DOUBLY LOGARITHMIC HEIGHT TREE COMMON CRCW ALGORITHM 33

4.6 A Doubly Logarithmic height tree common CRCW Algorithm

In binary trees we were comparing two labels using one processor and one time step. From the fast-parallel algorithm,
we know that we can find the maximum of

p
n nodes in O(1) time using n processors. Can we use this fast parallel

algorithm to increase the branching but reduce the height of the tree? For this section assume that n = 2k and
k = 2m. As a concrete example, let n = 256 = 28. Here k = 8 = 23. At the first level, we will have a branching of
16, i.e., the root would have 16 subtrees each of size 16. If we knew the maximum of each of the subtrees, then in
O(1) step we can compute the overall maximum in O(1) steps. This step will require 162 = 256 processors. Let us
now determine the way to compute the maximum of the subtree with 16 labels. Each of these subtrees would have 4
subtrees of size 4. Using 16 processors, we can compute maximum of this tree. Since there are 16 subtrees, we need
16 times 16 processors at the second level. Since the height of the tree is log log n, the total number of time steps is
O(log log n). At each step, we use n processors. This gives us:
T (n) = O(log log n)
W (n) = O(n log log n).

4.7 A Work-Optimal Common CRCW Algorithm with O(log log n) time

We now show that the previous algorithm that is not work optimal can be made work-optimal by the technique of
“cascading” multiple algorithms. Note that we have an additional factor of O(log log n) in the work. To eliminate
this factor, we first partition our array of size n into O(n/ log log n) blocks each of size O(log log n). If our array was
only of size O(n/ log log n) and we apply the doubly logarithmic height tree algorithm, we would have the desired
work complexity of O(n). So now we consider how to compute the maximum of a block of log log n numbers. Since
this block is small in size, we can compute the maximum using a single processor in O(log log n) time. Hence, the
entire algorithm is as follows:

Step 1: run sequential algorithm on each of the blocks of size O(log log n). This takes time equal to O(log log n),
and work equal to O(n). We now have an array of size n/ log log n.

Step 2: We now run the doubly logarithmic height tree algorithm. The total work is O(n), and the total time is
O(log log n).

When we combine the time complexity of the work complexity of these two steps, we get the desired time
complexity of O(log log n) and the work complexity of O(n).

4.8 Summary

Table 4.3 summarizes all the algorithms discussed in this chapter.

Algorithm Work Time PRAM

Sequential O(n) O(n)
Binary Tree Based O(n) O(log(n)) EREW

All-pair Comparison Algorithm O(n2) O(1) CRCW
Doubly Logarithmic Tree Algorithm O(n log(log(n))) O(log(log(n))) CRCW

Cascaded Algorithm O(n) O(log(log(n))) CRCW

Table 4.3: Time Complexity and Work Complexity of Computing Maximum

4.9 Problems

1. Generalize the Algorithm LLP-Reduce for all values of n (i.e., n may not be a power of 2).

34 CHAPTER 4. PARALLEL REDUCE ALGORITHMS

2. Suppose that an array does not have all elements that are distinct. Show how you can use any algorithm that
assumes distinct elements for computing the maximum to solve the problem when elements are not distinct.

3. Give work-optimal algorithms to compute OR of a boolean array on EREW and common CRCW PRAM.

4. Suppose that instead of PRAM you have a network of processors connected by a two dimensional square mesh.
Assuming that every hop on the network takes one unit of time, give an algorithm with O(

p
n) time complexity

to compute the maximum in the network.

5. Repeat the previous problem with the topology of a d-dimensional hypercube (i.e. n = 2d for some integer d).

4.10 Bibliographic Remarks

Parallel algorithms for computing maximum or minimum of an array are presented in most books on parallel com-
putation (e.g. [JáJ92]).

Chapter 5

Parallel Prefix Algorithms

5.1 Introduction

In this chapter we discuss the parallel-prefix operation. The parallel-prefix operation is also called scan and we will
use these terms interchangeably. The reduce operation applies an associative operation, such as the sum, the product,
the min or the max, to an array of size n to get an answer that corresponds to the sum, the product, the min or the
max of the entire array. The parallel-prefix operation computes the answer for all prefixes of the array.

This chapter is organized as follows. Section 5.2 gives two algorithms for the parallel-prefix operation. The first
algorithm requires O(n log n) work whereas the second algorithm requires O(n) work.

5.2 A Parallel Prefix Sum algorithm with O(n log n) work

Suppose that we have an array A of size n. We want to compute C, the sum of all possible prefixes of A, formally
defined as follows:

C[k] =
ikX

i=0

A[i]

For example, suppose A = [1, 4, 9, 16]. Then, C = [1, 5, 14, 30]. This operation called parallel prefix or scan
operation is a fundamental building block for many parallel algorithms.

There is an easy linear time sequential algorithm for this problem.

Algorithm SeqPrefix: A Sequential Algorithm for Prefix-Sum

1 for (int i = 0; i < n; i++)
2 C[i] := A[i]
3 for (int i = 1; i < n; i++)
4 C[i] := C[i� 1] +A[i]

This algorithm taken O(n) time and requires O(n) work.
The following parallel algorithm reduces the overall time by computing the sum in a binary tree like fashion

rather than one at a time as done by the sequential algorithm.
After every iteration of the second parallel for loop, C[i] holds sum of all A[k] such that i � 2d + 1  k  i for

any d. Table 5.1 shows values of C array after various values of d.

35

36 CHAPTER 5. PARALLEL PREFIX ALGORITHMS

Algorithm ParPrefix: A Parallel Algorithm for Prefix-Sum with O(n log n) work

1 forall i 2 [0, n� 1]: in parallel do
2 C[i] := A[i];
3 for (int d = 1; d < n; d = 2d)
4 forall i 2 [1, n� 1]: in parallel do
5 if (i� d � 0)
6 C[i] := C[i] + C[i� d];

A 3 2 4 2 1 3 5 2
C, d = 1 3 5 6 6 3 4 8 7
C, d = 2 3 5 9 11 9 10 11 11
C, d = 4 3 5 9 11 12 15 20 22

Table 5.1: Entries during Execution of the Parallel Prefix Algorithm

We note here that one needs to be careful in implementing the above high-level algorithm. There needs to be
proper synchronization of threads for reading and writing in-place. For example, the pseudo-code for implementing
parallel-prefix on a GPU is as follows. Observe that the for loop with index i is not in the pseudo-code. This is
because the code is executed by all processes Pi.

Algorithm ParPrefixGPU: A Parallel Prefix Algorithm on GPU with O(n log n) work

1 Pi::
2 C[i] := A[i];
3 for (int d = 1; d < n; d = d ⇤ 2) // in sequence
4 if (i � d) val = C[i� d];
5 barrier();

6 if (i � d) C[i] = C[i] + val;
7 barrier();
8 endfor;

This algorithm requires O(log n) time but is not work-optimal. It requires O(n log n) work whereas the sequential
algorithm requires only O(n) work. We now present a work-optimal algorithm for this problem.

5.3 A Work-Optimal Parallel Prefix Sum Algorithm

We now show an algorithm that computes parallel prefix with O(n) work. We give two versions of this algorithm.
First, we give a recursive version. We will use arrays indexed starting from 1 and assume that the input array has size
n that is a power of 2, i.e., let n = 2k for some integral k. An example of the recursive algorithm Recursive-ParPrefix
is shown in Table 5.2. We first take care of the base case when n equals 1. Otherwise, we copy the array A into B
such that the array B has the size that is half of the size of A and every two elements of A are added to one element
of B. We make the recursive call to parallel prefix of B, getting the result in array D. Once we have recursive
solution in D, we can compute the solution in C by doing a case analysis on index i.

Let us compute the time required by recursive parallel-prefix. In one parallel time step, the input size is reduced
by a factor of 2. Hence, the algorithm takes O(log n) time. To compute the total work required by the above

5.3. A WORK-OPTIMAL PARALLEL PREFIX SUM ALGORITHM 37

Algorithm Recursive-ParPrefix: A Recursive Parallel Prefix Algorithm with O(n) work

1 if (n = 1) then C[1] = A[1] else
2 for i := 1 to n/2 in parallel do
3 B[i] := A[2i� 1] +A[2i];

4 D := recursive-ParPrefix(B[1], B[2], ..., B[n/2]);

5 for i := 1 to n in parallel do
6 if (i = 1) then C[1] := A[1];
7 else if even(i) then C[i] := D[i/2]
8 else if odd(i) and (i > 1) then C[i] := D[i/2] +A[i]

A 1 2 3 4 5 6 7 8
B 3 7 11 15
D 3 10 21 36
C 1 3 6 10 15 21 28 36

Table 5.2: Example of a Recursive Scan
.

algorithm, we use the following recurrence relations.

W (n) = W (n/2) +O(n).

W (1) = O(1).

Therefore, W (n) = O(n).
We now show a non-recursive version of the algorithm which computes the exclusive scan of an array. The

inclusive scan of an array A returns for every index i, the sum of all entries before i including i, whereas the exclusive
scan returns the sum of all entries in prefix excluding itself. For example, Table 5.3 shows a simple inclusive and
exclusive scan of an array A.

Going from exclusive scan to inclusive parallel prefix sum can be performed in one parallel step.
The work-optimal algorithm can be viewed in a tree like fashion except that we require two sweeps of the tree

— one in the upward direction and one in the downward direction.

An example is shown below.

A = 01 02 03 04 05 06 07 08

Upward sweep
01 02 03 04 05 06 07 08

03 07 11 15

Input Array A 01 02 03 04 05 06 07 08
Inclusive Scan of A 01 03 06 10 15 21 28 36
Exclusive Scan of A 00 01 03 06 10 15 21 28

Table 5.3: Example of an Inclusive and Exclusive Scan
.

38 CHAPTER 5. PARALLEL PREFIX ALGORITHMS

Algorithm Blelloch-Scan: Blelloch’s Parallel Prefix Algorithm with O(n) work

1 forall i in [0, n� 1]: in parallel do
2 B[i] := A[i];

3 for h := 0 to log n� 1 do // upward sweep: reduce operation

4 forall i from 0 to n� 1 in steps of 2h+1 in parallel do

5 B[i+ 2h+1
� 1] := B[i+ 2h � 1] +B[i+ 2h+1

� 1];

6 B[n� 1] := 0;
7 for h := log n� 1 down to 0 do // downward sweep

8 forall i from 0 to n� 1 in steps of 2h+1 in parallel do

9 LeftV alue = B[i+ 2h � 1]; // store the value of the left child

10 B[i+ 2h � 1] = B[i+ 2h+1
� 1]; // Left child gets the value of this node

11 B[i+ 2h+1
� 1] = LeftV alue+B[i+ 2h+1

� 1]; // Right child gets the sum

10 26
36

The upward sweep can be understood in terms of the tree as follows. For any vertex v, we compute:

sum[v] = sum[L[v]] + sum[R[v]]

where L[v] and R[v] are the left and right children of v.
We now replace the root by 0 and start the downward sweep.

01 02 03 04 05 06 07 08
03 07 11 15

10 26
36
00

00 10
00 03 10 21

00 01 03 06 10 15 21 28

The downward sweep can be understood in terms of the tree as follows.

scan[L[v]] = scan[v]

scan[R[v]] = sum[L[v]] + scan[v]

Figure 5.1 shows the values computed using upward scan and the downward scan. The upward scan values are
shown inside circles and the downward scan values are shown outside circles.

We now show the correctness of the above procedure. We say that vertex x precedes vertex y if x appears before
y in the preorder traversal of the tree.

Theorem 5.1 After a complete down-sweep, each vertex of the tree contains the sum of all the leaf values that
precede it.

Proof: The proof is inductive from the root: we show that if a parent has the correct sum, both children must have
the correct sum. The root has no elements preceding it, so its value is the identity element which is zero for sum.

5.4. LLP BASED PARALLEL PREFIX-SUM 39

Figure 5.1: Blelloch Scan Algorithm applied to Parallel Prefix Puzzle

The left child of any vertex has exactly the same leaves preceding it as the vertex itself. This is because the
preorder traversal always visits the left child of a vertex immediately after the vertex. By the induction hypothesis,
the parent has the correct sum, so it need only copy this sum to the left child. The right child of any vertex has
two sets of leaves preceding it, the leaves preceding the parent, and the leaves at or below the left child. Therefore,
by adding the parent’s down-sweep value, which is correct by the induction hypothesis, and the left-child’s up-sweep
value, the right-child will contain the sum of all the leaves preceding it.

5.4 LLP based Parallel Prefix-Sum

Let A be an array of n numbers. Assume that n is a power of two for simplicity. We would like to compute parallel
(exclusive) prefix sum of A. We compute the parallel prefix sum in the array G using ideas in Blelloch scan. Our
LLP based implementation will use additional space but has less synchronization. Let the input array be A of size n.
When n is a power of 2, the summation tree of the reduce operation has n� 1 nodes. We create an additional array
S of size n� 1 that simulates the upward scan using Algorithm LLP-Reduce. We now use another LLP algorithm to
simulate the downward scan. We model the downward scan using an array G of size 2n�1 as follows. The first n�1
elements of the array compute the scan values for the intermediate nodes. The last n entries give us the required
values for exclusive scan. Similar to LLP Algorithm for Reduce, we use the indexing scheme of a perfect binary tree
such that for any node with index i, its left child is given by 2i, its right child by 2i + 1, and its parent by i/2 (for
non-root nodes).

The LLP algorithm initializes every element of G to �1. Each element G[j] is updated exactly once when the
forbidden predicate is true for index j. Since G[1] corresponds to the root of the tree for the downward scan, we set
G[1] to 0 as required by the first ensure clause of the LLP. The left child of any node is even and is updated by the
second ensure clause by copying the value of the parent. All the left children are characterized by their indices being
even and thus setting G[j] to G[j/2] copies the value of the parent. The right child of any node is updated by the
third and the fourth ensure clauses as the sum of the parent value and the S value for its left sibling. The fourth
clause is used for the last level of the tree when the sum of the subtree at that node is simply equal to A value.

40 CHAPTER 5. PARALLEL PREFIX ALGORITHMS

Algorithm LLPScan: A Parallel LLP Algorithm for Scan

1 Pj : Code for thread j
2 // Assume n is a power of 2 for simplicity
3 input: A: array[1..n] of int
4 S: array[1..n� 1] of int // summation tree

5 output:G:array[1..2n� 1] of int such that G[i] =
Pi�n

1 A[i� n] for i � n.
6 init: G[j] := �1

7 ensure: G[j] � 0 if j = 1
8 ensure: G[j] � G[j/2] if j is even
9 ensure: G[j] � S[j � 1] +G[j/2] if j is odd and j < n

10 ensure: G[j] � A[j � n] +G[j/2] if j is odd and j > n

5.5 Applications

Although our description of the parallel prefix operation was based on the sum operator, it is applicable to any
associative operation such as the product, min, or max. Many problems on arrays can be solved using the parallel
prefix operation one or more times. We give some examples below.

• Array Compaction: Suppose we are given an array A of integers. Our problem is to create another array B
consisting of only those elements that specify certain given filter predicate. As a simple example, we may want
the array B to contain only those entries in A that are divisible by 5. If for every entry in A that is divisible
by 5, we could determine the number of entries that appear in A before this entry that are also divisible by 5,
we are done. We can store that entry at the right index in B. To solve this problem, In O(1) time we create
an additional array C such that C[j] equals 1 if A[j] satisfies the filter predicate and 0 otherwise. The parallel
prefix of the array C gives us the index where the entries of A should go in the array B.

• Sparse Dot Product: Suppose that we have a vector A of size n such that most entries are zero. Instead of
storing the entire vector, we can store a sparse vector B such that B[i] corresponds to ith nonzero entry and
it stores (j, A[j]) where j is the index of ith nonzero entry. Suppose that we want to compute the dot product
of A with a dense vector v. With n processors, we can easily compute the dot product in O(log n) time. If we
had a sparse matrix A, and we wanted to computes Av, then by computing dot product of di↵erent rows of A
with v in parallel, we can compute Av also in O(log n) time.

5.6 Summary

The following table lists all the algorithms discussed in this chapter.

Problem Algorithm Parallel Time Work
Parallel Prefix Hillis-Steele O(log n) O(n log n)
Parallel Prefix Recursive O(log n) O(n)
Parallel Prefix Blelloch O(log n) O(n)
Parallel Prefix LLP O(log n) O(n)

5.7 Problems

1. One can frequently combine a slow algorithm but work-optimal algorithm with a fast algorithm algorithm but
not work-optimal algorithm to get best of both the worlds. This technique is called accelerated cascading.

5.8. BIBLIOGRAPHIC REMARKS 41

Show that one can apply accelerated cascading technique to parallel prefix computation to get a parallel
algorithm that is work-optimal. (Hint: Divide the array into n/ log n segments each of size O(log n)).

2. Suppose that we have a mesh of size
p
n rows and

p
n columns. An array of size n is distributed on this

mesh in a row-major form. Design an algorithm such that every node has the parallel prefix at the end of the
algorithm. Your algorithm should not take more than O(

p
n) time and O(n3/2) cost.

3. Consider a mesh of size n1/3 rows and n1/3 columns. An array of size n is distributed on this mesh in a
row-major form such that each node has n1/3 elements. Give a work optimal algorithm that takes O(n1/3)
time.

4. Give an algorithm to compute prefix-sum on a hypercube of n nodes with O(log n) time complexity. What is
the work complexity of your algorithm?

5. Give a parallel-prefix algorithm to divide the array into two parts: the part with odd entries followed by the
part with even entries.

6. Give a parallel Quicksort algorithm based on parallel-prefix that works as follows. The procedure takes an
array and divides into three parts: all elements less than the pivot, all elements equal to the pivot and all
elements greater than the pivot. It can then recurse on each of the subparts.

7. Give a parallel Insertsort algorithm based on parallel-prefix.

8. Give a work-optimal parallel algorithm with O(log n) time complexity for the Maximum Subsequence Problem.

5.8 Bibliographic Remarks

Parallel Prefix algorithms are presented in most books on parallel computation (e.g. [JáJ92]). The reader will find
many applications of the parallel prefix computation in [Ble90]. In particular, the work-optimal iterative parallel
prefix algorithm is from https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf.

42 CHAPTER 5. PARALLEL PREFIX ALGORITHMS

Chapter 6

Sorting Algorithms

6.1 Introduction

In this chapter we consider some basic ideas in designing algorithms which are crucially based on the notion of order
on a set of elements. We will assume that the order is total, i.e., for every two elements x and y either x is less than
or equal to y or y is less than or equal to x in that order.

6.2 Searching

Before we discuss sorting algorithms, let us consider the problem of searching an element in a sorted array. Suppose
that we are given a sorted array A of size n and an element x. We are interested in finding if there exists an i such
that A[i] equals x. On a single processor, we can accomplish this using binary search in O(log n) time. The idea is
to compare x with the middle element of the array. If the middle element equals x, we are done otherwise the range
of indices of A which can possibly have x is divided by a factor of 2.

It is easy to generalize this divide-and-conquer strategy for p processors by dividing the range of indices into
contiguous p+ 1 ranges. In the second time step the range of indices is reduced by a factor of p+ 1. Therefore, we
have log n/ log(p+ 1) parallel algorithm on p processors. In an unsorted array, search would require n/p time in the
worst case. This di↵erence in search time motivates sorting of arrays used in software systems.

6.3 Sorting Algorithms based on Swapping Consecutive Entries

Let A be an array of distinct integers. Our goal is to sort the array. This problem at face does not appear to be
searching for a satisfying element in a lattice. However, with a little e↵ort it can be viewed from that angle. Observe
that the problem of sorting the array is same as finding an permutation ⇡ such that on applying that permutation
to the array, we get a sorted array. For example, if the input array is [45, 12, 15], then we know that the permutation
[3, 1, 2] will sort the array once the entry i in array A goes to ⇡(i). There are many di↵erent ways we can represent
a permutation. Let us define the inversion number of any entry i as the number of entries less than i that appear
to the right of i in the permutation. Thus, the permutation [3, 1, 2] can be equivalently written using the concept of
inversions as [2, 0, 0] because there are two numbers less than 3 that appear to the right of 3, zero numbers less than
1 that appear to the right of 2 and zero numbers less than 2 that appear to the right of 2. The reader can verify
that there is a 1-1 correspondence between the set of inversions and the set of permutations.

We now consider the set of all inversions. Note that the last entry on an inversion table is always zero because
there cannot be any inversion after the last entry in the array. The first entry can have 0 . . . n � 1 inversions, the

43

44 CHAPTER 6. SORTING ALGORITHMS

second entry can have 0 . . . n� 2 inversions, and so on. Thus, the total number of inversion vectors possible are n!.
We define an order between two inversion vectors base on component-wise order. The set of all inversions forms a
finite distributive lattice under this order. The bottom element is the zero vector which corresponds to the identity
permutation. When the zero inversion vector is applied to any array, we get back the same array. Our goal is to find
the inversion vector which on its application gives us the sorted array. G is initialized to the zero inversion vector.
Let us formalize the definition of a feasible inversion vector. Suppose that we are at an inversion vector G such that
it is less than the unique inversion vector that sorts A. When G is applied to A, the array is not sorted. This means
that there exists an index i such that still has nonzero inversions, i.e, there exists j > i such that A[j] < A[i]. It is
clear that any inversion vector in which the number of inversions for i is not increased cannot result in the sorted
array. To check for forbidden indices, instead of checking for all inversions, we will only check for immediate inversion
in our first algorithm. If A[i] > A[i+ 1] on applying G, then clearly i is forbidden in G. Swapping A[i] and A[i+ 1]
will advance G vector by incrementing G[i].

Instead of first finding the inversion vector and then applying it, we will continue to apply inversions as we
traverse the lattice searching for the optimal inversion vector. In fact, we will not even maintain the inversion vector;
we will only keep the e↵ect of applying the inversion vector to the original array.

Algorithm LLP-Sort1: A High-Level LLP Sorting algorithm based on immediate swaps

1 Pj : Code for thread j
2 var A: array[1..n] of int; // input array
3 G: array[1..n] of 0..n� 1 initially G[i] = 0 for all i// abstract variable: just for correctness

4 forbidden(j): A[j] > A[j + 1] // G[j] is missing at least one inversion
5 advance(j): swap(A[j], A[j + 1]) // increment G[j]

Observe that in this algorithm, in a parallel setting, it is important that the statement swap(A[j], A[j + 1]) is
executed atomically whenever A[j] > A[j +1]. Algorithm LLP-Sort1 is a non-deterministic algorithm since multiple
j may be forbidden at any point. One can create many instances of deterministic algorithms with di↵erent order of
evaluating forbidden indices.

Algorithm Bubble-Sort: Bubble Sort B

1 var A: array[1..n] of int; // input array
2 found: boolean;

3 repeat
4 found := false;
5 for j := 1 to n� 1 do
6 if A[j] > A[j + 1]
7 found := true;
8 swap(A[j], A[j + 1])
9 until (found = false);

Algorithm Bubble-Sort checks forbidden indices from 1 to n� 1 in round robin order until no forbidden index is
found. We leave it as an exercise to show that the repeat loop is executed at most n times giving us the sequential
time complexity of O(n2).

Another schedule is to increase the size of the sorted array one at a time. Suppose that A[1..i�1] is sorted. This
means that the inversion vector is zero vector for A[1..i � 1]. We now consider the array A[1..i]. Since there is at
most one entry added at the end, the inversion number for any entry can increase by at most one. We simply have
to check for inversion with respect to the new entry.

6.3. SORTING ALGORITHMS BASED ON SWAPPING CONSECUTIVE ENTRIES 45

Algorithm Insertion-Sort: Insertion Sort B

1 var A: array[1..n] of int; // input array

2 for i := 1 to n do
3 // Assuming that A[1..i� 1] is sorted, ensure that A[1..i] is sorted
4 for j := i� 1 to 1 do
5 if A[j] > A[j + 1]
6 swap(A[j], A[j + 1])

The time complexity is clearly O(n2) due to nested for loops. We leave it for the reader to show how the second
for loop can be cut short.

We now adapt Algorithm LLP-Sort1 for parallel execution. In particular, we saw that the algorithm required
atomicity of checking for the forbidden predicate and swaps. We can avoid this expensive synchronization by
scheduling the forbidden indices as follows. In the first phase only odd indices check for the forbidden predicate
and swap with the right entry if necessary. In the second phase only even indices carry out this operation. These
phases are executed alternatively until there is no forbidden index left. This algorithm, called Odd-Even Sort, is
similar to the sequential bubble sort, in that it is based on swapping out of order entries. It is shown in Algorithm
OddEven-Sort.

Algorithm OddEven-Sort: Odd-Even Sort B

1 var A: array[1..n] of int; // input array

2 repeat
3 found := false;
4 forall odd(j), j 2 [1..n� 1] in parallel do
5 if (A[j] > A[j + 1])
6 found := true;
7 swap(A[j], A[j + 1])
8 forall even(j), j 2 [1..n� 1 in parallel do
9 if (A[j] > A[j + 1])

10 found := true;
11 swap(A[j], A[j + 1])
12 until (¬found);

It is easy to see that the repeat loop is executed at most n times. Hence, the algorithm takes O(n) time and
O(n2) work. An example is shown below.

8 1 4 6 9 5 2 7

all odd entries do swaps in parallel
1 8 4 6 5 9 2 7

all even entries do swaps in parallel
1 4 8 5 6 2 9 7

all odd entries do swaps in parallel
1 4 5 8 2 6 7 9

46 CHAPTER 6. SORTING ALGORITHMS

all even entries do swaps in parallel
1 4 5 2 8 6 7 9

all odd entries do swaps in parallel
1 4 2 5 6 8 7 9

all even entries do swaps in parallel
1 2 4 5 6 7 8 9

6.4 Merge Sort

Merge Sort is the classic example of divide-and-conquer method of designing algorithms. To sort an array, A, assume
that the left-half and the right-half of the arrays are sorted. Then we are simply left with the task of merging these
two sorted halves. How do we sort the left and the right halves? By using recursion with the base case when the
halves have only single elements and are already sorted. So, it is su�cient to consider the following problem: we
have two sorted arrays B and C, each of size n. We would like to merge them into another array D such that D is
sorted.

Algorithm MergeSort: MergeSort

1 MergeSort(A, low, high)
2 if low < high then
3 mid = b(lo+ high)/2c ;
4 B := MergeSort(A, low, mid) in parallel with C := MergeSort(A, mid + 1, high)
5 return MergeTwo(B,C);
6 else return A;

It is easy to design a sequential algorithm that merges them two arrays B and C into D. We simply keep two
indices i and j in arrays B and C, respectively. At any step of the algorithm, we compare B[i] and C[j]. If B[i] is
smaller than C[j], then we copy B[i] into the next available slot in D and advance index i. If C[j] is smaller than
B[i], then we copy C[j] into the next available slot in D and advance index j. This algorithm takes O(n) time.

We now devise a parallel algorithm. For simplicity, we assume that all elements are unique. This algorithm
is based on finding the location in D where each element of B and C will appear. If every element in B and C
determines its rank in parallel, it can write that value at the correct location in D.

Define the rank of any element x as the number of elements in B and C that are less than x, i.e., rank(B[i], D)
= the number of elements in B less than B[i] + rank(B[i], C). The first number is simply i (for arrays that start
with index 0). The second number can be determined using binary search in O(log(n)) time. So the overall time is:
T (n) = O(1) + O(log(n)). This algorithm requires concurrent reads but no concurrent writes, so a CREW PRAM
is su�cient. However, this algorithm is not work-optimal since it requires n processors doing O(log(n)) work, or
W (n) = O(n ⇤ log(n)). We leave the construction of a work-optimal algorithm for merging two arrays as an exercise.

6.5 Quicksort

Quicksort (due to C.A.R. Hoare) is one of the fastest sorting algorithms on sequential computers. It has O(n2) worst
case time complexity but requires O(n log n) time on average. The algorithm is based on first partitioning the array
into two parts based on a pivot. Once we have the property that the lower half of the array is less than or equal

6.5. QUICKSORT 47

Algorithm MergeTwo: Merging Two arrays

1 var
2 B: array[1..m] of int; // input array
3 C: array[1..n] of int; // input array
4 D: array[1..m+ n] of int; // output array

5 int i, j, k := 0, 0, 0;
6 while (i < m) and (j < n) do
7 if (B[i] < C[j]) D[k] = B[i]; i++;
8 else D[k] = C[i]; j ++;
9 k ++;

10 while (i < m) D[k] = B[i]; i++; k ++;
11 while (j < n) D[k] = C[j]; j ++; k ++;

to pivot and the upper half of the array has elements greater than pivot, then we can recurse on each half. Since
sorting on each half is independent, they can be sorted in parallel.

We describe a slight variant below in which we partition the array into three parts. The method QuickSort takes
array A, low and high as input parameters. The part of the array this method sorts is given by

{A[i] | low  i < high}

Note that when low equals high, the range is empty.
The method partition returns two indices p and q. All elements in the range [lo . . . p) are strictly less than the

pivot, in the range [p . . . q) are equal to the pivot and in the range [q . . . high) are greater than the pivot. We only
need to recurse on the first and the third part. Depending upon the pivot, any (or both!) of the first and the third
parts may be empty.

Algorithm QuickSort: QuickSort

1 procedure QuickSort(A, low, high)
2 if low < high then
3 pivot := choosePivot()
4 (p,q) := partition(A, pivot, low, high)
5 QuickSort(A, low, p) in parallel with QuickSort(A, q, high)

There are multiple methods to choose a pivot to partition the array A. Choosing an element at random is an easy
method that will result in approximately equal sized partitions on average. This gives us the average case sequential
time complexity of O(n log n). In the worst case, however, the recursion may reduce the range by only 1, resulting
in the sequential time compexity of O(n2).

Once we have a pivot, how do we partition the array into three parts: the first partition with all elements less
than the pivot, the second one with all elements equal to the pivot and the the third partition with elements strictly
greater than the pivot. Algorithm Three-Way-Partition is due to Dijkstra who called this problem as the Dutch
National Flag problem. The while loop maintains the invariant that entries [low . . . p) are less than pivot, [p . . . q)
are equal to pivot and [k . . . high) are greater than pivot. The algorithm initializes p and q to low, therefore the first
two ranges are empty initially and trivially satisfies the invariants. It also initializes k to high making the range
[k . . . high) empty and thereby ensuring that the invariant holds initially. The range [q..k) corresponds to the initial
input and initially contains entries that may be less than, equal to, or greater than the pivot. In each iteration of
the while loop, this range is reduced by one by either increasing q or decreasing k. Depending upon the comparison
between A[q] and the pivot, the entry A[q] is placed in the appropriate range maintaining the invariants.

48 CHAPTER 6. SORTING ALGORITHMS

Algorithm Three-Way-Partition: Three-Way-Partition

1 function Partition(A, pivot, low, high) returns (int, int)
2 k := high;
3 if k > low then
4 p := low
5 q := low
6 while q < k do
7 if A[q] < pivot then
8 swap(A[p], A[q])
9 p := p+ 1; q := q + 1;

10 else if (A[q] > pivot) then
11 k := k � 1
12 swap(A[q], A[k])
13 else
14 q := q + 1;
15 return (p, q)

It is easy to verify that the algorithm takes O(n) time when the range has n elements.
We now turn our attention to a parallel version for QuickSort. It is clear that we can run QuickSort in parallel

for each partition. How can we partition the array in parallel? If additional space is not an issue, then we can use
the parallel scan operation to determine the appropriate index for each entry.

6.6 Bitonic Sort

Bitonic sort is a parallel sorting algorithm. One of its nice properties is that it is an oblivious sorting algorithm. A
sorting algorithm is oblivious if its control flow is independent of the actual data. For example, an oblivious sorting
algorithm will take the same steps if the input array is already sorted! Independence of the control flow from the
actual data is nice because there is the execution of each thread is deterministic and hence it is easy to map the
control flow onto a GPU (and to build hardware for sorting). Oblivious sorting algorithms can be built using a
network of comparators. A comparator can be considered as a block with two inputs x and y and two outputs lo
and hi such that lo is minimum of x and y and hi is the maximum of x and y. Let us denote the comparator as a
function that returns a pair (lo, hi). For example, comparator(3, 5) will return (3, 5) and comparator(5, 3) will also
return (3, 5). Pictorially, a comparator can be shown as

x -----o------- lo = min(x,y)
|

y -----o------- hi = max(x,y)

By combining comparators, we can create a sorting network that produces a sorted output from any input.
Odd-even sort that we studied earlier is also an oblivious sorting algorithm. The sorting network for odd-even

sort for eight elements is shown in Fig. 6.1.
Before we give the details of bionic sort, we describe an important principle, called zero-one principle, that is

quite useful in analysis of algorithms based on sorting networks. The zero-one principle says that if a sorting network
gives correct output on all inputs that consist of only zeroes and ones, then that sorting network will give correct
output on all inputs. If we can show zero-one principle, then analyzing sorting networks becomes much simpler;
we only need to consider binary inputs. To prove the zero-one principle, we analyze how a comparator works when
instead of presenting input x = (x1, x2), it is presented with input (f(x1), f(x2)). Let f be any monotonic function,

6.6. BITONIC SORT 49

Figure 6.1: Sorting Network for Odd-Even Sort

i.e., x1  x2 implies that f(x1)  f(x2). It is clear that f distributes over min and max, i.e.,
f(min(x1, x2)) = min(f(x1), f(x2)), and
f(max(x1, x2)) = max(f(x1), f(x2)).

Hence, when (f(x1), f(x2)) is presented to a comparator, it outputs f(min(x1, x2)) and f(max(x1, x2)).
By applying induction on the number of comparators, it can be shown that when the input sequence x is applied

and any wire in the network has value xi, then it has the value f(xi) when the input sequence f(x) is applied.

Figure 6.2: Replacing inputs of a sorting network

Armed with the above observation, we show the zero-one principle. Suppose that a network sorts all zero-one
sequences correctly but does not sort a sequence of arbitrary numbers. Let that sequence be (x1, x2, . . . xn) such that
the network puts xi higher than xj even though xi is smaller than xj . We now show a zero-one sequence in which
the network gives wrong answers. We use a monotonic function f that maps every element in x to 0 if it is less than
or equal to xi and 1 otherwise. Since xi is placed higher than xj , from our earlier observation f(xi) is placed higher
than f(xj) which is incorrect because 0 is placed higher than 1. Hence, we conclude that there is no sequence of
arbitrary elements that is sorted incorrectly by the network.

Bitonic sort is in some sense similar to Mergesort, in that it also merges two sorted sequences. The merge in
bitonic sort, called bitonic-merge, has a very simple parallel implementation.

Let us begin with the definition of a bitonic sequence. A bitonic sequence is more conveniently viewed as a
circular array. We define a range A[l . . . h] in a circular array A as follows. If l is less than or equal to h, then this
range equals

[A[i]|l  i  h].

50 CHAPTER 6. SORTING ALGORITHMS

Figure 6.3: Bitonic Merge Lemma

If l is greater than h, then this range equals [A[i]|l  i  n� 1] concatenated with [A[i]|0  i  h]. In other words,
we traverse all the indices going from l to h by incrementing the index by 1 modulo n. For example, if A = [2, 4, 6, 8],
then A[2..3] = [6, 8], but A[3..2] = [8, 2, 4, 6].

A sequence of numbers A of size n is called ascending if it is sorted in ascending order,i.e.,

8i : 0  i < n� 1 : A[i]  A[i+ 1]

It is descending if
8i : 0  i < n� 1 : A[i] � A[i+ 1]

Definition 6.1 (Bitonic Sequence) A sequence A[0], A[1], . . . A[n � 1] is bitonic if there exists two indices l and
h such that A[l..h] is an ascending sequence and A[h..l] is a descending sequence.

It can be easily verified that A[l] corresponds to a minimum value in array A and A[h] corresponds to a maximum
value.

For example, A = [4, 3, 1, 5, 8, 9, 7, 4] is a bitonic sequence because A[2..5] = [1, 5, 8, 9] is ascending and A[5..2] =
[9, 7, 4, 4, 3, 1] is descending. Array B = [5, 6, 7, 6, 5, 4, 3, 2] is also bitonic because B[7..2] = [2, 5, 6, 7] is ascending
and B[2..7] = [7, 6, 5, 4, 3, 2] is descending. It can be verified that the sequence [2, 4, 9, 3, 7] is not bitonic.

We now state a crucial property of bitonic sequences.

Lemma 6.2 (Bitonic Merge Lemma) Let A be a bitonic sequence of length 2n. Consider B and C defined as
follows. B = [min(A[i], A[i + n]|0  i < n] C = [max(A[i], A[i + n]|0  i < n] Then B and C are bitonic and all
values in B are less than or equal to all values in C.

Proof: We apply the zero-one principle to prove this Lemma. Note that all bitonic sequences of zeroes and ones are
either of the form 0k1l0m or 1k0l1m for some k, l,m � 0. By doing case analysis of such sequences the lemma can
be shown.

Fig. 6.3 shows the process of splitting an array A of size 2n such that the first half is ascending and the second
half is descending and then taking componentwise minimum B and maximum C. It is easy to see visually that B
and C are biotonic and all values in B are less than or equal to all values in C.

We now give the algorithm for bitonic sort. As mentioned earlier, the structure of the algorithm is very similar
to that of a Mergesort. In mergesort, two halves of the arrays are recursively sorted and then merged. In Bitonic
sort, we use bitonic merge which is more easier to parallelize using a comparator network. In Bitonic sort, instead
of sorting both halves in the same direction (ascending or descending), we sort the first half in the ascending order
and the second half in the descending order. The resulting array is a bitonic sequence and we apply bitonic merge
to it. Bitonic merge splits the array into two parts and does pairwise comparison according to Lemma 6.2. As a
consequence of the lemma, all the elements in the lower half are less than the elements in the upper half. Furthermore,
each of the halves are bitonic and we can call bitonic merge recursively on each half.

An example of bitonic sorting network for four inputs is shown in Fig. 6.4 and for eight inputs in Fig. 6.5.

