
1

THIS IS THE SEQUENTIAL BOOK VERSION
©Vijay K. Garg, 2019

2

A Systematic Approach to Sequential Algorithms

Vijay K. Garg
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084

To my family

vi

©Vijay K. Garg, 2019

Contents

1 Introduction 3
1.1 What is an Algorithm? . 5
1.2 Asymptotic Notation (Big O, Big Omega, Big Theta) . 6
1.3 Analyzing Algorithm E!ciency . 7
1.4 Common Data Structures: Lists, Stacks, Queues, Binary Trees 9
1.5 Heaps . 10
1.6 Organization of the Book . 13
1.7 Problems . 13
1.8 Bibliographic Remarks . 14

2 The Stable Marriage Problem 15
2.1 Introduction . 15
2.2 Proposal Vector Lattice . 15
2.3 Gale-Shapley Algorithm . 16
2.4 Algorithm ω: Upward Traversal . 17
2.5 Problems . 19
2.6 Bibliographic Remarks . 19

3 Lattice Linear Predicate Detection 21
3.1 Introduction . 21
3.2 Lattice-Linear Predicates . 21
3.3 Notation . 23
3.4 Properties of the LLP Algorithm . 23
3.5 An LLP Algorithm for the Stable Matching Problem . 25
3.6 Additional LLP Algorithms . 27
3.7 Problems . 27
3.8 Bibliographic Remarks . 29

4 Basic Graph Algorithms 31
4.1 Introduction . 31
4.2 Graph Representations . 31
4.3 Sequential BFS and DFS Traversals in a Graph . 33
4.4 LLP Algorithms for Traversal in a Graph . 35
4.5 Layering of a Directed Acyclic Graph . 37
4.6 Problems . 38

vii

viii CONTENTS

4.7 Bibliographic Remarks . 39

5 Greedy Algorithms 41
5.1 Introduction . 41
5.2 Interval Scheduling Problem . 41
5.3 Interval Partition Problem . 43
5.4 Minimizing Maximum Lateness of Jobs . 44
5.5 Hu"man Tree . 46
5.6 LLP: Interval Scheduling Algorithm . 48
5.7 LLP: Interval Partition Algorithm . 49
5.8 LLP: Minimizing Maximum Lateness of Jobs . 50
5.9 LLP: Hu"man Coding . 50
5.10 Summary . 50
5.11 Problems . 51
5.12 Bibliographic Remarks . 52

6 The Shortest Path Problem 53
6.1 Introduction . 53
6.2 Dijkstra’s Algorithm . 53
6.3 Bellman-Ford’s Algorithm . 55
6.4 All Pairs Shortest Path Algorithm . 57
6.5 Bibliographic Remarks . 58

7 The Minimum Spanning Tree Problem 59
7.1 Introduction . 59
7.2 Fragments . 59
7.3 Kruskal’s Algorithm . 60
7.4 Prim’s Algorithm . 63
7.5 Boruvka’s Algorithm: Sequential Implementation . 64
7.6 Problems . 66
7.7 Bibliographic Remarks . 66

8 Sorting Algorithms 67
8.1 Introduction . 67
8.2 Sorting Algorithms based on Swapping Consecutive Entries 67
8.3 Merge Sort . 70
8.4 Quicksort . 72
8.5 Radix Sort . 74
8.6 Summary . 75
8.7 Problems . 75
8.8 Bibliographic Remarks . 75

9 Divide and Conquer 77
9.1 Introduction . 77
9.2 Mergesort: Revisited . 77
9.3 The Master Theorem . 78

CONTENTS ix

9.4 Nearest Neighbors in the Euclidean Space . 80
9.5 Counting Inversions in an Array using Divide and Conquer 81
9.6 Planar Convex Hull . 82
9.7 Karatsuba’s Multiplication Algorithm . 82
9.8 Strassen’s Matrix Multiplication . 84
9.9 Summary . 86
9.10 Bibliographic Remarks . 87
9.11 Problems . 87

10 Dynamic Programming 89
10.1 Introduction . 89
10.2 Recursion vs Dynamic Programming . 90
10.3 Weighted Interval Scheduling . 91
10.4 Longest Increasing Subsequences . 92
10.5 Longest Increasing Subsequence Using LLP Method . 94
10.6 Optimal Binary Search Tree . 95
10.7 Optimal Binary Search Tree with LLP . 97
10.8 Chain Matrix Multiplication . 99
10.9 Segmented Least Squares Problem . 99
10.10Knapsack Problem . 102
10.11Knapsack Using LLP Formulation . 104
10.12Problems . 105
10.13Bibliographic Remarks . 105

11 Max Flow 107
11.1 Introduction . 107
11.2 The Ford-Fulkerson Algorithm . 108
11.3 Min-Cut Interpretation . 111
11.4 Edmond-Karp Algorithm . 112
11.5 Lattice of Mincuts . 113
11.6 An Algorithm to Find Mincuts Satisfying a Lattice-Linear Predicate B 113
11.7 Bibliographic Remarks . 114

12 Bipartite Matching 115
12.1 Introduction . 115
12.2 Sequential Algorithm . 115
12.3 Chain Partition of a Poset . 118
12.4 Problems . 119

13 Intractability 121
13.1 Class P . 121
13.2 Polytime Reductions . 122
13.3 NP-Complete Problems . 124
13.4 co-NP Class of Problems . 128
13.5 Approximation Algorithms . 130
13.6 Problems . 130

x CONTENTS

13.7 Bibliographic Remarks . 130

14 The Housing Allocation Problem 133
14.1 Introduction . 133
14.2 Gale’s Top Trading Cycle Algorithm . 133
14.3 Applying LLP Algorithm to the Housing Market Problem 134
14.4 Problems . 136
14.5 Bibliographic Remarks . 136

15 The Assignment Problem 137
15.1 Introduction . 137
15.2 Problem Formulation . 137
15.3 Market Clearing Price . 138
15.4 Constrained Market Clearing Price . 141
15.5 Problems . 142
15.6 Bibliographic Remarks . 142

16 Horn and 2-SAT Satisfiability 143
16.1 Introduction . 143
16.2 Horn Satisfiability . 143
16.3 LLP Algorithm for HornSat . 144
16.4 Arithmetization of Horn Clauses . 145
16.5 2-SAT . 145
16.6 Problems . 146

17 Stable Marriage Problem with Ties 149
17.1 Introduction . 149
17.2 Superstable Matching . 149
17.3 Strongly Stable Matching . 152
17.4 Problems . 153
17.5 Bibliographic Remarks . 153

18 The GCD Problem 155
18.1 Introduction . 155
18.2 Parallel Greatest Common Divisor (GCD) Algorithm: First Algorithm 155
18.3 Parallel Greatest Common Divisor (GCD) Algorithm: Second Algorithm 156
18.4 Chinese Remainder Theorem . 157
18.5 Viewing Numbers as Distributive Lattice . 158

19 Linear Programming 161
19.1 Introduction . 161
19.2 Strong Duality . 162
19.3 Weak Duality . 162
19.4 Complementary Slackness Conditions . 163
19.5 Maximum Matching Problem As Linear Program . 163
19.6 The Transportation Problem . 164

CONTENTS xi

19.7 The Stable Marriage Problem . 164
19.8 The Shortest Path Problem . 164
19.9 Comparison of Linear Programming with Lattice-Linear Predicates 167
19.10Modeling Linear Programming Using Lattices . 167

20 The Predicate Detection Problem 169
20.1 Introduction . 169
20.2 Detecting Conjunctive Predicates . 169
20.3 A Work-E!cient Parallel Algorithm . 170
20.4 An NC Algorithm for Conjunctive Predicate Detection . 170
20.5 Conjunctive Predicate at the Given Level . 173
20.6 Predicate Detection Problem . 174
20.7 Recognizing Lattice-Linear and Regular Predicates . 175
20.8 E!cient Advancement Property . 176
20.9 Problems . 177
20.10Bibliographic Remarks . 177

21 Enumeration Algorithms 179
21.1 Introduction . 179
21.2 Birkho"’s Theorem . 179
21.3 Slicing . 180
21.4 Computing All Stable Matchings . 181
21.5 An Algorithm to Determine Join-Irreducible Min Cuts . 183
21.6 Problems . 186
21.7 Bibliographic Remarks . 186

22 Additional Topics on the Shortest Path Problem - V2 187
22.1 Introduction . 187
22.2 Early Fixing Algorithm: Using Predecessors . 187
22.3 Early Fixing Algorithm: Using Weights of Incoming edges 191
22.4 Early Fixing Algorithm: Using Lower Bounds with Upper Bounds 193
22.5 A Parallel Shortest Path Algorithm . 196
22.6 Problems . 198
22.7 Bibliographic Remarks . 198

23 Additional Topics on the Stable Marriage 199
23.1 Introduction . 199
23.2 Algorithm for Downward Traversal . 199
23.3 An Early Fixing Algorithm . 201
23.4 Constrained Stable Matching Problem . 203
23.5 Hospital Residents Problem . 208
23.6 Typed Stable Matching Problem . 209
23.7 Generalized Median Feasible States . 209
23.8 Path to Stability . 210
23.9 Problems . 211

xii CONTENTS

24 Equilevel Predicate Detection 213
24.1 Introduction . 213
24.2 Equilevel Predicates . 214
24.3 Equilevel Predicates with The Helpful Property . 216
24.4 Equilevel Predicates with the Independently Helpful Property 219
24.5 Solitary Predicates . 219
24.6 Solitary Predicates with E!cient Advancement Property . 220
24.7 Solitary Predicates with NC Advancement Properties . 223

25 Appendix: List of Lattice Linear Programs in Java 227

26 Early Fixing Algorithms 241
26.1 Introduction . 241
26.2 An Early Fixing Algorithm for the Stable Marriage Problem 242
26.3 Housing Allocation . 243
26.4 Minimum Spanning Tree . 245
26.5 Shortest Path Problem . 245
26.6 HornSAT . 245
26.7 Assignment Problem . 245
26.8 Problems . 247

27 Appendix: List of Lattice Linear Predicates 249
27.1 List of All Linear Predicates . 249
27.2 List of Lattices . 253

Bibliography 261

Index 266

List of Figures

1.1 Search space with feasible solutions. The feasible solutions are shown in red. The solution
x is the least feasible solution. 4