6.6. BITONIC SORT 51

Algorithm BitonicSort: Bitonic Sort

1 procedure bitonicSort(int low, int n, boolean isAscending)
2 // Assume that n is a power of 2
3 begin
4 if (n > 1)
5 int m = n/2;
6 bitonicSort(lo,m, true) bitonicSort(lo+m,m, false);
7 bitonicMerge(lo, n, isAscending);
8 end

9 procedure bitonicMerge(int low, int n, boolean isAscending)
10 begin
11 if (n > 1)
12 int m = n/2;
13 for (int i = low; i < low +m; i++) in parallel do
14 int j = i+m;
15 if ((A[i] > A[j]) and isAscending) swap(A[i], A[j]);
16 else if ((A[i] < A[j]) and ¬isAscending) swap(A[i], A[j]);
17 bitonicMerge(lo,m, isAscending) bitonicMerge(lo+m,m, isAscending)
18 end

Figure 6.4: Example of a Bitonic Sorting network on four inputs.

52 CHAPTER 6. SORTING ALGORITHMS

Figure 6.5: Example of a Bitonic Sort on eight inputs.

6.7 BitonicSort Complexity Analysis

BitonicSort algorithm recursively calls BitonicSort(L) and BitonicSort(R) on the left half L and right-half R. Biton-
icSort(L) and BitonicSort(R) can be done in parallel. BitonicMerge first does n/2 comparisons in parallel. It then
recursively calls bitonicMerge on both halves. Hence, it takes O(log n) time. We can now calculate T (n), parallel
time, for bitonic sort. We have,
T (n) = T (n/2) +O(log(n))
T (1) = O(1)
Therefore, T (n) = T (n/2) + log(n) = O(log2n).

The algorithm uses O(n log2 n) comparators and therefore its work complexity is also O(n log2 n).

6.8 Radix Sort

All our sorting algorithms so far had been based on comparison. Any comparison-based sorting algorithm must do
at least O(n log n) work. We now show an algorithm that works when keys for sorting have fixed number of digits
(in any radix r, generally a power of 2). In our examples below, we will simply use digits as they easy for us humans.
Suppose that we need to sort the following list. [85, 72, 94, 45, 13, 12, 61, 81]. Here, our keys have two digits. The idea
of radix sort is to sort numbers, one digit at a time. When sorting on a single digit, we use a simple linear time sort
by exploiting that there are only r possibilities for each digit. On getting any number, we can simply add it to the
pile associated with that value. The number of passes we will make on the array is equal to the number of digits. It
may appear that it is easier to sort starting from the most significant digit (msd) first. If we employed that strategy,
we would get [13, 12, 45, 61, 72, 85, 81, 94] after the first pass. The second pass would consist of sorting all subarrays
with the same msd and we would get the array [12, 13, 45, 61, 72, 81, 85, 94]. The problem with this approach is that
we are forced to maintain di↵erent subarrays - one for each digit after the first pass. With every subsequent pass,
it gets even more cumbersome. Hence, somewhat counterintuitively, we will employ the least significant digit first
strategy. After the first pass, [61, 81, 72, 12, 13, 94, 85, 45]. We do not need to remember any sublists that are created
during the first pass. Now, we sort on the second least significant digit. We need to ensure that if two numbers have
the same fdigit, then their order is preserved. In other words, we require out sorting algorithms at each pass to be

6.9. SUMMARY 53

stable. After the second pass, we get the sorted array [12, 13, 45, 61, 72, 81, 85, 94]. Since 12 appeared before 13 after
the first pass, the order is preserved after the second pass.

Thus, the sequential algorithm is simply stated as follows:

for i := 1 to k do // the key has k digits
use stable sort for Array A on digit i

The time complexity of this algorithm is O(kn) assuming that the stable sort is accomplished in O(n) time.
To parallelize the algorithm, we focus on the step that takes O(n) time. In the above example, suppose that we

are sorting on the least significant digit. If somehow for each number we could determine the correct location of the
number after the first pass, we are done. We need to split the array into 10 parts — one part for each digit. There
are no numbers with 0 digit. In one scan operations we can determine the correct locations for 61 and 81. We can
now scan for the second digit 2 and put all those numbers in their correct locations. Continuing in this manner we
can finish the pass on lsd. Note that each scan (prefix-sum) operation can be done in O(log n) time.

6.9 Summary

The following table lists all the algorithms discussed in this chapter.

Problem Algorithm Parallel Time Work
Sorting Odd-Even Sort O(n) O(n2)
Sorting Bitonic Sort O(log2 n) O(n log2 n)

6.10 Problems

1. Implement the binary search algorithm discussed in Section 6.2.

2. Show that any algorithm that is based on comparison of consecutive entries must take O(n2) comparisons in
the worst case.

3. Give an algorithm to merge k sorted arrays of size n into a single sorted array.

4. We have partitioned the array into three parts in the QuickSort algorithm. Give a version of the QuickSort
algorithm in which the array is partitioned only in two parts: entries that are less than pivot and the entries
that are greater than or equal to the pivot.

5. Give a randomized version of Quicksort in which the pivot is chosen at random. Give the expected running
time of your algorithm.

6. Give an algorithm to sort an array of the dates using RadixSort.

6.11 Bibliographic Remarks

Quicksort is a divide-and-conquer algorithm that was invented by Tony Hoare in 1962 [Hoa61] It is one of the
most widely used sorting algorithms and has a time complexity of O(n log n) in the average case. Merge sort is
another divide-and-conquer algorithm that was first described by John von Neumann in 1945. Radix sort is a
non-comparison-based sorting algorithm that was first described by Herman Hollerith in 1887.

54 CHAPTER 6. SORTING ALGORITHMS

Chapter 7

List Ranking and Pointer Jumping
Algorithms

7.1 Introduction

In Chapters 4 and 5, we covered parallel algorithms on arrays via reduce and parallel-prefix. The advantage of arrays
is that any thread can access any element in the array in constant time. In many applications, we have a linked
list of threads such that each thread has some data item. The linked list does not provide us random access to its
elements. Can we still do operations such as computing the maximum in O(log n) time where the length of the
linked list is n? In this chapter, we introduce the technique of pointer jumping that can be applied to linked lists
with significant reduction in parallel time complexity. We also consider the case when we have a circular linked list
and we are interested in coloring the nodes with at most three colors. We discuss a parallel algorithm that takes
O(log⇤ n) parallel time.

7.2 Pointer Jumping

Suppose that we have a linked list implemented as follows. Each node i in the list has a field next[i] that returns
the next node in the linked list. If the element i is the last node in the linked list, then next[i] returns �1. Our
goal is to return an array R that returns the distance of any element from the last node in the linked list. In the
Pointer-Jumping, we first copy the next pointers in an array Q and then use a method called pointer jumping to
reduce the length of the longest path in the link structure. The pointer jumping is accomplished by setting Q[i]
to Q[Q[i]] for every node i. The algorithm assumes that all nodes execute each iteration of the while loop in a
synchronous manner.

An execution of the algorithm is shown in Fig. 7.1.
The algorithm satisfies the following invariants. The variable Q[i] always points to a node that is reachable from

node i (and to �1 if no node is reachable from i). Initially, Q[i] points to the next node in the linked list except
for the tail node and thus satisfies the invariant. The variable R[i] is equal to the length of the path from i to Q[i]
in the linked list. Initially, R[i] equals 1 for all nodes except the tail node and therefore satisfies the invariant. In
any iteration of the while loop, we consider a node i such that Q[i] and Q[Q[i]] are not null (i.e., if Q[i] is viewed as
the parent of node i, then node i has a grandparent). By setting Q[i] to Q[Q[i]], we maintain the invariant on Q.
Furthermore, by setting R[i] to R[i] +R[Q[i]], we maintain the invariant on R because the length of the path from i
to Q[Q[i]] is the sum of the lengths of the paths from i to Q[i] and from Q[i] to Q[Q[i]].

55

56 CHAPTER 7. LIST RANKING AND POINTER JUMPING ALGORITHMS

Algorithm Pointer-Jumping: Finding the distance from the tail of the linked list.

1 Pi::
2 input: next[i]: pointer to the next node in the linked list;
3 var: Q[i]: pointer to a node;
4 R[i]: int; // distance to the tail of the linked list

5 forall i in parallel do:
6 Q[i] := next[i];

7 forall i in parallel do:
8 if (Q[i] == �1) then R[i] := 0 else R[i] := 1;

9 forall i in parallel do:
10 while (Q[i] 6= �1) and (Q[Q[i]] 6= �1) do
11 // evaluate the second conjunct only if Q[i] 6= �1
12 R[i] := R[i] +R[Q[i]];
13 Q[i] := Q[Q[i]];

i: 0 1 2 3 4 5

next: 3 4 5 1 -1 0

R: 1 1 1 1 0 1

Q: 3 4 5 1 -1 0

links: 2 --> 5 --> 0 --> 3 --> 1 --> 4

iteration 1:

i: 0 1 2 3 4 5

R: 2 1 2 2 0 2

Q: 1 4 0 4 -1 3

links: 2 --> 0 --> 1 ---> 4 and 5 --> 3 --> 4

iteration 2:

i: 0 1 2 3 4 5

R: 3 1 4 2 0 4

Q: 4 4 1 4 -1 4

links: 2 --> 1 ---> 4 0 --> 4 5 --> 4 3 --> 4

iteration 3:

i: 0 1 2 3 4 5

R: 3 1 5 2 0 4

Q: 4 4 4 4 -1 4

links: 2 --> 4 1 ---> 4 0 --> 4 5 --> 4 3 --> 4

Figure 7.1: Execution of Pointer Jumping Algorithm

7.2. POINTER JUMPING 57

4

1

3

0

5

2

(a)

4

3

5

1

0

2

(b)

4

3 5 1

2

0

(c)

4

3 5 1 2 0

(d)

Figure 7.2: Pointer Jumping (a) Initial Tree (b) Tree after first iteration (c) Tree after second iteration (d)
Star tree after the third iteration

58 CHAPTER 7. LIST RANKING AND POINTER JUMPING ALGORITHMS

When there is no node i such that it has a grandparent, we have that every node except the tail node is pointing
to the tail node (a reachable node that is pointing to null). From the invariant on R, we get that R[i] equals the
length of the path from i to the tail node.

This algorithm takes O(log n) time where n is the size of the linked list. It does O(n log n) work and is therefore
not work-optimal. It is possible to reduce the work to O(n) using list contraction. We will not discuss those
algorithms and refer the interested reader to [JáJ92].

Although the algorithm was given for the linked list , it is easily verified that the idea of pointer jumping is
applicable to any rooted tree where a node points to its parent in the tree. In case of a linked list, we had a
degenerate tree. The algorithm return the distance of any node from the root.

Let us also verify that we need only CREW PRAM for implementation of this algorithm. In any time step a
node i writes only to its own R[i] and Q[i]. Hence, CREW PRAM is su�cient to implement the pointer jumping
algorithm.

7.3 Applications of Pointer Jumping

We now show that the pointer jumping technique can be applied to many problems.

• Returning the maximum value in a linked list: Let us consider the problem mentioned in the introduction of
this Chapter. Suppose that we have a linked list of numbers and we would like to compute the maximum of
these numbers. Each node i has a natural number num[i] stored at i.

Algorithm Max-Pointer-Jumping: Finding the Maximum in a linked list.

1 Pi::
2 input: next[i]: pointer to the next node in the linked list;
3 var: Q[i]: pointer to a node;
4 R[i]: int; // distance to the tail of the linked list

5 forall i in parallel do:
6 Q[i] := next[i];
7 R[i] = num[i];

8 forall i in parallel do:
9 while (Q[i] 6= �1) and (Q[Q[i]] 6= �1) do

10 // evaluate the second conjunct only if Q[i] 6= �1
11 R[i] := max(R[i], R[Q[i]]);
12 Q[i] := Q[Q[i]];

The head node now has the maximum and can write that value on a shared variable.

• Converting a linked list into an array: In our original problem, we had computed the distance of any node
from the tail of the linked list. Let us suppose that we are given a linked list and would like to convert into
an array. If the space for the array is allocated, then every thread can compute the index in which the entry
in the linked list needs to be written. Observe that once we have an array, we can use parallel-prefix to solve
many problems.

This technique returns the array in the reversed order. We leave it to the reader to compute the array that
has values stored in the same order as the linked list.

7.4. LLP ALGORITHM FOR LIST RANKING 59

7.4 LLP Algorithm for List Ranking

In this section we show how List Ranking algorithm can be viewed as LLP Algorithm. We state the problem as
follows. We are given a tree rooted at vertex r as input. Each node i other than the root points to another node. The
root node r points to null. Our goal is to determine the distance of every node from the root. We view this as the
search problem for an integer valued vector G that satisfies a certain feasibility predicate. There is one component
in G for every node other than the root. G[i].dist is initialized to 1 as no node can have distance less than 1 from the
root. However, this vector G may not be feasible. Associated with every i, we also keep G[i].next which indicates
a node that can be reached in G[i].dist hops. Initially, G[i].next is simply the parent of i in the tree. We define
B(G) as 8i : G[i].next = r. Thus, any node j is forbidden in G if G[j].next 6= r. To advance G, we set G[j].dist
to G[j].dist+G[G[j].next].dist and G[j].next to G[G[j].next].next. The resulting algorithm LLP-ListRank returns
only when for every j, G[j].next equals r. The execution time of the algorithm is crucially dependent on the order
in which the forbidden vertices are advanced. If all vertices that are forbidden are advanced in parallel, then the
algorithm takes O(log n) time in the worst case.

Algorithm LLP-ListRank: A Parallel LLP Algorithm for List Ranking

1 input: parent: array[1..n] of int
2 var: G: array[1..n� 1] of {dist, next};
3 Pj : Code for thread j
4 init: G[j].dist := 1;G[j].next := parent[j]
5 forbidden: G[j].next 6= r
6 advance: G[j].dist := G[j].dist+G[G[j].next].dist;
7 G[j].next := G[G[j].next].next;

7.5 A Randomized Algorithm for List Ranking

Note that the list ranking problem is very similar to the parallel prefix sum problem. For the parallel prefix sum
problem, we showed an optimal parallel algorithm by reducing the problem of computing prefix sum of n elements
to that of n/2 elements at the even positions in the array. This reduction was done in one parallel step. Since we
now have a linked list instead of array, it is not easy for an element to determine that it is in the even position in
the list in constant time. To get around this problem, we reduce the problem of list ranking to that of ranking in a
contracted list. Note that in the parallel prefix problem, we can think of all even elements as forming the contracted
list. The odd elements did not do any work. Once the even elements had the solution to the parallel prefix problem,
the odd elements used those values. Instead of deleting odd positions, it is su�cient to delete any positions so long as
the predecessor of these positions are not deleted. A simple randomized algorithm to achieve this is as follows. Each
element in the list flips a coin. We delete any element that flips a head and its predecessor flips a tail. It is easy to see
that two consecutive elements can never be selected to be removed. The probability that a node survives is at most
3/4 in any iteration. After t � 2 log4/3 n iterations, the probability that a node survives is at most 1/n2. By union
bound on the probability, we get that after O(log n) iterations, the probability that any node survives is at most
1/n. Therefore, with high probability (at least 1� 1/n) the algorithm will terminate in O(log n) steps. The amount
of work done by any element is equal to the number of iterations it survives. This is equal to

P
i
i ⇤ (3/4)i = O(1).

Hence, the total expected work is O(n).

7.6 Vertex Coloring in a Ring

Suppose that we have a circular linked list of n nodes. We would like to color the nodes in the linked list so that
adjacent vertices do not have the same color. It is desirable to use as few colors as possible. If there are odd number

60 CHAPTER 7. LIST RANKING AND POINTER JUMPING ALGORITHMS

of nodes in the circle with 3 or more nodes, then we would need three colors. By sequentially traversing the nodes in
the cycle, this task can be accomplished in O(n) time. How can we do this in parallel? We first show that given any
valid coloring with greater than 6 colors, the nodes can be assigned another set of colors such that the number of
colors in the new set is significantly reduced. Assume that initially all nodes have valid coloring. For example, each
node could initially have di↵erent color by simply using its unique identifier. The following parallel step accomplishes
the reduction in the number of colors.

Algorithm Par-VertexColoring: A Parallel Algorithm for Vertex Coloring in a Ring

1 input: n nodes arranged in a cycle such that next[i] gives the next node for node i
2 A coloring c of vertices such that for all i: c[i] di↵ers form c[next[i]]
3 output: Another valid coloring d with fewer colors
4 forall nodes i in parallel do
5 let k be the least significant bit such that c[i] and c[next[i]] di↵er

6 d[i] := 2 ⇤ k+ the kth least significant bit in c[i]

Consider a circular linked list (12, 9, 13, 1, 3) where the node with 3 points back to the node with 12. The
execution of the algorithm on this set of nodes is shown below.

node c k d
12 1100 0 0
9 1001 2 4
13 1101 2 5
1 0001 1 2
3 0011 0 1

The algorithm gives a valid coloring. Suppose that d[i] = d[next[i]]. This means that the corresponding least
significant bit k for i and next[i] must be the same. By our algorithm for defining d, this would imply that kth bit
for i and next[i] would also be same. This contradicts the definition of k.

The number of color reduces to O(log n) after every iteration so long as the initial number of colors is greater
than 6. Hence in O(log⇤ n) iterations, we can reduce the colors to at most 6, where log⇤(n) is the minimum number
of times the log function needs to be applied to n to get a number at most 1. Formally, let log(i)(n) be the log
function iterated i times. Then,

log⇤(n) = min{j | log(j)(n)  1}

We can now reduce the number of colors to 3 as follows. We first replace all 30s in parallel by a number from
0, 1, 2. Every node can choose a color di↵erent from its predecessor and the successor. We then replace all 40s and
finally all 50s. These actions correspond to only three parallel steps. The algorithm takes O(n log⇤ n) work because n
processors take O(log⇤ n) time. Therefore the algorithm is not work-optimal but close to work-optimal since log⇤(n)
is a very slowly growing function.

7.7 Summary

The following table lists all the algorithms discussed in this chapter.

Problem Algorithm Parallel Time Work
List Ranking Pointer Jumping O(log n) O(n log n)
List Ranking LLP O(log n) O(n log n)
Vertex Coloring Par-Vertex Coloring O(log⇤ n) O(n log⇤ n)

7.8. PROBLEMS 61

7.8 Problems

1. Show that the number of iterations of the list ranking algorithm is O(log n) if the length of the linked list is n.

2. Given a linked list such that each thread has reference to a node in the linked list of integers, give a parallel
algorithm to determine the total number of even numbers in the linked list.

3. Given a linked list such that each thread has reference to a node in the linked list of integers, give a parallel
algorithm to determine the total number of times the integer z appears in the linked list.

4. Give a parallel algorithm to compute the su�x sums for all nodes in a linked list.

7.9 Bibliographic Remarks

Reader will find a detailed description of list ranking algorithms in [JáJ92] and [LB00].

62 CHAPTER 7. LIST RANKING AND POINTER JUMPING ALGORITHMS

Chapter 8

Basic Graph Algorithms

8.1 Introduction

Graph theory has many practical applications in a variety of fields, including computer science, operations research,
social sciences, and biology, Graphs come in numerous varieties. They may be directed or undirected. They may
be simple or with loops and parallel edges. They may be weighted or unweighted. They may be acyclic or not.
For example, when modeling a transportation networks, the nodes may represent important milestones in a city. A
directed edge may represent an one-way street and an undirected edge may represent a street that can be traversed
in either direction. The weights may represent the distance between the nodes.

In this chapter we cover some basic traversal algorithms in a simple directed graph. Section 8.2 gives a parallel
LLP algorithm to traverse a graph. Section 8.3 gives a parallel LLP algorithm to construct a breadth-first-search
(BFS) tree from a graph given a source vertex. Section 8.4 gives a parallel LLP algorithm to topologically sort a
directed acyclic graph. Section 8.5 gives an LLP algorithm to find connected components in an undirected graph.
Section 8.6 gives a faster LLP algorithm based on pointer jumping.

8.2 General Traversal in a Graph

Given a graph (V,E) and a source vertex v0, our goal is to find all the vertices that are reachable from v0. We can
view this problem as searching for a subset of vertices of W ✓ V such that v0 2 W and 8x, y : (x 2 W) ^ (x, y) 2 E
implies that y 2 W . We model W using a boolean array G such that vi 2 W i↵ G[i] is true.

0 1

2

3

Figure 8.1: A directed graph

63

64 CHAPTER 8. BASIC GRAPH ALGORITHMS

The following LLP algorithm computes the least G (or the smallest W) that satisfies

Btraverse ⌘ G[0] ^ (8(vi, vj) 2 E : G[j] � G[i])

The predicate B requires v0 to be reachable from v0 and for all edges (vi, vj) if vi is reachable then so is vj . It can
be verified that Btraverse is a lattice-linear predicate. It is a conjunctive predicate and the first conjunct is a local
predicate. We only need to show that the second conjunct is also lattice-linear. If the second conjunct is false, then
there exists (vi, vj) 2 E such that G[i] equals 1 and G[j] equals 0. In this case, unless G[j] is also set to 1, the
predicate can never become true. Therefore, we get the following LLP algorithm.

Algorithm LLP-Traversal: Finding the reachable set of vertices.

1 Process Pj

2 input: pre(j): list of 1..n;
3 init(j): if (j = 0) G[j] := 1 else G[j] := 0;
4 forbidden(j): 9i : G[i] ^ ((vi, vj) 2 E) ^ ¬G[j]
5 advance(j): G[j] := 1;

LLP Algorithm is non-deterministic and one could use di↵erent strategies to compute forbidden indices. For
example, one can maintain a set S that contains frontier vertices – set of vertices that are reachable but their
outgoing edges have not been explored yet. Algorithm LLP-Traversal-Sequential gives a sequential implementation
of the LLP algorithm with S as the set of frontier vertices. By using di↵erent strategies for removing an index from
S, we can traverse the graph in di↵erent order. If S is maintained as a queue, the removal corresponds to removing
from the head of the queue, and the addition corresponds to appending at the end of the queue, we traverse the graph
in a breadth-first manner. If S is maintained as a stack such that removal corresponds to pop() and the addition
corresponds to push() method on the stack, then we traverse the graph in a depth-first search manner.

Algorithm LLP-Traversal-Sequential: Finding the reachable set of vertices rom v0 in a Di-
rected Graph

1 var G: vector of int initially 8i : G[i] = 0;
2 S: set of indices;

3 S.add(0); // add 0 as initial forbidden index
4 while ¬S.empty() do
5 j := S.removeAny(G); // remove any index from S
6 forall (k 2 dep(j))
7 if (G[k] = 0) // k is forbidden
8 G[k] := 1; // advance on k
9 add k to S;

10 endwhile;
11 return G; // the optimal solution

8.3 Breadth First Search Tree in a Directed Graph

In the previous section, we saw an algorithm to compute the set of reachable vertices from a given vertex. Now
suppose that we are interested in computing the breadth-first-search tree rooted at any given node s. We first define
the search lattice to be the set of distance vectors where G[i] is the distance of vertex i from s. We maintain this

8.4. TOPOLOGICAL SORT OF A DIRECTED ACYCLIC GRAPH 65

vector only for vertices other than s since the distance of s to itself is zero. Initially, G[i] equals 1 for all i. We
define G to be feasible if

Bbfs(G) ⌘ 8j 6= s : 8i 2 pre(j) : G[j]  G[i] + 1.

Our goal is to maximize G subject to Bbfs. Let j be such that it has the largest value of all finite G[j]. Since
G[j] is being maximized, it can never be less than 1 + min{G[i] | i 2 pre(j)} for the optimal solution. Otherwise,
we can increase G[j] to 1 +min{G[i] | i 2 pre(j)} and still keep the feasibility. Continuing in this manner, it is easy
to show that in the optimal solution G[j] = 1 + min{G[i] | i 2 pre(j)}. Bbfs is a lattice-linear predicate. The index
j is forbidden if 9i 2 pre(j) : G[j] > G[i] + 1. Checking whether j is forbidden requires O(n) work. We can reduce
it to O(1) as follows. If we know that initially G[j]  G[i] + 1 for all i 2 pre(j), then we need to check for j to be
forbidden with respect to i only when some specific i is changed.

We will also maintain a variable parent that gives the parent of any node x in the graph. If x is reachable from
s, then by following the parent pointer from x to s, we will get a shortest path from s to x.

We now apply Algorithm LLP-SEQ.

Algorithm BFS-Traversal-Sequential: Sequential Algorithm BFS to find the Breadth-First-
Search Tree in a Directed Graph

1 var G: vector of int initially 8i : G[i] = maxint;
2 parent: vector of int initially 8i : parent[i] = �1; // null parent
3 S: queue of indices;

4 S.add(s); // add s as initial forbidden index
5 G[s] := 0;
6 while ¬S.empty() do
7 j := S.removeF irst(); // remove an index from S
8 forall (k 2 dep(j)):
9 if (G[k] > G[j] + 1) // k is forbidden

10 G[k] := G[j] + 1;
11 parent[k] := j;
12 append k to S; //update forbidden
13 endforall;
14 endwhile;
15 return G; // the optimal solution

We show that any vertex is inserted into S at most once if S is maintained as a queue. The algorithm takes O(e)
time because any edge (i, j) is processed at most once. A parallel version is shown in Fig. BFS-Traversal-Parallel.

8.4 Topological Sort of a Directed Acyclic Graph

Suppose that we are given a directed graph with no cycles. Such a graph can be topologically sorted (or “layered”)
as follows. Every vertex in the graph can be assigned a number such that if there is a directed edge from u to v, then
the number assigned to u is strictly less than that of v. An application of this concept is the prerequisite structure
of courses in a University and the integer assigned to the course corresponds to the semester in which the course is
taken by a student.

Algorithm shown in Fig. LLP-TopologicalSort gives the topological sort of a directed graph. We use the boolean
array fixed to mark the vertices whose level number in G are final. Initially, all vertices that do not have any
predecessors are fixed and labeled with 0. A vertex is forbidden if it is not fixed and all its predecessors are fixed.
Whenever a vertex j is forbidden, we mark its level as 1 more than any of its predecessors.

66 CHAPTER 8. BASIC GRAPH ALGORITHMS

Algorithm BFS-Traversal-Parallel: Parallel Algorithm BFS to find the Breadth-First-Search
Tree in a Directed Graph

1 var G: vector of int initially 8i : G[i] = maxint;
2 parent: vector of int initially 8i : parent[i] = �1; // null parent
3 S, T : set of indices initially {};

4 S.add(s); // add s as initial forbidden index
5 G[s] := 0;
6 while ¬S.empty() do
7 T := {};
8 forall-parallel (j 2 S) ^ (k 2 dep(j)):
9 if (G[k] > G[j] + 1) // k is forbidden

10 G[k] := G[j] + 1;
11 parent[k] := j;
12 add k to T ; //update forbidden
13 endforall;
14 S := T ;
15 endwhile;
16 return G; // the optimal solution

Algorithm LLP-TopologicalSort: Topological Sort of a Directed Acyclic Graph.

1 input: pre(j): list of 1..n;
2 init(j): G[j] := 0;
3 if pre(j) = {} then fixed := true else fixed[j] := false;
4 forbidden(j): (fixed[j] = false) ^ 8i 2 pre(j) : fixed[i]
5 advance(j): G[j] := maxi2pre(j)G[i] + 1; fixed[j] := true;

8.5. CONNECTED COMPONENTS IN AN UNDIRECTED GRAPH: SLOW ALGORITHM 67

3 4 5 9

8

7

6 10

1 2

Figure 8.2: An undirected graph

In the above algorithm, G[j] gives the length of the longest path from any initial vertex to j. In many applications,
we are interested in coming up with a total order on all vertices such that for all edges (i, j), G[i] is strictly less than
G[j]. The reader is invited to modify LLP-TopologicalSort for such applications.

Algorithm LLP-TopologicalSort gives us the least integral labels satisfying that for all edges (i, j), G[i] is strictly
less than G[j].

8.5 Connected Components in an Undirected Graph: Slow Algorithm

We are given an undirected graph (V,E) on n vertices numbered 1 . . . n. Our goal is to label each vertex with the i
with G[i] such that G[i] is the largest numbered vertex in the component to which i belongs. A vector G is defined
to be feasible if

(8i : G[i] � i) ^ (8(i, j) 2 E : G[i] � G[j])

We consider the lattice of n dimensional vectors with natural  relation on the vectors. We first claim that

Lemma 8.1 Bcomp(G) ⌘ (8i : G[i] � i) ^ (8(i, j) 2 E : G[i] � G[j]) is a lattice linear predicate.

Proof: We show that each of the conjuncts is lattice linear. The first conjunct (8i : G[i] � i) is lattice linear because
it is a conjunction of local predicates. The second conjunct (8(i, j) 2 E : G[i] � G[j]) is lattice linear because if there
exists (i, j) 2 E such that G[i] < G[j], then unless G[i] is advanced to G[j], the predicate Bcomp can never become
true.

Lemma 8.2 The least vector G in the lattice that satisfies Bcomp gives us the labeling such that G[i] is the largest
numbered vertex in the component to which i belongs.

Proof: Use induction on the distance of i from the largest numbered vertex in its component.

By applying Lattice-Linear Predicate method, we get the Algorithm SlowComponents. We use n threads in the
algorithm, one for each vertex j, responsible to update G[j]. Every thread j initializes G[j] to j. If any thread j
finds that there exists i such that i and j are adjacent and G[j] is less than G[i], then it updates its component to
G[i].

First, it is easy to verify that the algorithm SlowComponents maintains the invariant that G[i] = j implies that
i and j are in the same connected components. Initially, the invariant holds because G[j] is set to j. Any update to
G[j] is to some G[i] such that i is adjacent to j. By induction, G[i] is in the same connected component as i and
because i is connected to j, the invariant continues to hold for G[j]. Conversely, because LLP algorithm returns the

68 CHAPTER 8. BASIC GRAPH ALGORITHMS

Algorithm SlowComponents: Algorithm SlowComponent to find all the connected compo-
nents of an undirected graph.

1 input: adj(j): list of 1..n;//adjacency list of vertex j
2 init: G[j] := j;
3 ensure: G[j] � max{G[i] | i 2 adj(j)}

least vector that satisfies Bcomp, we get that the algorithm terminates with G[i] as the largest numbered vertex in
the component to which i belongs on account of Lemma 8.2.

Let us analyze the time complexity of the above algorithm in a synchronous model in which every step consists
of a thread j determining whether it is forbidden, and then advancing to the maximum G[i] such that (i, j) 2 E.
The algorithm may require as many as O(n) steps in the worst case when nodes are arranged in a long chain with
the largest node at one end of the chain.

8.6 Connected Components: A Faster Algorithm

We now show the application of pointer jumping technique to this problem.
We show an LLP algorithm that uses pointer jumping. In this algorithm, we use the notion of prioritized

forbidden function. In many situations, an index may be forbidden due to multiple reasons. Determining whether an
index is forbidden requires some work and it makes sense to first compute the forbidden functions that are easy to
compute. The forbidden function in Algorithm SlowComponents requires a node to scan all its adjacent neighbors.
If we view G[i] as the parent of i, then it is clear that G[i] should also be greater than or equal to G[G[i]]. Checking
violation of this condition is much simpler that scanning all adjacent neighbors. This step can be formalized as
ensure G[j] � G[G[j]].

Instead of using G as our state vector we use more user-friendly name parent as the state vector. Then, the
above step can be implemented as follows:
while (9j : parent[j] < parent[parent[j]])

for all j 2 V in parallel do
parent[j] := parent[parent[j]]

If the parent pointers form a rooted tree, then the pointer jumping technique reduces the height of the tree by
making every node point to its grandparent in one time step. In O(log n) iterations of the while loop every parent
pointer would be equal to the grandparent pointer.

Combining the predicate corresponding to pointer-jumping with the predicate that updates the parent pointer
with the largest parent pointer in the neighborhood of any node, we get the algorithm LLP-FastComponents.

Algorithm LLP-FastComponents: Finding all the connected components of an undirected
graph.

1 input: adj(j): list of 1..n;//adjacency list of vertex j
2 init: parent[j] := j;
3 ensure(1): 8i : parent[i] � parent[parent[i]]
4 ensure(2): 8i : parent[i] � max{parent[j] | (8(i, j) 2 E}

The algorithm has two ensure statements. The first ensure statement guarantees that node i has its parent equal
to its grandparent. The second ensure statement guarantees that node i has its parent pointer at least as big as its
neighbors. This statement alone would have been enough to find the largest label in a component. However, adding
the first ensure statement speeds up the process.

8.7. SUMMARY 69

Our implementation of the algorithm will execute the first ensure statement until it is globally true. In a
synchronous model, this step will take O(log n) parallel time. When the first ensure statement is met, the directed
graph created from parent pointer can be viewed as a collection of rooted stars. Every rooted star is part of the
same components. However, nodes in the same components may belong to di↵erent rooted stars. The second ensure
statement merges these stars. If there is no edge across rooted stars, then we are done and every rooted star is a
component by itself. Otherwise, every rooted star computes the largest parent pointer known to any node in the
rooted star and point to it. We can view each rooted star as a supervertex. Two vertices are in the same supervertex
if their parents are the same. Once we have computed the largest parent known to a supervertex, if the new parent
pointer discovered is bigger than the earlier root, then this tree merges to another tree. Otherwise, this rooted tree
does not join any other rooted tree. We show that the number of rooted stars reduce by a factor of two in every two
such steps. If there is any edge from this rooted star i to another rooted star j, then there are three cases:

1. If parent[i] is less than parent[j], then the star i joins the star j.

2. If parent[j] is less than parent[i] and parent[i] is the largest parent pointer known to star j, then star j joins
star i.

3. If parent[j] is less than parent[i] but parent[i] is not the largest parent pointer known to star j, then star j
joins some other star k that has bigger parent pointer than star i. In this case, we know that whenever we
scan parents of the neighbors next time star i will discover a bigger star and join that star.

From the above analysis, we get that the number of rooted stars go down by a factor of 2 in at most two steps of
scanning neighbors of supervertices.

Whenever, we merge rooted stars, we get rooted trees and we can apply the pointer-jumping again. The algorithm
terminates when no rooted star can be merged with any other rooted star. At that point, every rooted star corresponds
to a component of the graph and the required labeling is given by the parent pointer.

Algorithm FastComponents gives the entire algorithm. It initializes parent node of every node i as itself (line
4). Thus, initially every node is a rooted star by itself. It has a while loop that checks for the forbidden condition
that there exists an edge between two nodes with di↵erent parent (line 5) If there is no such edge, then we are done
and every rooted star corresponds to a component. Otherwise, every node computes the largest parent that it or one
of its neighbor knows (line 8). Once, every vertex has computed this value, we merge the rooted stars by making
the root point to the largest parent pointer known by the supervertex. This operation will merge rooted star to the
biggest rooted star know to it and create rooted trees. We can then do pointer jumping to create new rooted stars
and go back to the while loop.

It consists of O(log n) iterations such that each iteration takes O(log n) time giving us the time complexity of
O(log2 n).

We now give an example of the execution of the algorithm on the graph shown in Fig. 8.2. It is easy to see
visually that there are two connected components in this graph.

8.7 Summary

The following table lists all the algorithms discussed in this chapter.

Problem Algorithm Parallel Time Work
Breadth-First Search LLP critical path length O(m+ n)
Topological Sort LLP critical path length O(m+ n)
Components Slow LLP O(n) O(m+ n)
Components Fast LLP O(log2 n) O(m+ n)

8.8 Problems

1. Algorithm LLP-TopologicalSort gives a level number G[i] for each vertex i such that for any edge (i, j), we have
that G[i] is strictly less than G[j]. Modify the algorithm to generate a total order on all vertices. (Hint: An

70 CHAPTER 8. BASIC GRAPH ALGORITHMS

Algorithm FastComponents: Finding Connected Components

1 Input: Undirected Graph: (V,E).
2 Output: Labeling of vertices by the component id
3 var
4 parent: array[1..n] of 0..n initially all 8i : parent[i] = i;

5 while (9(v, w) 2 E : parent[v] < parent[w])
6 // Step 1: Compute vmax for every vertex
7 forall v 2 V in parallel do
8 vmax[v] := max{parent[w] | such that (v, w) 2 E _ (w = v)}

9 // Step 2: Make the parent of v as the largest vmax in its neighborhood
10 forall v 2 V in parallel do
11 if v = parent[v] then //v is the root of the star
12 parent[v] = max{vmax[u]|parent[v] = parent[u]}

13 // Step 3: Convert every rooted tree into a rooted star
14 while (9j : parent[j] 6= parent[parent[j]])
15 for all v 2 V in parallel do
16 parent[v] := parent[parent[v]]

17 endwhile

1:2 2:2

3:4 4:5 5:9 9:9

8:9

7:9

6:10 10:10

(a)

3

5

9

4

8

10

7 6 1

2

(b)

3

9

5 4 8

10

7 6 1

2

(c)

Figure 8.3: (a) vmax for every node in Fig. 8.2 . (b) Pointing to largest vmax to get Rooted-trees (c)
Rooted-stars at the end of first iteration.

8.9. BIBLIOGRAPHIC REMARKS 71

implementation trick is as follows. Whenever a vertex j becomes fixed, we can remove it from the predecessor
set of all vertices and a vertex can be enumerated whenever its predecessor list is empty.)

2. Algorithm LLP-TopologicalSort gives us the least integral labels satisfying that for all edges (i, j), G[i] is
strictly less than G[j]. Such a property is possible only for acyclic graphs. Modify the algorithm to output
“error” whenever there is a cycle in the input graph.

8.9 Bibliographic Remarks

The reader is referred to [CLRS01] for basic graph algorithms.

72 CHAPTER 8. BASIC GRAPH ALGORITHMS

Chapter 9

The Shortest Path Problem

9.1 Introduction

The single source shortest path (SSSP) problem has wide applications in transportation, networking and many other
fields. The problem takes as input a weighted directed graph with n vertices and e edges. We are required to find
cost[x], the minimum cost of a path from the source vertex v0 to all other vertices x where the cost of a path is defined
as the sum of edge weights along that path. Dijkstra’s algorithm (or one of its variants) is the most popular single
source shortest path algorithm used in practice. In this chapter, we first describe Dijkstra’s algorithm in Section 9.2.
We then formulate the shortest path problem as searching for an appropriate element in a lattice and derive an LLP
algorithm for the shortest path in Section 9.3.

We then consider the constrained version of the shortest path algorithm in Section ??. Dijkstra’s algorithm and
the LLP algorithm assume that all edge weights are positive. Section 9.5 derives Johnson’s algorithm from LLP to
convert the problem of a graph with negative weights (but no negative cost cycle) to a problem with non-negative
weights. Section 9.6 derives Bellman-Ford algorithm from LLP. Bellman-Ford algorithm works on any graph so long
as there are no negative cost cycles.

Note that there are multiple parallel algorithms on undirected graphs which are not only e�cient in terms of
time but also in terms of the work. The situation is di↵erent for the directed graphs. Many of the problems in the
directed graph require reachability. All the time-e�cient parallel algorithms for reachability su↵er from transitive-
closure bottleneck. The transitive closure bottleneck refers to the problem that the polylog algorithms require a
large number of processors making the parallel algorithm work ine�cient (and thus impractical). In this chapter, we
cover the problem of computing transitive closure of a matrix. This problem can be solved fast using the technique
of repeated squaring. The same technique is applicable to solve all pair shortest path algorithm. However, these
algorithms are far from being work-e�cient. In any case, it is important to study these parallel algorithms to
appreciate the transitive closure bottleneck.

Section 9.7 starts with an algorithm for matrix multiplication. Section 9.8 considers the problem of computing
transitive closure of a binary matrix. Section 9.9 extends this problem to nonbinary matrices by viewing it as a
computation of the cost of shortest path for all pairs of vertices.

9.2 Dijkstra’s Algorithm

We consider a directed weighted graph (V,E,w) where V is the set of vertices, E is the set of directed edges and
w is a map from the set of edges to positive reals (see Fig. 9.1(a) for a running example). To avoid trivialities, we
assume that the graph is loop-free and every vertex x, except the source vertex v0, has at least one incoming edge.

73

74 CHAPTER 9. THE SHORTEST PATH PROBLEM

Algorithm Dijkstra: Finding the shortest costs from v0 .

1 var dist: array[0 . . . n� 1] of integer initially 8i : dist[i] = 1;
2 fixed: array[0 . . . n� 1] of boolean initially 8i : fixed[i] = false;
3 H: binary heap of (j, d) initially empty;// j is the vertex and d is the cost

4 dist[0] := 0;
5 H.insert((0,dist[0]));
6 while ¬H.empty() do
7 (j, d) := H.removeMin();
8 if (fixed[j]) continue;
9 fixed[j] := true;

10 forall k: ¬fixed(k) ^ (j, k) 2 E
11 if (dist[k] > dist[j] + w[j, k]) then
12 dist[k] := dist[j] + w[j, k];
13 H.add (k, dist[k]);
14 endwhile;

Dijkstra’s algorithm maintains dist[i], which is a cost to reach vi from v0. Every vertex x in the graph has
initially dist[x] equal to 1. Whenever a vertex is discovered for the first time, its dist[x] becomes less than 1. We
use the predicate discovered(x) ⌘ dist[x] < 1. The variable dist decreases for a vertex whenever a shorter path is
found due to edge relaxation.

In addition to the variable dist, a boolean array fixed is maintained. Thus, every discovered vertex is either fixed
or non-fixed. The invariant maintained by the algorithm is that if a vertex x is fixed then dist[x] gives the final
shortest cost from vertex v0 to x. If x is non-fixed, then dist[x] is the cost of the shortest path to x that goes only
through fixed vertices.

A heap H keeps all vertices that have been discovered but are non-fixed along with their distance estimates dist.
We view the heap as consisting of tuples of the form (j, dist[j]) where the heap property is with respect to dist values.
The algorithm has one main while loop that removes the vertex with the minimum distance from the heap with the
method H.removeMin(), say vj , and marks it as fixed. It then explores the vertex vj by relaxing all its adjacent edges
going to non-fixed vertices vk. The value of dist[k] is updated to the minimum of dist[k] and dist[j] + w[j, k]. This
step is called edge relaxation. If vk is not in the heap, then it is inserted, else if dist[k] has decreased then the label
associated with vertex k is inserted in the heap. We abstract this step as the method H.add(k, dist[k]). Since the
vertex may already be on the heap, the insertion may cause a vertex to be present in a heap with di↵erent distances.
Hence, when we remove a vertex from the heap, if it is already fixed, we simply go to the next vertex in the heap.
The algorithm terminates when the heap is empty. At this point there are no discovered non-fixed vertices and dist
reflects the cost of the shortest path to all discovered vertices. If a vertex j is not discovered then dist[j] is infinity
reflecting that vj is unreachable from v0.

Observe that every vertex goes through the following states. Every vertex x is initially undiscovered (i.e.,
dist[x] = 1). If x is reachable from the source vertex, then it is eventually discovered (i.e., dist[x] < 1). A
discovered vertex is initially non-fixed, and is therefore in the heap H. Whenever a vertex is removed from the heap
it is a fixed vertex. A fixed vertex may either be unexplored or explored. Initially, a fixed vertex is unexplored. It is
considered explored when all its outgoing edges have been relaxed.

The following lemma simply summarizes the well-known properties of Dijkstra’s algorithm. We leave them as an
exercise.

Lemma 9.1 The outer loop in Dijkstra’s algorithm satisfies the following invariants.
(a) For all vertices x: fixed[x]) (dist[x] = cost[x]).
(b) For all vertices x: dist[x] is equal to cost of the shortest path from v0 to x such that all vertices in the path before

9.3. CONSTRAINED SINGLE SOURCE SHORTEST PATH ALGORITHM 75

x are fixed.

For complexity analysis, let n be the number of vertices and m be the number of edges. We analyze the version
of Dijkstra’s algorithm in which instead of adjusting the key in the heap for a vertex, we simply insert the vertex in
the heap. As a result the heap may have a vertex multiple times with di↵erent keys. When a vertex is removed, we
check if it has already been fixed. If it is fixed, then we do not need to explore it and we can remove the next vertex
in the heap. Since a vertex can be inserted in the heap only when an edge is relaxed, we get that there are at most m
insertions from the heap. We can also conclude that there are at most m deletions from the heap. Since an insertion
or a deletion from a heap takes O(logm) = O(log n) time, we get the overall time complexity of O(m log n).

Here is a walkthrough of Dijkstra’s algorithm on the graph, starting from vertex v0.

1. Set v0 as the source vertex and assign it a distance of 0. Assign all other vertices a tentative distance of infinity.
We insert the source vertex v0 in the heap H.

2. Since the heap is not empty, we remove the vertex at the top of the heap. It is v0 with a distance of 0. We
mark that vertex as fixed. We examine its neighbors, v1 and v2. For v0 ! v1, the existing distance to v1 is
infinity. The distance 0 (distance to v0) + 9 (edge weight from v0 to v1) is less than infinity, so we update the
distance to v1 to 9 and add it to the heap. For v0 ! v2, the existing distance to v2 is infinity. The distance 0
+ 2 is less than infinity, so update the distance to v2 to 2 and add v2 to the heap.

3. We remove the vertex at the top of the heap. The smallest distance among the unvisited vertices is 2 (for v2),
so set v2 as the current vertex. We examine its neighbors, v3 and v4. For v2 ! v3, the existing distance to v3
is infinity. Since 2 (distance to v2) + 6 (edge weight from v2 to v3) is less than infinity, we update the distance
to v3 to 8. For v2 ! v4, the existing distance to v4 is infinity. Since 2 + 5 is less than infinity, we update the
distance to v4 to 7.

4. Continuing in this manner until the heap becomes empty, we get the final distances as: v0: 0, v1: 9, v2: 2, v3:
8, v4: 7.

9.3 Constrained Single Source Shortest Path Algorithm

Consider a weighted directed graph with n vertices numbered 0 to n�1. We assume that all edge weights are strictly
positive. We are required to find the minimum cost of a path from a distinguished source vertex v0 to all other
vertices where the cost of a path is defined as the sum of edge weights along that path. For any vertex v, let pre(v)
be the set of vertices u such that (u, v) is an edge in the graph. To avoid trivialities, assume that every vertex v
(except possibly the source vertex v0) has nonempty pre(v) and that all nodes in the graph are reachable from the
source vertex.

As the first step of the predicate detection algorithm, we define the lattice for the search space. We assign to each
vertex vi, G[i] 2 R�0 with the interpretation that G[i] is the cost of reaching vertex vi. We call G, the assignment
vector. The invariant maintained by our algorithm is: for all i, the cost of any path from v0 to vi is greater than
or equal to G[i]. The vector G only gives the lower bound on the cost of a path and there may not be any path to
vertex vi with cost G[i]. To capture that an assignment is feasible, we define feasibility which requires the notion of
a parent. We say that vi is a parent of vj in G (denoted by the predicate parent(j, i, G)) i↵ there is a direct edge
from vi to vj and G[j] is at least (G[i] +w[i, j]), i.e., (i 2 pre(j))^ (G[j] � G[i] +w[i, j]). A node may have multiple
parents.

In Fig. 9.1, let G be the vector (0, 2, 3, 5, 8). Then, v0 is a parent of v2 because G[2] is greater than G[0] plus
w[0, 2](i.e., 3 � 0 + 2). Similarly, v1 is a parent of v4 because G[4] � G[1] + 2. A node may have multiple parents.
The node v2 is also a parent of v4 because G[4] � G[2] + 5.

Since w[i, j] are strictly positive, there cannot be a cycle in the parent relation. Now, feasibility can be defined
as follows.

Definition 9.2 (Feasible for paths) An assignment G is feasible for paths i↵ every node except the source node
has a parent. Formally, Bpath(G) ⌘ 8j 6= 0 : (9i : parent(j, i, G)).

76 CHAPTER 9. THE SHORTEST PATH PROBLEM

(a) (b)

3

2 5

0

2

3

5

8

2

9

3

2 5

6

1

8
2

3

2 5

0

10

3 8

(c)

6

9

14

v4

v2

v1 v3

v4

v1

v2

v0

v3

v4

v0

v0

v2

v3v1

Figure 9.1: (a) A Weighted Directed Graph (b) The parent structure for G = (0, 2, 3, 5, 8) (c) The parent
structure for G = (0, 10, 3, 14, 8). Since every non-source node has at least one parent, G is feasible.

Hence, an assignment G is feasible i↵ one can go from any non-source node to the source node by following any of
the parent edges. We now show that feasibility satisfies lattice-linearity.

Lemma 9.3 For any assignment vector G that is not feasible, 9j : forbidden(G, j,Bpath(G)).

Proof: Suppose G is not feasible. Then, there exists j 6= 0 such that vj does not have a parent, i.e., 8i 2 pre(j) :
G[j] < G[i] + w[i, j]. We show that forbidden(G, j,Bpath(G)) holds. Pick any H such that H � G. Since for any
i 2 pre(j), H[i] � G[i], G[j] < G[i] + w[i, j] implies that G[j] < H[i] + w[i, j]. Therefore, whenever H[j] = G[j], vj
does not have a parent.

Since Bpath is a lattice-linear predicate, it follows from Lemma 2.3(c), that the set of feasible assignment vectors
are closed under meets (the component-wise min operation). Hence, we can use LLP algorithm with ↵(G, j,Bpath) =
min{G[i] + w[i, j] | i 2 pre(j)}.

For an unweighted graph (i.e., each edge has weight equal to 1), the above parallel algorithm requires time equal
to the distance of the farthest node from the root. The LLP algorithm derived from Bpath, however, may take time
that depends on the weights because the advancement along a forbidden process may be small.

We now give an alternative feasible predicate that results in an algorithm that takes bigger steps. We first define
a node j to be fixed in G if either it is the source node or it has a parent that is a fixed node, i.e., fixed(j,G) ⌘ (j =
0) _ (9i : parent(j, i, G) ^ fixed(i, G)).

Observe that node v0 is always fixed. Any node vj such that one can reach from vj to v0 using parent relation
is also fixed. We now define another feasible predicate called Brooted, as Brooted(G) ⌘ 8j : fixed(j,G).

Even though it may first seem that the predicate Brooted is strictly stronger than Bpath, the following Lemma
shows otherwise.

Lemma 9.4 Bpath(G) i↵ Brooted(G).

Proof: If G satisfies Brooted, then every node other than v0 has at least one parent by definition of fixed, hence
Bpath(G). Conversely, suppose that every node except v0 has a parent. Since parent edges cannot form a cycle, by
following the parent edges, we can go from any node to v0.

9.3. CONSTRAINED SINGLE SOURCE SHORTEST PATH ALGORITHM 77

It follows that the predicate Brooted is also lattice-linear. Then, the following threshold �(G) is well-defined
whenever the set of edges from the fixed vertices to non-fixed vertices is nonempty.

�(G) = min
(i,j):i2pre(j)

{G[i] + w[i, j] | fixed(i, G),¬fixed(j,G)}.

If the set of such edges is empty then no non-fixed vertex is reachable from the source. We call these set of edges
Heap (because we would need the minimum of this set for advancement).

We now have the following result in advancement of G.

Lemma 9.5 Suppose ¬Brooted(G).
Then, ¬fixed(j,G)) forbidden(G, j,Brooted,�(G)).

Proof: Consider any assignment vector H such that H � G and H[j] < �(G). We show that H is not Brooted. In
particular, we show that j is not fixed in H. Suppose j is fixed in H. This implies that there is a path W from v0
to vj such that all nodes in that path are fixed. Let the path be the sequence of vertices w0, w1, . . . wm�1, where
w0 = v0 and wm�1 = vj . Let wl = vk be the first node in the path that is not fixed in G. Such a node exists because
wm�1 is not fixed in G. Since w0 is fixed, we know that 1  l  m� 1. The predecessor of wl in that path, wl�1 is
well-defined because l � 1. Let wl�1 = vi.

We show that H[k] � �(G) which contradicts H[j] < �(G) because H[k]  H[j] as the cost can only increase
going from k to j along the path W . We have H[k] � H[i] + w[i, k] because i is a parent of k in H. Therefore,
H[k] � G[i] + w[i, k] because H[i] � G[i]. Since i is fixed in G and k is not fixed in G, from the definition of �(G),
we get that �(G)  G[i] + w[i, k]. Hence, H[k] � �(G).

By using the advancement Lemma 9.5, we get the algorithm ShortestPath shown in Fig. 9.2. In this algorithm,
in every iteration we find all nodes that are forbidden (not fixed) and advance them. All nodes are advanced to
↵(G, j) that combines �(G) with min{G[i] +w[i, j] | i 2 pre(j)}. Note that if a node is fixed, its parent is fixed and
therefore any algorithm that advances G[j] only for non-fixed nodes j maintains that once a node becomes fixed it
stays fixed.

Theorem 9.6 Assuming read-write atomicity, there exists a parallel algorithm to solve the shortest path problem
with one thread per node of the graph which does not use any synchronization.

We remark here that the parallel algorithm assumes that the variables in always section are maintained using
G and therefore is not work e�cient.

By removing certain steps, we get Dijkstra’s algorithm from the algorithm ShortestPath. It is clear that the
algorithm stays correct if ↵(G, j) uses just �(G) instead of max{�(G),min{G[i] + w[i, j] | i 2 pre(j)}}. Secondly,
the algorithm stays correct if we advance G only on the node j such that (i, j) are in Heap edges and the node j
minimizes G[i] + w[i, j]. Finally, to determine such a node and �(G), it is su�cient to maintain a min-heap of all
non-fixed nodes j, along with the label that equals mini2pre(j),fixed(i,G) G[i] + w[i, j]. On making all these changes
to ShortestPath, we get Dijkstra’s algorithm (modified to run with a heap).

It is illustrative to compare the algorithm ShortestPath with Dijkstra’s algorithm. In Dijkstra’s algorithm, the
nodes become fixed in the order of the cost of the shortest path to them. In the proposed algorithm, a node may
become fixed even when nodes with shorter cost have not been discovered. In Fig. 9.1, node v1 becomes fixed earlier
than nodes v3 and v4. This feature is especially useful when we are interested in finding the shortest path to a single
destination and that destination becomes fixed sooner than it would have been in Dijkstra’s algorithm.

Dijkstra’s algorithm maintains a distance vector dist such that it is always feasible, i.e., for any vertex v there
exists a path from source to v with cost less than or equal to dist[v]. We maintain the invariant that the cost of
the shortest path from source to v is guaranteed to be at least G[v]. Therefore, in Dijkstra’s algorithm, dist[v] is
initialized to 1 whereas we initialize G to 0. Dijkstra’s algorithm and indeed many algorithms for combinatorial
optimization, such as simplex, start with a feasible solution and march towards the optimal solution, our algorithm

78 CHAPTER 9. THE SHORTEST PATH PROBLEM

starts with an extremal point in search space (even if it is infeasible) and marches towards feasibility. Also note
that in Dijkstra’s algorithm, dist[v] can only decrease during execution. In our algorithm, G can only increase with
execution.

The ShortestPath algorithm has a single variable G. All other predicates and functions are defined using this
variable.

Shortest path from node s: LLP algorithm
input: pre(j): list of 1..n; w[i, j]: positive int for all i 2 pre(j)
init: G[j] := 0;
always: parent[j, i] = (i 2 pre(j)) ^ (G[j] � G[i] + w[i, j]);

fixed[j] = (j = s) _ (9i : parent[j, i] ^ fixed[i])
Heap = {(G[i] + w[i, k])|(i 2 pre(k)) ^ fixed(i) ^ ¬fixed(k)};

forbidden: ¬fixed[j]
advance: (G[j] := max{minHeap,min{G[i] + w[i, j] | i 2 pre(j)})

Figure 9.2: Algorithm ShortestPath to find the minimum cost assignment vector less than or equal to
T .

We get the following structural result on the assignment vectors that are feasible.

Lemma 9.7 Let G and H be two assignment vectors such that they satisfy Brooted, then min(G,H) also satisfies
Brooted.

Proof: Follows directly from Lemma 2.3, because Brooted is a lattice-linear predicate.

The set of feasible assignment vectors is not closed under the join operation. In Fig. 9.1, the vectors (0, 10, 3, 14, 8)
and (0, 9, 10, 12, 11) are feasible, but their join (0, 10, 10, 14, 11) is not feasible.

We now consider the generalization of the shortest path algorithm with constraints. We assume that all con-
straints specified are lattice-linear. For example, consider the constraint that the cost of vertex i is at most cost of
vertex j. The predicate B ⌘ G[j] � G[i] is easily seen to be lattice-linear. If any cost vector G violates B, then
the component j is forbidden (with ↵(G, j) equal to G[i]). The predicate (G[i] = G[j]) is also lattice-linear because
it can be written as a conjunction of two lattice-linear predicates (G[i] � G[j]) and (G[j] � G[i]). The predicate
B ⌘ (G[i] � k)) (G[j] � m) is also lattice-linear. If any cost vector violates B, then we have (G[i] � k)^(G[j] < m).
In this case, the component j is forbidden with ↵(G, j) equal to m. Again, from Lemma 2.6, the algorithm LLP
can be used to solve the constrained shortest path algorithm by combining forbidden and ↵ for constraints with
Brooted. An application of the constrained shortest path problem is as follows. Suppose that there are n dispatch
trucks that start from the source vertex at time 0. Let w[i, j] denote the time it takes for a truck to go from node i
to node j. An assignment vector G is feasible if it is possible to design a tree rooted at the source vertex such that
the path from the source vertex to vertex i takes G[i] units of time and G satisfies specified constraints. In Fig. 9.1,
the vector (0, 9, 2, 8, 7) is feasible, but does not satisfy the constraint that G[1] equals G[2]. The least vector that
satisfies this additional constraint is (0, 9, 9, 12, 11). LLP algorithm can be used to find this vector. When the set of
additional constraints is empty, we get back the standard shortest path problem.

An example of a predicate that is not lattice-linear is B ⌘ G[i] + G[j] � k. If the predicate is false for G, then
we have G[i] + G[j] < k. However, neither i nor j may be forbidden. The component i is not forbidden because if
G[i] is fixed but G[j] is increased, the predicate B can become true. Similarly, j is also not forbidden.

9.4. DELTA-STEPPING ALGORITHM 79

Algorithm LLP-ShortestPath: An Implementation of Algorithm ShortestPathb to find the
minimum cost assignment vector greater than or equal to F .

1 var G: array[0..n� 1] of real initially 8i : G[i] = 0;
2 while 9i : ¬fixed(i, G) do
3 E0 := { (i, k) 2 E | fixed(i, G) ^ ¬fixed(k,G)};
4 if (E0 = �) then return “non-fixed nodes not reachable”;
5 Let (i⇤, j⇤) 2 E0 minimize G[i] + w[i, j];
6 G[j⇤] := �(G);
7 for all j 6= j⇤ such that forbidden(G, j) in parallel do:
8 G[j] := ↵(G, j);
9 endwhile;

10 return G;

11 parent(j, i, G) ⌘ (i 2 pre(j)) ^ (G[j] � G[i] + w[i, j])
12 fixed(j,G) ⌘ (j = 0) _ (9i : parent(j, i, G) ^ fixed(i, G))
13 �(G) = min{G[i] + w[i, j] | (i, j) 2 E0

}

14 forbidden(G, j) ⌘ ¬fixed(j,G)
15 ↵(G, j) = max{�(G),min{G[i] + w[i, j] | i 2 pre(j)}}

9.4 Delta-Stepping Algorithm

A popular practical parallel algorithm for SSSP is �-stepping algorithm due to Meyer and Sanders [MS03]. Meyer
and Sanders also provide an excellent review of prior parallel algorithms in [MS03]. They classify SSSP algorithms
as either label-setting, or label-correcting. Label-setting algorithms, such as Dijkstra’s algorithm, relax edges only for
fixed vertices. Label-correcting algorithms may relax edges even for non-fixed vertices. �-stepping algorithm is a
label-correcting algorithm in which eligible non-fixed vertices are kept in an array of buckets such that each bucket
represents a distance range of �. During each phase, the algorithm removes all vertices of the first non-empty bucket
and relaxes all the edges of weight at most �. Edges of higher weights are relaxed only when their starting vertices are
fixed. The parameter � provides a trade-o↵ between the number of iterations and the work complexity. For example,
when � is 1, the algorithm reduces to Bellman-Ford algorithm where any vertex that has its D label changed is
explored. When � equals 1 for integral weights, the algorithm is a variant of Dijkstra’s algorithm. There are many
practical large-scale implementations of the �-stepping algorithm (for instance, by Madduri et al [MBBC07]) in
which authors have shown the scalability of the algorithm. Chakravarthy et al [CCM+17] give another scalable
implementation of an algorithm that is a hybrid of the Bellman-Ford algorithm and the �-stepping algorithm.

We now give the pseudo-code of the Delta-stepping algorithm by Meyers and Sanders [MS03]. The algorithm
uses a parameter �. We first classify all edges (i, j) 2 E to be light or heavy depending upon whether its weight is
less than � or not. Formally,

Elight = {(i, j) 2 E | w[i, j]  �}

Eheavy is simply the complement of Elight.
The variable req is the set of all edges that are required to be relaxed. The variable S is used to maintain the

set of vertices whose outgoing light edges have been relaxed but not the heavy edges. The variable B[i] denotes the
bucket Bi.

The algorithm DeltaStepping explores buckets Bi sequentially in the increasing order. The variable i denotes
the current bucket. The outer while loop iterates until there is some bucket. The inner while loop iterates until the
current bucket becomes empty. To explore a bucket, the algorithm first explores all the light edges outgoing from the
bucket. When these edges are relaxed, some additional vertices may move to the current bucket. Hence, the while
loop is executed until all the light edges have been explored. We use S to store all the vertices whose light edges

80 CHAPTER 9. THE SHORTEST PATH PROBLEM

have been explored but the heavy edges remain to be explored. Once the inner while loop terminates, we explore all
the heavy edges outgoing from S. Note that exploration of all heavy edges can never result in introduction of any
vertex into the current bucket. After the exploration of all heavy edges, we go to the outer while loop to explore the
next bucket.

Algorithm DeltaStepping: A Parallel Delta Stepping Algorithm for the Shortest Path Problem

1 var
2 d: array[0..n-1] of int initially 8i : d[i] = 1

3 req, S: set of (int, int)
4 B: sequence of buckets (sets)

5 relax(0,0);
6 int i := 0;
7 while B 6= ;

8 S := {}

9 while B[i] 6= {}

10 req := {(v0, d[v] + w[v, v0] | v 2 B[i] ^ (v, v0) 2 Elight}

11 S := S [B[i]
12 B[i] := {}

13 forall (v0, d0) 2 req in par do: relax(v0, d0)
14 endwhile
15 req := {(v0, d[v] + w[v, v0] | v 2 S ^ (v, v0) 2 Eheavy}

16 forall (v0, d0) 2 req in par do: relax(v0, d0)
17 i := i+ 1
18 endwhile

19 function relax(int u, int c)
20 if c < d[u]
21 d[u] := c
22 move u to the bucket B[c/�]
23 endfunction

9.5 Graphs with Negative Weights: Johnson’s Algorithm

We now consider directed graphs which have negative weight edges. For such graphs, the shortest path may not
be defined if there is a cycle with negative cost. By going around the cycle, one can decrease the cost of the path
arbitrarily. Therefore, we assume that even though there are edges with negative costs, there are no negative cost
cycles. Our strategy for finding the shortest path in such a graph X would be to convert it into another graph Y
on the same set of vertices such that Y has all non-negative edges and it preserves all shortest paths, i.e., a path
is shortest in X i↵ it is also a shortest path in Y . The graph Y has the same set of vertices and edges as X. The
weight of any edge (i, j) is updated as follows:

w0[i, j] = w[i, j] + p[j]� p[i] (9.1)

where p is a price vector associated with vertices. A price vector p is a non-negative vector such that when we
compute new costs of edges, called reduced costs, we get that the new cost of every edges is at least 0. The advantage
of updating weights using Equation 9.1 is that it preserves shortest paths.

9.5. GRAPHS WITH NEGATIVE WEIGHTS: JOHNSON’S ALGORITHM 81

Lemma 9.8 Let s and t be any two vertices in the graphs. The weight of any path in the graph Y equals the weight
in the graph X plus (p[t]� p[s]).

Proof: Let the path be v0, v1, v2, vk where v0 = s and vk = t. As we compute the cost of the path in Y , we add the
price of every intermediate vertex once and subtract it once. Only the price of v0 is subtracted exactly once and the
price of vk is added exactly once giving us the lemma.

Since the cost of all paths between s and t are changed by the same amount, it follows that any shortest path
in X is a shortest path in Y and vice-versa. Now our task is reduced to finding a price vector such that w0[i, j] is at
least 0 for all edges. We use LLP algorithm to find such a vector. Our feasibility predicate B for pricing vector is

8(i, j) 2 E : w[i, j] + p[j]� p[i] � 0

Furthermore, we require p[i] � 0 for all i. We first show that B is lattice linear.

Lemma 9.9 Let X be any graph such that the edge (i, j) has weight w[i, j] and every vertex i has price p[i]. Consider
the lattice of all non-negative price vectors. Then, the predicate

B ⌘ 8(i, j) 2 E : w[i, j] + p[j]� p[i] � 0

is lattice linear.

Proof: Since lattice linearity is closed under conjunction, it is su�cient to show that Be ⌘ w[i, j] + p[j] � p[i] � 0
is lattice linear for arbitrary edge e = (i, j). Be can be rewritten as p[j] � p[i]� w[i, j]. The right hand side of this
inequality is a monotone function on p and hence from the Key Lemma of lattice-linearity, we get that Be is lattice
linear.

By applying LLP algorithm, we get the following method to find the price vector.

Algorithm LLP-Johnson: Finding the minimum price vector.

1 input: pre(j): list of 1..n; w[i, j]: int for all i 2 pre(j)
2 init: G[j] := 0;
3 ensure: G[j] � max{G[i]� w[i, j] | i 2 pre(j)}

Since we have not provided the stopping point in Algorithm LLP-Johnson, the method may not terminate.
Indeed, if there is a cycle in the graph with negative cost, the above algorithm will not terminate. We show

Lemma 9.10 Algorithm LLP-Johnson terminates i↵ there is no negative cost cycle in the graph X.

Proof:
We first show that if there is a negative cost cycle, then the algorithm never terminates. By considering s and t

to be the same vertex, Lemma 9.8 implies that the cost of any cycle remains unchanged after relabeling. Hence, if
there is any negative cost cycle in X, then for all pricing vectors the cost of the cycle is negative in Y . For any cycle
to have a negative cost, at least one edge must be negative. Hence, for all pricing vectors there exists i, j such that
w0[i, j] = w[i, j]+p[j]�p[i] < 0. This implies that there exists j such that p[j] < p[i]�w[i, j]. Hence, forbidden(p, j)
holds.

Now assume that there is no negative cost cycle in the graph. Since LLP algorithm finds the least feasible element
of the lattice that satisfies the feasibility predicate B, it is su�cient to show that there exists at least one feasible

82 CHAPTER 9. THE SHORTEST PATH PROBLEM

solution. Consider an additional vertex z added to the graph such that z has a directed edge to every node in the
graph with cost 0. Since there is no incoming edge to z, adding z cannot introduce a negative cost cycle in the
graph. Since there are no negative cost cycles, there are finite number of paths with the least cost from z to any
vertex x. The cost of the shortest path from z to any vertex is 0 or smaller because there is a direct edge from z to
any vertex with weight 0. Let d[z, x] be the distance of any vertex x from z. We define p[x] to be �d[z, x] and claim
that w[i, j] + p[j]� p[i] � 0 for all edges (i, j). If not, we get that w[i, j]� d[z, j] + d[z, i] < 0. However, this implies
that d[z, j] > d[z, i] + w[i, j] which violates that d[z, j] and d[z, i] correspond to the cost of the shortest paths from
z since by first going through i, the cost of reaching j can be reduced.

The proof of Lemma 9.10 shows that there always exists a price vector that makes edge weights non-negative.
From the Key Lattice-Linearity Lemma, we know that the set of all feasible price vectors are closed under meets. It
can also be observed that if the price vector p is feasible, and that if we add a fixed positive constant to all prices,
then all prices stay positive and all the reduced weights stay the same. This observation also implies that the least
price vector p that satisfies B must have at least one component which is zero. Otherwise, we can subtract the least
price from all prices and still get a feasible price vector contradicting that p is the least feasible price vector.

We now bound the number of iterations in the LLP algorithm required to find the price vector.

Lemma 9.11 The LLP algorithm requires at most n iterations before termination.

Proof: We claim that after i iterations of LLP algorithm, p[x] is negative of the cost of any path from any vertex y
to x with at most i edges. Initially, when i equals 0, p[x] equals 0 which is equal to the negative of the shortest path
(from x to itself). Assume that the claim holds for i � 1 iteration. On ith iteration, we show that p[x] is updated
appropriately. Consider any shortest path of length i with y as the predecessor vertex in that path. If this path is
shorter than any path of length i� 1, we have that �p[y] +w[y, x]  �p[x]. However, this condition is equivalent to
p[x] < p[y]� w[y, x] guaranteeing that p[x] is forbidden and increased so that p[x] = p[y]� w[y, x].

Since any shortest path can have at most length n, the lemma follows.

Since each LLP iteration can be computed in O(m) time, we get that the graph can be “reweighted” in O(mn)
time. Now we can use Dijkstra’s algorithm to find the shortest path in the transformed graph for a single source
shortest path problem. Since the algorithm for reweighting the graph dominates Dijkstra’s shortest path algorithm,
we get an algorithm with O(mn) complexity to find shortest paths from a vertex to all vertices in an weighted
directed graph possibly with negative costs. Furthermore, all pairs shortest path problem can be solved by using
Dijkstra’s algorithm from every vertex after reweighting the graph. This gives us an all pairs shortest path algorithm
with the time complexity of O(mn+ n(m+ n log n) = O(mn+ n2 log n). This algorithm has lower time complexity
than O(n3) Floyd-Warshall algorithm whenever the graph is not dense.

9.6 Bellman-Ford’s Algorithm

In this section we give an algorithm that computes the shortest path tree from any given vertex without first
converting it into graph with non-negative edges. We assume that the graph does not have any negative cost cycle.
Given an such graph and a distinguished vertex v0, we know that the distance of v0 to itself can never be less than 0.
Hence, without loss of generality, we will assume that v0 does not have any incoming edge (or, simply delete those
edges). Now, we consider the distance of other vertices from s. To apply LLP algorithm, we view finding the optimal
distance vector as finding the largest d[x] for every vertex x 6= v0 which satisfies the following feasibility predicate:

for all edges (i, j) 2 E : d[j]  d[i] + w[i, j]

9.7. MATRIX MULTIPLICATION 83

If we define Be for any edge e = (i, j) as d[j]  d[i] + w[i, j]. The feasibility predicate B can be written as

B ⌘ ^e2EBe

We will view the search for optimal distance vector as searching for d vector in a lattice defined as follows. The
lattice has the bottom element as (M,M, . . . ,M) where M equal n � 1 times the largest weight edge in the graph.
Since we are looking for the largest distance vector satisfying B, it can never be greater than M . In this lattice
d L d0 i↵ 8i : d[i] � d0[i]. Thus, finding the least vector in this lattice corresponds to finding the largest vector d
that satisfies B.

We now claim that

Theorem 9.12 B is a lattice linear predicate.

Proof: It is su�cient to show that Be is lattice linear because any conjunction of linear predicates is also lattice
linear. Be for e = (i, j) is equivalent to d[j]  d[i] +w[i, j]. This is equivalent to d[j] �L d[i] +w[i, j]. Since the right
hand side is a monotonic function of d, we get that Be is lattice linear.

Similar to Lemma 9.11, we get that at most n iterations of LLP algorithm are required for reaching the optimal
d vector.

Algorithm LLP-BellmanFord: Finding the minimum distance vector in the lattice L satisfying
B
1 Pj : Code for thread j
2 var d: array[0..n� 1] of real initially (d[0] = 0) ^ (8i 6= 0: d[i] = 1)

3 always
4 forbidden(d, j) ⌘ 9i 2 pre(j) : d[j] > d[i] + w[i, j]
5 while 9j : forbidden(d, j)
6 forall j : forbidden(d, j)
7 d[j] := min{d[i] + w[i, j] | i 2 pre(j)};

Let us analyze the time complexity of Algorithm LLP-BellmanFord. There are at most n iteration of the while
loop. The forall loop can be implemented with O(m) time complexity giving us the overall time complexity of O(mn).

Earlier we had assumed that the graph does not have any negative cost cycle. What if the user input is such that
it has a negative cost cycle. The algorithm LLP-BellmanFord will never terminate in that case. Problem 2 asks you
to modify the algorithm so that it detects if the graph has a negative cost cycle and then outputs such a message.

9.7 Matrix Multiplication

We start with the problem of matrix multiplication of two n⇥ n square matrices A and B, i.e., we want to compute
C = AB. The entry C[i, j] can be computed as

C[i, j] =
X

k

A[i, k] ⇤B[k, j].

We first compute an array Di,j such that Di,j [k] = A[i, k]⇤B[k, j]. If we have n3 processors, then we can assume
that n processors can be used for each entry C[i, j]. Since we have n processors, this array can be computed in
O(1) time. Now, C[i, j] is simply computed using the reduce operation on the array Di,j resulting in O(log n) time
complexity for the algorithm on a CREW PRAM. This algorithm takes O(n3) work. Here, we have used the standard

84 CHAPTER 9. THE SHORTEST PATH PROBLEM

sequential algorithm for matrix multiplication. By using more advanced algorithms, one can reduce the exponent
for the work. For example, by using Coppersmith and Winograd’s algorithm, the work can be reduced to O(n2.376).
However, for simplicity, we will continue to use the standard matrix algorithm in this chapter.

Now consider the case when the matrix is boolean. In this case, we can compute C[i, j] from the array Di,j using
the OR operation. On a common CRCW PRAM, this can be achieved in O(1) time although on a CREW PRAM
we would still need O(log n) time.

9.8 Transitive Closure of a Matrix

Let A[i, j] be a boolean matrix of size n by n. This can also be viewed as a directed graph on n vertices such that
there is an edge from i to j i↵ A[i, j] equals 1.

We now define the reflexive transitive closure of a matrix as

A⇤ = A0 +A1 +A2 + . . . An

The entry A⇤[i, j] equals 1 i↵ there is any path from i to j. Our goal is to compute the reflexive transitive closure
of A. We can apply the technique of repeated squaring to compute the transitive closure. The ideas is to compute
A2k by multiplying A2k�1

with itself. Now, it is a simple matter to compute the reflexive transitive closure. We first
compute a matrix C = I + A. This matrix simply corresponds to adding self-loops in the graph at every vertex.
Now, it is easy to show that A⇤ = Cn = C2log n

. Hence, reflexive transitive closure can be obtained in O(log2 n) time
on a CREW PRAM.

We now show that the problem of reflexive transitive closure can also be solved using the LLP technique. We
view the problem as as searching for the least vector G indexed by tuple (i, j) where i, j 2 [0..n� 1] such that

Bclosure ⌘ 8i, j : G[i, j] � max(A[i, j],max{G[i, k] ^G[k, j] | k 2 [0..n� 1]}).