1.2 Comparison of Growth Rates for n = 1 to 20: Linear, Quadratic, Cubic, and Exponential
(Log Scale) . 7

1.3 Min-heap as a binary tree . 11
1.4 Min-heap as an array . 11

2.1 Stable Matching Problem with men preference list (mpref) and women preference list (wpref). 15

3.1 LLP Parallel Program for (a) job scheduling problem using forbidden predicate (b) job
scheduling problem using ensure clause and (c) the shortest path problems 24

3.2 LLP Programs for (a) GCD (b) Factorial (c) MaxElement (d) Linear Search (e) Nested Sum
(f) PairSum and (g) Binary Search . 28

4.2 Adjacency representation of an undirected graph . 32
4.1 An undirected graph . 32
4.3 A Directed Graph . 33
4.4 Adjacency representation of a directed graph . 33
4.5 An Example of DFS-Traversal . 35
4.6 The values of discovered and finished for vertices with DFS on the graph in Fig. 4.5 . . . 35

6.1 A Weighted Directed Graph . 53

7.1 An undirected weighted graph . 60

9.1 An example of Planar Convex Hull . 82
9.2 Using Divide and Conquer for Planar Convex Hull . 83

10.1 Weighted intervals (weights in parentheses) with optimal selection (thick lines). 92
10.2 Input points (1, 1), (2, 2), (3, 4), (4, 3), (5, 2), (6, 1) in the x-y plane. 102
10.3 Segmented least squares solution: segments 1 → 3 (y = 1.5x → 0.5) and 4 → 6 (y = →x + 7). . 102

12.1 Various Structures and Transformations between them . 116
12.2 A Bipartite Graph . 116
12.3 A Matching M shown with dashed edges in the Bipartite Graph 117
12.4 A poset . 118

xiii

xiv LIST OF FIGURES

12.5 A Strict Split of the Poset in Fig. 12.4 . 118

13.1 Relationship between P, NP-complete, and NP. P is a subset of NP, NP-complete problems
are a subset of NP (disjoint from P if P ↑= NP), and NP contains problems with polynomial-
time verifiable yes instances. 126

13.2 NP-Complete Problems and Reductions . 127
13.3 Relationship between NP, co-NP, and P. P is drawn within NP ↓ co-NP, which also includes

problems like Integer Factorization. It is unknown if NP = co-NP. 129

14.1 Housing Market and the Matching returned by the Top Trading Cycle Algorithm 134
14.2 The top choice graph at the first stage. 134

15.1 The computation graph for a market with three items and three bidders. The valuation of
and price for any item is a number between 0 and 4. 139

15.2 Algorithm ConstrainedMarketClearingPrice to find the minimum cost assignment
vector . 140

15.3 The computation graph for a market with three items and three bidders. The valuation of
and price for any item is a number between 0 and 4. The computation graph models the
constraint B ↔ (p[2] ↗ 2 ↘ p[1] ↗ 3) ≃ (p[1] ↗ 2 ↘ p[3] ↗ 1) 141

16.1 Implication Graph of the predicate B ↔ (¬x1 ⇐ x2) ≃ (x1 ⇐ ¬x3) ≃ (¬x2 ⇐ x3) 145

18.1 Algorithm GCD to find the greatest common divisor of a set of numbers 156
18.2 Algorithm GCD to find the greatest common divisor of a set of numbers 156
18.3 Algorithm GCD to find the greatest common divisor of a set of numbers 157
18.4 Poset representations for µ and ε. The value for ε(pk) is pk

→ pk→1. Thus, the third entry
for prime 3 is 32

→ 31 = 6. 159

20.1 State-Based Model of a Distributed Computation . 170
20.2 Conjunctive Predicate Detection Algorithm. 171
20.3 The ParallelCut algorithm . 172
20.4 State Rejection Graph of a computation shown in dashed arrows 173
20.5 Transformation from SAT to global predicate detection . 175
20.6 Transformation for Theorems 20.3 and 20.4. 175

21.1 (a) An example of a distributive lattice (b) its partial order representation. 180
21.2 (a) P : A partial order (b) the lattice of ideals. (c) the directed graph P ↑ 181
21.3 An e!cient algorithm to compute the slice for a regular predicate B 182
21.4 Directed graph with capacities (acyclic). 183
21.5 Lattice of minimum cuts for the acyclic directed graph. 183

22.1 Algorithm SP1 . 189
22.2 (a) A Weighted Directed Graph . 189
22.3 Algorithm SP2: Algorithm SP1 with processEdge2 . 192
22.4 Algorithm SP3: Using upper bounds as well as lower bounds 195
22.5 Algorithm SP4: A Bellman-Ford Style Algorithm with both upper and lower bounds . . . 197

LIST OF FIGURES 1

23.1 Algorithm ϑ: An Algorithm that returns the woman-optimal marriage less than or equal to
the given proposal vector I. 200

23.2 An Implementation of Algorithm ϑ with O(mn) complexity. 202
23.3 Stable Matching Problem with men preference list (mpref) and women preference list (wpref).206
23.4 The first graph models the standard SMP problem. Men’s preferences are shown in blue

solid edges. Preferences of women 1 and 2 are shown in dashed green edges. The second
constrained SMP Graph corresponds to constraint that the regret for P2 is less than or equal
to that of P1. It also shows the preference of w3 of P4 over P3. 206

23.5 An e!cient algorithm to find the man-optimal constrained stable matching less than or
equal to T . 207

23.6 Algorithm ϖ with O(m2) complexity. 211

24.1 Various Classes of Predicates. Equilevel predicates are the ones that are true on elements of
a lattice at a single level. Solitary predicates are the ones that are true on a single element
in the lattice. 213

24.2 A graph G = ({a, b, c, d}, {(a, b), (b, c), (a, c), (c, d)}). 215
24.3 Hasse diagram of the vertex powerset, ordered by inclusion. 215

25.1 Job Scheduling Program . 227
25.2 Parallel Reduce Program . 228
25.3 Parallel Prefix Program . 229
25.4 Stable Marriage Program . 230
25.5 List Rank Program . 231
25.6 Graph Traversal Program . 232
25.7 Graph Traversal Program . 233
25.8 Graph BFS Traversal Program . 234
25.9 Graph Layering Program . 235
25.10Slow Component Program . 236
25.11Fast Component Program . 236
25.12Dijkstra’s Shortest Path Program . 237
25.13Bellman-Ford Shortest Path Program . 238
25.14Johnson Shortest Path Program . 238
25.15Lattice Linear Program . 239

2 LIST OF FIGURES

Chapter 1

Introduction

The goal of the book is to present a unified treatment of a wide variety of algorithms. Linear pro-
gramming, or integer programming, serves as a tool for providing insights into a large class of problems.
The shortest path problem, the max-flow problem, the stable marriage problem, and the weighted bi-
partite matching problem can all be modeled and analyzed using linear programming techniques. Linear
programming formulation provides additional insights into the problem such as notions of dual problems,
certificates for optimality, and lower and upper bounds on the objective function. In this book, we present
another general technique called lattice-linear predicate detection that can solve many problems. We use
this method to solve the generalization of many fundamental problems in combinatorial optimization,
including the stable marriage problem [GS62], the shortest path problem [Dij59], and the assignment prob-
lem [Mun57]. Due to the importance and applications of these problems, each one has been the subject of
numerous books and thousands of papers. The classical algorithms to solve these problems are the Gale-
Shapley algorithm [GS62] for the stable marriage problem, Dijkstra’s algorithm [Dij59] for the shortest
path problem, and Kuhn’s Hungarian method [Mun57] to solve the assignment problem (or equivalently,
Demange, Gale, Sotomayor auction-based algorithm [DGS86] for market clearing prices). Could there be
a single e!cient algorithm that solves all of these problems?

The book presents a technique that solves not only these problems but more general versions of each
of the above problems. We seek the optimal solution for these problems that satisfy additional constraints
modeled using a lattice-linear predicate [CG98]. When there are no additional constraints (i.e., when the
set of constraints is empty), our approach reverts to addressing the classical versions of these problems.

Our technique requires the underlying search space to be viewed as a distributive lattice [Bir67, DP90].
Common to all these seemingly disparate combinatorial optimization problems is the structure of the
feasible solution space. The set of all stable marriages, the set of all feasible rooted trees for the shortest
path problem, and the set of all market clearing prices are all closed under the meet operation of the
lattice. If the order is appropriately defined, then finding the optimal solution (the man-optimal stable
marriage, the shortest path cost vector, the minimum market clearing price vector) is equivalent to finding
the infimum of all feasible solutions in the lattice.

We note here that it is well-known that the set of stable marriage and the set of market clearing price
vectors form distributive lattices. The set of stable marriages forms a distributive lattice is given in [Knu97]
where the result is attributed to Conway. The set of market clearing price vectors forms a distributive
lattice is given in [SS71]. However, the algorithms to find the man-optimal stable marriage and the
minimum market clearing price vectors are not derived from the lattice property. In our method, once the

3

4 CHAPTER 1. INTRODUCTION

x

Figure 1.1: Search space with feasible solutions. The feasible solutions are shown in red. The solution x is
the least feasible solution.

lattice-linearity of the feasible solution space is established, the algorithm to find the optimal solution falls
out as a consequence. The reference [Gar20] derives the Gale-Shapley’s algorithm, Dijkstra’s algorithm
and Demange-Gale-Sotomayor’s algorithm from a single algorithm by exploiting the lattice property.

The lattice-linear predicate detection method to solve the combinatorial optimization problem is as
follows. The first step is to define a lattice of vectors, L, such that each vector is assigned a point in the
search space. For the stable marriage problem, the vector corresponds to the assignment of men to women
(or equivalently, the choice number for each man). For the shortest path problem, the vector assigns a
cost to each node. For the market clearing price problem, the vector assigns a price to each item. The
comparison operation (⇒) is defined on the set of vectors such that the least vector, if feasible, is the
extremal solution of interest. For example, in the stable marriage problem if each man orders women
according to his preferences and every man is assigned the first woman in the list, then this solution is the
man-optimal solution whenever the assignment is a matching and has no blocking pair. Similarly, in the
shortest path problem and the minimum market clearing price problem, the zero vector would be optimal
if it were feasible.

The second step in our method is to define a boolean predicate B that models feasibility of the vector.
For the stable marriage problem, an assignment is feasible i" it is a matching and there is no blocking
pair. For the shortest path problem, an assignment is feasible i" there exists a rooted spanning tree at the
source vertex such that the cost of each vertex is greater than the cost of traversing the path in the rooted
tree. For the minimum market clearing price problem, a price vector is feasible i" it is a market clearing
price vector.

The third step is to show that the feasibility predicate is a lattice-linear predicate [CG98]. The lattice-
linearity property allows one to search for a feasible solution e!ciently. If any point in the search space
is not feasible, it allows one to make progress towards the optimal feasible solution without any need
for exploring multiple paths in the lattice. Moreover, multiple processes can make progress towards the
feasible solution independently. In a finite distributive lattice, it is clear that the maximum number of
such advancement steps before one finds the optimal solution or reaches the top element of the lattice is
equal to the height of the lattice. Once this step is done, we get the following outcomes.

First, by applying the lattice-linear predicate detection algorithm to unconstrained problems, we get
the Gale-Shapley algorithm for the stable marriage problem, Dijkstra’s algorithm for the shortest path
problem and Demange, Gale, Sotomayor’s algorithm for the minimum market clearing price. In fact, the
lattice-linear predicate detection method yields a parallel version of these algorithms and by restricting

1.1. WHAT IS AN ALGORITHM? 5

these to their sequential counterparts, we get these classical sequential algorithms.
Second, we get solutions for the constrained version of each of these problems, whenever the constraints

are lattice-linear. We solve the Constrained stable marriage Problem where in addition to men’s preferences
and women’s preferences, there may be a set of lattice-linear constraints. For example, we may require that
Peter’s regret [GI89] should be less than that of Paul, where the regret of a man in a matching is the choice
number he is assigned. We note here that some special cases of the constrained stable marriage problems
have been studied. Dias et al [DdFdFS03, CM16] study the stable marriage problem with restricted pairs.
A restricted pair is either a forced pair which is required to be in the matching, or a forbidden pair which
must not be in the matching. Both of these constraints are lattice-linear and therefore can be modeled
in our system. The constrained shortest path problem asks for a rooted tree at the source node with the
smallest cost at each vertex that satisfies additional constraints of the form “the cost of reaching node x is
at least the cost of reaching node y”, “the cost of reaching x must be equal to the cost of reaching y”, and
“the cost of reaching x must be within ϱ of the cost of reaching y”. For the market clearing price problem,
we consider constraints on the clearing prices of the form that item i must be priced at least as much as
item j, or the di"erence in prices for item i and j must not exceed ϱ.

Third, by applying a constructive version of Birkho"’s theorem on finite distributive lattices [Bir67,
DP90], we give an algorithm that outputs a succinct representation of all feasible solutions. In particular,
the join-irreducible elements [DP90] of the feasible sublattice can be determined e!ciently (in polynomial
time). For the constrained stable marriage problem, we get a concise representation of all stable marriages
that satisfy given constraints. Thus, our method yields a more general version of rotation posets [GI89] to
represent all constrained stable marriages. Analogously, we get a concise representation of all constrained
integral market clearing price vectors.

In the remaining chapter, we provide an introduction to algorithms, emphasizing their definition, e!-
ciency analysis, and mathematical underpinnings. We explore what constitutes an algorithm and formalize
e!ciency with asymptotic notation.

1.1 What is an Algorithm?

An algorithm is a finite, unambiguous sequence of instructions that solves a problem or computes a function,
transforming an input into an output in a finite number of steps. It must exhibit finiteness (terminates),
definiteness (each step is precisely specified), and e!ectiveness (each operation is basic and executable).
Algorithms underpin computer science, solving problems from simple arithmetic to complex optimization.

We start with one of earliest algorithms due to Euclid. Suppose we are required to find the greatest
common divisor (GCD) of two natural numbers a and b (integers greater than or equal to 1). If they are
both equal, then we have the answer. Suppose that a is greater than b, then we claim that it is safe to
reduce a to a → b (prove it!). Similarly, if b is greater than a, then we reduce b to b → a. The algorithm
terminates with all numbers identical and equal to the gcd.

For a = 48, b = 18, in the first step, we get a equals 30 and b equals 18. Since a is still greater than
b, a becomes 12 and b is still 18. Now b is greater than a. So, in the next step b becomes b → a which
equals 6. Finally, a becomes 6. Now, both a and b are equal to 6 and the algorithm terminates. It is easy
to see that the algorithm always terminates. All values are initially non-zero positive integers. They stay
non-zero and integral and always decrease; therefore, the algorithm must terminate.

In our algorithm, we have used subtraction to decrease the numbers. We leave it as an exercise for the
reader to use the mod function to speed up the above algorithm.

6 CHAPTER 1. INTRODUCTION

Algorithm GCD: GCD(a, b)
Input : Two positive integers a, b greater than or equal to 1
Output: The greatest common divisor of a and b

1 while a ↑= b do
2 if (a > b) then a ⇑ a → b;
3 if (b > a) then b ⇑ b → a;
4 end
5 return a

Suppose that we want to compute the factorial of a non-negative integer n. Algorithm Factorial shows
a method that uses recursion. A recursive approach requires specification of the base case, when n equals
0. For a higher value of n, we use the value of Factorial(n → 1) to compute Factorial(n).

Algorithm Factorial: Factorial(n)
Input : A non-negative integer n
Output: n!

1 if n = 0 then return 1 ;
2 return n · Factorial(n → 1)

As a final simple example of an algorithm, suppose that we are required to find the largest element in
an array A. Algorithm MaxElement uses a for loop to find this element.

Algorithm MaxElement: MaxElement(A)
Input : Array A of size n
Output: Maximum element in A

1 max ⇑ A[0] ;
2 for i = 1 to n → 1 do
3 if A[i] > max then max ⇑ A[i] ;
4 end
5 return max

1.2 Asymptotic Notation (Big O, Big Omega, Big Theta)

Asymptotic notation quantifies runtime growth, abstracting constants and lower-order terms to focus on
scalability. It is the cornerstone of algorithmic comparison.

• T (n) = O(f(n)) if ⇓c, n0 > 0 such that T (n) ⇒ c · f(n) for all n ↗ n0. For example, suppose that
T (n) = 2n + 5. Since 2n + 5 ⇒ 3n for n ↗ 5, we conclude that T (n) equals O(n).

• We say that T (n) = !(f(n)) if ⇓c, n0 > 0 such that T (n) ↗ c · f(n) for all n ↗ n0. For example,
suppose that T (n) = n2

→ n. Since n2
→ n ↗ 0.5n2 for n ↗ 2, we conclude that T (n) equals !(n2).

1.3. ANALYZING ALGORITHM EFFICIENCY 7

• We say that T (n) = ”(f(n)) if T (n) = O(f(n)) and T (n) = !(f(n)). For example, suppose that
T (n) = 4n2 + 3n, 3n2

⇒ 4n2 + 3n ⇒ 5n2 for n ↗ 3, we conclude that T (n) equals ”(n2).

We first give an example, where T (n) is a linear growing function of n. Let T (n) = 7n + 10. Then, it
is easy to see that T (n) equals O(n): 7n + 10 ⇒ 8n for n ↗ 10. Also, T (n) equals !(n): 7n + 10 ↗ 7n.
Thus, T (n) equals ”(n).

As another example, suppose T (n) = 2n3+5n2+n. Then, T (n) equals O(n3) because 2n3+5n2+n ⇒ 3n3

for n ↗ 5. Similarly, T (n) equals !(n3) because 2n3 + 5n2 + n ↗ 2n3. Hence, T (n) equals ”(n3).

n

log10(Time)

O(n)

O(n2)

O(n3)

O(2n)

3 7 10 13 17 20

101

102

103

104

105

106

Figure 1.2: Comparison of Growth Rates for n = 1 to 20: Linear, Quadratic, Cubic, and Exponential (Log
Scale)

1.3 Analyzing Algorithm E!ciency
E!ciency analysis evaluates time and space complexity across best, worst, and average cases, providing a
holistic view of performance. We start with the Algorithm LinearSearch.

Algorithm LinearSearch: LinearSearch(A, key)
Input : Array A of size n, key to find
Output: Index of key or -1 if not found

1 for i = 0 to n → 1 do
2 if A[i] = key then return i ;
3 end
4 return -1

8 CHAPTER 1. INTRODUCTION

The time complexity of the algorithm is as follows.

• Best: O(1), key at A[0].

• Worst: O(n), key absent.

• Average: n+1
2 = O(n), assuming uniform likelihood.

We now consider the example of a nested loop shown in Algorithm NestedSum. The time complexity

Algorithm NestedSum: NestedSum(n)
Input : Integer n
Output: Sum of products

1 total ⇑ 0 ;
2 for i = 0 to n → 1 do
3 for j = 0 to n → 1 do
4 total ⇑ total + i · j ;
5 end
6 end
7 return total

of the algorithm is O(n2). The space complexity of the algorithm is O(1). The time and space complexity
will always refer to the worst case unless specified otherwise.

Let us consider another example in which our goal is to find the number of pairs in an array A that
sum to the provided target sum. The reader should verify that the time complexity of the algorithm is
O(n2).

Algorithm PairSum: PairSum(A, target)
Input : Array A of size n, target sum
Output: Number of pairs summing to target

1 count ⇑ 0 ;
2 for i = 0 to n → 1 do
3 for j = i + 1 to n → 1 do
4 if A[i] + A[j] = target then count ⇑ count + 1 ;
5 end
6 end
7 return count

We now give an example of an algorithm BinarySearch that speeds up Algorithm LinearSearch. We
see the recurrence T (n) = T (n/2) + 1. Later in this book, we show that T (n) = O(log n).

As another example, we describe the problem called Towers of Hanoi. The Towers of Hanoi problem
involves three pegs and n disks of increasing size, initially stacked on one peg in decreasing size order.
The goal is to move the entire stack to another peg, obeying two rules: only one disk can be moved at a
time, and a larger disk cannot be placed on a smaller disk. The solution requires 2n

→ 1 moves, achieved
recursively by moving n → 1 disks to a spare peg, transferring the largest disk, then moving the n → 1

1.4. COMMON DATA STRUCTURES: LISTS, STACKS, QUEUES, BINARY TREES 9

Algorithm BinarySearch: BinarySearch(A, key, low, high)
Input : Array A, key, range [low, high]
Output: Index of key or -1

1 if low > high then return -1 ;
2 mid ⇑ ⇔(low + high)/2↖ ;
3 if A[mid] = key then return mid ;
4 else if A[mid] > key then return BinarySearch(A, key, low, mid → 1) ;
5 else return BinarySearch(A, key, mid + 1, high) ;

disks onto the largest. Algorithm Hanoi shows a recursive solution to this problem. Here the recurrence
is: T (n) = 2T (n → 1) + 1, T (1) = 1. On solving this recurrence, we get T (n) = 2n

→ 1.