Since the right hand side of the inequality is a monotone function of G, it follows that Bclosure is lattice-linear. We
can apply LLP algorithm to compute the transitive closure. We have a boolean lattice of all vectors of size O(n2).
Our goal is to find the least vector in this lattice that satisfies Bclosure. The corresponding LLP algorithm is shown
in Fig. 9.3

input: A: matrix of boolean; // A[i, j] is 1 if there is an edge from i to j;
output: transitive closure of A;

var G: matrix of boolean initially 8i, j : G[i, j] = A[i, j];
while 9i, j : (9k : G[i, j] < G[i, k] ^G[k, j]) do

G[i, j] := 1;
endwhile;
return G; // the optimal solution

Figure 9.3: A High-Level Algorithm to find the transitive closure of a matrix

Let us translate this high level algorithm to a parallel computer with n3 processors. A processor is indexed by
(i, j, k) in the algorithm shown in Fig. 9.4. The processor checks if G[i, j] is less than G[i, k]^G[k, j] and sets G[i, j]
to 1 whenever the condition is met. Since for the same value of i and j, there may be multiple values of k for which
the condition is true, multiple processors may set G[i, j] to 1 concurrently. We will assume Common CRCW PRAM
model for this computation. In such a model, it is easy to see that after log n steps, G matrix will correspond to the
transitive closure. This is because the diameter of the graph will reduce by a factor of two after every step. On a
CREW PRAM, we can compute the reflexive transitive closure in O(log2 n) time.

9.9. ALL PAIRS SHORTEST PATH 85

input: A: matrix of boolean; // A[i, j] is 1 if there is an edge from i to j;
output: transitive closure of A;

var G: matrix of boolean initially 8i, j : G[i, j] = A[i, j];
for t := 1 to dlog ne do

forall i, j, k in parallel do
if (G[i, j] < G[i, k] ^G[k, j]) then

G[i, j] := 1;
endforall;

endfor;
return G; // the transitive closure

Figure 9.4: A Synchronous Parallel Algorithm with time O(log n) to find the transitive closure of a matrix
A

v0

v1

v2

v2

v4

8

1

-1

2

3

10

9.9 All Pairs Shortest Path

We now extend the algorithm to nonbinary matrices. Suppose that A[i, j] represents the weight of the direct edge
from i to j denoting the cost of going from i to j using at most one edge. We assume that all diagonal entries are
zero and that there is no negative weight cycle. Our goal is to find a matrix G[i, j] such that G[i, j] is the least cost
of going from i to j by using any number of edges.

Let us formulate this problem as finding the least vector of size n2 in a distributive lattice. We initialize G as A.
This is the bottom element of our distributive lattice. Our goal is to find the least vector that satisfies the following
constraint:

BFloyd�Warshall ⌘ 8i, j : i 6= j : G[i, j]  min
k

{G[i, k] +G[k, j]}}.

When i equals j, G[i, j] equals 0 and will stay fixed through the execution of the algorithm. The cost of going from
i to j must be smaller than the cost of going from i to k and k to j. Fig. 9.5 gives a high-level LLP algorithm for
all pairs shortest path. Fig. 9.6 gives an implementation that takes O(log2 n) time and O(n3 log n) work with O(n3)
processors.

9.10 Summary

The following table lists all the algorithms discussed in this chapter.

86 CHAPTER 9. THE SHORTEST PATH PROBLEM

input: A: matrix of weights; // A[i, j] is the weight of the direct edge from i to j;
output: Cost matrix G[i, j] equals the weight of the shortest path from i to j;

var G: matrix of reals initially 8i, j : G[i, j] = A[i, j];
while 9i, j : (G[i, j] > mink{G[i, k] +G[k, j]}) do

G[i, j] := mink{G[i, k] +G[k, j]};
endwhile;
return G; // the optimal solution

Figure 9.5: A High-Level Algorithm to find the shortest cost matrix for a directed graph with positive
weights

input: A: matrix of real; // A[i, j] is the weight of the edge from i to j;
output: matrix G such that G[i, j] is the cost of the shortest path from i to j;

var G: matrix of real initially 8i, j : G[i, j] = A[i, j];
for t := 1 to dlog ne do

forall i, j in parallel do
if (G[i, j] > minkG[i, k] +G[k, j]) then

G[i, j] := minkG[i, k] +G[k, j]);
endforall;

endfor;
return G;

Figure 9.6: A Synchronous Parallel Algorithm with O(log2 n) time and O(n3 log n) work to find the Shortest
Cost Matrix of a Graph

Problem Algorithm Parallel Time Work
Shortest Path Dijkstra O(m) O(m log n)
Shortest Path LLP-Dijkstra O(m) O(m log n)
Shortest Path Delta-Stepping O(m) O(m log n)
Graph Conversion Johnson O(n) O(mn)
Shortest Path LLP-Bellman-Ford O(n) O(mn)
All Pairs Shortest Path Floyd-Warshall O(log2 n) O(n3 log n)
Transitive closure LLP-Transitive-Closure O(log2 n) O(n3 log n)

9.11 Problems

1. Prove Lemma 9.1.

2. Modify LLP-BellmanFord so that it detects if the input graph has a negative cost cycle and then outputs such
a message.

3. Give an NC algorithm that that finds all strongly connected components in a directed graph.

4. Give an NC algorithm that checks whether the input directed graph is acyclic.

5. Give an NC algorithm to topologically sort an acyclic graph.

6. Give an NC algorithm to find all nodes reachable from a given vertex.

9.12. BIBLIOGRAPHIC REMARKS 87

9.12 Bibliographic Remarks

The single source shortest path problem has a rich history. For the history of Dijkstra’s algorithm, the reader is
referred to the book by [Eri19]. One popular research direction is to improve the worst case complexity of Dijkstra’s
algorithm by using di↵erent data structures. For example, by using Fibonacci heaps for the min-priority queue,
Fredman and Tarjan [FT87] gave an algorithm that takes O(e+n log n). There are many algorithms that run faster
when weights are small integers bounded by some constant �. For example, Ahuja et al [AMOT90] gave an algorithm
that uses Van Emde Boas tree as the priority queue to give an algorithm that takes O(e log log �) time. Thorup
[Tho00] gave an implementation that takes O(n + e log log n) under special constraints on the weights. Raman
[Ram97] gave an algorithm with O(e + n

p
log n log log n) time. The LLP algorithm for the shortest path is taken

from [AKG20]. Bellman and Ford’s algorithm is from [Bel58] and [For56].

88 CHAPTER 9. THE SHORTEST PATH PROBLEM

Chapter 10

The Minimum Spanning Tree Problem

10.1 Introduction

Suppose that we have an undirected weighted graph on n vertices with m edges. Our goal is to find the minimum
spanning tree (MST). We assume that all edge weights are distinct. It is known that if the graph is connected and
all edge weights are distinct then there is a unique minimum spanning tree. If the graph is not connected, then there
is a unique spanning forest. For simplicity of exposition, we will assume that the underlying graph is connected.

The problem of finding minimum spanning tree is a canonical problem for which a greedy approach works. In
this chapter, we first present two greedy sequential algorithms: Kruskal’s algorithm and Prim’s algorithm. Both
of these algorithms are sequential in nature because they pick one edge at a time. They are greedy in di↵erent
ways. Kruskal’s algorithm chooses the least cost edge that is feasible as its next edge. Prim’s algorithm chooses the
next vertex that can be added to the existing tree with the least cost. Next, we discuss parallel algorithms for the
minimum spanning tree problem. We first discuss a strategy to parallelize Prim’s algorithm. In particular, instead
of adding and exploring one vertex to the tree at a time, we show a strategy which allows multiple vertices to be
added and explored in parallel. We also discuss Boruvka’s algorithm which also chooses multiple edges at a time.
Boruvka’s algorithm maintains multiple fragments and adds edges to all of them in every iteration. The notion of
a fragment is crucial in understanding MST algorithms. A fragment is simply a subtree of the MST. Consider the
graph in Fig. 10.1. The minimum spanning tree in this graph corresponds to the edges {2, 3, 4, 7}. The subtree
formed by edges 3 and 4 is a fragment with three vertices {a, b, c} and two edges {(a, c), (b, c)}.

A crucial property of MST is as follows.

Lemma 10.1 Let F be a fragment. Let e be the edge with minimum weight that is outgoing from F . Then, F [{e}
is also a fragment.

Proof: In the minimum spanning tree T , there must be at least one edge going out of the fragment F . Let that
edge be f . If we add e to T and remove f , we get another tree T 0 with lower weight than T , a contradiction because
we assumed that T is the minimum spanning tree.

In the fragment formed by edges with weights 3 and 4, there are three outgoing edges — edges with weight 7,
9 and 11. The edge 5 is not outgoing since it connect vertices that are part of the fragment. According to Lemma
10.1, the edge with weight 7 can be added to the edges with weight 3 and 4 to grow the fragment.

89

90 CHAPTER 10. THE MINIMUM SPANNING TREE PROBLEM

10.2 Kruskal’s Algorithm

Kruskal’s algorithm is a canonical greedy algorithm for the minimum spanning tree problem. It chooses edges one at
a time in a greedy fashion. Let T be the set of edges chosen by the algorithm at any stage. The algorithm maintains
the invariant that T does not have any cycle. Initially T is empty and therefore trivially satisfies the invariant. The
algorithm considers the edges in the increasing order of weights. For this reason it is sometimes also known as the
shortest-edge-next algorithm. Suppose that the algorithm has chosen edges in T so far. To grow T , it finds the least
weight edge that does not form a cycle with existing edges in T . If any edge e forms a cycle with T , then it is rejected
and the algorithm considers the least weight edge of the remaining edges.

Algorithm Kruskal: Kruskal’s Algorithm

1 Input: Undirected Weighted Graph: (V,E,w).
2 Output: Minimum Weight Spanning Tree
3 var
4 T,Rejected: set of edges initially {};

5 while (|T | < n� 1) do
6 if T [Rejected = E then return null; // no spanning tree in the graph
7 e := the least weight edge that is not in T [Rejected
8 if e forms a cycle in T then
9 Rejected := Rejected [{e}

10 else T := T [{e}
11 endwhile
12 return T

In Kruskal, the variable T keeps the set of all edges that are chosen and the variable Rejected keeps the set of
all edges that are rejected. Consider the graph shown in Fig. 10.1. Kruskal’s algorithm will first choose the edge
with weight 2 since it has the least weight. It then chooses the edges with weight 3 and 4 because these edges do not
form any cycle. The next edge has weight 5. However, this edge needs to be rejected because it forms a cycle with
the already chosen edges with weight 3 and 4. The algorithm then chooses the edge with weight 7 and terminates.

The algorithm is dominated by the cost of sorting the edges O(m log n). Checking whether the edge e forms a
cycle with T can be done e�ciently using find-union data structure. The reader is referred to [CLRS01] for more
details on the e�cient implementation of the algorithm.

We give a parallel version for Kruskal’s algorithm based on the simple boolean lattice of all edges. Our distributive
lattice is the boolean lattice formed from all edges. We assume that edges are given to us in the increasing order.
Then, an edge ej between vertices vk and vl is in the minimum spanning tree i↵ there is no path between vertices vk
and vl using edges e1 . . . ej�1. Note that when j is 1, ej corresponds to the lightest edge and is always in the minimum
spanning tree. The algorithm is shown in Fig. Parallel-MST. The parallel time complexity of this algorithm is O(m)
where m is the number of edges in the graph if we are given edges in the sorted order.

Algorithm LLP-Kruskal: Finding the minimum spanning tree in a graph .

1 var G: array[1..m] of {0, 1};
2 // Edges G is assumed to be in increasing order of weights
3 init 8j : G[j] := 0;
4 forbidden(j) ⌘ ej = (vk, vl) and there exists no path from vk to vl with edges 1..j � 1
5 advance(j) G[j] := 1

10.3. PRIM’S ALGORITHM 91

a

b
5

c
4

3
d7

9
e11

2

Figure 10.1: An undirected weighted graph

10.3 Prim’s Algorithm

Prim’s algorithm is also a greedy algorithm. It builds the minimum spanning tree by increasing the size of a single
fragment by adding the minimum weight outgoing edge of the fragment. It simply exploits the Lemma 10.1 to
increase the size of fragment until it becomes the MST. At any stage, Prim’s algorithm has a fragment F . It finds
the minimum outgoing edge from that fragment e. This edge can be viewed as the edge from the fragment to its
nearest neighbor. Therefore, this algorithm is sometimes also known as the nearest-neighbor-next algorithm. To find
the nearest neighbor, every vertex v maintains a label d which corresponds to the cost of adding v to the fragment.
At every iteration, the algorithm chooses the vertex v with the minimum d value and adds it to the fragment. The
array fixed keeps track of the vertices in the fragment. Whenever, a new vertex v is fixed and added to the fragment,
the d values for all adjacent vertex v0 are updated as follows. We check whether the weight of the edge (v, v0) is lower
than the previous value of d[v0]. If this is true, then d[v0] is updated to w[v, v0]. We also use G pointer with each
node which keeps track of the G node v that is responsible for the d value of v0.

Algorithm Prim: Finding a Minimum Spanning Tree (MST)

1 Input: Undirected Weighted Graph: (V,E,w).
2 Output: Minimum Weight Spanning Tree
3 var
4 d: array[0..n� 1] of real initially 1; //d[v] is the cost to add vertex v
5 G: array[0..n� 1] of int initially �1; // G[v] is the node that corresponds to d[v] cost
6 fixed : array[0..n� 1] of boolean initially false; //vertices whose d value is fixed
7 T : set of edges initially {};

8 d[0] := 0;
9 while (|T | < n� 1) do

10 v := arg mini{d[i] | ¬fixed[i]} ;
11 if d[v] = 1 then return null;// no spanning tree in the graph
12 if G[v] 6= �1 then add (v,G[v]) to T
13 fixed[v] := true;
14 forall (v, v0) 2 E:
15 if w[v, v0] < d[v0] then
16 d[v0] := w[v, v0];
17 G[v0] := v;
18 end // forall
19 end //while

92 CHAPTER 10. THE MINIMUM SPANNING TREE PROBLEM

Consider the graph shown in Fig. 10.1 again. For Prim’s algorithm, we start from a fixed node. Suppose we start
from the vertex a. Then, the nearest neighbor is c with the cost of 4. The next nearest neighbor to the fragment
with vertices {a, c} is the vertex b. The cost of adding b is 3. At this point, we have vertices {a, b, c} in the fragment.
The cost to add vertex d is 7 and to add the vertex e is 11. We add the vertex d to our fragment with the cost 7.
Finally, e is added with the cost 2. Hence, the edges are added to the tree in the order 4, 3, 7, 2. Note that the set of
edges chosen are identical to Kruskal’s algorithm even though the order in which they are chosen is di↵erent. This
is not surprising because there is a unique minimum spanning tree when all edge weights are unique (Problem 1).

The step of finding the vertex v with minimum d value can be done either by simply traversing the array d or by
maintaining d in a heap. If we simply traverse the array d to find the minimum, the work complexity of the above
algorithm is O(n2 + e). In every iteration of the while loop, we perform O(n) work for finding the minimum and
there are O(n) iterations of the loop. The work for processing edges over all iterations is O(e) because every edge
is processed at most once. If we use a heap to store d values of all the vertices that are not fixed, we require O(m)
insertions on the heap resulting in O(m log n) work complexity. This approach results in better work complexity
when the graph is sparse and m equals O(n).

10.4 An LLP based algorithm for Prim

We now show an LLP based algorithm to find a minimum spanning tree rooted at a fixed vertex v0. As before, we
assume that all edge weights are unique. Every node other than v0 has to choose a G edge. It keeps all its edge in
the sorted order and begins by choosing its least edge as the proposed edge as its G edge. For the graph in Fig. 10.1,
with root as the vertex a, we get the following choices of edges for other vertices.

b: 3, 5, 7
c: 3, 4, 9, 11
d: 2, 7, 9
e: 2, 11

We let G[i] be the edge chosen by the node i. Thus, initially G vector is {3, 3, 2, 2}. Observe that the set of all
possible combinations of edges forms a distributive lattice. This lattice is ordered by our desired objective function,
i.e., if there are two distinct vectors G and H that form spanning trees rooted at v0 and G is the minimum spanning
tree then G is less than H in the lattice. Since every node except v0 has exactly one outgoing edge, by following
the chosen edge from every node we either reach v0, or we end up in a cycle. We define a vertex to be fixed if by
traversing the path starting from the edge proposed by that vertex leads to v0. The vertex v0 is trivially fixed. It
is clear that the edge proposed by a non-fixed vertex can only lead to a non-fixed vertex and the edge proposed by
a fixed vertex can only lead to a fixed vertex. Thus, any G partitions the set of vertices into fixed and non-fixed
vertices. In our example, the initial vector {3, 3, 2, 2} makes vertex a as fixed and all other vertices {b, c, d, e} as
non-fixed.

We define the set of cut edges between these two partitions as follows:

E0(G) := {(i, k) 2 E | fixed(i, G) ^ ¬fixed(k,G)}

In our example, we get the following edges as E0(G) = {(a, b), (a, c)}.
Let x = (i, j) be the edge in E0 with minimum w[i, j]. For our example, it is (a, c) with edge weight of 4. We

claim that process j is forbidden in G. Consider any H such that H[j] < w[i, j]. Suppose if possible H forms the
minimum spanning tree. Any spanning tree must have an edge y between the set fixed(G) and non-fixed(G). We
claim that H cannot be the minimum spanning tree. This claim holds because the edge set H � {y}+ {x} is also a
spanning tree and has a lower weight than H. Therefore, unless process j advances to the edge (i, j), G cannot be
the minimum spanning tree.

When we advance G[j] to that edge, vj becomes fixed. Observe that additional nodes may become fixed if their
proposed edge lead to vj directly or indirectly. The algorithm continues to advance G until either all the vertices
become fixed or the edge set E0(G) is empty. In the latter case, the graph is not connected and there is no minimum
spanning tree.

10.4. AN LLP BASED ALGORITHM FOR PRIM 93

Algorithm LLP-Prim: Finding the minimum spanning tree in a graph .

1 var G: array[1..n� 1] of real initially 8i : G[i] = minimum edge adjacent to i;
2 always
3 fixed(j,G) ⌘ there exists a directed path from vj to v0 using edges in G
4 E0 := { (i, k) 2 E | fixed(i, G) ^ ¬fixed(k,G)};
5 forbidden(j)⌘ 9i : (i, j) 2 E0 such that it has minimum weight w[i, j] of all edges in E0

6 advance(j) G[j] := min{w[i, j] | (i, j) 2 E0
}

Algorithm LLP-Prim shows the forbidden and the advance condition.
We now give an e�cient implementation of the above LLP-Prim algorithm. The reader may have observed that

Prim’s algorithm is very similar to Dijkstra’s algorithm. In each iteration, we choose the vertex v with the least value
of d from all non-fixed vertices. We then explore all the neighbors of v. The only di↵erence is the way d is updated.
Many techniques that are applicable to Dijkstra’s algorithm are also applicable to Prim’s algorithm. For example,
similar to Dijkstra’s algorithm we can use a heap to maintain d values for all non-fixed vertices and then use the
removeMin() operation of the heap to find the vertex with the minimum value. Whenever a vertex is removed from
the heap, all its outgoing edges can be explored in parallel. On the flip side, Prim’s algorithm also su↵ers from the
sequential bottleneck. In every iteration of the while loop, exactly one vertex becomes fixed. We now show a parallel
algorithm that allows multiple vertices to be fixed in one iteration.

Note that Prim’s Algorithm grows the fragment of MST one vertex at a time. We call all the vertices that are
part of the fragment as fixed. All of these vertices know their final G in the MST rooted at v0. Prim’s algorithm
determines the next vertex to be fixed as the vertex that is nearest to fixed vertices. We now claim that any non-fixed
vertex such that it is connected to one of the fixed vertices with a minimum weight edge (MWE) can also be fixed.
Observe that initially all nodes such that their minimum weight edge points to v0 are fixed. In every iteration, a
node k can become fixed in either of the two ways

1. It is the the nearest neighbor to the fragment. This is the usual way in Prim’s algorithm.

2. It is connected to a fixed node z via a minimum weight edge. This edge could be the minimum weight edge
for z or for k.

Note that when a node becomes fixed, it may result in additional nodes becoming fixed due to the second way
of becoming fixed. We continue to add nodes to the fixed set until we are not able to add any more nodes by this
method.

The algorithm starts with the insertion of the source vertex with its d value as 0 in the heap. Instead of removing
the minimum vertex from the heap in each iteration and then exploring it, the algorithm consists of two while loops.
The outer while loop removes one vertex from the heap. If this vertex is fixed, then it has already been explored and
therefore it is skipped; otherwise, it is marked as fixed and inserted in R to start the inner while loop. The inner
loop keeps processing the set R till it becomes empty.

We do not require that vertices in R be explored in the order of their cost. If R consists of multiple vertices then
all of them can be explored in parallel. During this exploration other non-fixed vertices may become fixed. These are
then added to R. Some vertices may initially be non-fixed but R may become fixed later when R is processed. To
avoid the expense of inserting these vertices in the heap, we collect all such vertices which may need to be inserted
or adjusted in the heap in a separate set called Q. Only, when we are done processing R, we call H.insertOrAdjust
on vertices in Q.

The vertices z 2 R are explored as follows. We process all out-going adjacent edges (z, k) of the vertex z to
non-fixed vertices k. This step is called processEdge1 in Algorithm Parallel-Prim. First, we check if this edge is in
the set MWE. If this is the case, then we know that this edge can be added to the tree and the node k can be marked
as fixed. Setting fixed[k] to true removes it e↵ectively from the heap because whenever a fixed vertex is extracted
in the outer while loop it is skipped. The vertex k can be added to R for future processing. If (z, k) is not in MWE,
then we check if the existing distance d[k] is bigger than the weight of the edge (z, k). If this is the case, we update

94 CHAPTER 10. THE MINIMUM SPANNING TREE PROBLEM

Algorithm Parallel-Prim: Early Fixing Algorithm MST1

1 Input: Undirected Weighted Graph: (V,E,w).
2 Output: Minimum Weight Spanning Tree
3 var d: array[0 . . . n� 1] of integer initially 8i : d[i] = 1;
4 H: binary heap of (j, dist) initially empty;
5 fixed: array[0 . . . n� 1] of boolean initially 8i : fixed[i] = false;
6 Q,R: set of vertices initially empty;
7 T : set of edges initially {};
8 G: array[0 . . . n� 1] of integer initially 8i : G[i] = �1;
9 MWE: set of edges; // minimum weight edges for all vertices;

10 d[0] := 0;
11 H.insert((0, d[0]));
12 while ¬H.empty() do
13 (j, dist) := H.removeMin();
14 if (¬fixed[j]) then
15 R.insert(j);
16 fixed[j] := true;
17 if G[j] 6= �1 then add (j,G[j]) to T
18 while R 6= {} do
19 forall z, k : (z 2 R) ^ ¬fixed(k) ^ (z, k) 2 E in parallel:
20 processEdge1(z, k);
21 endwhile;
22 forall z 2 Q : ¬fixed[z] : H.insertOrAdjust (z, d[z])
23 endwhile;
24 if (|T | = n� 1) then return T ;
25 else return null; // no spanning tree exists;

26 procedure processEdge1(z, k);
27 if (z, k) 2 MWE then
28 fixed[k] := true;
29 add (k, z) to T ; // z is the G of k
30 R.insert(k);
31 else if (d[k] > w[z, k]) then
32 d[k] := w[z, k];
33 G[k] := z;
34 if (k 62 Q) then
35 Q.insert(k);

10.5. BORUVKA’S ALGORITHM: SEQUENTIAL IMPLEMENTATION 95

d[k] and make z as the G of k. Finally, if d[k] has decreased, we insert it in Q so that once R becomes empty we
can call H.insertOrAdjust() method on vertices in Q. This algorithm can be terminated as soon as n� 1 edges have
been chosen.

Let us run this algorithm on the graph in Fig. 10.1. We first insert the vertex a in the heap with distance 0. We
remove a from the heap, fix it and insert it into R. We then process all edges of vertices in R. When we process the
edge (a, c), we find that it is the mwe for a. Hence, c is fixed and added to R. We continue processing edges of a.
The next vertex discovered is b. It is added to Q. We then continue processing R. The next vertex is c. When we
process the edge (c, b), we find that it is mwe for b (and c). Hence, b is now added to R. We now remove the vertex
b from R and process its edges. Since vertices a and c are already fixed, we discover d and insert it in Q. Now, R is
empty and we start inserting vertices from Q into the heap. Since c is already fixed, we insert only the vertex d in
the heap. We are now ready to remove the minimum from the heap. The vertex d is removed and fixed. When we
explore the edges of d, we find that the edge (d, c) is mwe and the vertex c is also fixed. At this point all vertices
have been fixed and we get the edges {4, 3, 7, 2} as the MST.

Note that this algorithm requires every vertex to know its minimum weight edge. If this information is not
available, then every node can determine this information in parallel by processing all its adjacent edges. In a
sequential algorithm, the set MWE can be computed when the graph is input.

To analyze the work complexity of this algorithm when a heap is used, we consider the simple variant in which
we simply insert the vertex and its label instead of calling H.insertOrAdjust. Just as in Dijkstra’s algorithm, any
edge is explored at most once in this algorithm. Any such edge exploration results in one heap insertion operation.
Thus, we have O(m log n) complexity due to heap insertions and therefore also heap removals.

10.5 Boruvka’s Algorithm: Sequential Implementation

In Prim’s algorithm, we started with a trivial fragment including just the vertex v0. We kept increasing the size of
the fragment till it became a spanning tree. In Boruvka’s algorithm, we may have more than one fragment. We
increase the size of all fragments by adding the minimum outgoing edge for each fragment.

We use T to denote the set of tree edges. Initially, T is empty. When we determine the components in (V, T)
using BFS, we get that there are n components as each vertex is a component by itself when T is empty. The
algorithm finds minimum weight outgoing edge for each component as follows. At any iteration, we use BFS to find
the least numbered vertex that any vertex is connected to in the graph (V, T). This vertex serves as the identifier
for the component of the node i, and we use the variable cid[i] to store it. Once we have determined the component
identity of all nodes, we move to the next step of determining the minimum weight outgoing edge for each component.
We traverse all edges and for each edge that connects two di↵erent components we check whether it is cheaper than
previously known outgoing edge for the component on either side. Once we have determined all minimum weight
edges for every component, we add these to T and start the next iteration.

For example, consider the graph in Fig. 10.1. Initially, T is empty and there are 5 components. We we compute
mwe for each component, we get the edges 4, 3, 3, 2, 2 as the minimum weight edges of a, b, c, d, e, respectively. Once,
these edges are added we have two components: {a, b, c} and {d, e}. We then find mwe of these two components
as the edge 7. On adding this edge, we have chosen (n � 1) edges and the algorithm terminates with the edges
{2, 3, 4, 7}.

After every iteration, the number of connected components in (V, T) reduces by at least a factor of two. This is
because every component gets attached to some other component. The worst case is when every least weight edge
chosen by any component is also chosen as the least weight edge by the component on the other side of the edge.
Hence, the algorithm takes at most O(log n) iterations of the while loop. It is easy to see that the least weight edge
outgoing from each component is found in O(m) work. Thus, the algorithm takes O(m log n) work.

10.6 Boruvka’s Algorithm: Parallel Implementation

An advantage of Boruvka’s algroithm is that we get one edge for every component. Thus, if there are c components
we get at least c/2 new tree edges in one iteration of the algorithm. In the sequential implementation, we used the

96 CHAPTER 10. THE MINIMUM SPANNING TREE PROBLEM

Algorithm BoruvkaSeq: Finding MST

1 Input: Undirected connected Weighted Graph: (V,E,w).
2 Output: Minimum Weight Spanning Tree
3 var
4 T : { set of edges } initially {};
5 cid: array[1..n] of 0..n initially all 0;
6 mwe: array[1..n] of edge initially all null;
7 dist: array[1..n] of 0..n initially all 1;

8 while (|T | < n� 1) do
9 visited: array[1..n] of boolean initially all false;

10 for i := 1 to n do
11 if (¬visited[i])
12 // do a BFS in the graph (V, T) from vertex i setting cid of every visited vertex to i
13 BFS(i);

14 for (i, j) 2 E such that (cid[i] 6= cid[j]) do
15 if w[i, j] < dist[cid[i]]
16 dist[cid[i]] = w[i, j]
17 mwe[cid[i]] = (i, j)
18 if w[i, j] < dist[cid[j]]
19 dist[cid[j]] = w[i, j]
20 mwe[cid[j]] = (i, j)

21 forall i do:
22 T := T [mwe[cid[i]];
23 endwhile
24 return T

10.6. BORUVKA’S ALGORITHM: PARALLEL IMPLEMENTATION 97

a c4 b3
3

d e2
2

a

c

4

b

3

3

e

d

2

2

a

b

4

3

c

3

e

d

2

2

Figure 10.2: (a) Pseudo-tree from the graph in Fig. 10.1 . (b) Rooted-trees (c) Rooted-stars

{a,b,c} {d,e}

7
9
11

Figure 10.3: Graph after all rooted stars are contracted.

graph BFS traversal to determine the component ids for each node. The BFS traversal is work-e�cient but takes as
much time as the diameter of the graph. We now show a strategy that takes O(log n) time to carry out this step.
This will give us a parallel algorithm with O(log2 n) time complexity.

The heart of the technique is pointer jumping. Given any undirected graph (V,E), we first construct a directed
graph (V,H) in which we every vertex points to the neighbor connected with the least weight edge. In this graph,
each component is a pseudo-tree, i.e., a tree with a 2-cycle at the root.

We convert the pseudo-tree into a rooted tree and then by using pointer jumping convert the rooted tree to a
rooted star. To convert a pseudo-tree into a rooted tree, we simply need to break the 2-cycle into a self-loop and a
directed edge. We make the smaller of the nodes as the root with the self-loop and the bigger node points to the
smaller node. Fig. 10.2 shows this conversion. The 2-cycle between b and c is converted to c pointing to b and b as
the root. To convert a rooted tree to a rooted star, we simply use pointer jumping. Fig. 10.2(c) shows the rooted
stars for the graph.

All the vertices in the rooted star are contracted into a single vertex in the graph (V,E). At this point, we have
a graph in which each vertex represents a fragment of the original graph. We can now recursively find tree edges in
the new graph. The algorithm terminates when there is exactly one vertex in the graph.

It is easy to check that the only step in one level of recursive call of Boruvka’s algorithm that takes O(log n)
time is the pointer jumping step. Every other step can be done in O(1) time with m processors. Since each level
takes O(log n) time and there are at most O(log n) levels, we get the parallel time complexity of O(log2 n). Since
each level takes O(m) work, we get the work complexity of O(m log n). We remark here that even though we have

98 CHAPTER 10. THE MINIMUM SPANNING TREE PROBLEM

Algorithm BoruvkaPar: Finding MST

1 Input: Undirected connected Weighted Graph: (V,E,w).
2 Output: Minimum Weight Spanning Tree
3 function Boruvka(V,E)
4 var
5 T : { set of edges } initially {};
6 G: array[1..n] of 0..n initially all 0;

7 if |V | = 1 return {};

8 // Get Pseudo-tree from the graph
9 forall v 2 V in parallel do

10 G[v] = w such that (v, w) is the minimum weight edge of v;
11 T := T [{(v, w)};

12 // Convert it into a rooted tree
13 forall v 2 V in parallel do
14 if G[G[v]] = v and v < G[v] then
15 G[v] := v;

16 // Convert every rooted tree into a rooted star
17 while (9j : G[j] 6= G[G[j]])
18 forall v 2 V in parallel do
19 G[v] := G[G[v]]

20 // Contract all rooted stars into a single vertex
21 V 0 := {v 2 V | G[v] = v}
22 E0 := {(G[v], G[w])|((v, w) 2 E) ^ (G[v] 6= G[w])}
23 return T [Boruvka(V 0, E0)

10.7. LLP-BORUVKA ALGORITHM 99

given the algorithm in a recursive fashion, it is easy to convert it into an iterative algorithm. We leave that as an
exercise (Problem 3).

10.7 LLP-Boruvka Algorithm

In this section, we continue with the recursive version of the algorithm, but implement each recursive instance of
Boruvka’s algorithm with the LLP algorithm. As before, we assume that input to our algorithm is a connected graph
without any self-loops. The LLP algorithm uses the single variable G. For each instance, we let the minimum weight
edge (mwe) adjacent to each vertex v be denoted by mwe[v]. We denote this directed graph by H: the set of vertices
is V and the set of edges is {(v, w)|(v, w) = mwe[v]}. We initialize G[v] with the node w when mwe[v] = (v, w) except
when mwe[w] = (w, v) and v < w. For the latter case, we make G[v] equal to v. As a result of this initialization,
the structure G[v] forms a rooted tree. This initialization is simply the steps of getting the rooted tree in Algorithm
BoruvkaPar. We say that the edge (v, w) is incident to v when G[v] equals w for w di↵erent from v.

Algorithm LLP-Boruvka: Finding MST

1 Input: Undirected connected Weighted Graph: (V,E,w).
2 Output: Minimum Weight Spanning Tree
3 function Boruvka(V,E)
4 var
5 G: array[1..n] of 1..n initially G[v] equals w such that mwe[v] = (v, w) and mwe[w] 6= (v, w),

or mwe[v] = mwe[w] = (v, w) and v < w
6 v, otherwise.

7 forbidden(j)⌘ G[j] 6= G[[G[j]]
8 advance(j) ⌘ G[j] := G[G[j]]

9 if |V | = 1 return {};
10 else return T [Boruvka(V 0, E0) where
11 T := {(v, w) | (v, w) is the minimum weight edge of v};
12 V 0 := {v 2 V | G[v] = v}
13 E0 := {(G[v], G[w])|((v, w) 2 E) ^ (G[v] 6= G[w])}

Once we have rooted trees for the graph, we convert the rooted trees to rooted stars using pointer-jumping. A
node j is considered forbidden if G[j] 6= G[G[j]]. It is advanced by setting G[j] to G[G[j]]. The algorithm stops this
iteration when no node is forbidden. We show that each instance is indeed an LLP algorithm.

We first show a basic lemma.

Lemma 10.2 The following is an invariant of the program: G[v] is reachable from v in the directed graph H.

Proof: The invariant is true initially because G[v] is set to w where (v, w) is an edge in H. The only statement
executed in the program is G[v] := G[G[v]] which preserves the invariant because G[G[v]] is reachable from G[v].

We also observe that H is a collection of rooted trees and if w is reachable from v, then there is a unique path
from v to w. Furthermore, the weight of edges along any path is strictly decreasing. This is because if v points to w
and w points to u then the weight of the edge (w, u) must be strictly smaller than the the weight of the edge (v, w)
by the property that each vertex points to the minimum weight edge incident to it. We are now ready to show the
following lemma.

100 CHAPTER 10. THE MINIMUM SPANNING TREE PROBLEM

Lemma 10.3 Each instance of finding connected components is an LLP algorithm that terminates.

Proof: We consider the lattice of vectors. For component j, we keep the weight of the minimum weight edge in the
path from j to G[j]. We define the predicate B as

B ⌘ 8j : G[j] = G[G[j]]

We show that predicate is lattice-linear. Suppose the predicate B is not true. This implies that there exists j such
that G[j] is di↵erent from G[G[j]]. We show that the component j is forbidden. G[j] cannot be the root of a tree in
H because the root points to itself (and therefore G[j] equals G[G[j]]. Let k be equal to G[j]. We just showed that
k is not equal to the root. Therefore, G[k] 6= k even if G[k] changes. Hence, G[j] 6= G[G[j]] continues to hold. The
component j in G vector is advanced by setting G[j] to be G[G[j]].

We now show that the LLP algorithm terminates. When G[j] is advanced, the weight of the last edge from j to
G[j] can only strictly decrease. Since there are at most n � 1 edges in H, the algorithm must eventually terminate
with B as true.

Algorithm Figure LLP-Boruvka shows the entire algorithm. Observe that there are no synchronization require-
ments for any instance of the LLP algorithm. Any thread j that finds G[j] di↵erent from G[G[j]] can set it to G[G[j]].
In particular, G[G[j]] may have changed between the observation of (G[j] 6= G[G[j]]) and setting of G[j] to G[G[j]],
but the algorithm still works correctly.

10.8 Summary

The following table lists all the algorithms discussed in this chapter.

Problem Algorithm Parallel Time Work
Minimum Spanning Tree Kruskal’s O(m) O(m log n)
Minimum Spanning Tree LLP-Kruskal1 O(m) O(m2)
Minimum Spanning Tree LLP-Kruskal2 O(log2 n) O(n3 log n)
Minimum Spanning Tree Prim O(m) O(m log n)
Minimum Spanning Tree LLP-Prim O(m) O(m log n)
Minimum Spanning Tree Boruvka-Par O(log2 n) O(m log n)
Minimum Spanning Tree LLP-Boruvka O(log2 n) O(m log n)

10.9 Problems

1. Show that there is a unique minimum spanning tree in any weighted undirected graph when all edge weights
are distinct.

2. Suppose that you are given an undirected graph (V,E,w) such that all edge weights are distinct. You are also
given a subset of edges E0 such that (V,E0) is acyclic. Show that there exists a unique minimum spanning
tree T that is constrained to include all edges in E0.

3. Give a parallel iterative implementation of Boruvka’s algorithm.

10.10 Bibliographic Remarks

Sequential algorithms for minimum spanning tree can be found in [CLRS01]. Parallel Boruvka algorithm is available
in [SMDD19].

Chapter 11

Parallel Algorithms on Trees

11.1 Introduction

In this chapter we present Euler Tour Technique to get O(log n) time parallel algorithms for solving problems related
to trees with n nodes. Consider the simple problem of computing the height of a tree. If the tree is a balanced binary
tree, then it may be easy to think of a parallel algorithm that computes the height in O(log n) time. What if the
tree is not balanced? It may seem that computing the height of a tree would require at least as much time as the
height itself. However, surprisingly, we can solve the problem with a much faster algorithm. In the extreme case,
when the height of the tree is O(n), we would still be able to compute the height in O(log n) time. The key to this
magic is to view the tree as a linked list and then apply parallel-prefix sum techniques.

To view a tree as a linked list of edges, we use the idea of Euler Tour. An Euler tour of a directed graph from
any node v is a walk along the edges of the graph starting from vertex v such that every edge is traversed exactly
once and ending at vertex v. Since whenever a walk enters a vertex, it also leaves the vertex, it is easy to see that
existence of an Euler Tour in a directed graph requires that in-degree of every vertex must be equal to the out-degree.
It can be shown that equality of in-degree to the out-degree of every vertex in a strongly connected graph is also
a su�cient condition for existence of an Eulerian Tour. Recall that we were concerned with listing edges of a tree
and not a directed graph. So we first convert the tree into a directed graph as follows. For every undirected edge
(u, v), we put two directed edges (u, v) and (v, u), one in each direction. It is clear that by our construction, any tree
results in a strongly connected graph such that it has an Eulerian Tour. Furthermore, we will soon show that this
tour can be constructed in O(1) time in parallel!

First, let us determine a way to specify an Eulerian Tour. The idea is that it is su�cient to specify the next edge
for every edge e in the directed graph. In other words, after traversing any edge e, the successor edge in the Eulerian
tour is given by next(e). We will assume that all vertices are numbered uniquely and therefore for any vertex u, all
its neighbors are given in some fixed order. Let u be any vertex with neighbors v0, v1, . . . vm�1. Then, for any edge
(vi, u), we define next(vi, u) = (u, vi+1 mod m) We now have the following claim.

Theorem 11.1 The next function defines an Eulerian Tour on the directed graph G constructed from the tree T .

Proof: Left as an exercise.

We now give a more concrete implementation of Euler Tour of a tree T . Consider the tree T shown in Figure
11.1. Figure 11.2 shows the adjacency list representation of the T . In this representation, for example, node 1 has
two edges: (1, 4), and (1, 5). In addition to the usual adjacency list representation shown in the above figure, we
make two additional assumptions. First, the edge list for each node is a circular list. Hence, the edge (1, 5) in the
list for node 1 points to the edge (1, 4) instead of pointing to null. The edge (2, 4) points to itself. We will refer to
the links in the circular list as black links. Second, we will assume that there are bidirectional links from edge (x, y)

101

102 CHAPTER 11. PARALLEL ALGORITHMS ON TREES

to edge (y, x). We refer to these links as blue links. This results in the adjacency list representation as shown in
Figure 11.3. Note that every edge has exactly one outgoing black link and one blue link. Given the black and blue
links, it is a simple matter to determine next(e) for any edge e. The edge next(v, u) is given by following one blue
link and then one black link. Thus, every processor assigned to any edge can determine the next edge in O(1) time.

In this example next(1, 4) = (4, 2). In Figure 11.3, next is the element that is shown by the blue dotted edges
followed by black edges. So we can can construct the following Euler Tour directly from Figure 11.3:

(1, 4) ! (4, 2) ! (2, 4) ! (4, 3) ! (3, 4) ! (4, 1) ! (1, 5) ! (5, 1) ! (1, 4)

Figure 11.1: A tree T

Figure 11.2: The adjacency lists of the tree T

As another example, consider T in Fig. 11.4. In the above tree, we get the following Euler Tour:
(1, 3) ! (3, 1) ! (1, 4) ! (4, 2) ! (2, 4) ! (4, 1) ! (1, 5) ! (5, 1) ! (1, 3).

Now that we have an Euler Tour constructed in O(1) time, we show its applications.

11.2 Constructing DFS tree rooted at a given node r

We first construct a list called Euler Path out of Euler Tour as follows. Since the Euler Path traversal of a tree
rooted at r will start from r and end at r, we make the next edge for the edge (vm�1, u) to be null. Observe that
Euler Path is identical to the more familiar depth-first-search (DFS) traversal of the tree. In the last tree, suppose
that we are interested in the DFS traversal starting from node 1, then the next (5, 1) is set to null and we get the
following linked list.
(1, 3) ! (3, 1) ! (1, 4) ! (4, 2) ! (2, 4) ! (4, 1) ! (1, 5) ! (5, 1).

Our goal is to set the parent pointer for each node in DFS tree rooted at r. In DFS traversal x is parent of y
i↵ the edge (x, y) is traversed before (y, x). How do we determine which edge is traversed first? We assign weight of
each edge as 1 and compute parallel prefixSum for all edges in the linked list. Now, for each directed edge (x, y), if

11.2. CONSTRUCTING DFS TREE ROOTED AT A GIVEN NODE r 103

Figure 11.3: The circular adjacency lists of tree T with additional pointers

1

3 4 5

2

Figure 11.4: Tree with the root as node 1

prefixSum(x, y) is less than prefixSum(y, x), we assign parent of y as x. In our example, we get

Edges: (1,3) (3,1) (1,4) (4,2) (2,4) (4,1) (1,5) (5,1)
Weight: 1 1 1 1 1 1 1 1
prefixSum 1 2 3 4 5 6 7 8

Since prefixSum of (4, 2) is less than the prefixSum of (2, 4), we get that parent[2] equals 4. The algorithm can
be summarized as follows.

1 Compute Euler Circuit C
2 Break C into list by setting succ(ud�1, r) to 0
3 Assign weight 1 to each edge
4 Compute parallel prefix sum
5 for each edge(x, y) do in parallel:
6 if prefixSum(x, y) < prefixSum(y, x) then parent[y] := x

The time complexity of this algorithm is dominated by computation of prefixSum, hence we have T (n) = O(log n).

104 CHAPTER 11. PARALLEL ALGORITHMS ON TREES

11.3 Postorder Numbering of a Tree rooted at u

The postorder number of a node is given by the order in which a node is visited in the postorder traversal of a tree.
The postorder traversal of a tree rooted at node r visits all subtrees of r recursively before visiting the root r.

To find the postorder traversal number of each node, we first construct Euler path as in the previous section. Then,
we assign the weight of 1 to edge that corresponds to an edge (v, parent[v]) because that edge is traversed when the
subtree rooted as v has been traversed. Then, the post-order number of a node v is given by prefixSum(v, parent[v]).

The algorithm can be summarized as follows.

1 Compute Euler Path for T rooted at r
2 for each v 6= r do in parallel:
3 w(v, p(v)) := 1
4 w(p(v), v) := 0
5 Compute parallel prefix sum
6 for each v 6= r do in parallel:
7 post[v] := prefixSum(v, p(v))
8 post[r] = n

In this example, we get the following prefix sums.

Edges: (1,3) (3,1) (1,4) (4,2) (2,4) (4,1) (1,5) (5,1)
Weight: 0 1 0 0 1 1 0 1
prefixSum 0 1 1 1 2 3 3 4

the post-order number of 3 is 1 because prefixSum(3, parent[3]) = prefixSum(3, 1) = 1.
The post-order number of 2 is 2 because prefixSum(2, parent[2]) = prefixSum(2, 4) = 2.
The post-order number of 4 is 3 because prefixSum(4, parent[4]) = prefixSum(4, 1) = 3.

11.4 Computing Vertex Level for a Tree rooted at u

If we have the parent information it is also easy to determine the level of any vertex in the tree. The level of the
root is always 0. Whenever we traverse an edge (parent[v], v), we are going from the parent of v to v, hence the level
number increases by 1. On the other hand, when we traverse the edge (v, parent[v]), the level number decreases by
1. Hence, we assign weights to each edge as follows. If the edge is from a node to its child, then its weight is +1;
otherwise, its weight is �1. Now, we can compute prefixSum of Euler path. The level of any non-root vertex v is
given by the prefixSum of the edge (parent[v], v).

The algorithm can be summarized as follows.

For our example, we get:

Edges: (1,3) (3,1) (1,4) (4,2) (2,4) (4,1) (1,5) (5,1)
Weight: 1 -1 1 1 -1 -1 -1 1
prefixSum 1 0 1 2 1 0 1 0

Specific examples: prefixSum(1, 3) = 1 ! level[3] = 1

11.5. COMPUTE SIZE OF SUBTREE FOR EACH NODE 105

1 Compute Euler Path for T rooted at r
2 for each v 6= r do in parallel:
3 w(v, p(v)) := -1
4 w(p(v), v) := 1
5 Compute parallel prefix sum
6 for each v 6= r do in parallel:
7 level[v] := prefixSum(p(v), v)
8 level[r] = 0

11.5 Compute Size of Subtree for Each Node

Recall that a non-root node v is visited for the first time when the traversal reaches v from its parent and it is visited
for the last time when the traversal reaches p(v) from v. The number of nodes traversed between these two visits is
given by prefixSum(v, p(v)) minus prefixSum(p(v), v).

1 Compute Euler Path for T rooted at r
2 for each v 6= r do in parallel:
3 w(v, p(v)) := 1
4 w(p(v), v) := 0
5 Compute parallel prefix sum
6 for each v 6= r do in parallel:
7 size[v] := prefixSum(v, p(v)) - prefixSum(p(v), v)
8 size[r] = n

For our example, we get:

Edges: (1,3) (3,1) (1,4) (4,2) (2,4) (4,1) (1,5) (5,1)
Weight: 0 1 0 0 1 1 0 1
prefixSum 0 1 1 1 2 3 3 4

Specific example: prefixSum(3, 1) = 1, prefixSum(1, 3) = 0. Therefore, size[3] = 1.

11.6 Problems

1. A preorder traversal is defined by the following recursive method.

preorder(node r)
visit(r);
for all children x of r do

preorder(x);
end

Give a parallel algorithm to return the order of node visited during preorder traversal. What is the time and
work complexity of your algorithm if the tree has n nodes?

106 CHAPTER 11. PARALLEL ALGORITHMS ON TREES

11.7 Bibliographic Remarks

Reader will find parallel algorithms for tree in are [JáJ92].

Chapter 12

Dynamic Programming

12.1 Introduction

We show that many problems that can be solved using dynamic programming [Bel52] can also be solved in parallel
using the LLP algorithm. Dynamic programming is applicable to problems where it is easy to set up a recurrence
relation such that the solution of the problem can be derived from the solutions of problems with smaller sizes. One
can solve the problem using recursion; however, recursion may result in many duplicate computations. By using
memoization, we can avoid recomputing previously computed values. We assume that the problem is solved using
dynamic programming with such bottom-up approach in this chapter.

The LLP algorithm views solving a problem as searching for an element in a finite distributive lattice [Bir67,
DP90, Gar15] that satisfies a given predicate B. The predicate is required to be lattice-linear. For all the problems
considered in this chapter, the longest subsequence problem, the optimal binary search tree problem and the Knapsack
problem, this is indeed the case.

There are also some key di↵erences between dynamic programming (the bottom-up approach) and the LLP
algorithm. The usual dynamic programming problem seeks a structure that minimizes (or maximizes) some scalar.
For example, the longest subsequence problem asks for the subsequence in an array A[1..n] that maximizes the sum.
In contrast, the LLP algorithm seeks to minimize or maximize a vector. In the longest subsequence problem with the
LLP approach, we are interested in the longest subsequence in the array A[1..i] for each i  n that ends at index i.
Thus, instead of asking for a scalar, we ask for the vector of size n. We get an array G[1..n] and the solution to the
original problem is just the maximum value in the array G. Similarly, the optimal binary search tree problem [Knu71]
asks for the construction of an optimal binary search tree on n symbols such that each symbol i has probability pi
of being searched. Our goal is to find the binary search tree that minimizes the expected cost of search in the tree.
The LLP problem seeks the optimal binary search tree for all ranges i . . . j instead of just one range 1..n. Finally, the
knapsack problem [HS74, IK75] asks for the maximum valued subset of items that can be fit in a knapsack such that
the profit is maximized and the total weight of the knapsack is at most W . The LLP problem seeks the maximum
profit obtained by choosing items from 1..i and the total weight from 1..W . In all these problems, traditionally we
are seeking a single structure that optimizes a single scalar; whereas the LLP algorithm asks for a vector. It turns
out that that in asking for an optimal vector instead of an optimal scalar, we do not lose much since the existing
solutions also end up finding the optimal solutions for the subproblems. The LLP algorithm returns a vector G such
that G[i] is optimal for i.

The second di↵erence between dynamic programming and the LLP algorithm is in terms of parallelism. The
dynamic programming solution does not explicitly refers to parallelism in the problem. The LLP algorithm has
an explicit notion of parallelism. The solution uses an array G for all problems and the algorithm requires the
components of G to be advanced whenever they are found to be forbidden. If G[i] is forbidden for multiple values of
i, then G[i] can be advanced for all those values in parallel.

107

108 CHAPTER 12. DYNAMIC PROGRAMMING

The third di↵erence between dynamic programming and the LLP algorithm is in terms of synchronization required
during parallel execution of the algorithm. In case of dynamic programming, if the recursive formulas are evaluated
in parallel it is assumed that the values used are correct. In contrast, suppose that we check for G[i] and G[j] to
be forbidden concurrently such that G[i] ends up using an old value of G[j], the LLP algorithm is still correct. The
only requirement we have for parallelism is that when G[i] uses a value of G[j], it should either be the most recent
value of G[j] or some prior value. A processor that is responsible for keeping G[i] may get old value from G[j] in a
parallel setting when it gets this value from a cache. In a message passing system, it may get the old value of G[j]
if the message to update G[j] has not yet arrived at the processor with G[i]. Thus, LLP algorithms are naturally
parallel with little synchronization overhead.

Yet another di↵erence between dynamic programming and the LLP algorithm is that we can use the LLP
algorithm to solve a constrained version of the problem, so long as the constraint itself is lattice-linear. Suppose
that we are interested in the longest subsequence such that successive elements di↵er by at least 2. It can be (easily)
shown that this constraint is lattice-linear. Hence, the LLP algorithm is applicable because we are searching for an
element that satisfies a conjunction of two lattice-linear predicates. Since the set of lattice-linear predicates is closed
under conjunction, the resulting predicate is also lattice-linear and the LLP algorithm is applicable. Similarly, the
predicate that the symbol i is not a parent of symbol j is lattice-linear and the constrained optimal binary search
tree algorithm returns the optimal tree that satisfies the given constraint. In the Knapsack problem, it is easy to
solve the problem with the additional constraint that if the item x is included in the Knapsack, then the item y is
also included.

This chapter is organized as follows. Section 12.2 applies the LLP method to the longest subsequence problem.
Section 12.3 give a parallel algorithm for the optimal binary search tree construction problem. Section 12.5 gives an
LLP algorithm for the knapsack problem.

12.2 Longest Increasing Subsequences

We are given an integer array as input. For simplicity, we assume that all entries are distinct. Our goal is find for
each index i the length of the longest increasing sequence that ends at i. For example, suppose the array A is {35
38 27 45 32}. Then, the desired output is {1 2 1 3 2}. The corresponding longest increasing subsequences are:
(35), (35, 38), (27), (35, 38, 45), (27, 32).

We can define a graph H with indices as vertices. For this example, we have five vertices numbered v1 to v5. We
draw an edge from vi to vj if i is less than j and A[i] is also less than A[j]. This graph is clearly acyclic as an edge
can only go from a lower index to a higher index. We use pre(j) to be the set of indices which have an incoming
edge to j. The length of the longest increasing subsequence ending at index j is identical to the length of the longest
path ending at j.

To solve the problem using LLP, we model it as a search for the smallest vector G that satisfies the constraint
B ⌘ 8j : G[j] � 1 ^ 8j : G[j] � max{G[i] + 1 | i 2 pre(j)}. To understand B, we first consider a stronger predicate
B⇤ = (G[1] = 1) ^ 8j : G[j] = max{1,max{G[i] + 1 | i 2 pre(j)}}. The interpretation of G[j] in B⇤ is that it is
the length of the longest path that ends in j. Thus, in the longest increasing subsequence problem we are searching
for the vector that satisfies the predicate B⇤. Instead of searching for an element in the lattice that satisfies B⇤, we
search for the least element in the lattice that satisfies B. This allows us to solve for the constrained version of the
problem in which we are searching for an element that satisfies an additional lattice-linear constraint.

The underlying lattice we consider is that of all vectors of natural numbers less than or equal to the maximum
element in the lattice. A vector in this lattice is feasible if it satisfies B. We first show that the constraint B is
lattice-linear.

Lemma 12.1 The constraint B ⌘ (8j : G[j] � 1) ^ (8j : G[j] � max{G[i] + 1 | i 2 pre(j)}) is lattice-linear.

Proof: Since the predicate B is a conjunction of two predicates, it is su�cient to show that each of them is lattice-
linear. The first conjunct is lattice linear because the constant function 1 is monotone. The second conjunct can be
viewed as a conjunction over all j. For a fixed j, the predicate G[j] � max{G[i] + 1 | i 2 pre(j) is lattice-linear.

12.2. LONGEST INCREASING SUBSEQUENCES 109

Our goal is to find the smallest vector in the lattice that satisfies B. Now, LLP algorithm can be formulated as
LLP-Longest-Increasing-Subsequence.

Algorithm LLP-Longest-Increasing-Subsequence: Finding the Longest Increasing Subse-
quence.

1 Pj : Code for thread j
2 input: A:array of int;
3 var G: array[1 . . .n] of int;
4 init: G[j] = 1;
5 pre(j) := {i 2 1..j � 1|A[i] < A[j]};
6 ensure: G[j] � max{G[i] + 1 | i 2 pre(j)};

This algorithm starts with all values as 1 and increases the G vector till it satisfies the constraint G[j] �

max{G[i] + 1 | i 2 pre(j)}. The above algorithm, although correct, does not preclude G[j] from getting updated
multiple times. To ensure that no G[j] is updated more than once, we introduce a boolean fixed for each index such
that we update G[j] only when it is not fixed and all its predecessors are fixed. With this change, our algorithm
becomes LLP2-Longest-Increasing-Subsequence.

Algorithm LLP2-Longest-Increasing-Subsequence: Finding the Longest Increasing Subse-
quence.

1 Pj : Code for thread j
2 input: A:array of int;
3 var G: array[1 . . .n] of int;
4 fixed: array[1 . . .n] of boolean;
5 init: G[j] = 1; fixed[j] := false;
6 pre(j) := {i 2 1..j � 1|A[i] < A[j]};
7 forbidden: ¬fixed[j] ^ (8i 2 pre(j) : fixed[i]);
8 advance: G[j] := max{G[i] + 1 | i 2 pre(j)};
9 fixed[j] := true;

Let us now analyze the complexity of the algorithm. The sequential complexity is simple because we can maintain
the list of all vertices that are forbidden because all its predecessors are fixed. Once we have processed a vertex, we
never process it again. This is similar to a sequential algorithm of topological sort. In this case, we examine a vertex
exactly once only after all its predecessors are fixed. The time complexity of this algorithm is O(n2).

For the parallel time complexity, assume that we have n2 processors available. Then, in time O(log n), one can
determine whether the vertex is forbidden and advance it to the correct value if it is forbidden. This is because for
every j, we simply need to check that all vertices in pre(j) are fixed and j is not fixed. By using a parallel reduce
operation, we can check in O(log n) time whether j is forbidden. If the longest path in the graph H is �, then the
algorithm takes O(� log n) time.

Now, let us consider the situation where each thread j writes the value of fixed[j] and G[j] without using any
synchronization. If any thread j reads the old value of fixed[i] for some i in pre(j), it will not update fixed[j] at
that point. Eventually, it will read the correct value of fixed[i], and perform advance. We do assume in this version
that if a process reads fixed[i] as true, then it reads the correct value of G[i], because fixed[i] is updated after G[i].
Consequently, we get the following result.

110 CHAPTER 12. DYNAMIC PROGRAMMING

Lemma 12.2 There exists a parallel algorithm for the longest increasing subsequence problem which uses just read-
write atomicity and solves the problem in O(� log n) time.

We now add lattice-linear constraints to the problem. Instead of the longest increasing subsequence, we may be
interested in the longest increasing subsequence that satisfies an additional predicate.

Lemma 12.3 All the following predicates are lattice linear.

1. For any j, G[j] is greater than or equal to the longest increasing subsequence of odd integers ending at j.

2. G[j] is greater than or equal to the longest increasing subsequence such that jth element in the subsequence
exceeds (j � 1)th element by at least k.

Proof:

1. Since lattice-linear predicates are closed under conjunction, it is su�cient to focus on a fixed j. If G[j] is less
than the length of the longest increasing subsequence of odd integers ending at j, then the index j is forbidden.
Unless j is increased the predicate can never become true.

2. We view this predicate as redrawing the directed graph H such that we draw an edge from vi to vj if i is less
than j and A[i] + k is less than or equal to A[j].

We note here that the problem can also be solved in parallel using repeated squaring of an appropriate matrix.
We do not discuss that method here since it is not work-optimal and generally not e�cient in practice.

12.3 Optimal Binary Search Tree

Suppose that we have a fixed set of n symbols called keys with some associated information called values. Our goal
is to build a dictionary based on binary search tree out of these symbols. The dictionary supports a single operation
search which returns the value associated with the the given key. We are also given the frequency of each symbol as
the argument for the search query. The cost of any search for a given key is given by the length of the path from the
root of the binary search tree to the node containing that key. Given any binary search tree, we can compute the
total cost of the tree for all searches. We would like to build the binary search tree with the least cost.

Let the frequency of key i being searched is pi. We assume that keys are sorted in the increasing order of symbols.
Our algorithm is based on building progressively bigger binary search trees. The main idea is as follows. Suppose
symbol k is the root of an optimal binary search tree for symbols in the range [i..j]. The root k divides the range into
three parts – the range of indices strictly less than k, the index k, and the range of indices strictly greater than k.
The left or the right range may be empty. Then, the left subtree and the right subtree must themselves be optimal
for their respective ranges. Let G[i, j] denote the least cost of any binary search tree built from symbols in the range
i..j. We use the symbol s(i, j) as the sum of all frequencies from the symbol i to j, i.e.,

s(i, j) =
jX

k=i

pk

For convenience, we let s(i, j) equal to 0 whenever i > j, i.e., the range is empty.
We now define a lattice linear constraint on G[i, j]. Let i  k  j. Consider the cost of the optimal tree such

that symbol k is at the root. The cost has three components: the cost of the left subtree if any, the cost of the search
ending at this node itself and the cost of search in the right subtree. The cost of the left subtree is

G[i, k � 1] + s(i, k � 1)

12.3. OPTIMAL BINARY SEARCH TREE 111

whenever i < k. The cost of the node itself is s(k, k). The cost of the right subtree is

G[k + 1, j] + s(k + 1, j)

Combining these expressions, we get

G[i, j] = min
ikj

(G[i, k � 1] + s(i, j) +G[k + 1, j])

This is also the least value of G[i, j] such that

G[i, j] � min
ikj

(G[i, k � 1] + s(i, j) +G[k + 1, j])

We now show that the above predicate is lattice-linear.

Lemma 12.4 The constraint B ⌘ 8i, j : G[i, j] � minikj(G[i, k � 1] + s(i, j) +G[k + 1, j]) is lattice-linear.

Proof: Suppose that B is false, i.e., 9i, j : G[i, j] < minikj(G[i, k � 1] + s(i, j) + G[k + 1, j]). This means that
there exists i, j, k with i  k  j such that G[i, j] < (G[i, k � 1] + s(i, j) + G[k + 1, j]). This means the the index
(i, j) is forbidden and unless G[i, j] is increased, the predicate B can never become true irrespective of how other
components of G are increased.

We now have our LLP-based algorithm for Optimal Binary Search Tree as Algorithm LLP-OptimalBinarySearchTree.
The program has a single variable G. It is initialized so that G[i, i] equals p[i] and G[i, j] equals zero whenever i is
not equal to j. The algorithm advances G[i, j] whenever it is smaller than minikj G[i, k� 1] + s(i, j) +G[k+1, j].
In Algorithm LLP-OptimalBinarySearchTree, we have used the always clause as a macro that uses s(i, j) as a short
form for

P
j

k=i
p[k].

Algorithm LLP-OptimalBinarySearchTree: Finding An Optimal Binary Search Tree

1 Pi,j : Code for thread (i, j)
2 input: p:array of real;// frequency of each symbol
3 init: G[i, j] = 0 8i 6= j;
4 G[i, i] = p[i];

5 always: s(i, j) =
Pj

k=i p[k]
6 ensure:
7 G[i, j] � minikj G[i, k � 1] + s(i, j) +G[k + 1, j]
8 priority: (j � i)

Although, the above algorithm will give us correct answers, it is not e�cient as it may update G[i, j] before
G[i, k] and G[k, j] for i  k  j have stabilized. However, the following scheduling strategy ensures that we update
G[i, j] at most once. We check for whether G[i, j] is forbidden in the order of j � i. Hence, initially all G[i, j] such
that j = i+ 1 are updated. This is followed by all G[i, j] such that j = i+ 2, and so on. We capture this scheduling
strategy with the priority statement. We pick G[i, j] to update such that (j� i) have minimal values. Of course, our
goal is to compute G[1, n]. With the above strategy of updating G[i, j], we get that G[i, j] is updated at most once.
Since there are O(n2) possible values of G[i, j] and each takes O(n) work to update, we get the work complexity of
O(n3). On a CREW PRAM, we can compute all i, j with the fixed di↵erence in parallel. By using O(log n) span
algorithm to compute min, we get the parallel time complexity as O(n log n). Thus, we have the following result.

Lemma 12.5 There exists a parallel algorithm for the optimal binary search tree problem which uses just read-write
atomicity and solves it in O(n log n) parallel time.

112 CHAPTER 12. DYNAMIC PROGRAMMING

We now consider the constrained versions of the problem.

Lemma 12.6 All the following predicates are lattice linear.

1. Key x is not a parent for any key.

2. The di↵erence in the sizes of the left subtree and the right subtree is at most 1.

Proof:

1. This requirement changes the ensure predicate to G[i, j] � minikj,k 6=x G[i, k� 1] + s(i, j) +G[k+ 1, j]. The
right hand side of the constraint continues to be monotonic and therefore it is lattice linear.

2. This requirement changes the ensure predicate to G[i, j] � minikj,|k�1�i,j�k�1|1 G[i, k�1]+s(i, j)+G[k+
1, j]. This change simply restricts the values of k, and the right hand side continues to be monotonic.

12.4 Chain Matrix Multiplication

A problem very similar to Optimal Binary Search tree is that of constructing an optimal way of multiplying a
chain of matrices. Since matrix multiplication is associative, the product of matrices (M1 ⇤ M2) ⇤ M3 is equal to
M1 ⇤ (M2 ⇤M3). However, depending upon the dimensions of the matrices, the computational e↵ort may be di↵erent.
For example, consider the dimensions (30 times 10), (10 times 30), (30 times 2) results in a matrix of size 30 times
2. If we multiply the first two matrices using the standard simple matrix multiplication, we get 30 times 10 times
30 = 9000 operations to get 30 times 30 matrix. Multiplying M3 requires 1800 additional operations. If we multiply
M2 and M3 first, then we require 600 operations first. Multiplying M1 adds 30⇥ 10⇥ 2 = 600 additional operations.
We let the dimension of matrix Mi be mi�1 ⇥ mi. Note that this keep the matrix product well-defined because
the dimension of matrix Mi+1 would be mi ⇥ mi+1 and the product Mi ⇥ Mi+1 is well-defined. We can view any
evaluation of a chain as a binary tree where the intermediate notes are the multiplication operation and the leaves
are the matrices themselves. Suppose, our goal is to compute the optimal binary tree for multiplying matrices in
the range Mi . . .Mj . Borrowing ideas from the previous section, we let G[i, j] denote the optimal cost of computing
the product of matrices in the range Mi . . .Mj . Suppose that this product is broken into products of Mi . . .Mk and
Mk+1 . . .Mj and then multiplication of these two matrices. We can compute the cost of this tree as

G[i, k] +G[k + 1, j] +mi�1mkmj

Then, we have the following predicate on G.

G[i, j] � min
ik<j

(G[i, k] +mi�1mkmj +G[k + 1, j]

The reader will notice the similarity with the optimal binary search tree problem and this problem and the same
algorithm can be adapted to solve this problem.

12.5 Knapsack Problem

We are given n items with weights w1, w2, . . . , wn and values v1, v2, . . . , vn. We are also given a knapsack that has a
capacity of W . Our goal is to determine the subset of items that can be carried in the knapsack and that maximizes
the total value. The standard dynamic programming solution is based on memoization of the following dynamic
programming formulation [Vaz01, DPW10]. Let G[i, w] be the maximum value that can be obtained by picking
items from 1..i with the capacity constraint of w. Then, G[i, w] = max(G[i� 1, w � wi] + vi, G[i� 1, w]). The first
argument of the max function corresponds to the case when the item i is included in the optimal set from 1..i, and
the second argument corresponds to the case when the item i is not included and hence the entire capacity can be

12.5. KNAPSACK PROBLEM 113

used for the items from 1..i � 1. If wi > w, then the item i can never be in the knapsack and can be skipped. The
base cases are simple. The value of G[0, w] and G[i, 0] is zero for all w and i. Our goal is to find G[n,W]. By filling
up the two dimensional array G for all values of 0  i  n and 0  w  W , we get an algorithm with time complexity
O(nW).

We can model this problem using lattice-linear predicates as follows. We model the feasibility as G[i, w] �

max(G[i� 1, w�wi] + vi, G[i� 1, w]) for all i, w > 0 and wi  w. Also, G[i, w] = 0 if i = 0 or w = 0. Our goal is to
find the minimum vector G that satisfies feasibility.

Lemma 12.7 The constraint B ⌘ 8i, w : G[i, w] � max(G[i�1, w�wi]+vi, G[i�1, w]) for wi  w is lattice-linear.

Proof: If the predicate B is false, there exists i and w such that G[i, w] < max(G[i � 1, w � wi] + vi, G[i � 1, w]).
The value G[i, w] is forbidden; unless G[i, w] is increased the predicate can never become true.

Algorithm LLP-Knapsack: Finding An Optimal Solution to the Knapsack Problem

1 Pi,j : Code for thread (i, j)
2 input: w, v:array[1..n] of int;// weight and value of each item
3 var: G:array[0 . . . n, 0 . . .W] of int;
4 init: G[i, j] = 0 if (i = 0) _ (j = 0);
5 ensure:
6 G[i, j] � max{G[i� 1, j � wi] + vi, G[i� 1, j]} if j � wi

7 � G[i� 1, j], otherwise.

Algorithm LLP-Knapsack updates the value of G[i, j] based only on the values of G[i� 1, .]. Furthermore, G[i, j]
is always at least G[i � 1, j]. Based on this observation, we can simplify the algorithm as follows. We consider the
problem of adding just one item to the knapsack given the constraint that the total weight does not exceed W . We
maintain the list of all optimal configurations for each weight less than W .

Algorithm LLP-IncrKnapsack2: Finding An Optimal Solution to the Incremental Knapsack
Problem
1 Pj : Code for thread j
2 input: w, v: int;// weight and value of the next item
3 C: array[0 . . .W] of int;
4 var: G:array[0 . . .W] of int;
5 init: 8j : G[j] = C[j];
6 ensure:
7 G[j] � C[j � w] + v if j � w

The incremental algorithm can be implemented in O(1) parallel time using O(W) processors as shown in Fig.
LLP-IncrKnapsack2. Each processor j can check whether G[j] needs to be advanced.

We can now invoke the incremental Knapsack algorithm as Algorithm Knapsack2. If we had W cores, then
computing G[i, .] from G[i� 1, .] can be done in O(1) giving us the span of O(n).

We now add some lattice-linear constraints to the Knapsack problem. In many applications, some items may be
related and the constraint xa) xb means that if the item xa is included in the Knapsack then the item xb must also
be included. Thus, the item xa has profit of zero if xb is not included. The item xb has utility even without xa but
not vice-versa. Without loss of generality, we assume that all weights are strictly positive, and that index b < a. In

114 CHAPTER 12. DYNAMIC PROGRAMMING

Algorithm Knapsack2: Finding An Optimal Solution to the Knapsack Problem

1 Pj : Code for thread j
2 input: w, v:array[1..n] of int;// weight and value of each item
3 var: G:array[0 . . .W] of int;
4 init: 8j : G[j] = 0;
5 for i := 1 to n do
6 G := IncrKnapsack2(w[i], v[i], G);

the following Lemma, we use an auxiliary variable S[i, j] that keeps the set of items included in G[i, j] and not just
the profit from those items.

Lemma 12.8 First assume that (i 6= a). Let B(i, w) ⌘ G[i, w] � max(G[i�1, w�wi]+ vi, G[i�1, w]) for (wa  w)
and G[i, w] � G[i� 1, w], otherwise. This predicate corresponds to any item i di↵erent from a. The value with a bag
of capacity w is always greater than or equal to the choice of picking the item or not picking the item.

Let B(a,w) ⌘ G[a,w] � max(G[a � 1, w � wa] + va, G[a � 1, w]) if b 2 S[a � 1, w � wa] ^ (wa  w) and
G[a,w] � G[a� 1, w], otherwise.

Then, B(i, w) is lattice-linear for all i and w.

Proof: Suppose that B(i, w) is false for some i and w. Unless G[i, w] is increased, it can never become true.

12.6 Summary

The following table lists all the algorithms discussed in this chapter.

Problem Algorithm Parallel Time Work
Increasing subseq LLP O(� log n) O(n2� log n)
Optimal binary tree LLP O(n log n) O(n3)
Knapsack problem LLP O(n) O(nW)

12.7 Problems

1. We are given a directed acyclic graph (V,E) with n nodes and m edges. Our goal is to assign a number, label
to each vertex from 1..n such that for all edges (i, j) 2 E, label[i] < label[j]. Define B as 8(i, j) 2 E : label[j] �
label[i] + 1. Show that B is lattice-linear predicate.

2. Modify the algorithm for Optimal Binary Search Tree to return not only the optimal cost but also the tree
itself.

3. (Longest Path in Directed Acyclic Graphs) We are given a directed acyclic graph (V,E) with n nodes
and m edges such that each edge has a positive real cost. We are also given a distinguished vertex v0. Give
an LLP based algorithm to find the longest path from v0 to all vertices.

4. We are given a polygon and are required to triangulate it optimally. We are given a weight function that takes
a triangle on vertices vi, vj and vk and returns a real-valued function w(vi, vj , vk). Our goal is to triangulate the
given polynomial and triangulate it to minimize the sum of weights of all triangles. (Hint: Devise a recurrence
relation similar to the matrix chain product problem.)

12.8. BIBLIOGRAPHIC REMARKS 115

12.8 Bibliographic Remarks

Sequential algorithms for dynamic programming can be found in [CLRS01]. LLP based parallel algorithms for
dynamic programming are taken from [Gar22].

116 CHAPTER 12. DYNAMIC PROGRAMMING

Chapter 13

Divide and Conquer

13.1 Introduction

A useful strategy for solving a problem in parallel is to divide the problem into sub-problems, solve the sub-problems
in parallel and then merge the solutions to the sub-problems to get the solution of the original problem. We give many
examples of this approach. Viewing the problem as finding an appropriate element in a distributive lattice, the divide-
and-conquer approach corresponds to viewing the problem as finding two appropriate elements in two distributive
lattices. This search is carried out independently and in parallel. Once these two elements are determined, we use
them to find the required element in the original lattice.

13.2 Splittable Predicates

Let L be a finite distributive lattice and B be any lattice-linear predicate. We call B splittable if there exists two
lattices L1 and L2 and two lattice-linear predicates B1 and B2 such that given the least solution for B1 and B2 in
L1 and L2, one can determine the least solution for B in L. The e↵ort to determine the least solution for B in L is
reduced if we have the solutions for B1 and B2. If B1 and B2 are also splittable, then we can apply this strategy
recursively. Once the lattice is trivial, i.e., it is totally ordered, then finding the least solution is simple. Formally,

Definition 13.1 (Splittable Lattice-Linear Predicate) A nonempty Lattice-Linear Predicate B is splittable for
a finite distributive lattice L, if there exists two nonempty lattices L1 and L2 and two lattice-linear predicates B1 and
B2 such that there exists a map f : L1 ⇥ L2 ! L, where f(G1, G2) is the least element satisfying B in L such that
G1 and G2 are the least elements in L1 and L2 satisfying B1 and B2.

As an example of a predicate that is not splittable, consider the stable marriage problem. Given the distributive
lattice of all assignments, the predicate B that the assignment is a stable marriage is not splittable.

The predicate B that is true on all elements is trivially splittable into B1 and B2 also as true elements. The
lattice L can be split into arbitrary L1 ⇥ L2. We now give many examples of nontrivial splittable predicates.

13.3 Quicksort

Let A be any array. Without loss of generality assume that all the entries are unique. Sorting the array is equivalent to
finding the permutation such that when the permutation is applied to the array we get a sorted array. A permutation
can be represented in many ways. We represent it using the inversion vector. The inversion number of any entry i

117

118 CHAPTER 13. DIVIDE AND CONQUER

as the number of entries greater than i that appear to the left of i in the permutation. Consider the lattice of all
inversion vectors (show that it is distributive).

Sorting is equivalent to finding the inversion vector which sorts the array. For example, if the array is [7, 3, 9],
then the inversion vector is [0, 1, 0] We can order the inversion vectors based on component-wise comparison. Under
this order, the set of inversion vectors forms a distributive lattice L. For an array of size 3, there are six elements
in the lattice L: [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [0, 0, 2] and [0, 1, 2]. An inversion vector G satisfies B if when G is
applied to A, it results in a sorted vector. Formally,

B(G) ⌘ A has inversion vector G

We claim that B is splittable. Let pivot be an arbitrary element in the array which is not an extremal element.
We define L1 to be the lattice of inversion vectors for entries in an array that are at most pivot. Similarly, let L2

be the lattice of inversion vectors for entries that are strictly bigger than pivot. Let G1 and G2 be the inversion
vectors for entries in L1 and L2, respectively. Then, G is given by the inversion vector (G1, G2) applied to respective
entries in L1 and L2. As a concrete example, suppose that A = [5, 9, 16, 4, 11]. Let the pivot be 5. There are two
entries in A that are less than or equal to pivot, and three entries that are bigger than pivot. Then, L1 corresponds
to all inversion vectors of length 2 and L2 corresponds to all inversion vectors of length 3. G1 equals [0, 1] because
the inversion vector [0, 1] sorts the subarray [5, 4] and G2 equals [0, 0, 1] which sorts the subarray [9, 16, 11]. Then,
the inversion vector G equals [0, 1, 0, 0, 1] applied to respective entries sorts the array. In our example, we get [0, 1]
applied to [5, 4] and [0, 0, 1] applied to [9, 16, 11]. Hence, the sorted array is [4, 5, 9, 11, 16]. Of course, sorting the
array by this method requires the array to be split into two parts: entries less than or equal to pivot and the entries
greater than pivot. However, in the worst case our partition may be trivial. For example, when the pivot is the
greatest element in the array or the smallest element in the array, one side of the partition is just one less than the
original array. We note here that in expectation, the partitioned arrays are not unevenly sized and the algorithm
performs well in practice.