Algorithm Hanoi: Hanoi(n, source, aux, target)
Input : Number of disks n, pegs

1 if n = 1 then Move disk from source to target ;
2 else
3 Hanoi(n → 1, source, target, aux) ;
4 Move disk from source to target ;
5 Hanoi(n → 1, aux, source, target) ;
6 end

Finally, we consider the problem of sorting an array A using a method called MergeSort. The algorithm
uses recursion to sort an array by using a method called divide and conquer. In this example, we have
the recurrence T (n) = 2T (n/2) + n. We later show that, the recurrence can be solved to determine that
T (n) = O(n log n).

Algorithm MergeSort: MergeSort(A, low, high)
Input : Array A, range [low, high]

1 if low < high then
2 mid ⇑ ⇔(low + high)/2↖ ;
3 MergeSort(A, low, mid) ;
4 MergeSort(A, mid + 1, high) ;
5 Merge(A, low, mid, high) ;
6 end

1.4 Common Data Structures: Lists, Stacks, Queues, Binary Trees

This section briefly describes four fundamental data structures: linked lists, stacks, simple queues, and
binary search trees, focusing on their main methods and time complexities.

10 CHAPTER 1. INTRODUCTION

Linked Lists

A linked list is a linear sequence of nodes, where each node contains data and a reference to the next node.

• Insert (at head/tail): O(1)

• Delete (given node): O(1) with pointer; O(n) to find

• Search: O(n)

Stacks

A stack is a Last-In-First-Out (LIFO) structure, typically implemented with an array or linked list.

• Push (add to top): O(1)

• Pop (remove from top): O(1)

• Top (access top): O(1)

Simple Queues

A simple queue is a First-In-First-Out (FIFO) structure, often using an array or linked list.

• Enqueue (add to rear): O(1)

• Dequeue (remove from front): O(1) with linked list; O(n) with array

• Front (access front): O(1)

Binary Search Trees

A binary search tree (BST) is a binary tree where each node’s left subtree has smaller values, and the right
subtree has larger values.

• Insert: O(h) (height h; O(log n) if balanced)

• Delete: O(h) (height h; O(log n) if balanced)

• Search: O(h) (height h; O(log n) if balanced)

1.5 Heaps
A heap is a complete binary tree satisfying the heap property: in a min-heap, each parent’s value is less
than or equal to its children’s values. We focus on min-heaps here, implemented as arrays.

Structure and Representation

Figures 1.3 and 1.4 show a min-heap with values 2, 4, 3, 7, 5.

1.5. HEAPS 11

2

4 3

7 5

Figure 1.3: Min-heap as a binary tree

2 4 3 7 5

A[0] A[1] A[2] A[3] A[4]

Figure 1.4: Min-heap as an array

Heapify

The Heapify algorithm ensures the min-heap property at a given node by comparing it with its children
and swapping with the smallest if necessary, then recursively applying the process downward. It takes an
array A, an index i, and heap size n, running in O(log n) time due to the tree’s height.

Algorithm Heapify: Heapify (Min-Heap)
Input: Array A, index i, heap size n

1 smallest ⇑ i
2 left ⇑ 2i + 1
3 right ⇑ 2i + 2
4 if left < n and A[left] < A[smallest] then smallest ⇑ left ;
5 if right < n and A[right] < A[smallest] then smallest ⇑ right ;
6 if smallest ↑= i then
7 Swap A[i] and A[smallest]
8 Heapify(A, smallest, n)
9 end

Insert

The Insert algorithm adds a new value to the heap by placing it at the end of the array and sifting it up
to its correct position, comparing it with its parent until the min-heap property is restored. It runs in
O(log n) time, as it traverses up the tree’s height.

Extract-Min

The Extract-Min algorithm removes the minimum element (root) by replacing it with the last element,
reducing the heap size, and then calling Heapify to restore the min-heap property. It operates in O(log n)

12 CHAPTER 1. INTRODUCTION

Algorithm HeapInsert: Heap-Insert
Input: Array A, value key, heap size n

1 n ⇑ n + 1
2 A[n → 1] ⇑ ↙

3 i ⇑ n → 1
4 while i > 0 and A[⇔(i → 1)/2↖] > key do
5 A[i] ⇑ A[⇔(i → 1)/2↖]
6 i ⇑ ⇔(i → 1)/2↖

7 end
8 A[i] ⇑ key

time due to the heapification step.

Algorithm HeapExtractMin: Heap-Extract-Min
Input: Array A, heap size n

1 if n < 1 then return error ;
2 min ⇑ A[0]
3 A[0] ⇑ A[n → 1]
4 n ⇑ n → 1
5 Heapify(A, 0, n)
6 return min

Build-Heap

The Build-Heap algorithm constructs a min-heap from an unsorted array by iteratively applying Heapify
from the last non-leaf node up to the root. It runs in O(n) time, as the cumulative e"ect of heapifying all
subtrees is linear in the number of nodes.

Algorithm BuildHeap: Build-Heap (Min-Heap)
Input: Array A, size n

1 for i ⇑ ⇔n/2↖ → 1 downto 0 do
2 Heapify(A, i, n)
3 end

The time complexity of various operations on a heap can be summarized as follows.

• Heapify: O(log n)

• Insert: O(log n)

• Extract-Min: O(log n)

• Build-Heap: O(n)

1.6. ORGANIZATION OF THE BOOK 13

1.6 Organization of the Book
Chapter 2 presents the stable marriage problem. Chapter 3 presents the general Lattice Linear Predicate
algorithm. Chapter 2 shows how the stable marriage problem can be solved using the LLP algorithm.
In particular, the chapter gives a more general algorithm than the Gale-Shapley algorithm for the stable
marriage. Chapter 8 discusses various sorting algorithms. A sorting algorithm can be viewed as searching
for the appropriate permutation of the given array. Chapter 10 discusses various dynamic programming
problems. These include the longest increasing subsequence problem, the optimal binary search tree
problem and the knapsack problem. All these problems are shown to be solvable using the LLP algorithm.
Chapter 4 discusses basic graph algorithms. These include various traversal techniques and the topological
sort of a graph. Chapter 6 discusses various algorithms for computing the shortest path in a graph.
Chapter 7 describes algorithms for computing the minimum spanning tree in a weighted undirected graph.
By considering di"erent lattices on the set of edges, one can derive classical Kruskal and Prim’s algorithms.
Chapter 14 discusses the housing allocation problem which is a one-sided version of the stable marriage
problem. Chapter 15 discusses the assignment problem.

1.7 Problems
1. Please prove or disprove each of the following:

(a) 3n = O(2n)
(b) If f(n) = O(g(n)), then 2f(n) = O(2g(n))
(c) If f(n) = O(g(n)), then f(n)3 = O(g(n)3)

2. Prove the following statements.

(a) Prove that for any constant d > 0, f(n) = O(d · g(n)) i" f(n) = O(g(n)).
(b) Prove that if f(n) = O(h1(n)) and g(n) = O(h2(n)) then f(n) + g(n) = O(max{h1(n), h2(n)}).
(c) Prove that all logarithms are asymptotically equivalent. That is, prove that loga(n) = O(logb(n))

for any positive a and b.

3. Suppose that you have a min Heap of size n.
(a) Give the pseudo-code to find and delete the smallest element in the Heap.
What is the time complexity of your algorithm in terms of n ?
(b) Give the pseudo-code to find and delete the kth smallest element in the heap. What is the time
complexity of your algorithm in terms of n and k ? Assume that you have a method available to you
for a Heap that can insert any element in the heap in O(log n) time.

4. Suppose that we have an array A of n distinct integers in two forms: a min Heap H and a max heap
K. We are given the following functions on the min-heap:
H.getMin() // return the least value in the heap H
H.deleteMin() // delete the least value from the heap H
Similarly, we have analogous methods for the max-heap.
Give pseudo code of an e!cient program to return a value A[i] in the array A such that there exists
j where A[i] + A[j] equals m. If there are no two such entries, then the program should return null.
Give the tight asymptotic time complexity of your method.

14 CHAPTER 1. INTRODUCTION

1.8 Bibliographic Remarks
Heaps were introduced by J.W.J. Williams in 1964 as part of the heapsort algorithm, which leverages the
heap structure for e!cient sorting in O(n log n) time. The linear-time Build-Heap construction was later
analyzed by Floyd, showing its O(n) complexity. Heaps have since become foundational in priority queue
implementations, with applications in scheduling, graph algorithms (e.g., Dijkstra’s), and data compression
(e.g., Hu"man coding).

Chapter 2

The Stable Marriage Problem

2.1 Introduction

The Stable Matching Problem (SMP) introduced by Gale and Shaply [GS62] has wide applications in
economics, distributed computing, resource allocation and many other fields. In the standard SMP, there
are n men and n women each with their totally ordered preference list. The goal is to find a matching
between men and women such that there is no instability, i.e., there is no pair of a woman and a man such
that they are not married to each other but prefer each other over their partners.

We consider stable marriage instances with m men numbered 1, 2, . . . , m and w women numbered
1, 2, . . . w. We assume that the number of women w is at least m; otherwise, the roles of men and women
can be switched. The variables mpref and wpref specify the men preferences and the women preferences,
respectively. Thus, mpref [i][k] = j i" woman j is kth preference for man i. Fig. 2.1 shows an instance of
the stable matching problem.

mpref wpref
m1 w2 w3 w1 w1 m1 m3 m2
m2 w1 w2 w3 w2 m2 m1 m3
m3 w3 w1 w2 w3 m1 m2 m3

Figure 2.1: Stable Matching Problem with men preference list (mpref) and women preference list (wpref).

In this chapter, we first give the Gale-Shapley (GS) algorithm in Section 2.3. Section 2.4 presents
Algorithm ω that takes any proposal vector (and therefore any matching) to a stable proposal vector in
O(m2 + w) time such that the resulting proposal vector has the least distance from the initial proposal
vector of all stable proposal vectors that are greater than initial proposal vector. This algorithm generalizes
the GS algorithm which assumes the initial proposal vector to be the top choices.

2.2 Proposal Vector Lattice

We use the notion of a proposal vector for our algorithms. A (man) proposal vector, G, is of dimension
m, the number of men. We view any vector G as follows: (G[i] = k) if man i has proposed to his kth

15

16 CHAPTER 2. THE STABLE MARRIAGE PROBLEM

preference, i.e. the woman given by mpref [i][k]. If mpref [i][k] equals j, then G[i] equals k corresponds to
man i proposing to woman j. For convenience, let ς(G, i) denote the woman mpref [i][G[i]]. The vector
(1, 1, . . . , 1) corresponds the proposal vector in which every man has proposed to his top choice. Similarly,
(w, w, . . . , w) corresponds to the vector in which every man has proposed to his last choice. Our algorithms
can also handle the case when the lists are incomplete, i.e., a man prefers staying alone to being matched
to some women. However, for simplicity, we assume complete lists. It is clear that the set of all proposal
vectors forms a distributive lattice under the natural less than order in which the meet and join are given
by the component-wise minimum and the component-wise maximum, respectively. This lattice has wm

elements.
Given any proposal vector, G, there is a unique matching defined as follows: man i and ς(G, i) are

matched in G if the proposal by man i is the best for that woman in G. A man p is unmatched in G if
his proposal is not the best proposal for that woman in G. A woman q is unmatched in G if she does not
receive any proposal in G; otherwise, she is matched with the best proposal for her in G.

A proposal vector G represents a man-saturating matching i" no woman receives more than one proposal
in G. Formally, G is a man-saturating matching if ∝i, j : i ↑= j : ς(G, i) ↑= ς(G, j). When the number
of men equals the number women, a man-saturating matching is a perfect matching (all men and women
are matched). When the number of men is less than the number of women, then G is a man-saturating
matching if every man is matched (but some women are unmatched). We say that a matching M1 (or a
marriage) is less than another matching M2 if the proposal vector for M1 is less than that of M2. Thus,
the man-optimal marriage is the least stable matching in the proposal lattice and woman-optimal marriage
is the greatest stable matching.

A proposal vector G may have one or more blocking pairs. A pair of man and woman (p, q) is a blocking
pair in G i" ς(G, p) is not q, man p prefers q to ς(G, p), and woman q prefers p to any proposal she receives
in G. Observe that this definition works even when woman q is unmatched, i.e. she has not received any
proposals in G. In this case, woman q prefers p to staying alone, and p prefers q to ς(G, p).

A proposal vector G is a stable marriage (or a stable proposal vector) i" it is a man-saturating matching
and there are no blocking pairs in G.

2.3 Gale-Shapley Algorithm

In this section, we first present an algorithm due to Gale and Shapley for this problem (also known as the
deferred-acceptance algorithm). In this algorithm, a free man proposes to women in his decreasing order
of preferences, i.e., he first proposes to his top choice. Only when a man is rejected by his top choice, he
would move to his next top choice. We maintain the list of all men who are not engaged in the variable
mList. Initially all men are free (not engaged) and are in this list.

When any woman z receives a proposal from a man i, she always accepts it if she is not engaged. In
this case, they both get engaged and the variable partner[z] is set to i. If the woman z is engaged then she
compares this proposal to her existing partner. If she prefers this proposal to her existing partner, then
she breaks the engagement with her existing partner and makes i as her partner. The previous partner
joins mList, the list of free men. If the woman z prefers her existing partner, then the proposal by man
i is rejected and the man i goes back to mList. Algorithm Gale-Shapley shows the pseudo-code for these
steps.

2.4. ALGORITHM ω: UPWARD TRAVERSAL 17

Algorithm Gale-Shapley: Finding the man-optimal marriage
1 input: mpref , rank
2 output: man-optimal stable marriage
3 var
4 mList: list of 1..n // list of men that are free, initially includes all men
5 partner: array[1..n] of 0..n initially partner[i] = 0 for all i // Current fiance for woman i
6 G: array[1..n] of 0..n initially G[i] = 0 for all i// Number of proposals made by man i
7 mList := [1..n] // Initialize all men as free
8 while mList is nonempty do
9 i := mList.removeF irst()

10 G[i] := G[i] + 1 // Move to the next available top choice for man i
11 z := mpref [i][G[i]] // Woman corresponding to that choice
12 if partner[z] = 0 then partner[z] := i;
13 else if rank[z][i] < rank[z][partner[z]] then
14 mList.add(partner[z])
15 partner[z] := i

16 end
17 else mList.add(i) ;
18 end
19 return G

It is easy to verify the following properties of the algorithm.

Lemma 2.1 1. As the algorithm progresses, the partner for a man can only worsen and the partner for
a woman can only improve.

2. Once a woman is engaged, she stays engaged.

3. If the number of men is less than or equal to the number of women, then the algorithm is guaranteed
to terminate.

2.4 Algorithm ω: Upward Traversal

Algorithm ω generalizes Gale-Shapley algorithm in two fundamental ways.

• Arbitrary Initial proposal vector: Gale-Shapley algorithm always finds the man-optimal stable mar-
riage. Suppose that we are interested in finding a stable marriage such that the men are allowed to
propose such that the proposal vector is at least I. For example, if I = (3, 1, 2, 1), then the first man
cannot propose to his two top choices and the third man cannot propose to his top choice. Algorithm
ω works even when the initial proposal vector is arbitrary instead of the top choice for each man,
i.e., I = (1, 1, . . . , 1). Observe that standard Gale-Shapley algorithm does not work as is when the
starting proposal vector is arbitrary. Simple Gale-Shapley algorithm would require men to make
proposals and women to accept best proposals they have received so far. If the starting proposal
vector is a perfect matching but not stable, then each woman gets a unique proposal. All women
would accept the only proposal received, but the resulting marriage would may not be stable.

18 CHAPTER 2. THE STABLE MARRIAGE PROBLEM

• Unequal number of men and women: We consider the case when the number of women exceeds the
number of men. If the number of men is greater than we can simply switch the roles in our algorithm.
If we started with the top choices of all men, then Gale-Shapley algorithm would still return a man-
optimal stable matching with the excess women unmatched. However, if we start from an arbitrary
proposal vector, we can end up with all women getting unique proposals but there may exist an
unmatched woman who is preferred by some man over his current match. To tackle this problem, we
first do a simple check on the initial proposal vector as given by the following Lemma. Let numw(I)
denote the total number of unique women that have been proposed in all vectors that are less than
or equal to I.

Lemma 2.2 Given any stable marriage instance with m men and the initial proposal vector I there
is no stable marriage for any proposal vector G ↗ I whenever numw(I) exceeds m.

Proof: Consider any proposal vector G ↗ I. Since the total number of men is m, there is at least
one woman q who has been proposed in the past of G who does not have any proposal in G. Suppose
that proposal was made by man p. Then, man p prefers q to ς(G, p) and q prefers p to staying alone.

Hence, in our algorithm we only consider I such that the total number of women proposed until I is
at most m.

Even when the number of men and women are equal, the proposal vector may be a perfect matching
but not stable. To address this problem, we first define forbidden(G, i) as the predicate that there exists
another man j such that either (1) both i and j have proposed to the same woman in G and that woman
prefers j, or (2) (j, ς(G, i)) is a blocking pair in G.

We first show that

Lemma 2.3 Let G be any proposal vector such that numw(G) ⇒ m. There exists a man i such that
forbidden(G, i) i! G is not a stable marriage.

Proof: First suppose that there exists i such that forbidden(G, i). This mean that there exists a man j
such that j has proposed to the same woman and that woman prefers j or (j, ς(G, i)) is a blocking pair in
G. If both i and j have proposed to the same woman in G, then it is clearly not a matching. If (j, ς(G, i))
is a blocking pair then G is not stable.

Conversely, assume that G is not a stable marriage. This means that either G is not a perfect matching
or there is a blocking pair for G. If it is not a perfect matching, then there must be some woman who has
been proposed by multiple men. Any man i who is not the most favored in the set of proposals satisfies
forbidden(G, i). If G is a perfect matching but not a stable marriage, then there must be a blocking pair
(p, q). If q has been proposed in G by man i, then (p, ς(G, i)) is a blocking pair. If q has not been proposed
in G then we know at least m + 1 women that are in numw(G) which violates our requirement on G.

Algorithm UpwardTraversal exploits the forbidden(G, i) function to search for the stable marriage in
the proposal lattice. The basic idea is that if a man i is forbidden in the current proposal vector G, then
he must go down his preference list until he finds a woman who is either unmatched or prefers him to her

2.5. PROBLEMS 19

current match. The while loop at line (1) iterates until none of the man is forbidden in G. If the while
loop terminates then G is a stable marriage on account of Lemma 2.3. At line (2), man i advances on his
preference list until his proposal is the most preferred proposal to the woman among all proposals that are
made to her in any proposal vector less than or equal to G. If there is no such proposal, then there does
not exist any G ↗ I such that G is stable and in line (3), the algorithm returns null. Otherwise, the man
makes that proposal at line (4).

Algorithm UpwardTraversal: An Algorithm that returns the man-optimal marriage greater
than or equal to the given proposal vector I.
1 input: A stable marriage instance, initial proposal vector I
2 output: smallest stable marriage greater than or equal to I (if one exists)
3 forbidden(G, i) holds if there exists another man j such that either (1) both i and j have proposed

to the same woman in G and that woman prefers j, or (2) (j, ς(G, i)) is a blocking pair for G.
4 if numw(I) > m then return null; // no stable matching exists
5 else G := I;
6 while there exists a man i such that forbidden(G, i)
7 find the next woman q in the list of man i s.t. i has the most preferred proposal to q until G,
8 if no such choice after G[i] or the number of women proposed including q exceeds m then
9 return null; // "no stable matching exists"

10 else G[i] := choice that corresponds to woman q;
11 endwhile;
12 return G;

2.5 Problems
1. Show that the Gale-Shapley algorithm always finds a stable marriage.

2. Give an instance of the stable marriage problem in which there is only one stable marriage: the last
choice for all men.

3. Show that the set of stable marriages is closed not only under meet, but also the join operation.
Thus, the set of stable marriages form a sublattice of the proposal lattice.

4. Give an algorithm in which all men start with their least favored choice and improve their choices in
the search of the stable marriage.

5. Given an assignment vector, how will you check whether it forms a stable marriage?

2.6 Bibliographic Remarks
The stable matching problem has been studied extensively with multiple books and survey articles devoted
on the topic [GI89, Knu97, RS92, IM08, Man13].

20 CHAPTER 2. THE STABLE MARRIAGE PROBLEM

Chapter 3

Lattice Linear Predicate Detection

3.1 Introduction

In this chapter we discuss a general method called Lattice-Linear Predicate (LLP) algorithm that can be
used to solve a wide variety of problems including the stable marriage problem, the shortest path problem,
the assignment problem, the minimum spanning tree problem and the housing allocation problem.