13.4 Mergesort

In the above example, we first partitioned the array such that all elements on the left side of the split are less than
the right side of the split. Once the left side and the right side are sorted, there is nothing else to be done. An
alternative version of the split would be to split the lattice trivially, but the merging of the solution requires more
e↵ort. In our example of the sorted array A = [5, 9, 16, 4, 11], suppose that we split the lattice into two lattices L1

and L2 such that L1 consists of the first two components and L2 corresponds to the last three components. The
vector S1 = [5, 9] is the sorted version of the left side [5, 9] and the vector S2 = [4, 11, 16] is the sorted version of
the right side [16, 4, 11]. Now, our task is to merge the two sorted arrays. The function f in definition of splittable
lattice-linear predicate corresponds to merging of these two arrays.

To sort an array of size n, we divide it into two subarrays of size n/2 and sort each of the parts in parallel. The
main trick is to determine how to merge these two sorted arrays. To understand, an application of the LLP algorithm
for mergesort, we consider a related problem of counting the number of inversions of each entry in an array A. Given
an array A, our goal is to compute another array G such that for any index i in the array,

G[i] = #{j < i | A[j] > A[i]} (13.1)

To keep things simple, we let all entries of A be unique. To exploit divide-and-conquer, we divide the array into
two equal parts (or nearly equal, if the array A is of odd size). Let these two parts be called Left and Right. For
the left part, computing G remains identical irrespective of the total size of the array, i.e., we still have Equation
13.1. However, for the right part, we have that G[i] = #{(j < i) ^ (j 2 Left) | A[j] > A[i]} + #{(j < i) ^ (j 2

Right) | A[j] > A[i]}. The second part of the above equation is identical to Equation 13.1 for the right part of the
array, but we need to find the value of the first part of the equation.

Now, we merge the two sorted subarrays to get the sorted version of the original array. Let us first look at the
sequential work complexity. We have the following recurrence

W (n) = 2W (n/2) +O(n);W (1) = O(1)

13.5. PLANAR CONVEX HULL 119

Algorithm LLP-MergeSort: MergeSort

1 LLP-MergeSort(A, low, high)
2 if low < high then
3 mid = b(lo+ high)/2c ;
4 B := LLP-MergeSort(A, low, mid) in parallel with C := LLP-MergeSort(A, mid + 1, high)
5 return MergeTwo(B,C);
6 else return A;

A

B

C

D

E

F

G

Figure 13.1: An example of Planar Convex Hull

Solving this recurrence, we get the sequential time complexity as W (n) = O(n log n).
Now, we focus on the parallel time complexity. To merge two sorted arrays of size n/2 into a sorted array of size

n, we need O(log n) time. Each entry can independently determine the total number of elements less than itself via
binary search. Since each subarray is sorted in parallel, we get the following recurrence:

T (1) = O(1);T (n) = T (n/2) +O(log n)

Solving this recurrence, we get that the parallel merge sort runs in time T (n) = O(log2 n). Since the procedure
assumes n processors, we get that the total work done is O(n log2 n).

13.5 Planar Convex Hull

Suppose that we are given S, a set of points on a plane. The convex hull of S is the smallest convex polygon that
contains all points of S. The convex polygon can be described by the ordered list of points (in the clockwise direction)
that defines the boundary of the polygon. Our task is to compute the convex hull of S.

We first model the problem using lattice-linear predicates. Let L be the boolean lattice on S. Thus, L has size
2|S|. Our goal is to find S0, the smallest subset of S, such that any point in S can be written as a convex combination
of points in S0. We define a predicate B to be true on X, a subset of S, if all points in S can be written as a convex
combination of points in X. Thus, our goal reduces to finding the least element in L that satisfies B. Since sorting
can be achieved in O(log n) parallel time, let points {p1, ..., pn} be sorted in their x-coordinate. For simplicity, we
assume that x coordinates are unique. It is easy to verify that the point with the smallest x-coordinate, p1 and the
largest x-coordinate pn are always in the convex hull. These two points also divide up the convex hull into two sets:
the upper hull and the lower hull. The upper hull consists of all points in the convex hull starting from p1 and ending

120 CHAPTER 13. DIVIDE AND CONQUER

Left subset Right subset

Figure 13.2: Using Divide and Conquer for Planar Convex Hull

at pn (but not including pn) in the clockwise direction. The lower hull consists of all points starting from pn and
ending at p1 (but not including p1).

To compute the convex hull of S, we divide the set of points into two sets S1 and S2 such that S1 has first n/2
points with smaller x coordinate and S2 has n/2 points with the larger x coordinate. Similar to mergesort, we can
compute convex hulls of S1 and S2 in parallel. The only task left it to merge the convex hull of S1 and S2 to get
the convex hull of S. We first get the upper hulls of S1 and S2 and merge them to get the upper hull of S. This
procedure can be repeated for lower hulls. To merge upper hulls, we need to determine the upper common tangent
of UH(S1) and UH(S2). It is known that the upper common tangent can be determined sequentially in O(n) time
and in parallel in O(log n) time. Hence, we get the following recurrences:

T (n)  T (n/2) +O(log n)

W (n)  2W (n/2) +O(n)

Solving these recurrences, we get T (n) = O(log2 n) and W (n) = O(n log n).

13.6 Summary

In this chapter, we have shown that many divide-and-conquer problems can be solved using a single parallel Lattice-
Linear Predicate algorithm. Since each partition can be solved in parallel, we get an algorithm with polylog time
complexity if partitioning is roughly even. The divide and conquer strategy is applicable to many other problems
including: the nearest neighbor problem in the Euclidean space, computation of the Fast-Fourier Transform and
Karatsuba multiplication of two numbers.

The following table lists all the algorithms discussed in this chapter.

Problem Algorithm Parallel Time Work
Sorting Parallel MergeSort O(log2 n) O(n log2 n)
Planar Convex Hull Divide-and-conquer O(log2 n) O(n log n)

13.7 Problems

1. Solve the problem of finding the nearest neighbor in the Euclidean space using the divide and conquer approach.

2. Solve the problem of computing the Fast-Fourier-Transform in parallel using the divide and conquer approach.

Chapter 14

Greedy Algorithms

14.1 Introduction

Many problems can be solved as making n choices such that at the end of these choices we have the solution of the
problem. Greedy algorithms start with with the solution for the problem of trivial size, generally of size 0 or 1. It
then keeps increasing the size of the problem, one at a time until we get back the problem after n steps. For many
applications, this strategy results in a solution that is a global optimal or close to a global optimal. Thus, many
algorithms that we have seen earlier can be called greedy algorithms. Prim’s Minimum Spanning Tree (MST) is as
follows. Given a connected graph, we need to find a spanning tree of that graph which is minimal in the total edge
weight. The greedy approach is as follows. Start with an arbitrary node and always add the smallest edge that
connects any node in the tree to a node outside the tree. Similarly, Kruskal’s Minimum Spanning Tree is as follows.
Always pick the smallest edge that doesn’t cause a cycle in the MST being constructed. Similarly, Dijkstra’s Shortest
Path Algorithm to find the shortest path from the source to all vertices in the given graph is also greedy. It always
picks the next vertex with the shortest known distance.

When we are developing parallel algorithms, we are interested in increasing the size of the problem by more than
one. This idea can e↵ectively be modeled using LLP algorithms. There can be more than one forbidden index and
we can advance on all forbidden indices in parallel. For the parallel version of Prim’s algorithm, we added multiple
edges to the current component so long as these edges are either the smallest going out of the component or the
smallest going out the vertex that is being added. For the parallel version of Kruskal’s algorithm, we added all edges
(vi, vj) such that there is no path from vertex vi to vj with edges lighter than the edge between vi and vj . For the
parallel version of Dijkstra’s algorithm, we added multiple nodes to the current component so long as these edges
are the smallest going out of the component or guaranteed the least distance from the source vertex.

In this chapter, we provide some additional examples of greedy algorithms that can be parallelized.

14.2 Activity Selection Problem

We start with a standard simple greedy algorithm. Suppose that we have m activities with the start times si and
finish times fi for jobs i = 1..m., where si  fi. We assume that activities happen during the open interval [si, fi).
Two activities i and j are compatible if fi  sj or fj  si. Our goal is to select a maximum-size set of mutually
compatible activities.

We consider the lattice of completion times for k jobs. G[i] gives the completion of job i. We define G[i] as the
least time by which i jobs can be finished. A vector G is feasible if for all j greater than 1 there exists a job that
starts after time G[j � 1] and finishes at time G[j] and G[1] gives the finishing time of the first job. Since every job
takes at least one unit of time, it is clear that for all i, G[i] < G[i+ 1] for all feasible G.

121

122 CHAPTER 14. GREEDY ALGORITHMS

Pj : Code for thread j
var G: linked list of [1..n] of (1..maxint, 1..maxint, boolean);// shared among all threads
init: 8j : G[j].s() := s[j];G[j].f() := f [j];G[j].fixed := false
G[1].fixed := true;

activity-selection:
forbidden: ¬G[this].fixed ^G[prev].f() < G[this].s()

advance: G[this].fixed := true;
forbidden: G[prev].fixed ^ ¬G[this].fixed ^G[this].s() < G[prev].f()

advance: delete G[this] from G;

Figure 14.1: LLP Parallel Program for Activity Selection problem

Pj : Code for thread j
var id : 1..n; s : 1..maxint, f : 1..maxint, fixed : boolean, prev, next : 1..n;
init: 8j : id := j; s := s[j]; f := f [j]; fixed := false; prev := j � 1;next := j + 1;
if (j = 1)fixed := true;

activity-selection:
forbidden: ¬fixed ^ prev.f < s

advance: fixed := true;
forbidden: prev.fixed ^ ¬fixed ^ s < prev.f

advance: prev.next := next; next.prev := prev; // delete this node from the linked list;

Figure 14.2: LLP Parallel Program for Activity Selection problem

14.3. HUFFMAN TREE 123

The first rule states that if the current job starts after the last job finishes, then the current job is always included
in the final set. The second rule states that if the current job starts before the previous job and the previous job is
guaranteed to be chosen, then it is always deleted from the consideration. Observe that since we have used a linked
list for all the jobs, the previous node for any node may change when a job is deleted from the list. For example,
consider the following four jobs: j1 = [1, 4), j2 = [2, 5), j3 = [4, 5), j4 = [5, 7). The first job gets fixed because the
first job is always fixed. The fourth job also gets fixed because its starting point is bigger than the finishing time
of the previous job. Since the first job is fixed and the second job starts before the first job is finished, it is deleted
from the list. Now, the third job is also fixed because it starts after the first job is finished.

Assuming that the input job list is sorted using finishing times, the LLP algorithm takes O(1) in the best case
and O(n) in the worst case. The sequential algorithm always takes O(n) time.

We now add lattice-linear constraints to the problem.

14.3 Hu↵man Tree

The goal of the Hu↵man tree problem is to come up with an e�cient encoding of a set of symbols. We are given n
symbols. For each symbol i, the value p[i] gives the probability that it appears in the given text such that

X

i

p[i] = 1

Our goal is to design a prefix code such that the given text of symbols can be translated to a string such that the
text of symbols can be recovered from the string. We will create a binary tree such that leaves correspond to the
symbols and the path from the root to the leaf corresponds to the code for the symbol. Note that only the leaves of
the tree correspond to the symbol. Also note that leaves may be at di↵erent levels and therefore this method returns
variable length code for symbols rather than fixed length code.

Algorithm LLP-Hu↵manTree1: Finding Hu↵man Code

1 input: p:array of real;// frequency of each symbol
2 init: G[i, j] = 0 8i 6= j;
3 G[i, i] = p[i];

4 always: s(i, j) =
Pk=j

k=i p[i]
5 ensure(i, j):
6 G[i, j] � minik<j G[i, k � 1] + s(i, j) +G[k + 1, j]

The sequential algorithm is as follows. We choose two symbols i and j with the least probability. We give the
code of 0 for i and 1 for j. We can replace symbols i and j by another symbol ↵ that occurs with probability pi+ pj .
The number of symbols have now decreased by 1. If we knew the code for ↵, then by appending 0 or 1, we get the
code for i and j. We repeat this procedure until there are only two symbols left. These two symbols can be given the
code 0 and 1. The sequential algorithm can be implemented using a heap e↵ectively. We can find and delete the two
symbols i and j with the least probability using the heap and then insert ↵ in the heap with the sum of probability
for i and j. Alternatively, suppose that we are initially given a queue of symbols with increasing probability. By
keeping an additional queue of derived symbols, we can implement the sequential algorithm in O(n) time if the initial
sorted queue is provided to us.

We now give an LLP algorithm for Hu↵man coding. Instead of computing the code for the original n symbols
S, we derive another set of symbols S0 such that this set is of length n � 1 or smaller and given the code for each
symbol in s0, we can derive the code for symbols in S. If the set of symbols is just one, then we can stop since a
single symbol does not require any bits to encode.

124 CHAPTER 14. GREEDY ALGORITHMS

Algorithm LLP-Hu↵manTree: Finding Hu↵man Code

1 input: p:array of real;// frequency of each symbol
2 init: G[i] = p[i] 8i;
3 forbidden(i):
4 G[i, j] � minik<j G[i, k � 1] + s(i, j) +G[k + 1, j]

14.4 Fractional Knapsack Problem

14.5 Bibliographic Remarks

Chapter 15

The Housing Allocation Problem

15.1 Introduction

The housing market problem proposed by Shapley and Scarf [SS74] is a matching problem with one-sided preferences.
There are n agents and n houses. Each agent ai initially owns a house hi for i 2 {1, n} and has a completely ranked
list of houses. There are variations of this problem when the agents do not own any house initially. In this paper,
we focus on the version with the initial endowment of houses for the agents. The list of preferences of the agents is
given by pref [i][k] which specifies the kth preference of the agent i. Thus, pref [i][1] = j means that ai prefers hj as
his top choice. The goal is to come up with an optimal house allocation such that each agent has a house and no
subset of agents can improve the satisfaction of agents in this subset by exchanging houses within the subset. It can
be shown that there is a unique such matching called the core for any housing market. The standard algorithm for
this problem is Gale’s Top Trading Cycle Algorithm that takes O(n2) time. This algorithm is optimal in terms of
the time complexity since the input size is O(n2). Our interest in this paper is to design parallel algorithms for this
problem.

In this chapter, we focus on computing the core and give a parallel algorithm for finding the core that is nearly
linear in the number of agents. Our algorithm takes expected O(n log2 n) time and expected O(n2 log n) work.

Section 15.2 gives Gale’s Top Trading Cycle Algorithm. Section 15.3 applies LLP method to the unconstrained
Housing market problem and derives a high-level parallel algorithm. Section 15.4 give a parallel Las Vegas algorithm
for the Housing market problem.

15.2 Gale’s Top Trading Cycle Algorithm

Consider the housing market instance shown in Fig. 15.1. There are four agents a1, a2, a3 and a4. Initially, the agent
ai holds the house hi. The preferences of the agents is shown in Fig. 15.1.

The Top Trading Cycle (TTC) algorithm attributed to Gale by Shapley and Scarf [SS74] works in stages. At
each stage, it has the following steps:

Step 1. We construct the top choice directed graph Gt = (A,E) on the set of agents A as follows. We add a
directed edge from agent ai 2 A to agent aj 2 A if aj holds the current top house of ai. Fig. 15.2 shows the directed
graph at the first stage.

Step 2. Since each node has exactly one outgoing edge in Gt, there is at least one cycle in the graph (possibly,
a self-loop). All cycles are node disjoint. We find all the cycles in the top trading graph and implement the trade
indicated by the cycles, i.e, each agent which is in any cycle gets its current top house.

Step 3. Remove all agents which get their current top houses and remove all houses which are assigned to some
agent from the preference list of remaining agents.

125

126 CHAPTER 15. THE HOUSING ALLOCATION PROBLEM

a1 : h2, h3, h1, h4

a2 : h1, h4, h2, h3

a3 : h1, h2, h4, h3

a4 : h2, h1, h3, h4

Agents’ Preferences

a1 : h1

a2 : h2

a3 : h3

a4 : h4

Initial Allocation

a1 : h2

a2 : h1

a3 : h4

a4 : h3

Matching returned by the TTC algorithm

Figure 15.1: Housing Market and the Matching returned by the Top Trading Cycle Algorithm

The above steps are repeated until each agent is assigned a house. At each stage, at least one agent is assigned
a final house. Thus, this algorithm takes O(n) stages in the worse case and needs O(n2) computational steps.

a1 a2

a3 a4

Figure 15.2: The top choice graph at the first stage.

15.3 Applying LLP Algorithm to the Housing Market Problem

We model the housing market problem as that of predicate detection in a computation. There are n agents and n
houses. Each agent proposes to houses in the decreasing order of preferences. These proposals are considered as
events executed by n processes representing the agents. Thus, we have n events per process. Each event is labeled
as (i, h, k), which corresponds to the agent i proposing to the house h as his choice number k.

The global state corresponds to the number of proposals made by each of the agents. Let G[i] be the number
of proposals made by the agent i. We will assume that in the initial state every agent has made his first proposal.
Thus, the initial global state G = [1, 1, .., 1]. We extend the notation of indexing to subsets J ✓ [n] such that G[J]
corresponds to the subvector given by indices in J .

We now model the possibility of reallocation of houses based on any global state. Recall that pref [i][k] specifies
the kth preference of the agent ai. Let wish(G, i) denote the house that is proposed by ai in the global state G, i.e.,

wish(G, i) = pref [i][G[i]]

A global state G satisfies matching if every agent proposes a di↵erent house, i.e.,

matching(G) ⌘ 8i, j : i 6= j : wish(G, i) 6= wish(G, j).

We generalize matching to refer to a subset of agents rather than the entire set.

Definition 15.1 (submatching) Let J ✓ [n]. Then, submatching(G, J) i↵ wish(G, J) is a permutation of indices
in J .

Intuitively, if submatching(G, J) holds, then all agents in J can exchange houses within the subset J .
For any G, it is easy to show that

15.3. APPLYING LLP ALGORITHM TO THE HOUSING MARKET PROBLEM 127

Lemma 15.2 For all G, there always exists a nonempty J such that submatching(G, J).

Proof: Given any G, we can create a directed graph as follows. The set of vertices is agents and there is an edge
from i to j if wish(G, i) = j. There is exactly one outgoing edge from any vertex in [n] to [n] in this graph. This
implies that there is at least one cycle in this graph (possibly, a self-loop). The indices of agents in the cycle gives
us such a subset J .

We now show that

Lemma 15.3 submatching(G, J1) and submatching(G, J2) implies that submatching(G, J1 [J2).

Proof: Any index i 2 J1 [J2 is mapped to J1 if i 2 J1 and J2, otherwise.

Hence, there exists the biggest submatching in G. Note that matching(G) is equivalent to submatching(G, [n]).

Definition 15.4 (Feasible Global State) A global state G is feasible for the housing market problem i↵ it is a
matching and for all global states F < G, there does not exist any submatching which is better in F than in G. Note
that if there exists a submatching J which is better in F than G, then the agents in J can improve their allocation
by just exchanging houses within the subset J . Formally, let

Bhousing(G) ⌘ matching(G) ^ (8F < G : 8J ✓ [n] : submatching(F, J)) F [J] = G[J]).

We show that Bhousing(G) is a lattice-linear predicate. This result will let us use the lattice-linear predicate
detection algorithm for the housing market problem.

Theorem 15.5 The predicate Bhousing(G) is lattice-linear.

Proof: Suppose that ¬Bhousing(G). This implies that either G is not a matching or it is a matching but there exists
a smaller global state F that has a submatching better than G.

First, consider the case when G is not a matching. Let J be the largest set such that submatching(G, J). Con-
sider any index i 62 J such that wish(G, i) 2 J . We claim that forbidden(G, i,Bhousing). Let H be any global state
greater than G such that G[i] = H[i]. We consider two cases.

Case 1: H[J] > G[J].
Then, from the second conjunct of Bhousing, we know that ¬Bhousing(H) because submatching(G, J) and H[J] 6=
G[J].

Case 2: H[J] = G[J].
Since wish(H, i) = wish(G, i), wish(G, i) 2 J , and G[J] = H[J], we get that H is not a matching because the house
given by wish(G, i) is also in the wish list of some agent in J .

Now consider the case when G is a matching but ¬Bhousing(G). This implies

9F < G : 9J ✓ [n] : submatching(F, J) ^ F [J] < G[J]).

However, the same F will also result in guaranteeing ¬Bhousing(H) for any H � G.

128 CHAPTER 15. THE HOUSING ALLOCATION PROBLEM

Algorithm LLP-Housing-Market-Algorithm: A high-level parallel algorithm to find the op-
timal house market
1 var
2 G: array[1..n] of int initially 1;// every agent starts with the top choice
3 always
4 S(G) = largest J such that submatching(G, J)
5 forbidden(G, j,B) ⌘ (j 62 S(G)) ^ (wish(G, j) 2 S(G))
6 advance: G[j] := G[j] + 1;

It is also easy to see from the proof that if an index is part of a submatching, then it will never become forbidden.
This theorem gives us the algorithm shown in Fig. LLP-Housing-Market-Algorithm. Let G be the initial global

state. Let S(G) be the biggest submatching in G. All agents such that they are not in S(G) and wish a house
which are part of S(G) are forbidden and can move to their next proposal. The algorithm terminates when no agent
is forbidden. This algorithm is a parallel version of the top trading cycle (TTC) mechanism attributed to Gale in
[SS74].

We now show that

Theorem 15.6 There exists at least one feasible global state G such that Bhousing(G).

Proof: Every agent has his own house in the list of preferences. If he ever makes a proposal to his own house,
he forms a submatching. That particular event is never forbidden because it is a part of a submatching. Hence,
lattice-linear predicate detection algorithm will never mark that event as forbidden. Since such an event exists for
all processes, we are guaranteed to never go beyond this global state.

The above proof also shows that agents can never be worse-o↵ by participating in the algorithm. Each agent will
either get his own house back or get a house that he prefers to his own house.

15.4 An E�cient Parallel Algorithm for the Housing Market Problem

We now present an e�cient parallel algorithm for the housing market problem. We note here that [ZG19] gives a
distributed algorithm with O(n2) messages for the housing market problem. In this chapter, we focus on computing
the core and give a parallel algorithm for finding the core that is nearly linear in the number of agents. Our algorithm
takes expected O(n log2 n) time and expected O(n2 log n) work.

By renumbering houses, if necessary, we assume that initially agent ai has the house hi. We assume that the
preference list is provided as two data structures: prefList and prefPointer. The variable prefList is an array
of doubly linked list such that prefList[i] points to the list of preferences of agent i. As the algorithm executes,
we advance on prefList and the head of the prefList[i] corresponds to the variable wish for agent ai in Fig.
LLP-Housing-Market-Algorithm

To facilitate quick deletion of houses from this list, we also have a data structure prefPointer. The variable
prefPointer is a two dimensional array such that prefPointer[i][j] points to the node corresponding to house hj

in the doubly-linked list of agent ai. If at any stage in the algorithm, we find out that the house hj has been
permanently allocated to some other agent than ai, then we need to remove the house hj from the preference list
of ai. Since prefPointer[i][j] points to that node in the doubly linked list prefList[i], we can delete the house in
O(1) time. Due to these deletions, we maintain the invariant that the head of prefList[i] always corresponds to the
top choice of the agent ai. Note that if the input is given as the two dimensional array pref , where pref [i][j] is the
top jth choice for the agent ai, then it can be converted into prefList and prefPointer in O(n) time with O(n)
processors.

15.4. AN EFFICIENT PARALLEL ALGORITHM FOR THE HOUSING MARKET PROBLEM 129

We keep the array fixed such that fixed[i] indicates that the agent i has been assigned its final house. If an
agent i is fixed, then it can never be forbidden in Fig. LLP-Housing-Market-Algorithm. Once all agents are fixed,
we get that no agent is forbidden and the algorithm terminates.

At every iteration, we keep the array inCycle[i] that indicates agents that are in Top Trading Cycle at that
iteration. In Fig. LLP-Housing-Market-Algorithm, these agents correspond to S(G) in the global state G. Algorithm
LLP-TTC uses a while loop to fix some number of agents in every iteration. At least one agent is fixed in every
iteration, and therefore there are at most n iterations of the while loop.

Each iteration has four steps. In the first step, we initialize inCycle to be false by default. In the second step
(function markRoots) we use symmetry breaking via randomization and pointer jumping to mark one node called
root in every cycle as belonging to a cycle. The reader is referred to [JáJ92] for symmetry breaking and pointer
jumping. During the process of pointer jumping, we also construct a tree rooted at a vertex such that it consists of
all the nodes in the cycle. In the third step (function informTree), we inform all the agents that are in some rooted
tree that they are in a cycle. In the fourth step, we fix all the agents that are in cycles and remove their houses from
prefList. This step corresponds to advancing G in Fig. LLP-Housing-Market-Algorithm.

Algorithm LLP-TTC: Parallel LLP Top Trading Cycle Algorithm

1 // By renumbering houses, ensure that initially agent ai is assigned house hi
2 var
3 prefList:array[1..n] of list initially 8i : prefList[i] has preferences for ai;
4 prefPointer:array[1..n, 1..n] of pointer to the node in prefList;
5 fixed: array[1..n] of booean initially 8i : fixed[i] = false;
6 inCycle: array[1..n] of booean initially 8i : inCycle[i] = false;
7 children: array[1..n] of set of nodes that ai traversed initially {};

8 while (9i : ¬fixed[i])
9 // Step 1: initialize inCycle

10 forall i : ¬fixed[i] in parallel do: inCycle[i] := false;
11 // Step 2: Mark one node in every cycle as the root
12 markRoots();
13 // Step 3: inform all the agents in any rooted tree that they are in a cycle
14 informTree();
15 // Step 4: Now delete all the agents that are in cycle
16 forall i : ¬fixed[i] ^ inCycle[i], j : ¬[fixed[j] ^ ¬inCycle[j] in parallel do
17 delete the node prefPointer[j][i] from the linked list prefList[j];
18 forall i : ¬fixed[i] ^ inCycle[i] in parallel do
19 fixed[i] := true;
20 endwhile
21 return prefList; //prefList[i] points to the house assigned to the agent ai

The function markRoots uses variable active to denote agents that are active. Initially, all agents are active. The
variable succ[i] is used to point to the next active agent. Initially, succ[i] points to the agent who has the top choice
house of agent i. The variable done[i] indicates whether a cycle has been discovered in the subgraph that agent i is
pointing to. Once, a cycle has been discovered then any active agent knows that it cannot be part of any cycle and
it becomes inactive.

The function markRoots uses a while loop at line 5 to run while there is any active node. Every active agent flips
a coin at line 7. If its own coin is a head and its successor gets a tail, then this agent becomes inactive at line 9. It
is clear that two consecutive agents can never become inactive in the same round because we require an agent to get
“head” and its successor to get “tail” to become inactive. It is also clear that the number of active agents reduce

130 CHAPTER 15. THE HOUSING ALLOCATION PROBLEM

by a constant fraction in every round of coin toss in expectation. Thus, the outer while loop at line 5 is executed
expected O(log n) times.

If an agent is active, it traverses its succ pointer till it reaches the next active node. This is done using the while
loop at line 11. This traversal has length of one or zero because there cannot be two consecutive inactive agents due
to the rule of becoming active.

If agent i reaches itself as the next active node at line 15, it marks inCycle to be true. It also sets done[i] to be
true so that any active node j that points to i knows that a cycle has been found and that the node j can stop looking
for the cycle. If the successor of the node is di↵erent, then we check if the successor is done. If the successor is done,
then this node is not part of the cycle and can therefore make itself inactive and also mark itself as done. Since all
agents execute the statements in forall in parallel, we get that the function markRoots() has parallel expected time
complexity of O(log n). Also, for every cycle in the graph, there is exactly one node that sets its inCycle to be true.

The function informTree uses variable rootSet to initially include all the roots found in the function markRoots.
Once all the nodes in any rooted tree have been informed, the root is deleted from the rootSet. To inform agents in
the tree, we follow the usual method of broadcasting a value from the root to its children. To detect that all agents
in the tree have been notified, we let any subtree that has finished informing its subtree to leave the tree by deleting
itself from the children set of its parent. If the agent is a root, then it deletes itself from the rootSet. Once all roots
have deleted themselves, the function terminates. Since the height of any tree is expected to be O(log n) and the
number of children of any node is also O(log n), we get that the algorithm takes O(log2 n) time.

Algorithm markRoots: Function markRoots for the Parallel LLP Top Trading Cycle Algorithm

1 function markRoots()
2 succ: array[1..n] of 1..n initially 8i : succ[i] = prefList[i].head(); //successor of ai which is

active
3 active: array[1..n] of booean initially 8i : active[i] = true;
4 done: array[1..n] of booean initially 8i : done[i] = false;

5 while (9i : active[i])
6 forall i : ¬fixed[i] ^ active[i] in parallel do
7 coin[i] := “head” or “tail” // based on the flip of a coin
8 if (coin[i] = “head”) ^ (coin[succ[i]] = “tail”) then
9 active[i] := false;

10 else // node i is active
11 while ¬active[succ[i]] do
12 children[i] := children[i] [succ[i]
13 succ[i] := succ[succ[i]]
14 endwhile
15 if (succ[i] = i) // found a cycle
16 done[i] := true
17 inCycle[i] := true
18 active[i] := false
19 else if done[succ[i]] then
20 active[i] := false
21 done[i] := true
22 endforall
23 endwhile

15.4. AN EFFICIENT PARALLEL ALGORITHM FOR THE HOUSING MARKET PROBLEM 131

Algorithm informTree: Function informTree for the Parallel LLP Top Trading Cycle Algorithm

1 function informTree()
2 informed: array[1..n] of booean initially 8i : informed[i] = false;
3 parent: array[1..n] of 1..n initially 8i : parent[i] = i;
4 rootSet: set of 1..n initially {i | inCycle[i]}

5 while (rootSet 6= {}) do
6 forall i : ¬fixed[i] in parallel do
7 if (inCycle[i] ^ ¬informed[i]) then
8 informed[i] := true
9 for (j 2 children[i]) do

10 inCycle[j] := true
11 parent[j] := i
12 endfor
13 if (inCycle[i] ^ informed[i] ^ (children[i] = {})) then
14 if (parent[i] = i) then rootSet.remove(i);
15 else children[parent[i]] := children[parent[i]]� {i}
16 endforall
17 endwhile

We first show the correctness of the parallel algorithm LLP-TTC.

Theorem 15.7 The algorithm LLP-TTC returns the core of the housing market problem.

Proof: It is su�cient to show that the algorithm LLP-TTC finds all top trading cycles in each iteration. Consider
any top trading cycle of size 1 at node i. The function markRoot can never mark node i in the cycle as inactive
due to the requirement of the coin turning at node i as head and its successor, itself, as tail. Furthermore, since
succ[i] equals i, node i is marked as inCycle. Now, consider any top trading cycle of size k > 1. Since we require
the successor of the node to have a di↵erent toss to turn inactive, all nodes cannot turn inactive. The active nodes
keep the inactive nodes following it as its children. After every coin toss, the length of the cycle for active nodes is
expected to shrink by a constant factor. Hence, in expected O(log n) coin tosses, the cycle reduces to size 1 and the
former case applies.

Now consider any node i that is not in any top trading cycle. Since our graph is functional (every vertex has
out-degree exactly one), node i leads to a cycle by following the succ edge. By previous discussion in O(log n)
expected time, one of the nodes in that cycle, say j will set inCycle[j] and done[j] to be true. Since any path of
active nodes reduces by a constant factor, in O(log n) expected time node i will point to a node that is done and will
also mark itself as done.

The function informTree simply sets the variable inCycle of all nodes in the cycle to be true. Finally, step 4
removes all houses and agents that are in cycle and thus implement the top trading cycle mechanism.

We now analyze the time and work complexity of LLP-TTC.

Theorem 15.8 LLP-TTC takes expected O(n log2 n) time and expected O(n2 log n) work.

Proof: Since every functional graph has at least one cycle, there exists at least one new node that finds itself in a
cycle in every iteration of the while loop. Hence, there are at most n iterations of the while loop. In each iteration,

132 CHAPTER 15. THE HOUSING ALLOCATION PROBLEM

Step 1 takes O(1) time and O(n) work. Step 2 takes expected O(log n) time and expected O(n log n) work. Step 3
takes O(log2 n) time and O(n) work. Let ↵k be the number of agents that are fixed in the kth iteration of the while
loop. Step 4 takes O(↵k) time and O(n↵k) work. Adding up over all iterations, we get the desired time and work
complexity.

15.5 Problems

1. Give an NC algorithm to determine if the given matching is the core of the housing market.

15.6 Bibliographic Remarks

The housing market problem has been studied by many researchers [SS74, HZ79, Zho90, AS98, AS99, RP77, Rot82,
Dav13]. Possible applications of the housing market problem include: assigning virtual machines to servers in cloud
computers, allocating graduates to trainee positions, professors to o�ces, and students to roommates. This problem
has also recently been studied by Zheng and Garg [ZG19] where it is shown that the problem of verifying that a
matching is a core is in NC, but the problem of computing the core is CC-hard1 The paper [ZG19] also gives a
distributed message-passing algorithm to find the core with O(n2) messages. The parallel algorithm is taken from
[Gar21].

1The class CC (Comparator Circuits) is the complexity class containing decision problems which can be solved by com-
parator circuits of polynomial size.

Chapter 16

The Assignment Problem

16.1 Introduction

In this chapter we consider the assignment problem in which we seek an assignment of items to bidders such that
the total payo↵ is maximized. By viewing items and bidders as nodes of a bipartite graph, and the weight vb,i of an
edge between bidder b and item i as the utility of assigning the item i to the bidder b, the problem corresponds to
finding the maximum weight bipartite matching.

The assignment problem has a rich history. The most famous algorithm for this problem is due to an American
scientist Kuhn who called it the Hungarian algorithm because it is inspired by the earlier works of two Hungarian
mathematicians — Konig and Egervary. Another American mathematician, Munkres, observed that the algorithm
is strongly polynomial and the algorithm is also known as Kuhn-Munkres algorithm. It was later discovered that the
problem had earlier been solved by Jacobi in 19th century and was published in Latin in year 1890.

16.2 Problem Formulation

Let I be a set of indivisible n items, and U , a set of n bidders. Every item i 2 I is given a valuation vb,i by each
bidder b 2 U . The valuation of any item i is an integer between 0 and T [i]. Each item i is given a price G[i] which
is also an integer between 0 and T [i].

We will assume that the number of items is equal to the number of bidders. If one of the set is smaller, say there
are fewer items than bidders, then we can add virtual items such that all bidders give valuation of zero to those
items. We also note that we are considering the maximum weight bipartite matching. By subtracting the valuation
from the maximum valuation for each edge, and calling it the cost of that edge, we can transform this problem to
the minimum cost bipartite matching.

It is important to note that it is the relative valuation of the items that is important not the absolute values.
Suppose that there are three items and a bidder provides valuation of (10, 8, 4) for these items, then the assigned
matching will not change if his valuation is (6, 4, 0) instead. The weight of the matching found for the valuation
(6, 4, 0) would be exactly less by 4 because in each assignment, a bidder is assigned exactly one item. Hence, one
can assume that there is at least one item for each bidder that is valued as 0. Similarly and dually, suppose that an
item is valued by three bidders as (10, 8, 4). Then, the assignment will not change if this item is valued as (6, 4, 0)
instead. If we view V as the square matrix such that V [b, i] equals vb,i, then we can assume that there is a zero in
every row by subtracting the minimum value in each row from every entry in the row. Similarly, we can assume that
there is at least one zero in every column.

Let xb,i be defined as a boolean variable which is 1 i↵ the item i is assigned to the bidder b, and 0 otherwise.
We consider the relaxation of the above problem in which xb,i are relaxed from being boolean variables to just being

133

134 CHAPTER 16. THE ASSIGNMENT PROBLEM

nonnegative reals, giving us the following primal linear program.

maximize
X

(b,i)2[n]⇥[n]

vb,ixb,i

subject to
X

b

xb,i = 1 8i 2 [n],

X

i

xb,i = 1 8b 2 [n],

xb,i � 0 8i 2 [n], b 2 [n]

(16.1)

We consider the dual of the above linear program. For each constraint on the item, we define the dual variable
pi and for each constraint on the bidder, we define the dual variable qb. The dual program is:

minimize
X

i2[n]

pi + qi

subject to pi + qb � vb,i 8i 2 [n], b 2 [n],

pi � 0 8i 2 [n],

qb � 0 8b 2 [n]

(16.2)

The constraint pi + qb � vb,i can be seen as the no blocking pair constraint if the assignment problem is used to
match the sellers and the buyers of the items. If pi+ qb < vb,i, then the assignment is not stable from the perspective
of the seller of item i and the bidder b. Together, they can be viewed as a blocking pair analogous to the blocking
pair in the stable matching problem. They have the motivation to leave the existing assignment and get matched so
that together they improve their total payo↵.

One way to solve a linear program is to find feasible solutions to primal and dual programs that satisfy comple-
mentary slackness conditions. The primary complementary slackness conditions are 8i, b: (xb,i = 0)_ (pi+ qb = vb,i).
The secondary complementary slackness conditions are trivially true for this formulation because we have only tight
constraints in the primal program.

16.3 Market Clearing Price

In this section, we apply LLP technique to the problem of finding a market clearing price. The set of feasible price
vectors is given by

{G | 0  G[i]  T, 1  i  n}

This set of price vectors forms a distributive lattice under the component-wise comparison of vectors. The
minimum is given by the zero vector and the maximum is given by the vector T .

Given a price vector G, we define the bipartite graph (I, U,E(G)) as follows. One side of the bipartite graph is
the set of items I. The other side of the graph is the set of bidders U . We now add edges between items and the
bidders as follows.

(j, b) 2 E(G) ⌘ 8i : (vb,j �G[j]) � (vb,i �G[i]).

Informally, an edge exists between item i and bidder b if the payo↵ for the bidder (the bid minus the price) is
maximized with that item. Given any set U 0

✓ U , let N(U 0, G) denote all the items that are adjacent to the vertices
in U 0 in the graph (I, U,E(G)). A price vector G is a market clearing price if the bipartite graph (I, U,E(G)) has a
perfect matching.

We construct a computation graph (E,!) for this problem as follows (see Fig. 16.1). There are n processes
corresponding to n items in the computation such that each process has C events. In Fig. 16.1, we have three items
and three bidders such that both prices and valuations are integers between 0 and 4. If the process i has executed k
events then, then Gi = k. The global state G can be viewed as the price vector p where G[i] = p[i]. A price vector

16.4. CONSTRAINED MARKET CLEARING PRICE 135

G is a market clearing price, denoted by BclearingPrice(G) if the bipartite graph (I, U,E(G)) has a perfect matching.
We now claim that

p[3] := 3

P1

P2

P3

P1

P2

P3

p[1] := 4p[1] := 4

p[2] := 4

p[3] := 4

p[1] := 3p[1] := 2p[1] := 1

p[3] := 2

p[2] := 1 p[2] := 2 p[2] := 3

p[3] := 1

Figure 16.1: The computation graph for a market with three items and three bidders. The valuation of
and price for any item is a number between 0 and 4.

Lemma 16.1 The predicate BclearingPrice(G) is a lattice-linear predicate on the lattice of price vectors.

Proof: Suppose that the price vectors G and H satisfy BclearingPrice. Let K = min(G,H). We show that K
also satisfies BclearingPrice. Suppose that (I, U,E(K)) does not have a perfect matching. This implies that there
exists a minimal overdemanded set of items in K. Let an item i be one of the minimal overdemanded items in K.
Without loss of generality assume that K[i] equals G[i] (the argument for the case when K[i] equals H[i] is identical).
The item i is not an overdemanded item in G. But this is a contradiction because for all other items i0, the price of
the item i0 has either stayed the same or has increased in going from K to G.

In Fig. 16.2, we have used ↵(G, j) as simply one unit of price. For any item j that is part of a minimal over-
demanded set of items, we can increase its price by the minimum amount to ensure that some bidder b can switch
to her second most preferred item. We now give an implementation LLP-Assignment based on this idea.

16.4 Constrained Market Clearing Price

We now generalize the problem of finding a market clearing price to that of finding a constrained market clearing
price. For example, constraints on the clearing prices of the form (G[j] � k)) (G[i] � k0) for 1  k, k0  C are
lattice-linear. The constraint says that if item j is priced at least k, then item i must be priced at least k0. The
constraint G[i] � G[j] is also lattice-linear. Observe that the constraint G[i] � G[j] is equivalent to

(G[j] � 1) G[i] � 1) ^ (G[j] � 2) G[i] � 2) . . . (G[j] � C) G[i] � C)

Similarly, the constraint (G[i] = G[j]) can be modeled as (G[i] � G[j]) ^ (G[j] � G[i]). Also, constraint of the
form G[j] � f(G) for monotone f is lattice-linear. Given any set of valuations, and a boolean predicate B that
is a conjunction of lattice-linear constraints, a price vector G is a constrained market clearing price, denoted by
constrainedClearing(G) i↵ clearing(G)^B(G). From Lemma 2.6, it is su�cient to give an algorithm for clearing(G).

136 CHAPTER 16. THE ASSIGNMENT PROBLEM

Pj : Code for thread j
shared var G: array[1..n] of 0..maxint;
Market Clearing Prices: Demange-Gale-Sotomayor algorithm
input: v[b, i]: int for all b, i
init: G[j] := 0;
always:

E = {(k, b) | 8i : (v[b, k]�G[k]) � (v[b, i]�G[i]);
demand(U 0) = {k | 9b 2 U 0 : (k, b) 2 E};
overDemanded(J) ⌘ 9U 0

✓ U : (demand(U 0) = J) ^ (|J | < |U 0
|)

forbidden(j): (9minimal J : OverDemanded(J) ^ (j 2 J)
advance: G[j] := G[j] + 1;

Figure 16.2: Algorithm ConstrainedMarketClearingPrice to find the minimum cost assignment vec-
tor

Algorithm LLP-Assignment: Finding the minimum clearing price vector

1 var
2 G: real initially 8i : G[i] = 0;
3 while(true)
4 E := {(i, b) | 8j : (vb,i �G[i]) � (vb,j �G[j])};
5 if there exists a perfect matching M in E
6 then return M
7 else
8 J := minimal OverDemanded set in the bipartite graph with edges E(G);
9 forall j 2 J in parallel do

10 �j = min{(vb,j �G[j])�maxi 6=j(vb,i �G[i]) | (j, b) 2 E(G)}
11 G[j] := G[j] + �j ;
12 end

16.5. PROBLEMS 137

It follows that the set of constrained market clearing price vectors is closed under meets. By applying the lattice-
linear predicate detection, we get an algorithm to compute the least constrained market clearing price shown in Fig.
16.2. In conjunction with Lemma 2.6, we get a generalization of Demange, Gale and Sotomayor’s exact auction
mechanism [DGS86] to incorporate lattice-linear constraints on the market clearing price.

We construct a computation graph (E,!) for this problem as follows (see Fig. 16.3). For any constraint,
(G[j] � k)) (G[i] � k0), we put an edge from the event k0 in Pi to the event k in Pj . By putting such edges, we get
a computation graph and any price vector that does not satisfy constraints is not a consistent global state.

p[3] := 3

P1

P2

P3

P1

P2

P3

p[1] := 4p[1] := 4

p[2] := 4

p[3] := 4

p[1] := 3p[1] := 2p[1] := 1

p[3] := 2

p[2] := 1 p[2] := 2 p[2] := 3

p[3] := 1

Figure 16.3: The computation graph for a market with three items and three bidders. The valuation
of and price for any item is a number between 0 and 4. The computation graph models the constraint
B ⌘ (p[2] � 2) p[1] � 3) ^ (p[1] � 2) p[3] � 1)

For example, suppose that the valuation for three items in Fig. 16.3 is as follows. The bidder 1 values them as
[4, 1, 0], the bidder 2 values them as [4, 1, 2] and the bidder 3 values them as [4, 2, 0]. In the initial global state (with no
events on any process), the price vector is [0, 0, 0]. This is not a market clearing price since item 1 is overdemanded.
Hence, we advance on P1 and the new price vector is [1, 0, 0]. The item 1 continues to be overdemanded and we
advance on P1 again to get the price vector [2, 0, 0]. This is a market clearing price; however, it does not satisfy the
constraint that (p[1] � 2) p[3] � 1). Hence, we must advance on P3 to get the price vector [2, 0, 1]. This price
vector satisfies the constraints but is not a clearing price. We must advance on the overdemanded item 1, to get the
price vector [3, 0, 1] which is both clearing and satisfies constraints. The price vector [3, 0, 1] is the least price vector
that is clearing and satisfies constraints. At this price vector, item 1 can be assigned to bidder 1, item 2 to bidder 3
and item 3 to bidder 2.

16.5 Problems

1. Show that the set of market clearing price vectors are also closed under the join operation.

16.6 Bibliographic Remarks

Kuhn’s Hungarian method to solve the assignment problem is from [Mun57]. Demange-Gale-Sotomayor present the
auction-based algorithm [DGS86] for market clearing prices.

138 CHAPTER 16. THE ASSIGNMENT PROBLEM

Chapter 17

Bipartite Matching

17.1 Introduction

This chapter is organized as follows. Section 27.2 describes the classical sequential augmenting path algorithm. The
algorithm allows one to increase the size of any matching by finding an augmenting path in the bipartite graph.

We note here that there exists RNC algorithms to check if there exists a perfect matching in a bipartite graph.
These algorithms are not work-e�cient and would not be discussed in the chapter.

17.2 Sequential Algorithm

Given an undirected graph (V,E), a matching M is a subset of edges E such that no two edges are incident on
the same vertex. As an example, consider a bipartite graph (L,R,E) such that the vertex set L denotes a set of
men, R denotes a set of women and E denotes a symmetric “likes” relation, Then, a matching, M , is simply a set
of edges such that no man or a woman is adjacent to two edges in M . If the number of men and and the number
of women are both equal to n and every man gets matched, then we call that matching, a perfect matching. The
perfect matching may not always exist. The following famous Theorem gives a necessary and su�cient condition
for a perfect matching to exist in a bipartite graph. It is based on the notion of overdemanded subset. We say that
L0

✓ L is overdemanded if there exists R0
✓ R such that the set of neighbors of R0 in the graph is L0 and the size of

R0 is strictly bigger than L0. Intuitively, L0 is overdemanded because R0 can only match with vertices in L0 but the
size of L0 is smaller than size of R0. We can now state the Theorem.

Theorem 17.1 (Hall’s Theorem) The necessary and su�cient condition for a perfect matching to exist in a
bipartite graph (L,R,E) where |L| = |R|, is that L does not have any overdemanded subset L0.

Observe that even though Hall’s theorem gives us insight about the perfect matching, it cannot be directly
applied to e�ciently check for perfect matching because there are 2n possible subsets of L.

We now give an e�cient algorithm for a more general problem called the maximum cardinality matching problem.
This problem requires us to find a matching of the largest size. When the number of men and the number of women
are equal to n, then a perfect matching exists i↵ the size of the maximum cardinality matching is n. The algorithm
is based on the idea of increasing the size of a matching by the idea of an augmenting path. Suppose the algorithm
has a matching Mt at iteration t. Then, the algorithm is guaranteed to find a matching Mt+1 of size one bigger than
Mt whenever a matching with a bigger size exists. If we can make this idea work, then we can start with M0 as the
empty matching and then keep applying the idea to reach a maximum cardinality matching.

To understand the idea of an augmenting path for a matching M , we define a vertex to be exposed if it is not
incident on any edge in M . Now suppose that there exists a path from an exposed vertex to another exposed vertex
that alternates between unmatched and matched edges. Such a path must start with an unmatched edge and end
with an unmatched edge (by the definition of exposed vertices). Furthermore, such a path has an odd number of

139

140 CHAPTER 17. BIPARTITE MATCHING

Bipartite
Graph

Matching Vertex
Cover

Poset

Chain
Decom-
position

Antichain

s,t-directed
graph

s,t vertex
disjoint
paths

s,t cuts

Konig

Dilworth

Menger

Figure 17.1: Various Structures and Transformations between them

x1

x2

x3

x4

y1

y2

y3

y4

Figure 17.2: A Bipartite Graph

17.2. SEQUENTIAL ALGORITHM 141

edges with the unmatched edges exactly one more than the matched edges. Then, by simply switching the matched
with unmatched edges along that path we can increase the size of matching by one.

Algorithm Seq-AugmentingPath: Finding a maximum cardinality matching

1 M := {};
2 while there exists an alternating path P in (L,R,E) for M
3 M := matching M with edges switched in the path P
4 end;
5 return M ;

x1

x2

x3

x4

y1

y2

y3

y4

Figure 17.3: A Matching M shown with dashed edges in the Bipartite Graph

How do we find an alternating path? One can start with any exposed vertex and do a breadth-first-search such
that the bfs tree alternates between unmatched and matched edges. Such a search will either result in finding an
alternating path or an overdemanded set. In our example of the matching M in Fig. 27.3, if we start from x4, we
get the alternating path x4, y3, x1, y2. If there are 2n vertices and m edges, every iteration of the while loop takes
O(m) time for breadth-first-search and there can be at most n iterations, giving us the time complexity of O(nm).
By augmenting along multiple paths in every iteration, the complexity can be reduced to O(

p
nm) [HK71].

We now give a sequential algorithm for a slight variant of the matching problem in a bipartite graph (L,R,E).
Let vertices in L be numbered 1..n. Let Li denote the set of vertices {v1, v2, . . . , vi}, for all 1  i  n. The output
of our algorithm is a vector G such that

P
i
G[i] is the size of the maximum matching in the graph (Li, R,Ei) where

Ei is the edges restricted to the set Li [R. For simplicity, we set L0 to ;. We let S be the matched vertices in R. It
is su�cient to describe the sequential algorithm when a new vertex vi is added to the left hand side. We simply look
for an alternating path from vi to any unmatched vertex in R. If we find any such path, then the newly matched
vertex in R is added to S. If there is no path, then Li is a constricted set, and the set of vertices in R matched to
Li�1 is identical to the set of vertices matched to Li. In either case, we continue the procedure to the next vertex in
L, if any.

Algorithm BipartiteMatching searches the element in the boolean lattice Bn such that G[i] equals 1 if the size
of the bipartite matching for (Li, R,Ei) is one more than for (Li�1, R,Ei�1), and 0 otherwise. The time complexity
of the algorithm is O(nm) because the for loop has n iterations and each iteration takes O(m) to search for a path.
The matching itself is stored in all nonzero S entries.

142 CHAPTER 17. BIPARTITE MATCHING

Algorithm BipartiteMatching: A Sequential Algorithm for Bipartite Matching

1 input: (L,R,E): bipartite graph
2 var: G: array[1..n] of int ;
3 init: 8j : G[j] := 0;
4 S: array[1..n] of 0..n;
5 init: 8j : S[j] := 0;
6 for j := 1 to n do
7 if there exists an alternating path from vj to any vertex k in R with (S[k] = 0)
8 Assign S[] in the alternating path;
9 G[j] := 1;

10 endfor
11 return G

A key advantage of Algorithm BipartiteMatching is that it is a deterministic algorithm. Given a labeling of
indices in L, it produces a single fixed G.

17.3 Problems

1. Show that the minimum size of a vertex cover is equal to the maximum size of a matching in a bipartite graph.

2. Give a linear program formulation for the maximum matching problem and show that its dual corresponds to
the minimum vertex cover problem.

3. Prove Hall’s Theorem.

4. Edmond’s matrix is defined for a bipartite graph (U, V,E) with |U | = |V | = n as follows. Let the vertices in U
be u1, u2, . . . un and the vertices in V be v1, v2, . . . , vn. We setA[i, j] = xi,j if (ui, vj) 2 E and 0 otherwise. Show
that Edmond’s matrix of a balanced bipartite graph has a perfect matching i↵ the polynomial corresponding
to the determinant of Edmond’s matrix is not identically zero.

5. Modify Algorithm BipartiteMatching to output the vertex cover in addition to bipartite matching.

Chapter 18

Horn and 2-SAT Satisfiability

18.1 Introduction

It is well-known than checking satisfiability of a boolean expression is a NP-complete problem. In this chapter we
consider two important classes of boolean expressions for which satisfiability can be solved e�ciently: Horn formulas
and 2-SAT formulas.

Throughout this chapter, we assume that the predicate is given in the conjunctive normal form (CNF) . A boolean
formula B in a conjunctive normal form is simply a conjunction of clauses, where each clause is a pure disjunction
of literals. A literal is a variable in its simple form or in a complemented form. For example, suppose that we have
n boolean variables {x1, x2, . . . xn}. Then, the formula (¬x1 _¬x2 _ x3)^ (x1 _ x2) is in CNF with two clauses. The
first clause has three literals {¬x1,¬x2, x3}, and the second clause has two literals {x1, x2}.

18.2 Horn Satisfiability

A clause is a Horn clause if it has at most one positive literal. An example of a Horn clause is (¬x1 _ ¬x2 _ x3).
Note that this formula is also equivalent to (x1 ^ x2)) x3. A Horn clause written in this form is also called a Horn
implication or a definite clause. Notice that it has only positive literals on the left hand side and a single positive
literal on the right hand side. The left hand side may be empty. Thus, x3 is also a Horn implication equivalent to
true) x3.

Another example of a Horn clause is (¬x1 _ ¬x2 _ ¬x3). This clause does not have any positive literal. It is a
pure negative clause.

A Horn formula is just a conjunction of Horn clauses. The problem of HornSat is to determine if the given Horn
formula is satisfiable.

Consider the following Horn formula B with three variables x1, x2, and x3:

(¬x1 _ ¬x2 _ x3) ^ (¬x3 _ x1) ^ (¬x2 _ ¬x3) ^ (¬x1 _ x2)

This Horn formula B is satisfiable. Consider the assignment: x1 = false, x2 = true, and x3 = false. The first
and the fourth clauses are trues because x1 is false, and the second and the third clauses are true because x3 is false.
Another assignment that satisfies B is x1 = false, x2 = false, and x3 = false. In fact, this is the least satisfying
assignment in the Boolean lattice of three variables.

Consider the following set of Horn clauses with two variables x1 and x2:

143

144 CHAPTER 18. HORN AND 2-SAT SATISFIABILITY

(¬x1 _ x2) ^ (¬x2 _ x1) ^ (¬x1 _ ¬x2) ^ x1

This set of Horn clauses is unsatisfiable because there is no assignment of truth values to x1 and x2 that can
satisfy all the clauses simultaneously.

18.3 LLP Algorithm for HornSat

We assume that the Horn formula uses n variables x1, . . . xn. These n boolean variables define a boolean lattice L
of size 2n that consists of boolean vectors of size n. We first show that a Horn Formula is a lattice linear predicate
with respect to L.

Lemma 18.1 Any Horn Formula is a lattice linear predicate.

Proof: Let B = B1 ^ B2 ^ Bm be the Horn formula where each Bi is a Horn clause. Since lattice linear predicates
are closed under conjunction, it is su�cient to show that every Horn clause Bi is lattice linear. We consider two
types of Horn clauses.

First suppose that Bi is a Horn implication, i.e., Bi ⌘ (xi1 ^ xi2 ^ xik�1) xik). Consider any boolean vector
G in which Bi is false. This implies that xi1 , xi2 , . . . xik�1 are true in G but xik is false. Consider any H such that
H � G and H[ik] = G[ik]. Since H � G, we have that (xi1 ^ xi2 ^ xik�1) holds in H. Furthermore, since H[ik] is
equal to G[ik], xik is false in H. Hence, Bi is also false in H.

Now suppose that Bi is a pure negative clause, i.e., Bi ⌘ (¬xi1 _ ¬xi2 _ ¬xik). Suppose that Bi is false in G.
This implies that all the literals are true. Consider any boolean vector H � G. H must also have all these literals
true and therefore Bi is false in H (and any index is trivially forbidden).

The proof of Lemma 18.1 also shows us the appropriate advancement function. For Horn implications, we must
advance on the right hand side literal. For pure negative clauses, all boolean vectors greater than G do not satisfy
B. Hence, the algorithm can simply return that “no satisfying vector exists.”

We can now apply LLP algorithm to find a satisfying assignment for a Horn formula.

Algorithm HornSAT-LLP: An Algorithm to find the least assignment that satisfies B

1 var G: vector of boolean initially 8i : G[i] = false;
2 Pj : code for thread j

3 forbidden: 9h : all antecedents of Bh are true, they imply xj , and xj is false in G
4 advance: G[j] := true;
5 forbidden: 9h : a negative clause Bh is false, and xj is a part of Bh

6 return null; // “no satisfying assignment exists”
7 return G; // the least assignment that satisfies B

We leave an e�cient implementation of the algorithm HornSAT-LLP as an exercise.
Observe that we also get the following consequence of Lemma 18.1 from its lattice-linearity.

Corollary 18.2 If G and H satisfy Horn formula, then G uH also satisfies that formula.

A direct proof of this fact is left as an exercise. Although the set of assignments satisfying a Horn formula are closed
under meets, they are not closed under joins. For example, consider the Horn formula B ⌘ (¬x1 _ ¬x2). The bit
vectors G = [1, 0] and H = [0, 1] satisfy B but their join [1, 1] does not satisfy B.

18.4. ARITHMETIZATION OF HORN CLAUSES 145

x1 x2 x3

¬x1 ¬x2 ¬x3

Figure 18.1: Implication Graph of the predicate B ⌘ (¬x1 _ x2) ^ (x1 _ ¬x3) ^ (¬x2 _ x3)

18.4 Arithmetization of Horn Clauses

In this section, we give another proof that Horn Clauses are lattice linear by considering arithmetic expressions
instead of boolean expressions. We use the natural assignment of boolean variables xi to integer binary variables
yi. If xi is false then yi is assigned value 0, otherwise it is assigned 1. Given any clause, we translate it into an
arithmetic predicate as follows. Every positive literal xi in any clause is changed to yi and every negative literal ¬xi

is changed to (1� yi). The clause is true i↵ the sum of all values so replaced in any clause is at least 1. For example,
the clause (¬x1 _ ¬x2 _ x3) is equivalent to (1� y1) + (1� y2) + y3 � 1. If all yi take values in the set {0, 1}, then
it is easy to verify that the clause is true for x0s i↵ the corresponding arithmetic predicate is true for y0s. Let us see
how implication Horn clauses get translated. An implication Horn clause (xi1 ^ xi2 ^ xik�1) xik) gets translated to
(1�yi1)+(1�yi2)+ . . . (1�yik�1)+yik � 1 which is equivalent to yik � yi1 +yi2 + . . .+yik�1 �(k�1). The right hand
side is a monotone function of y; hence the predicate is lattice-linear. A pure negative clause (¬xi1 _¬xi2 . . ._¬xik)
gets translated to (1� yi1) + (1� yi2) . . .+ (1� yik) � 1. This predicate is equivalent to k� 1 � yi1 + yi2 + . . .+ yik
which once it becomes false it stays false. Hence, predicates for negative clauses are also lattice-linear.

18.5 2-SAT

A conjunctive normal form formula is a 2-SAT formula i↵ every clause has at most two literals. For example, the
formula B1 ⌘ x1^ (x2_¬x3)^ (¬x1_¬x3) is a 2-SAT formula. If we consider the lattice of boolean vectors, a 2-SAT
formula may not be closed under meet. For example, consider the 2-SAT formula (x1 _ x2). The boolean vectors
10 and 01 satisfy the formula, but their meet 00 does not. Hence, there is no minimum satisfying assignment and
simple LLP algorithm is not applicable.

We now outline an approach to detect if there is any element in the lattice that satisfies B is a 2-SAT formula.
The key idea for 2SAT algorithm is to convert the predicate to an implication graph. We assume that every clause
has two literals. A unit clause xi or ¬xi forces the value of the variable. It can be replaced in B resulting in a
2SAT formula with fewer variables. Now, we construct an implication graph I(B) for B as follows. The graph has
2n vertices, one for each literal. Every clause (li _ lj) in B is true i↵ (¬li) lj) ^ (¬lj) li). Therefore, we add two
directed edges in the the graph — from ¬li to lj and from ¬lj to li.

Consider the following 2-SAT formula with three variables x1, x2, and x3:

(¬x1 _ x2) ^ (x1 _ ¬x3) ^ (¬x2 _ x3)

The implication graph on B is shown in Fig. 18.1.
We leave the following as an exercise.

Exercise 18.1 1. There exists a satisfying assignment to 2-SAT i↵ there is no variable xi such that ¬xi is
reachable from xi and xi is reachable from ¬xi in the graph I.

146 CHAPTER 18. HORN AND 2-SAT SATISFIABILITY

2. Suppose B is satisfiable. Then, all satisfying assignments set xj to true i↵ there exists a path from ¬xj to xj

in the implication graph.

3. Suppose B is satisfiable. Then, all satisfying assignments set xj to false i↵ there exists a path from xj to ¬xj

in the implication graph.

Algorithm 2SAT: An Algorithm to find a feasible assignment that satisfies B

1 vector function getFeasible(B: predicate)
2 var G: array[1 . . . n] of boolean initially 8i : G[i] = false;
3 fixed: array[1 . . . n] of boolean initially 8i : fixed[i] = false;
4 I(B) := implication graph of B;
5 if there exists a path from ¬xj to xj and from xj to ¬xj in I(B) then
6 return null; //“no satisfying solution”
7 while (9j : ¬fixed[j])
8 if there exists a path from ¬xj to xj then G[j] := true;
9 fixed[j] := true;

10 unitPropagation(B, j);
11 endwhile;
12 return G; // a feasible solution

Algorithm 2SAT works as follows. The array G keeps the assignment of all the binary variables. The array
fixed maintains for each i, whether the bit xi has been set to true or false. The while loop in the figure sets these
variables as follows. It picks any variable xj that is not fixed. If there is a path from ¬xj to xj , then we set xj to
true; otherwise it keeps the value of xj as false. We also set the bit fixed[j] to true. Once xj is set, other variables
may also be forced. We call the method unitPropagation that sets the other variables that are set because xj is set.
We continue the while loop until all variables are set.

In the algorithm, we need to check if there exists a path from xj to ¬xj and vice-versa. One way to accomplish
this is to find strongly connected components (SCCs) in the graph. An SCC is a subgraph where every vertex is
reachable from every other vertex in the same SCC. (One can use Tarjan’s algorithm or Kosaraju’s algorithm to
find SCCs.) The expression is satisfiable if and only if for every variable xj and ¬xj are not in the same SCC. If
the expression is satisfiable, an assignment can be constructed by considering the SCCs in reverse topological order.
The sequential time complexity of 2SAT problem is linear in the number of clauses.

Let us now check the time complexity for a parallel algorithm to determine if the given 2SAT expression is
satisfiable. The problem reduces to checking if there exists a path from xj to ¬xj and vice-versa using reachability.
Since reachability problem is in NC, we conclude that checking satisfiability of a 2SAT formula is in NC.

18.6 Problems

1. Is the following Horn SAT formula satisfiable?
(¬x1 _ ¬x2 _ x3) ^ (¬x3 _ x1) ^ (¬x3 _ ¬x1) ^ (¬x2 _ ¬x3) ^ (¬x1 _ x2)

2. (E�cient Satisfiability of Horn formulas) Give an e�cient implementation of the algorithm in Fig.
HornSAT-LLP. In particular give e�cient data structures to represent Horn implications and pure negative
clauses. Your algorithm should be linear in the length of the Horn formula.

3. (Renamable Horn formulas) A formula is a Renamable Horn formula if by flipping the polarity of certain
variables the formula can be transformed to a Horn formula. For example, (¬x1 _ ¬x2 _ ¬x4) ^ (x3 _ x4) ^
(x1 _ x2 _ ¬x4) ^ (x1 _ ¬x3) is not a Horn formula. However, by renaming x1 as ¬x1 and x3 as ¬x3, we get

18.6. PROBLEMS 147

a Horn formula. Give an algorithm to determine whether the given formula is a Renamable Horn formula.
(Hint: Can you come up with a 2SAT formula that is true i↵ the given formula is renamable Horn formula).

4. (Meet Closure of Horn Formulas) Prove Corollary 18.2 without invoking lattice linearity of Horn Clauses.

5. (Dual Horn formulas) A dual Horn formula is one in which all clauses have at most one negative literal.
Give an algorithm to check satisfiability of dual Horn formulas.

6. Consider a directed graph with n nodes including two distinguished nodes s and t. Show that there exists a
2-SAT formula B on n variables such that the formula is satisfiable i↵ t is reachable from s.

7. (Satisfying Assignments of 2-SAT formulas) Suppose a 2-SAT formula B is satisfiable. Then, all satis-
fying assignments of B must have xj as true i↵ there exists a path from ¬xj to xj in the implication graph.

8. (Implication Graph of a 2-SAT formula) (a) Show that there exists a satisfying assignment to a 2-SAT
formula B i↵ there is no variable xi such that ¬xi is reachable from xi and xi is reachable from ¬xi in the
implication graph I constructed from B. (b) Show that every literal in any strongly connected component of
the implication graph must be assigned the same value, true or false.

148 CHAPTER 18. HORN AND 2-SAT SATISFIABILITY

Chapter 19

Stable Marriage Problem with Ties

19.1 Introduction

In this chapter we consider the stable matching problem when the list of preferences may have ties. We will assume
that the number of men is equal to the number of women in this chapter. The problem of stable marriage with ties
is clearly more general than the standard stable matching problem discussed in Chapter 3.

We consider three versions of matching with ties. In the first version, called weakly stable matching M , there is
no blocking pair of man and woman (m,w) who are not married in M but strictly prefer each other to their partners
in M . In the second version, called superstable matching M , we require that there is no blocking pair of man and
woman (m,w) who are not married in M but either (1) both of them prefer each other to their partners in M , or
(2) one of them prefers the other over his/her partner in M and the other one is indi↵erent, or (3) both of them are
indi↵erent to their spouses. The third version, called strongly stable matching, we require that if there is no blocking
pair (m,w) such that they are not married in M but either (1) both of them prefer each other to their partners in
M , or (2) one of them prefers the other over his/her partner in M and the other one is indi↵erent.

For the weakly stable matching, ties can be broken arbitrarily and any matching that is stable in the resulting
instance is also weakly stable for the original problem. Therefore, Gale-Shapley algorithm is applicable for the weakly
stable matching. We now derive LLP algorithms for the superstable and strongly stable matchings.

19.2 Superstable Matching

In many applications, agents (men and women for the stable marriage problem) may not totally order all their
choices. Instead, they may be indi↵erent to some choices [Irv94, Man02]. We generalize mpref [i][k] to a set of
women instead of a single woman. Therefore, mrank function is not 1-1 anymore. Multiple women may have the
same rank. Similarly, wrank function is not 1-1 anymore. Multiple men may have the same rank. We now define
the notion of blocking pairs for a matching M with ties [Irv94]. We let M(m) denote the woman matched with the
man m and M(w) denote the man matched with the woman w. In the version, called weakly stable matching M ,
there is no blocking pair of man and woman (m,w) who are not married in M but strictly prefer each other to their
partners in M . Formally, a pair of man and woman (m,w) is blocking for a weakly stable matching M if they are
not matched in M and
(mrank[m][w] < mrank[m][M(m)])^ (wrank[w][m] < wrank[w][M(w)].

For the weakly stable matching, ties can be broken arbitrarily and any matching that is stable in the resulting
instance is also weakly stable for the original problem. Therefore, Gale-Shapley algorithm is applicable for the weakly
stable matching [Irv94]. We focus on other forms of stable matching — superstable and strongly stable matchings.

149

150 CHAPTER 19. STABLE MARRIAGE PROBLEM WITH TIES

A matching M of men and women is superstable if there is no blocking pair (m,w) such that they are not married
in M but they either prefer each other to their partners in M or are indi↵erent with their partners in M . Formally,
a pair of man and woman (m,w) is blocking for a super stable matching M if they are not matched in M and
(mrank[m][w]  mrank[m][M(m)])^ (wrank[w][m]  wrank[w][M(w)].

The algorithms for superstable marriage have been proposed in [Irv94, Man02]. Our goal is to show that LLP
algorithm is applicable to this problem as well. As before, we will use G[i] to denote the mrank that the man i is
currently considering. Initially, G[i] is 1 for all i, i.e., each man proposes to all his top choices. We say that G has a
superstable matching if there exist n women w1, w2, . . . wn such that 8i : wi 2 mpref [i][G[i]]] and the set (mi, wi) is
a superstable matching.

We define a bipartite graph Y (G) on the set of men and women with respect to any G as follows. If a woman
does not get any proposal in G, then she is unmatched. If she receives multiple proposals then there is an edge from
that woman to all men in the most preferred rank. We say that Y (G) is a perfect matching if every man and woman
has exactly one adjacent edge in Y (G),

We claim

Lemma 19.1 If Y (G) is not a perfect matching, then there is no superstable matching with G as the proposal vector.

Proof: If there is a man with no adjacent edge in Y (G) then it is clear that G cannot have a superstable matching.
Now consider the case when a man has at least two adjacent edges. If all the adjacent women for this man have degree
one, then exactly one of them can be matched with this man and other women will remain unmatched. Therefore,
there is at least one woman w who is also adjacent to another man m0. If w is matched with m, then (m0, w) is a
blocking pair. If w is matched with m0, then (m,w) is a blocking pair.

We now claim that the predicate B(G) ⌘ “Y (G) is a perfect matching00 is a lattice-linear predicate.

Lemma 19.2 If Y (G) is not a perfect matching, then at least one index in G is forbidden.

Proof: Consider any man i such that there is no edge adjacent to i in Y (G). This happens when all women that
man i has proposed in state G have rejected him. Consider any H such that H[i] equals G[i]. All the women had
rejected man i in G. As H is greater than G, these women can only have more choices and will reject man i in H
as well.

Now suppose that every man has at least one adjacent edge. Let Z(G) be the set of women with degree exactly
one. If every woman is in Z(G), then we have that Y (G) is a perfect matching because every man has at least one
adjacent edge. If not, consider any man i who is not matched to a woman in Z(G). This means that all the women
he is adjacent to have degrees strictly greater than one. In H all these women would have either better ranked
proposals or equally ranked proposals. In either case, man i would not be matched with any of these women. Hence,
i is forbidden.

We are now ready to present LLP-ManOptimalSuperStableMarriage. In LLP-ManOptimalSuperStableMarriage,
we start with the proposal vector G with all components G[j] as 1. Whenever a woman receives multiple proposals,
she rejects proposals by men who are ranked lower than anyone who has proposed to her. We say that a man j is
forbidden in G, if every woman z that man j proposes in G is either engaged to or proposed by someone who she
prefers to j or is indi↵erent with respect to j. LLP-ManOptimalSuperStableMarriage is a parallel algorithm because
all processes j such that forbidden(j) is true can advance in parallel. In LLP-ManOptimalSuperStableMarriage, we
use Y (j) to denote all women than man j has proposed in the state G, i.e., Y (j) equals mpref [j][G[j]].

Let us consider an example on three men and three women. The preference lists for men are:
m1 : (w1 = w2), w3

m2 : w2, (w1 = w3)
m3 : w3, w1, w2

19.2. SUPERSTABLE MATCHING 151

The preference lists for women are:
w1 : (m2 = m3),m1

w2 : m1,m3,m2

w3 : (m1 = m3),m2

The algorithm starts with G = (1, 1, 1). The man m1 sends proposals to both w1 and w2. The man m2 sends
proposal to w2 and m3 sends proposal to w3. Since w3 receives only proposal from m3, she accepts it. Since w2

receives proposals from m1 as well as m2, she sends a reject to m2 because she prefers m1. Since w1 receives proposal
from only m1, she also accepts the proposal. The man m2 is forbidden because all his proposals are rejected and he
move to the next level in his preferences. The man 2 now proposes to both w1 and w3. The woman w1 prefers m2

to m1 so she rejects m1 and accepts m2. The woman w3 prefers m3 to m2, so she rejects m2. At this point, we have
m1 with accepted proposal from w2, m2 with accepted proposal from w1 and m3 with accepted proposal from w3.
The marriage (m1, w2), (m2, w1), (m3, w3) is the optimal super stable marriage.

Algorithm LLP-ManOptimalSuperStableMarriage: A Parallel Algorithm for Man-Optimal
Super Stable Matching

1 Pj : Code for thread j
2 input: mpref [i, k]: set of int for all i, k; wrank[k][i]: int for all k, i;
3 init: G[j] := 1;
4 always: Y (j) = mpref [j][G[j]];

5 forbidden(j):
6 8z 2 Y (j) : 9i 6= j : 9k  G[i] : (z 2 mpref [i][k]) ^ (wrank[z][i]  wrank[z][j]))
7 // all women z in the current proposals from j have been proposed by someone who either they

prefer or are indi↵erent over j.
8 advance: G[j] := G[j] + 1;

Let us verify that this algorithm indeed generalizes the standard stable marriage algorithm. For the standard
stable marriage problem, mpref [i, k] is singleton for all i and k. Hence, Y (j) is also singleton. Using z for the
singleton value in Y (j), we get the expression 9i 6= j : 9k  G[i] : (z = mpref [i][k]) ^ (wrank[z][i] < wrank[z][j]))
which is identical to the stable marriage problem once we substitute < for  for comparing the wrank of man i and
man j.

When the preference list has a singleton element for each rank as in the classical stable marriage problem, we
know that there always exists at least one stable marriage. However, in presence of ties there is no guarantee of
existence of a superstable marriage. Consider the case with two men and women where each one of them does not
have any strict preference. Clearly, for this case there is no superstable marriage.

By symmetry of the problem, one can also get woman-optimal superstable marriage by switching the roles of
men and women. Let mpref [i].length() denote the number of equivalence classes of women for man i. When all
women are tied for the man i, the number of equivalence classes is equal to 1, and when there are no ties then it is
equal to n. Consider the distributive lattice L defined as the cross product of mpref [i] for each i. We now have the
following result.

Theorem 19.3 The set of superstable marriages, Lsuperstable, is a sublattice of the lattice L.

Proof: From Lemma 19.2, the set of superstable marriages is closed under meet. By symmetry of men and women,
the set is also closed under join.

It is already known that the set of superstable marriages forms a distributive lattice [Spi95]. The set of join-
irreducible elements of the lattice Lsuperstable forms a partial order (analogous to the rotation poset [GI89]) that can

152 CHAPTER 19. STABLE MARRIAGE PROBLEM WITH TIES

be used to generate all superstable marriages. Various posets to generate all superstable marriages are discussed in
[Sco05, HG21].

We note that the algorithm LLP-ManOptimalSuperStableMarriage can also be used to find the constrained
superstable marriage. In particular, the following predicates are lattice-linear:

1. Regret of man i is at most regret of man j.

2. The proposal vector is at least I.

19.3 Strongly Stable Matching

A matching M of men and women is strongly stable if there is no blocking pair (m,w) such that they are not married
in M but either (1) both of them prefer each other to their partners in M , or (2) one of them prefers the other to
his/her partner in M and the other one is indi↵erent. Formally, a pair of man and woman (m,w) is blocking for a
strongly stable matching M if they are not matched in M and

((mrank[m][w]  mrank[m][M(m)])^ (wrank[w][m] < wrank[w][M(w)]))
_((mrank[m][w] < mrank[m][M(m)])^ (wrank[w][m]  wrank[w][M(w)])).