Section 3.2 defines lattice-linear predicates formally. These predicates are defined on a distributive
lattice. The problem is framed as searching for an element in the lattice that satisfies the predicate.
Generally, we are interested in the least element in the lattice that satisfies the predicate. Section 3.3 gives
the notation that we use for programs based on lattice-linear predicates. It specifies the lattice that we are
working on, the starting element in the lattice, the top element of the lattice and the predicate forbidden
which allows us to advance in the lattice. Section 3.4 lists some desirable properties of the LLP algorithm.
The algorithm is naturally nondeterministic. There are multiple ways that the algorithm can advance in
the lattice. The algorithm is online. It does not inspect any element higher than the current element of
the lattice that is under consideration. Finally, the algorithm returns an answer that is optimal for all
components.

3.2 Lattice-Linear Predicates

Let L be the lattice of all n-dimensional vectors of reals greater than or equal to zero vector and less than
or equal to a given vector T where the order on the vectors is defined by the component-wise natural ⇒.
The minimum element of this lattice is the zero vector. The lattice is used to model the search space of
the combinatorial optimization problem. For simplicity, we are considering the lattice of vectors of non-
negative reals; later we show that our results are applicable to any distributive lattice. The combinatorial
optimization problem is modeled as finding the minimum element in L that satisfies a boolean predicate
B, where B models feasible (or acceptable solutions). We are interested in parallel algorithms to solve the
combinatorial optimization problem with n processes. We will assume that the systems maintains as its
state the current candidate vector G ′ L in the search lattice, where G[i] is maintained at process i. We
call G, the global state, and G[i], the state of process i.

21

22 CHAPTER 3. LATTICE LINEAR PREDICATE DETECTION

Finding an element in lattice that satisfies the given predicate B, is called the predicate detection prob-
lem. Finding the minimum element that satisfies B (whenever it exists) is the combinatorial optimization
problem. We now define lattice-linearity which enables e!cient computation of this minimum element.
A key concept in deriving an e!cient predicate detection algorithm is that of a forbidden state. Given a
predicate B, and a vector G ′ L, a state G[i] is forbidden (or equivalently, the index i is forbidden) if for
any vector H ′ L , where G ⇒ H, if H[i] equals G[i], then B is false for H. Formally,

Definition 3.1 (Forbidden State) Given any distributive lattice L of n-dimensional vectors of R↓0,
and a predicate B, we define forbidden(G, i, B) ↔ ∝H ′ L : G ⇒ H : (G[i] = H[i]) ↘ ¬B(H).

We define a predicate B to be lattice-linear with respect to a lattice L if for any global state G, B is
false in G implies that G contains a forbidden state. Formally,

Definition 3.2 (lattice-linear Predicate) A boolean predicate B is lattice-linear with respect to a lattice
L i! ∝G ′ L : ¬B(G) ↘ (⇓i : forbidden(G, i, B)).

We now give some examples of lattice-linear predicates.

1. Job Scheduling Problem: Our first example relates to scheduling of n jobs. Each job j requires
time tj for completion and has a set of prerequisite jobs, denoted by pre(j), such that it can be
started only after all its prerequisite jobs have been completed. Our goal is to find the minimum
completion time for each job. We let our lattice L be the set of all possible completion times. A
completion vector G ′ L is feasible i" Bjobs(G) holds where Bjobs(G) ↔ ∝j : (G[j] ↗ tj) ≃ (∝i ′

pre(j) : G[j] ↗ G[i] + tj). Bjobs is lattice-linear because if it is false, then there exists j such that
either G[j] < tj or ⇓i ′ pre(j) : G[j] < G[i] + tj . We claim that forbidden(G, i, Bjobs). Indeed, any
vector H ↗ G cannot be feasible with G[j] equal to H[j]. The minimum of all vectors that satisfy
feasibility corresponds to the minimum completion time.

2. Continuous Optimization Problem: We are required to find minimum nonnegative x and y such
that B ↔ (x ↗ y2/4 + 5) ≃ (y ↗ x → 4). We view this problem as finding minimum (x, y) pair such
that B holds. It is easy to verify that B is lattice-linear. If the first conjunct is false, then x is
forbidden. Unless x is increased the predicate cannot become true, even if other variables (y for
this example) increase. If the second conjunct is false, then y is forbidden. In this case, x = 6 and
y = 2 is the pointwise minimum solution. For some predicates, there may not be any solution. For
example, when B ↔ (x ↗ 2y2 + 5) ≃ (y ↗ x → 4), there is no nonnegative (x, y) pair such that B holds
(verify this!). The predicate B is still lattice-linear but by advancing along x and y we go beyond
any bounded (x, y).

3. A Non Lattice-Linear Predicate As an example of a predicate that is not lattice-linear, consider
the predicate B ↔

∑
j G[j] ↗ 1 defined on the space of two dimensional vectors. Consider the vector

G equal to (0, 0). The vector G does not satisfy B. For B to be lattice-linear either the first index
or the second index should be forbidden. However, none of the indices are forbidden in (0, 0). The
index 0 is not forbidden because the vector H = (0, 1) is greater than G, has H[0] equal to G[0] but
it still satisfies B. The index 1 is also not forbidden because H = (1, 0) is greater than G, has H[1]
equal to G[1] but it satisfies B.

The following Lemma is useful in proving lattice-linearity of predicates.

3.3. NOTATION 23

Lemma 3.3 Let B be any boolean predicate defined on a lattice L of vectors.
(a) Let f : L ∞ R↓0 be any monotone function defined on the lattice L of vectors of R↓0. Consider the
predicate B ↔ G[i] ↗ f(G) for some fixed i. Then, B is lattice-linear.
(b) Let LB be the subset of the lattice L of the elements that satisfy B. Then, B is lattice-linear i! LB is
closed under meets.
(c) If B1 and B2 are lattice-linear then B1 ≃ B2 is also lattice-linear.

For the job scheduling example, we can define Bj as G[j] ↗ max(tj , max{G[i] + tj | i ′ pre(j)}). Since
fj(G) = max(tj , max{G[i] + tj | i ′ pre(j)}) is a monotone function, it follows from Lemma 3.3(a) that
Bj is lattice-linear. The predicate Bjobs ↔ ∝j : Bj is lattice-linear due to Lemma 3.3(c). Also note that
the problem of finding the minimum vector that satisfies Bjobs is well-defined due to Lemma 3.3(b).

3.3 Notation
We first go over the notation used in description of our parallel algorithms. Fig. 3.1 shows parallel
algorithms for the job-scheduling and the shortest path problems. We have a single variable G in all the
examples shown in Fig. 3.1.

All other variables are derived directly or indirectly from G. There are three sections of the program.
The init section is used to initialize the state of the program. All the parts of the program are applicable

to all values of j. For example, the init section of the job scheduling program in Fig. 3.1 specifies that
G[j] is initially t[j]. Every thread j would initialize G[j].

The always section defines additional variables which are derived from G. The actual implementation
of these variables are left to the system. They can be viewed as macros.

The third section gives the desirable predicate either by using the forbidden predicate or ensure
predicate. The forbidden predicate has an associated advance clause that specifies how G[j] must be
advanced whenever the forbidden predicate is true. For many problems, it is more convenient to use the
complement of the forbidden predicate. The ensure section specifies the desirable predicates of the form
(G[j] ↗ expr) or (G[j] ⇒ expr). The statement ensure G[j] ↗ expr simply means that whenever thread j
finds G[j] to be less than expr; it can advance G[j] to expr. Since expr may refer to G, just by setting
G[j] equal to expr, there is no guarantee that G[j] continues to be equal to expr — the value of expr may
change because of changes in other components. We use ensure statement whenever expr is a monotonic
function of G and therefore the predicate is lattice-linear.

3.4 Properties of the LLP Algorithm
The LLP algorithm has many useful properties. We list them here so that the reader can apply them to
various problems studied in this book.

These properties are applicable to all the problems for which the LLP algorithm is used.

1. Nondeterminism in Evaluation of Forbidden Predicate: Given a global state G, there may
be multiple indices j for which G[j] is forbidden. The LLP algorithm is correct irrespective of the
order in which these indices are updated. The e!ciency of the algorithms may di"er depending upon
the order in which these indices are updated, but the correctness is independent of the order. For
example, in the stable marriage problem, the final answer returned is independent of the order in
which men propose. In the shortest path problem, the final answer returned is independent of the

24 CHAPTER 3. LATTICE LINEAR PREDICATE DETECTION

Pj : Code for thread j
// common declaration for all the programs below
shared var G: array[1..n] of 0..maxint;
job-scheduling:

input: t[j] : int, pre(j): list of 1..n;
init: G[j] := t[j];
forbidden: G[j] < max{G[i] + t[j] | i ′ pre(j)};
advance: G[j] := max{G[i] + t[j] | i ′ pre(j)};

job-scheduling:
input: t[j] : int, pre(j): list of 1..n;
init: G[j] := t[j];
ensure: G[j] ↗ max{G[i] + t[j] | i ′ pre(j)};

shortest path from node s: Parallel Bellman-Ford
input: pre(j): list of 1..n; w[i, j]: int for all i ′ pre(j)
init: if (j = s) then G[j] := 0 else G[j] := maxint;
ensure: G[j] ⇒ min{G[i] + w[i, j] | i ′ pre(j)}

Figure 3.1: LLP Parallel Program for (a) job scheduling problem using forbidden predicate (b) job schedul-
ing problem using ensure clause and (c) the shortest path problems

order in which the nodes update their estimates. It is important to note that the term answer is
with respect to the LLP algorithm. For the shortest path problem, the lattice is with respect to the
cost and not the actual paths. There may be multiple shortest paths to a vertex and the order of
evaluation of forbidden indices may result in the paths that are returned be di"erent. However, they
would all have the same cost.

2. Parallel Evaluation of Forbidden Predicate: Suppose that G is shared among di"erent threads
such that thread j is responsible for evaluating forbidden(G, j). While this thread is evaluating this
predicate other threads may have advanced on other indices, i.e., thread j may have old information
of G[i] for i ↑= j. However, this would still keep the algorithm correct. For example, in the stable
marriage problem, men can propose to women in parallel. In the shortest path algorithm, multiple
vertices can update the estimate of their lower bounds and their parents in parallel.