As in superstable matching algorithm, we let mpref [i][k] denote the set of women ranked k by man i. As before,
we will use G[i] to denote the mrank that the man i is currently considering. Initially, G[i] is 1 for all i, i.e., each
man proposes to all his top choices. We define a bipartite graph Y (G) on the set of men and women with respect
to any G as follows. If a woman does not get any proposal in G, then she is unmatched. If she receives multiple
proposals then there is an edge from that woman to all men in the most preferred rank. For superstable matching,
we required Y (G) to be a perfect matching. For strongly stable matching, we only require Y (G) to contain a perfect
matching.

We first note that a strongly stable matching may not exist. The following example is taken from [Irv94].

m1 : w1, w2

m2 : w1 = w2 (both choices are ties)

w1 : m2,m1

w2 : m2,m1

The matching {(m1, w1), (m2, w2)} is blocked by the pair (m2, w1): w1 strictly prefers m2 and m2 is indi↵erent
between w1 and w2. The only other matching is {(m1, w2), (m2, w1)}. This matching is blocked by (m2, w2): w2

strictly prefers m2 and m2 is indi↵erent between w1 and w2.
Consider any bipartite graph with an equal number of men and women. If there is no perfect matching in the

graph, then by Hall’s theorem there exists a set of men of size r who collectively are adjacent to fewer than r women.
We define deficiency of a subset Z of men as |Z| � N(Z) where N(Z) is the neighborhood of Z (the set of vertices
that are adjacent to at least one vertex in Z). The deficiency �(G) is the maximum deficiency taken over all subsets
of men. We call a subset of men Z critical if it is maximally deficient and does not contain any maximally deficient
proper subset. Our algorithm to find a strongly stable matching is simple. We start with G as the global state
vector with top choices for all men. If Y (G) has a perfect matching, we are done. The perfect matching in Y (G) is
a strongly stable matching. Otherwise, there must be a critical subset of men with the maximum deficiency. These
set of men must then advance on their proposal number, if possible. If these men cannot advance, then there does
not exist a strongly stable marriage and the algorithm terminates.

LLP-ManOptimalStronglyStableMarriage is the LLP version of the algorithm proposed by Irving and the inter-
ested reader is referred to [Irv94] for the details and the proof of correctness. Similar to superstable marriages, we
also get the following result.

Theorem 19.4 The set of strongly stable marriages, Lstronglystable, is a sublattice of the lattice L.

Observe that each element in Lstronglystable is not a single marriage but a set of marriages. This is in contrast to
Lsuperstable, where each element corresponds to a single marriage.

19.4. PROBLEMS 153

Algorithm LLP-ManOptimalStronglyStableMarriage: A Parallel Algorithm for Man-
Optimal Strongly Stable Matching

1 Pj : Code for thread j
2 input: mpref [i, k]: set of int for all i, k; wrank[k][i]: int for all k, i;
3 init: G[j] := 1;
4 always: Y (j) = mpref [j][G[j]];

5 forbidden(j):
6 j is a member of the critical subset of men in the graph Y (G)
7 advance: G[j] := G[j] + 1;

19.4 Problems

1. Give all the super stable marriages for the preference lists given below. The preference lists for men are:
m1 : (w1 = w2), w3

m2 : w2, (w1 = w3)
m3 : w3, w1, w2

The preference lists for women are:
w1 : (m2 = m3),m1

w2 : m1,m3,m2

w3 : (m1 = m3),m2

2. Show the correctness of the LLP-ManOptimalStronglyStableMarriage.

19.5 Bibliographic Remarks

The notion of superstable matching and strongly stable matching and the associated algorithms are from [Irv94].
The LLP versions of these algorithms are from [Gar23].

154 CHAPTER 19. STABLE MARRIAGE PROBLEM WITH TIES

Chapter 20

The Predicate Detection Problem

20.1 Introduction

Debugging and testing multithreaded software is widely acknowledged to be a hard task. Sometimes it takes a
programmer days to locate a single bug, especially when the bug appears in one thread schedule but not in others.
The current debugging and testing method for multithreaded programs is as follows. The programmer tries the
program with multiple inputs in the hope of finding a faulty execution. However, the behavior of a multithreaded
program depends not only on the external user input, but also the thread schedule and the order in which locks are
obtained by the program. It is easy for the testing process to miss a bug that arises with an alternate schedule.
One of the fundamental problems in debugging these systems is to check if the user-specified condition exists in any
global state of the system that can be reached by an alternative thread schedule. This problem, called predicate
detection, takes a concurrent computation (in an online or o✏ine fashion) and a condition that denotes a bug
(for example, violation of a safety constraint), and outputs a schedule of threads that exhibits the bug if possible.
Predicate detection is predictive because it generates inferred reachable global states from the computation; an
inferred reachable global state might not be observed during the execution of the program, but is possible if the
program is executed in a di↵erent thread interleaving.

20.2 Detecting Conjunctive Predicates

In this section we describe two parallel algorithms to detect a conjunctive predicate B = l1 ^ l2 ^ · · · ^ ln. To
detect B, we need to determine if there exists a consistent global state G such that B is true in G. Note that given
a computation on n processes each with m states, there can be as many as mn possible consistent global states.
Therefore, enumerating and checking the condition B for all consistent global states is not feasible. Since B is
conjunctive, it is easy to show [GW92] that B is true i↵ there exists a set of states s1, s2, ..., sn such that (1) for all i,
si is a state on Pi, (2) for all i, li is true on si and (3) for all i, j: siksj . Our detection algorithm will either output
such local states or guarantee that it is not possible to find them in the computation. When the global predicate B
is true, there may be multiple G such that B holds in G. We are interested in algorithms that return the minimum
G that satisfies B. The minimum G corresponds to the smallest counter-example to a programmer’s understanding
becuase B typically represents the violation of a safety constraint.

Our parallel algorithm is based on the setting where the execution traces for all processes have been collected
at one process. For example, in the centralized algorithm for conjunctive predicate detection, one process serves as
a checker and collects the traces. All other processes involved in detecting the conjunctive predicate, referred to as
application processes, check for local predicates during the computation. Each process Pi also maintains the vector
clock algorithm. Whenever the local predicate of a process becomes true for the first time since the most recently

155

156 CHAPTER 20. THE PREDICATE DETECTION PROBLEM

sent message (or the beginning of the trace), it generates a debug message containing its local timestamp vector and
sends it to the checker process [GW92].

The checker process uses queues of incoming messages to hold incoming local snapshots from application processes.
We require that messages from an individual process be received in FIFO order. If the underlying system is non-FIFO,
then sequence numbers can be attached with messages to ensure FIFO delivery. At the end of the computation, the
checker process has a sequence of local states from each process where its local predicate is true. We now describe
a sequential and a parallel algorithm to detect B on these traces. The sequential algorithm is an adaptation of
the algorithm from [GW92]. We include it here because it is instrumental in understanding the parallel algorithm.
Moreover, the correctness of the parallel algorithm is shown by assuming the correctness of the sequential algorithm.

20.3 A Work-E�cient Parallel Algorithm

The algorithm in Fig. 20.2 takes as input n traces each of size m as shown in Fig. 20.1. Since conjunctive predicates
are lattice-linear, we simply use LLP algorithm to detect them. We use G for the consistent global state. A local
state G[j] is forbidden if it is less than G[i] for some i. Since we are interested only in global states where the local
predicate is true for all G[i], we assume that for any i, we only consider G[i] such that the local predicate is true in
G[i].

<1,1,4>

P1

P2

P3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>P1

P2

P3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>

<1,1,2>

<4,0,1>

<1,1,3>

Figure 20.1: State-Based Model of a Distributed Computation

20.4 An NC Algorithm for Conjunctive Predicate Detection

We now give another parallel algorithm that has lower time complexity but higher work complexity. Our approach
is based on computing a state rejection graph for the trace. The state rejection graph is a directed graph with all
local states as vertices of the graph. Let state j on process i be denoted as (i, j). The state rejection graph puts a
rejection edge from the state (i, j) to (i0, j0) if the rejection of state (i, j) as a possible component of the consistent
cut implies that the state (i0, j0) will also be rejected.

In Fig. 20.4 we show the state rejection graph of the computation in Fig. 20.1. The first state in P1 given by the
vector clock h1, 0, 0i will be rejected by the sequential algorithm because it happened before h1, 1, 0i. The sequential
algorithm will then move P1 to the second state h2, 0, 1i (successor of the first state in P1). However, this would

20.4. AN NC ALGORITHM FOR CONJUNCTIVE PREDICATE DETECTION 157

function ConjunctiveAlgorithm()
var

G: array[1..n] of int initially 1;
T = (m1,m2, ...,mn); //maximum number of proposals at Pi

always
forbidden(G, j,B) ⌘ 9i : G[j] ! G[i]

while 9j : forbidden(G, j,B) do
for all j such that forbidden(G, j,B) in parallel:

if (G[j] = T [j]) then return null;
else G[j] := G[j] + 1;

endwhile;
return G; // satisfying global state

Figure 20.2: Conjunctive Predicate Detection Algorithm.

imply that the state h0, 0, 1i will be rejected because h0, 0, 1i happened before h2, 0, 1i. Hence, there is a rejection
edge from h1, 0, 0i to h0, 0, 1i. Similarly, the rejection of h0, 0, 1i implies that P3 will move to h1, 1, 2i. However, that
move will result in rejection of the state h1, 1, 0i. Therefore, we put a rejection edge from h0, 0, 1i to h1, 1, 0i. Finally,
the rejection of h1, 1, 0i will result in P2 moving to h3, 2, 1i which will result in the rejection of h2, 0, 1i and h3, 0, 1i.
All the rejection edges are shown in dashed arrows in Fig. 20.4. We show how such a graph can be constructed
e�ciently in parallel. The next step in the algorithm is to compute the transitive closure of this graph. Finally, the
algorithm determines the least local state at each process which has not been rejected. In this example, it is the
fourth state on P1, the second state on P2 and the third state on P3.

Our parallel algorithm is presented in Fig. 32.5. The input to the algorithm is the same as that of the LLP
algorithm: a two-dimensional array of vector clocks so that we can determine the happened-before order between
states.

We now explain the steps of the algorithm.
Step 1: We first create F , the set of all initially rejected states. Let I be the global state consisting of each processor’s
first local state, i.e., I = {(i, 1) | i 2 1..n}. If there are no dependencies between any of these states, we have already
reached the first consistent global state. Else, if there is a dependency from one of these states to another, we reject
whichever state happened-before the other and add it to F . We represent the set F by a boolean bit array of size n
that is indexed by processor. F is initially empty. Then, we set F [i] to 1 whenever there exists a state (j, 1) such
that (j, 1) ! (i, 1).

This step can be done in O(1) time in parallel with O(n2) work by using a separate processor for each value of i
and j.
Step 2: In step two, we create the state rejection graph represented as an adjacency matrix. We define a new two-
dimensional array called R, which is of size mn⇥mn, where each row and each column represents a di↵erent state.
In this directed graph, there is an edge from state (i, j) to another state (i0, j0) only if we know that once state (i, j)
is rejected, state (i0, j0) will also be rejected. In the adjacency matrix R, this is represented as R[(i, j), (i0, j0)] = 1.
Additionally, we make the diagonal of the matrix all 1’s. We show that creating this boolean matrix can be done
in constant time. First, setting the diagonal to all 1’s in R takes constant time. We now discuss how o↵-diagonal
entries are set. This is a crucial step in our algorithm. Suppose that a state (i, j) is rejected. We know that the
processor will advance to the next state. Then, the next choice for that processor is (i, j + 1). Thus, the rejection of
(i, j) would lead to the rejection of all states (i0, j0) where (i0, j0) ! (i, j + 1). Formally,

R[(i, j), (i0, j0)] = 1 ⌘ (i0, j0) ! (i, j + 1)

By using a separate processor for each tuple (i, j, i0, j0), we can set R in O(1) time and O(m2n2) work. We

158 CHAPTER 20. THE PREDICATE DETECTION PROBLEM

function ParallelCut()
Input: states : array[1 . . . n][1 . . .m] of vectorClock // Sequence of local states at each process
Output: Consistent Global State as array cut[1 . . . n]

Step 1: Create F : set of states rejected in the first round
var F : array[1 . . . n] of 0 . . . 1 initially 0;
for all (i 2 1 . . . n, j 2 1 . . . n) in parallel do

if ((i, 1) ! (j, 1)) then
F [i] := 1;

Step 2: Create R: State Rejection Graph // Represented as an Adjacency Matrix
var R : [(1 . . . n, 1 . . .m), (1 . . . n, 1 . . .m)] of 0 . . . 1;
for all (i 2 1 . . . n, j 2 1 . . .m) in parallel do

R[(i, j), (i, j)] := 1;
for all (i 2 1 . . . n, j 2 1 . . .m� 1, i0 2 1 . . . n, j0 2 1 . . .m)

such that i 6= i0 in parallel do
if ((i0, j0) ! (i, j + 1)) then

R[(i, j), (i0, j0)] := 1;
else

R[(i, j), (i0, j0)] := 0;

Step 3: Create RT : transitive closure of R
var RT : array[(1 . . . n, 1 . . .m), (1 . . . n, 1 . . .m)] of 0 . . . 1;
RT := TransitiveClosure(R);

Step 4: Create valid: replace invalid states by 0
var valid : array[[1 . . . n][1 . . .m] of 0 . . . 1;
for all (i 2 1 . . . n, j 2 1 . . .m) in parallel do

valid[i][j] := 1;
for all (i 2 1 . . . n, i0 2 1 . . . n, j0 2 1 . . .m) in parallel do

if (F [i] = 1) ^ (RT [(i, 1), (i0, j0)] = 1) then
valid[i0][j0] := 0;

Step 5: Create cut: First Consistent Global State
var cut : array[1 . . . n] of 0 . . .m initially 0;
for all (i 2 1 . . . n, j 2 1 . . .m) in parallel do

if (valid[i][j] 6= 0) then
if (j = 1) _ ((j > 1) ^ (valid[i][j � 1] = 0) then

cut[i] := j;
for all (i 2 1 . . . n) in parallel do

if (cut[i] = 0) then
output(”No satisfying Consistent Cut”);

return ConsistentCut := cut;

Figure 20.3: The ParallelCut algorithm to find the first consistent cut.

20.5. CONJUNCTIVE PREDICATE AT LEVEL k 159

<1,1,4>

P1

P2

P3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>P1

P2

P3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>

<1,1,2>

<4,0,1>

<1,1,3>

Figure 20.4: State Rejection Graph of a computation shown in dashed arrows

represent the state rejection graph as a boolean matrix so that we can compute the transitive closure of this graph
by doing matrix multiplications.
Step 3: In step three, we take the transitive closure of R. The transitive closure of R is also represented as an
adjacency matrix RT . It is well known that the transitive closure for any directed graph with |V | vertices can be
computed in O(log |V |) time using O(|V |

3 log |V |) work on the common CRCW PRAM [JáJ92]. Since our graph has
O(mn) vertices, this step takes O(logmn) time using O(n3m3 logmn) operations on the CRCW PRAM. This is the
only step in our algorithm that takes more than O(1) time.
Step 4: In step four, we use both F and RT to determine which states will not be part of the first consistent global
state. To do this, we create a new two-dimensional array called valid[1 . . . n][1 . . .m] where each entry is a value of
0 . . . 1. We initialize every entry in valid to 1 in O(1) time with O(mn) work. The algorithm sets rejected states in
valid with a 0. We use F and RT for this purpose. For all possible values of i, j, i0, and j0, in parallel, we check to
see if a state (i, j) is an element of F and if there is an edge from (i, j) to another state (i0, j0). If the two states
(i, j) and (i0, j0) fit this criteria, then we set valid[i0][j0] to 0. In other words, if a state (i, j) is initially rejected, and
there is an edge from (i, j) to (i0, j0) in RT , then we know the state (i0, j0) will also be rejected.

This step can also be done in O(1) time and O(m2n2) work. In our example, we compute the states reachable
by h1, 0, 0i. In our example, states {h0, 0, 1i, h1, 1, 0i, h2, 0, 1i, h3, 0, 1i} are all reachable by h1, 0, 0i by following one
or more rejection edges. Thus, we mark the states (1, 1), (2, 1), (3, 1), (1, 2), (1, 3) with 00s in valid.
Step 5: In step five, we traverse valid and construct the set of states that form the consistent global state in a new
array called cut where cut[i] = j signifies that the tuple (i, j) is a part of the consistent global state. To do this, for
every process, in parallel, we simply search for the first entry which is nonzero and either it is the first entry or the
entry prior to it is zero.

In our example, we can easily see that the first consistent global state is the set cut = {(1, 4), (2, 2), (3, 2)}. This
step can be done in O(1) time and O(nm) work.

Thus, the entire algorithm takes O(logmn) time and O(m3n3 logmn) work on a common CRCW PRAM.
Remark: Note that the algorithm to detect a conjunctive predicate can be used to detect a global predicate in

Disjunctive Normal Form. A predicate is in Disjunctive Normal Form (DNF) if it is expressed as a disjunction of k
pure conjunctions. To detect a predicate in this form it is su�cient to detect each conjunction in parallel.

20.5 Conjunctive Predicate at Level k

We now show that, in general, asking for a conjunctive predicate on a particular level is NP-complete.

160 CHAPTER 20. THE PREDICATE DETECTION PROBLEM

Theorem 20.1 Given a distributed computation, deciding whether there exists a global state with k events satisfying
a given conjunctive predicate is NP-complete.

Proof: We first show that the problem is in NP. The global state itself provides a succinct certificate. We can
check that all local predicates are true in that global state and that the global state is at level k.

For hardness, we use the subset sum problem. Given a subset problem on n positive integers, x1, x2, . . . , xn with
the requirement to choose a subset that adds up to k, we create a computation on n processes as follows. Each
process Pi has xi events. The local predicate on Pi is true initially and also after it has executed xi events. Thus,
the local predicate is true at each process exactly twice. The problem asks us if there is a global state with k events
in which all local predicates are true. Such a global state, if it exists, would choose for every process either the initial
local state or the final local state. All the final states that are chosen correspond to the numbers that have been
chosen.

To avoid the expansion of the numbers in binary to unary construction, we encode the representation of events
on a process as follows: Since the conjunctive predicates can only be true when the local predicates are true, we keep
only local states which satisfy their corresponding local predicate and store the number of local events executed so far
with them. This leaves two local states at each process: The initial state with zero events executed until that point,
and the final state of the process with the number of events equal to xi for the ith process. Now, the construction of
the computation from the subset sum problem is polynomial in the size of the input.

20.6 Bibliographic Remarks

The detection of conjunctive predicates was discussed by Garg and Waldecker in [GW92]. Distributed on-line
algorithms for detecting conjunctive predicates were presented in Garg and Chase [GC95]. Observer-independent
predicates were introduced by Charron-Bost, Delporte-Gallet, and Fauconnier [CBDGF95]. Hurfin, Mizuno, Raynal
and Singhal [HMRS95] gave a distributed algorithm that does not use any additional messages for predicate detection.
Distributed algorithms for o✏ine evaluation of global predicates are also discussed in Venkatesan and Dathan [VD92].
Stoller and Schneider [SS95] have shown how Cooper and Marzullo’s algorithm can be integrated with that of Garg
and Waldecker’s to detect a conjunction of global predicates.

The second algorithm for detecting conjunctive predicates is from [GG19]. The NP-completeness of detecting a
conjunctive predicate at the level k is shown in [?].

Chapter 21

Complexity Of Predicate Detection

21.1 Introduction

In this chapter, we explore the complexity-theoretic results for predicate detection. It is not surprising that given
a parallel program computation and a boolean predicate, it is computationally hard to determine if the execution
went through a global state in which the predicate became true. We also show that given a boolean predicate b and
an execution, determining whether b is lattice-linear for that execution is co-NP-complete.

21.2 Predicate Detection Problem

Since there are N processes, the total number of global states possible is mN , where m is the number of state
intervals at any process. Consider a boolean predicate B. Even when B is a boolean expression, and processes do
not communicate, the problem of detecting possibly: B is NP-complete.

We show in this section that the problem of global predicate detection is NP-complete. In fact, we show that it
is NP-complete even in the absence of messages between processes.

The global predicate detection problem is a decision problem. It can be written as:

Input instance: a poset S of N sequences, a set of variables X partitioned into N subsets X1, . . . , XN ,
and a predicate B defined on X.
Problem: Determine whether there exists a consistent cut G 2 S such that B(G) has the value true.

We now show:

Theorem 21.1 The global predicate detection problem is NP-complete.

Proof: First note that the problem is in NP. The verification that the cut is consistent can easily be done in
polynomial time (for example, using vector clocks and examining all pairs of states from the cut). Therefore, if the
predicate itself can be evaluated in polynomial time, then the detection of that predicate belongs to the set NP.

We show NP-completeness of the simplified predicate detection problem where all program variables are restricted
to taking the values “true” or “false”, and at most one variable from each Xi can appear in B. We reduce the
satisfiability problem of a boolean expression (SAT) to the global predicate detection problem by constructing an
appropriate poset.

The poset is constructed as shown in Figure 21.1. For each variable ui 2 U , we define a process Pi that hosts
variable xi (i.e., Xi = {xi}). Let the sequence Si consist of exactly two states. In the first state, xi has the value
false. In the second state, xi has the value true.

It is easily verified that the predicate B is true for some cut in S if and only if the expression is satisfiable.

161

162 CHAPTER 21. COMPLEXITY OF PREDICATE DETECTION

x
1

x
2

x
3

P

P

P
1

2

3

false true

false

false

true

true

Figure 21.1: Transformation from SAT to global predicate detection

The above result shows that detection of a general global predicate is intractable even for simple distributed
computations.

21.3 Recognizing Lattice-Linear and Regular Predicates

As discussed earlier, e�cient detection algorithms exist for various classes of predicates. Thus, given a boolean
expression B, one would like to determine if it belongs to a tractable subclass, in which case detection of the
predicate may be performed e�ciently. We first consider the classes of Lattice-Linear and regular predicates. In
this section, we show that determining whether a given boolean expression is Lattice-Linear with respect to a given
distributed computation is a co-NP-complete problem. We also show that this problem is co-NP-complete for regular
predicates, as well as post-Lattice-Linear predicates.

We define the decision problems of predicate recognition for Lattice-Linear and regular predicates as follows.

0

1

0

1 true

false

true

false

x1 x2

1

0

false

true

xm+2

1

0

true

false

xm+1

1

0

true

false

xm

G

G1

G2

Figure 21.2: Transformation for Theorems 21.2 and 21.3.

Lattice-Linearity: Given a boolean expression b and a program computation, is b a Lattice-Linear predicate?
Regularity: Given a boolean expression b and a program computation, is b a regular predicate?

Theorem 21.2 Lattice-Linearity is co-NP-complete.

Proof: Lattice-Linearity is in co-NP: Given a pair of candidate global states G and H in which the predicate is true,
it can be easily verified in polynomial time that the predicate is false in the global state G\H. Thus, Lattice-Linearity
is in co-NP.

Lattice-Linearity is co-NP-hard: To show co-NP-hardness, we transform an arbitrary instance of TAUTOLOGY
to an instance of Lattice-Linearity.

Let b be a boolean expression involving variables x1, x2, ..., xm.8i = 1..m, we place each xi on a separate process,
Pi. Each of these m processes has two local states, a true state and a false state, which corresponds to the value

21.4. EFFICIENT ADVANCEMENT PROPERTY 163

taken by the variable xi in that local state. We also define two new variables, xm+1 and xm+2, and place them on
processes Pm+1 and Pm+2 respectively. Process Pm+1 has two local states: an initial false state and a final true
state, and process Pm+2 has two local states: an initial true state and a final false state. Figure 21.2 shows this
transformation. It is evident that this transformation can be achieved in polynomial time.

We define
B = b _ xm+1xm+2 _ xm+1xm+2

We claim that B is Lattice-Linear i↵ b is a tautology. If b is a tautology, then B is trivially Lattice-Linear, since
B will be true for all global states. Conversely, if b is not a tautology, then there exists a subcut involving processes
P1...Pm in which b evaluates to false. Let us call this subcut G. We can now extend the subcut G to form two cuts,
G1 and G2, in which the predicate B is true, as shown in Figure 21.2.

G1 = (G, 0, 1)

and
G2 = (G, 1, 0)

However,
G1 \G2 = (G, 0, 0)

in which the predicate B is false. Thus, B is not Lattice-Linear.

Theorem 21.3 Regularity is co-NP-complete.

Proof: Regularity is in co-NP: Given two candidate global states in which the predicate is true, and their union and
intersection such that the predicate is false in either the union or intersection, it can be easily verified in polynomial
time that the predicate is not regular. Thus, Regularity is in co-NP.

Regularity is co-NP-hard: The transformation in Theorem 21.2 holds for Regularity as well. That is, b is a
tautology i↵ B = b_ xm+1xm+2 _ xm+1xm+2 is regular. If b is a tautology, then B is trivially regular since B is true
for all global states. Conversely, if b is not a tautology, then B is not regular since both the intersection and union
of G1 and G2 result in a global state in which B is false. Thus, Regularity is co-NP-complete.

Note that the above transformation can also be used to show that the problem of deciding whether a given
boolean predicate is dual-Lattice-Linear is co-NP-complete.

21.4 E�cient Advancement Property

We stated earlier that e�cient detection of Lattice-Linear predicates relies on the assumption that the given predicate
satisfies the e�cient advancement property, that is, the forbidden state can be identified in polynomial time. The
question that arises is, do all Lattice-Linear predicates satisfy the e�cient advancement property? If not, then is it
possible to e�ciently detect Lattice-Linear predicates that do not satisfy this property? We show here that, unless
RP=NP, polynomial-time detection cannot be performed for all Lattice-Linear predicates.

We use a result by Valiant and Vazirani [VV85], which states that satisfiability is NP-hard under randomized
reductions even for instances that have at most one satisfying assignment (USAT). Valiant and Vazirani’s proof uses
a randomized polynomial-time algorithm that reduces a given instance of SAT to an instance of USAT.

Theorem 21.4 (Valiant-Vazirani) If there exists a randomized polynomial-time algorithm for solving instances
of SAT having at most one satisfying assignment, then NP=RP.

164 CHAPTER 21. COMPLEXITY OF PREDICATE DETECTION

We know that a predicate having at most one satisfying assignment is Lattice-Linear, so every instance of USAT
is a Lattice-Linear predicate. Given any instance B of USAT, involving variables x1, x2, ..., xm, one can create a
distributed computation as depicted in Figure 21.1, such that detecting possibly : B is equivalent to solving USAT
for B. Since we know that Lattice-Linear predicates that satisfy e�cient advancement can be detected in polynomial-
time, this indicates that Lattice-Linear predicates that do not exhibit e�cient advancement may not be detected
in polynomial-time, even by a randomized algorithm. Furthermore, since every instance of USAT is also a regular
predicate, detection of regular predicates is also NP-hard under randomized reductions.

21.5 Problems

21.6 Bibliographic Remarks

The complexity of detecting a boolean predicate is taken from [CG98]. The complexity of checking whether a
predicate is lattice-linear (or regular) is from [KG05].

Chapter 22

Enumeration Algorithms

22.1 Introduction

So far, we have been concerned with finding the least feasible elements of the set satisfying the feasibility predicate.
What if we wanted to enumerate all feasible elements. For example, we may want to enumerate all satisfying
assignments for Horn formulas, all stable marriages, all integral market clearing prices etc. In general the feasible set
may be large. For most applications, we consider the set of feasible elements is exponentially larger than the input
size. Our goal would be to reduce the complexity of enumeration per element.

22.2 Birkho↵ ’s Theorem

We first define join-irreducible elements as follows.

Definition 22.1 (Join-Irreducible Elements) An element x 2 L is join-irreducible if

1. x 6= 0, and

2. 8a, b 2 L : x = a t b) (x = a) _ (x = b).

Pictorially, in a finite lattice, an element is join-irreducible i↵ it has exactly one lower cover, that is, there
is exactly one edge coming into the element. Figure 22.1(a) shows a distributive lattice with its join-irreducible
elements. Intuitively, the set of join-irreducible elements of a distributive lattice are analogous to basis elements of a
linear vector space in the sense that the lattice can be generated using join-irreducible elements in the same way as
the vector space can be generated by linear combination of basis elements. We denote the set of consistent cuts of
any distributed computation (E,!) by C(E) (! is implicit). We exploit the property that the lattice is distributive
to derive the notion of a computation slice. Let J(L) denote the set of join-irreducible elements in L. Now we can
state Birkho↵’s theorem for finite distributive lattices.

Theorem 22.2 (Birkho↵ ’s Representation Theorem) Let L be a finite distributive lattice. Then the map f :
L ! C(J(L)) defined by

f(a) = {x 2 J(L) | x  a}

is an isomorphism of L onto C(J(L)). Dually, let P be a finite poset. Then the map g : P ! J(C(P)) defined by

g(a) = {x 2 P | x  a}

is an isomorphism of P onto J(C(P)).

165

166 CHAPTER 22. ENUMERATION ALGORITHMS

(b)(a)

a b

d

c

b d

ca

: join−irreducible element

Figure 22.1: (a) An example of a distributive lattice (b) its partial order representation.

The above theorem implies one-to-one correspondence between a finite poset and a finite distributive lattice.
Given a finite poset, we get the finite distributive lattice by considering its set of down-sets. Given a finite distributive
lattice, we can recover the poset by focusing on its join-irreducible elements. Informally, any element of a lattice
can be written as a join of a subset of join-irreducible elements of the lattice. For example, Figure 22.1(b) gives the
poset corresponding to the lattice in Figure 22.1(a).

From the above discussion it is clear that given any finite distributed computation, the structure finite distributive
lattice completely characterizes its execution graph.

22.3 Slicing

The notion of consistent global states or ideals of a poset can be extended to graphs in a straightforward manner. A
subset of vertices, H, of a directed graph, P , is an ideal if it satisfies the following condition: if H contains a vertex
v and (u, v) is an edge in the graph, then H also contains u. Observe that an ideal of P either contains all vertices
in a strongly connected component or none of them. Let L denote the set of ideals of a directed graph P . Observe
that the empty set and the set of all vertices trivially belong to L. We call them trivial ideals. It is easy to show
that given a directed graph P , (L;✓) forms a distributive lattice.

Since trivial ideals are always part of L, it is more convenient to deal only with nontrivial ideals of a graph. It is
easy to convert a graph P to P 0 such that there is one-to-one correspondence between all ideals of P and all nontrivial
ideals of P 0. We construct P 0 from P by adding two additional vertices ? and > such that ? is the smallest vertex
and > is the largest vertex (i.e., there is a path from ? to every vertex and a path from every vertex to >). It is
easy to see that any nontrivial ideal will contain ? and not contain >. As a result, every ideal of P is a nontrivial
ideal of the graph P 0 and vice versa. We will deal with only nontrivial ideals from now on and an ideal would mean
nontrivial ideal unless specified otherwise.

We will deal with only nontrivial ideals from now on and an ideal would mean nontrivial ideal unless specified
otherwise. The directed graph representation of Fig. 22.2(a) is shown in Fig. 22.2(c).

The slice of a directed graph P with respect to a predicate B (denoted by slice(P,B)) is a graph derived from

22.4. COMPUTING ALL STABLE MATCHINGS 167

b d

ca

(a)

b d

ca

(c)

{a}

{b}

{a,b}
{b,d}

{a,b,c}
{a,b,d}

{a,b,c,d}

(b)

: join−irreducible element
{}

Figure 22.2: (a) P : A partial order (b) the lattice of ideals. (c) the directed graph P 0

P such that all the ideals in L that satisfy B are included in the ideals of the slice with respect to B. The slice may
include some additional ideals which do not satisfy the predicate. Formally,

Definition 22.3 (Slice) A slice of a graph P with respect to a predicate B is the directed graph obtained from P
by adding edges such that:
(1) it contains all the ideals of P that satisfy B and
(2) of all the graphs that satisfy (1), it has the least number of ideals.

Let L be a finite distributive lattice generated by the graph P . Let L0 be any sublattice of L. Then, there exists
a graph P 0 that can be obtained by adding edges to P that generates L0.

22.4 Computing All Stable Matchings

We now consider the problem of computing all stable matchings. Since the number of stable matchings may be
exponential in n, instead of keeping all matchings in explicit form, we would like a concise representation of polynomial
size that can be used to enumerate all stable matchings. In SMP literature, rotation posets are used to capture all
stable matchings. We will use the notion of computation slicing introduced in [MG01b] for this purpose. In particular,
we give an e�cient algorithm to compute the slice for the SMP computation. A rotation poset [GI89] is a special
case of the slice when the set of external constraints is empty.

We first show that the set of stable matchings is a sublattice of the lattice of all men assignments. We have
already shown that the predicate ”the assignment is a stable matching” is a lattice-linear predicate and therefore
closed under meets. We now show that the predicate is also closed under joins. To that end, we use the dual of a
lattice-linear predicate called dual-linear predicate. Given any predicate B, we define

reverse-forbidden(G, i) ⌘ 8H 2 L : H ✓ G : (G[i] 6= H[i]) _ ¬B(H)

We define a predicate B to be dual-linear with respect to poset S if for any global state G in the poset, B is false in
G implies that G contains a reverse-forbidden state. Formally, A boolean predicate B is dual-linear with respect to
a poset S i↵:

8G 2 L : ¬B(G)) 9i : reverse-forbidden(G, i)

Note that although the concepts of lattice-linear predicate and dual-linear predicates are dual, the proof of dual-
linearity is di↵erent from that of lattice-linearity. This is because we are computing assignments with respect to men
and not women thereby bringing in asymmetry.

168 CHAPTER 22. ENUMERATION ALGORITHMS

Lemma 22.4 Let G be any assignment such that it is not a stable matching. Then, there exists i such that G[i] is
reverse-forbidden.

Proof: First assume that G is not a matching. We know that there is at least one woman q who is missing in this
assignment. Let i be the most preferred man for that woman in the pre-frontier events that correspond to proposal
to q. If there is no man in pre-frontier events for that woman who proposes to q, then there is no matching possible
because q is not proposed in either a frontier or a pre-frontier event. So, we can assume that i exists. We claim that
G[i] is reverse-forbidden. Consider any H such that H ✓ G and H[i] = G[i]. We need to show that H cannot be a
stable matching. For H to be a matching, for some k di↵erent from i, H[k].w equals q. However, by our choice of i,
q prefers man i and man i prefers q to H[i].w.

Now, assume that G is a matching, but not stable. Suppose that (j, k) is a blocking pair. Let q be the woman
corresponding to G[j].w. Of all the men who propose to that woman in pre-frontier events, choose the one who is
most preferred for that woman. We know that there exists at least one because (j, k) is a blocking pair. Let that
man be i. We claim that G[i] is reverse-forbidden. Consider any H such that H ✓ G and H[i] = G[i]. We need to
show that H cannot be a stable matching. Since G is a matching, G[i].w is di↵erent from q = G[j].w. For H to be a
matching, for some l, H[l].w equals G[j].w. However, by our choice of i, we know that H[l].w prefers man i to l and
man i prefers H[l].w to G[i].w.

The above lemma allows us to find the man-pessimal stable matching. We start with G such that G[i] equals
the last choice proposal for Pi. If G is a stable matching, we are done. Otherwise, from the proof of Lemma 22.4, we
can find i such that unless G[i] goes backward, there cannot be any stable matching. By repeating this procedure,
we get the men-pessimal stable matching.

Since stable matching is dual-linear, it follows that the set of assignments is closed under joins. Predicates that
are both meet-closed and join-closed are called regular predicates [GM01b]. The set of ideals that satisfy a regular
predicate forms a sublattice of the lattice of all ideals. Since a sublattice of a distributive lattice is also distributive,
the set of ideals that satisfy a regular predicate forms a finite distributive lattice. From Birkho↵’s theorem [Bir67] we
know that a finite distributive lattice can be equivalently represented using the poset of its join-irreducible elements.

For any regular predicate B, let LB be the sublattice of consistent global states that satisfy B. Since LB can
have a number of elements that is exponential in n, we would like to have a compact representation of LB . A slice
of a poset P with respect to a predicate B is a graph such that the consistent global states of the graph includes all
consistent global states that satisfy B and when B is regular it includes only those. The computation of a slice is
shown in Fig. 22.3. The algorithm requires computation of J(B, e) for all e 2 E where J(B, e) be the least consistent
global state that satisfies B and includes e.

(1) graph function computeSlice(B:regular predicate, P : graph)
(2) var R: graph initialized to P ;
(3) begin
(4) for every element e in P do
(5) let J(B, e) be the least global state of P that satisfies B and includes e;
(6) for every f 2 J(B, e) do;
(7) add edge (f, e) to R;
(8) return R;
(9) end;

Figure 22.3: An e�cient algorithm to compute the slice for a regular predicate B

Hence, to compute a slice it is su�cient to give a procedure to compute J(B, e). To determine J(B, e) it is
su�cient to use the algorithm for detecting lattice-linear predicate by using the following predicate for every e:

22.5. PROBLEMS 169

Be(G) ⌘ B(G) ^ (e 2 G). Since B is a lattice-linear predicate, and the predicate e 2 G is also lattice-linear, Be(G)
is also lattice-linear.

22.5 Problems

22.1. Show that x 2 L is join-irreducible i↵
(i) x 6= 0
(ii) 8a, b : (a < x) ^ (b < x)) ((a t b) < x)

22.2. The dual notion of join-irreducible elements is meet-irreducible elements. Let M(L) denote the ordered set of
meet-irreducible elements of L. Show that the ordered set J(L) is isomorphic to the set M(L).

22.6 Bibliographic Remarks

The notion of a slice of a computation was proposed in Garg and Mittal [GM01a] and later generalized in Mittal and
Garg [MG01a].

170 CHAPTER 22. ENUMERATION ALGORITHMS