3. No Lookahead Required for evaluation of Forbidden Predicate: The LLP algorithm deter-
mines whether an index j is forbidden depending upon only the current global state G. This means
that these algorithms are applicable in online settings where the future part of the lattice is revealed
only when a forbidden index needs to advance. For example, in the stable marriage problem, when
we are computing the man-optimal stable marriage, a man may not reveal his preference list. Only
when he is rejected (his state is forbidden), he needs to advance on his choices and therefore reveal
the next woman on his list. The same reasoning applies to the housing allocation problem. For
some problems, such as the shortest path problem, the weights on the edges is required to evaluate
forbidden predicate. Therefore, the graph must be known and static for the LLP algorithm.

4. The Optimal Feasible Global State is Optimal for Individual Nodes: Suppose that for the
stable marriage problem, one of the men, say m1 is interested in finding the stable marriage in which

3.5. AN LLP ALGORITHM FOR THE STABLE MATCHING PROBLEM 25

he has the topmost choice possible for him. This man does not care how other men are paired.
If we take the solution derived from the LLP algorithm, then the woman m1 is paired with would
be identical to the woman m1 is paired with in any stable marriage that is optimal from just the
perspective of m1. More generally, let G be the global state that is feasible and optimal with respect
to index i, i.e., for all feasible H, G[i] ⇒ H[i]. Let Gllp be the global state computed by the LLP
algorithm, then G[i] = Gllp[i]. This follows from the meet-closure property of feasible states. If
G[i] < Gllp[i], then the global state given by G ∈ Gllp is also feasible and strictly smaller than Gllp

contradicting that Gllp is the least global state that satisfies the feasibility predicate.

3.5 An LLP Algorithm for the Stable Matching Problem
We now derive the algorithm for the stable matching problem using Lattice-Linear Predicates. We let G[i]
be the choice number that man i has proposed to. Initially, G[i] is 1 for all men. For convenience, let
ς(G, i) denote the woman mpref [i][G[i]].

Definition 3.4 An assignment G is feasible for the stable marriage problem if (1) it corresponds to a
perfect matching (all men are paired with di!erent women) and (2) it has no blocking pairs.

We show that the predicate “G is a stable marriage” is a lattice-linear predicate.

Lemma 3.5 The predicate that a vector G corresponds to a stable marriage is lattice-linear.

Proof: Let z be ς(G, j), the woman that corresponds to choice G[j] for man j. We define j to be forbidden
in G if there exists a man i such that z prefers man i to man j and either man i has also been assigned
z in G or he prefers z to his current choice, i.e., man i and woman z would form a blocking pair in G.
Formally, forbidden(G, j) is defined as (⇓i : ⇓k ⇒ G[i] : (z = mpref [i][k]) ≃ (rank[z][i] < rank[z][j])).

It is easy to see that G is not a stable marriage i" ⇓j : forbidden(G, j). If G is not a perfect matching
then there must be at least one woman who is assigned to two men. In that case, the less preferred man
is forbidden. If G is a perfect matching but has a blocking pair, then the partner of the woman in the
blocking pair is forbidden. Conversely, forbidden(G, j) implies that either G is not a perfect matching or
has a blocking pair.

We only need to show that if forbidden(G, j) holds, then there is no proposal vector H such that
(H ↗ G) and (G[j] = H[j]) and H is a stable marriage.

Consider any H such that (H ↗ G) and (G[j] = H[j]). We show that H is not a stable marriage.
Since G[j] is equal to H[j], ς(G, j) is equal to ς(H, j). Let i be such that ⇓k ⇒ G[i] : (z = mpref [i][k]) ≃

(rank[z][i] < rank[z][j])). Since G ⇒ H, G[i] ⇒ H[i], we get that ⇓k ⇒ H[i] : (z = mpref [i][k]) ≃

(rank[z][i] < rank[z][j])). Hence, forbidden(H, i) also holds.

Lemma 3.5 immediately gives us the Algorithm LLP-ManOptimalStableMarriage. The always section
defines variables which are derived from G. These variables can be viewed as macros. For example, for
any thread z = mpref [j][G[j]]. This means that whenever G[j] changes, so does z.

If man j is forbidden, it is clear that any vector in which man j is matched with z and man i is matched
with his current or a worse choice can never be a stable marriage. Thus, it is safe for man j to advance to
the next choice.

26 CHAPTER 3. LATTICE LINEAR PREDICATE DETECTION

Algorithm LLP-ManOptimalStableMarriage: A Parallel Algorithm for Stable Matching
1 Pj : Code for thread j
2 input: mpref [i, k]: int for all i, k; rank[k][i]: int for all k, i;
3 init: G[j] := 1; // works for any initialization
4 always: z = mpref [j][G[j]];
5 forbidden: (⇓i : ⇓k ⇒ G[i] : (z = mpref [i][k]) ≃ (rank[z][i] < rank[z][j]))
6 advance: G[j] := G[j] + 1;

Algorithm LLP-ManOptimalStableMarriage works for any initialization of G vector. If we know that
G is initialized to [1, 1, . . . , 1], then we can simplify the forbidden condition to

(⇓i : (z = mpref [i][G[i]]) ≃ (rank[z][i] < rank[z][j])).

Observe that if we assume sequential implementation and if we implement a variable partner[z] for any
woman z, we can further simplify the condition to

(partner[z] ↑= null) ≃ (rank[z][partner[z]] < rank[z][j]).

This is precisely the condition used in Gale-Shapley algorithm which is sequential and starts with the
initial vector [1, 1, . . . , 1].

We now present an algorithm to find stable marriages that satisfy additional constraints. The following
lemma proves lattice-linearity of many such constraints.

Lemma 3.6 The following constraints are lattice-linear.

1. The regret of man i is at most that of the regret of man j.

2. Man i cannot be married to woman j.

3. The regret of man i is equal to that of man j.

Proof: Let B be the predicate that G is a stable marriage and it satisfies the corresponding additional
constraint.

1. Suppose that G is a stable marriage but it does not satisfy B. This means that regret of man i is more
than the regret of man j. In this case, we have forbidden(G, j), because unless G[j] is advanced, the
predicate cannot become true.

2. If ς(G, i) = j, then forbidden(G, i) holds.

3. This condition is a conjunction of two lattice-linear conditions of type in part (1).

We now enumerate advantages of the LLP algorithm.

1. It gives us a more general algorithm. Instead of starting from the initial vector, we can start from
any vector and find a stable marriage greater than or equal to that vector, if one exists.

3.6. ADDITIONAL LLP ALGORITHMS 27

2. We can use the LLP algorithm for finding a stable marriage that satisfies additional constraint such
as the regret of man i is at most that of the regret of man j.

3. We can automatically deduce that the intersection of two stable marriages is also a stable marriage.

4. The LLP algorithm is useful in the context of parallel computing. If two men are forbidden, then
both of them can advance in parallel.

5. The LLP algorithm is also useful in the context of distributed computing. The man i may not have
the most recent information about man j. Even then, the algorithm will terminate with the stable
marriage that is the least in the proposal vector lattice.

3.6 Additional LLP Algorithms
For computing GCD of an array of natural numbers A, we consider the lattice of natural numbers less
than or equal to the largest value in A. The lattice is ordered decreasingly by componentwise comparison
of vectors. The algorithm terminates when all components are equal. Otherwise, the component j is
forbidden if it is greater than some component i. In this case, we replace G[j] by G[i] if G[i] divides G[j].
Otherwise, we replace G[j] by G[j] mod G[i]. When the algorithm terminates, all components of G vector
qre equal to the greatest common divisor of A.

The Factorial algorithm for LLP considers the lattice of 2-dimensional vectors where the first dimension
will finally hold the result. The lattice is ordered in the increasing order by the first component and the
decreasing order by the second component. The algorithm initializes G[2] by n and G[1] by 1. Whenever
G[2] is greater than 1, we multiply G[1] by G[2] and reduce G[2] by 1. It is clear that in n → 1 steps, G[2]
will become 1 and G[1] will hold factorial(n).

The MaxElement algorithm initializes G with A[1]. If for any index j, A[j] is greater than G, we replace
G by A[j]. For a sequential implementation, we need not traverse all indices j in any particular order.

The LinearSearch algorithm initializes G with →1. The goal is to replace G with the index j of the
array A if A[j] equals key. This is a nondeterministic program. If there are multiple j such that A[j]
equals key, the final answer could be any one of them.

The NestedSum algorithm is another nondeterministic algorithm. The variable done[i, j] is 0 i" the
entry i ∋ j has not been added to the variable G. Whenever all entries inthe array done become 1, the
algorithm terminates.

The PairSum algorithm counts the number of tuples (i, j) where i < j and A[i] plus A[j] equals target.
Finally, the BinarySearch algorithm returns the index j in A[j] such that A[j] equals key. It assumes

that A is sorted. The algorithm continues until the range [low . . . high] is nonempty. It finds the new range
in A for searching based on the comparison of A[mid] to target.

3.7 Problems
1. Let G be a n-dimensional vector of positive numbers. Let pred be a binary acyclic relation on [n].

Show that the predicate B ↔ ∝(i, j) ′ pred : G[j] ↗ G[i] + 1 is a lattice-linear predicate.

2. Let (X, ⇒) be a poset. A subset Y △ X is an order ideal if it satisfies

∝u, v ′ X : (v ′ Y) ≃ (u ⇒ v) ↘ (u ′ Y)

28 CHAPTER 3. LATTICE LINEAR PREDICATE DETECTION

GCD of an array A:
G: array[1..n] of int initially ∝i : G[i] = A[i];
forbidden(j): ⇓i : G[j] > G[i]

advance(j): if G[i] divides G[j] then G[j] := G[i];
else G[j] := G[j] mod G[i];

Factorial
input: n: non-negative integer;
G: array[1..2] of int initially (G[1] = 1) ≃ (G[2] = n);
forbidden: G[2] > 1

advance: G[1] := G[1] ∋ G[2]; G[2] := G[2] → 1;
MaxElement

input: A: array of integers;
G: int initially G = A[1] ;
forbidden(j): A[j] > G

advance: G := A[j];
LinearSearch

input: A: array of integers; key: integer;
G: int initially G = →1 ;
forbidden(j): (G == →1) ≃ (A[j] == key)

advance: G := j;
NestedSum

input: A: array of integers;
G: int initially G = 0 ;
done: array[0..n → 1, 0..n → 1] of int initially ∝i, j : done[i, j] = 0 ;
forbidden(i,j): (done[i, j] == 0)

advance: G := G + i ∋ j; done[i, j] := 1;
PairSum

input: A: array of integers; target: integer;
G: int initially G = 0 ;
done: array[0..n → 1, 0..n → 1] of int initially ∝i, j : done[i, j] = 0 ;
forbidden(i,j): (i < j) ≃ (done[i, j] == 0) ≃ (A[i] + A[j] == target)

advance: G := G + 1; done[i, j] := 1;
BinarySearch

input: A: array of integers;
G: int initially G = →1 ;
low : int initially low = 0 ;
high : int initially high = n → 1 ;
forbidden: (low ⇒ high)

advance: mid = ▽low + high̸;
if (A[mid] = target) then low := mid; high := mid → 1; G = mid;
else if (A[mid] < target) then low := mid + 1; else high := mid → 1;

Figure 3.2: LLP Programs for (a) GCD (b) Factorial (c) MaxElement (d) Linear Search (e) Nested Sum
(f) PairSum and (g) Binary Search

3.8. BIBLIOGRAPHIC REMARKS 29

Show that the predicate B(Y) ↔ “Y is an order ideal of (X, ⇒)” is lattice-linear in the boolean lattice
of all subsets of X.

3. Show that lattice-linearity is not closed under disjunction.

4. Show that lattice-linearity is not closed under negation.

3.8 Bibliographic Remarks
The lattice-linearity property is described in [CG98]. Its application to stable matching is first shown in
[Gar17]. Its application to design of parallel algorithms is in [Gar20].

30 CHAPTER 3. LATTICE LINEAR PREDICATE DETECTION

Chapter 4

Basic Graph Algorithms

4.1 Introduction

Graph theory, a cornerstone of algorithmic design, underpins numerous modern applications across di-
verse domains. In social network analysis, graphs model relationships where vertices represent individuals
and edges denote interactions, enabling platforms like X to recommend connections or detect communi-
ties using algorithms such as breadth-first search or clustering. In transportation and logistics, directed
graphs optimize routing: companies like Amazon use shortest-path algorithms (e.g., Dijkstra’s) on road
networks to minimize delivery times, while airlines employ bipartite matching to schedule crews e!ciently.
Computer networks rely on graphs to represent topologies, with spanning tree protocols ensuring loop-
free communication and centrality measures identifying critical nodes for cybersecurity. In bioinformatics,
graphs map protein interactions or gene regulatory networks, where traversal algorithms identify func-
tional pathways, aiding drug discovery. Emerging fields like machine learning leverage graph neural net-
works (GNNs) to process structured data—such as molecular graphs for chemistry or citation networks in
academia—outperforming traditional models in tasks like node classification. These applications highlight
graphs’ versatility, driving innovation in optimization, prediction, and system design.

Graphs come in numerous varieties. They may be directed or undirected. They may be simple or with
loops and parallel edges. They may be weighted or unweighted. They may be acyclic or not. For example,
when modeling a transportation networks, the nodes may represent important milestones in a city. A
directed edge may represent an one-way street and an undirected edge may represent a street that can be
traversed in either direction. The weights may represent the distance between the nodes.

In this chapter we cover some basic traversal algorithms in a simple directed graph. Section 4.4 gives an
LLP algorithm to traverse a graph. Section 4.3 gives an LLP algorithm to construct a breadth-first-search
(BFS) tree from a graph given a source vertex.

4.2 Graph Representations

We present an undirected graph and its directed counterpart, each with vertices v0, v1, v2, v3, shown with
adjacency matrix and adjacency list (as linked lists) representations.

31

32 CHAPTER 4. BASIC GRAPH ALGORITHMS

v0

v1

v2

v3

v1 v2 v3

v0 v2

v0 v1 v3

v0 v2

Figure 4.2: Adjacency representation of an undirected graph

Undirected Graph

v0 v1

v2v3

Figure 4.1: An undirected graph

The graph in Fig. 4.1 can be represented using adjacency matrix as follows.

v0 v1 v2 v3
v0 0 1 1 1
v1 1 0 1 0
v2 1 1 0 1
v3 1 0 1 0

An entry of 1 indicates an edge; the matrix is symmetric. Such a representation allows answering of any
question of the form: is there an edge between vi and vj in constant time. However, it takes O(n2) space
irrespective of the number of edges in the graph. When the graph is sparse the adjacency list representation
is less wasteful. Fig. 4.2 shows the adjacency list representation of the same graph.

We now consider the directed version of the graph in Fig. 4.3.
As before, we can have the adjacency matrix and adjacency list representation shown below.

v0 v1 v2 v3
v0 0 1 1 0
v1 0 0 1 0
v2 0 0 0 1
v3 1 0 0 0

4.3. SEQUENTIAL BFS AND DFS TRAVERSALS IN A GRAPH 33

v0 v1

v2v3

Figure 4.3: A Directed Graph

v0

v1

v2

v3

v1 v2

v2

v3

v0

Figure 4.4: Adjacency representation of a directed graph

4.3 Sequential BFS and DFS Traversals in a Graph

In this section, we cover two of the most common ways of traversing a directed graph. The traversal is
required for many reasons. We may be interested in searching for a node, finding the number of components
in a graph, or checking for some user-specified property.

Breadth-First Search Tree in a Directed Graph

Suppose that we are given one of the nodes v0 in the graph. Our task is to find all the nodes that are
reachable from v0. Algorithm BFS-Traversal-Sequential can be used for this purpose. It will generate a
tree rooted at v0 such that every node is at the minimum distance from v0. We maintain a variable parent
that gives the parent of any node x in the graph. If x is reachable from v0, then by following the parent
pointer from x to v0, we will get a shortest path from v0 to x. A node vi has its parent set to vj if vj is
along a path from v0 to vi and has distance one less than that of vi.

Depth-First Search Tree in a Directed Graph

Another way to traverse a graph is the depth-first search method. While the breadth-first search traverses
the graph one layer at a time, the depth-first search continues to take a path as far as it can take and then
it backtracks to traverse the remaining graph (in the same fashion!).

34 CHAPTER 4. BASIC GRAPH ALGORITHMS

Algorithm BFS-Traversal-Sequential: Algorithm BFS to find the Breadth-First-Search Tree
in a Directed Graph
1 var G: vector of int initially ∝i : G[i] = maxint;
2 parent: vector of int initially ∝i : parent[i] = →1; // null parent
3 S: queue of indices;
4 S.add(s);
5 G[s] := 0;
6 while ¬S.empty() do
7 j := S.removeF irst(); // remove an index from S
8 forall (k ′ dep(j)):
9 if (G[k] > G[j] + 1)

10 G[k] := G[j] + 1;
11 parent[k] := j;
12 append k to S;
13 endforall;
14 endwhile;
15 return G; // the optimal solution

Algorithm DFS-Traversal: Sequential Algorithm DFS to find the Depth-First-Search Tree in
a Directed Graph
1 var
2 G[0..n → 1]: int, initially 0
3 parent[0..n → 1]: int, initially -1
4 S: stack, initially empty
5 discovered[0..n → 1]: int
6 finished[0..n → 1]: int
7 tick: int, initially 1
8 S.push(0)
9 while ¬S.empty() do

10 j := S.pop()
11 if G[j] = 0 then
12 G[j] := 1
13 discovered[j] := tick
14 tick := tick + 1
15 for k ′ edges(j) do
16 if G[k] = 0 then
17 parent[k] := j
18 S.push(k)
19 end
20 end
21 finished[j] := tick
22 tick := tick + 1
23 end
24 end

4.4. LLP ALGORITHMS FOR TRAVERSAL IN A GRAPH 35

v0

v1

v4

v3v2

Figure 4.5: An Example of DFS-Traversal

Node discovered finished
v0 1 10
v1 2 7
v4 3 6
v3 4 5
v2 8 9

Figure 4.6: The values of discovered and finished for vertices with DFS on the graph in Fig. 4.5

Algorithm DFS-Traversal visits all the vertices reachable from the vertex s in a depth-first search
manner. The variable G is used the mark all the vertices that are reachable from s. The variable S is used
as a stack to store the vertices while traversing the graph. The variable discovered is used to store the
time (tick) when each vertex in the graph is explored. The variable finished is used to store the tick when
the algorithm is finished exploring the vertex. The variable parent is used to store the depth-first-tree.
Anytime a vertex k is visited for the first time from a vertex j, the parent[k] is recorded as j.

The variables discovered and finished are used only for recording the tick when a vertex is started to
be explored and finished for exploration.

Fig. 4.5 shows the DFS traversal on a graph. Suppose we start the DFS traversal from the node v0.
Then, node v1 is visited next. After v1, we visit the node v4. From node v4, we visit the node v3. When
v3 is explored, we get to the node v0 which has already been visited. We backtrack to node v4 which does
not have any other outgoing edge. From v4, we backtrack to v1 and then to v0. Now, from v0, we can visit
the node v2. From v2, we can go to node v4 which has already been visited. Hence, we backtrack to node
v0. At this point, all the outgoing edges from v0 have been traversed and the DFS traversal is done. The
variables for DFS traversal for this graph are shown in Fig. 4.6.

4.4 LLP Algorithms for Traversal in a Graph

Given a graph (V, E) and a source vertex v0, our goal is to find all the vertices that are reachable from
v0. We can view this problem as searching for a subset of vertices of W △ V such that v0 ′ W and
∝x, y : (x ′ W) ≃ (x, y) ′ E implies that y ′ W . We model W using a boolean array G such that vi ′ W
i" G[i] is true.

36 CHAPTER 4. BASIC GRAPH ALGORITHMS

The following LLP algorithm computes the least G (or the smallest W) that satisfies

Btraverse ↔ G[0] ≃ (∝(vi, vj) ′ E : G[j] ↗ G[i])

The predicate B requires v0 to be reachable from v0 and for all edges (vi, vj) if vi is reachable then so is
vj . It can be verified that Btraverse is a lattice-linear predicate. It is a conjunctive predicate and the first
conjunct is a local predicate. We only need to show that the second conjunct is also lattice-linear. If the
second conjunct is false, then there exists (vi, vj) ′ E such that G[i] equals 1 and G[j] equals 0. In this
case, unless G[j] is also set to 1, the predicate can never become true. Therefore, we get the following LLP
algorithm.

Algorithm LLP-Traversal: Reachability Set
1 Pj : Process for vertex j
2 input: edges(j): list of adjacent vertices
3 init: G[j] := 1 if j = 0, else 0
4 forbidden(j): ⇓i : j ′ edges(i) ≃ G[i] = 1 ≃ G[j] = 0
5 advance(j): G[j] := 1

LLP Algorithm is non-deterministic and one could use di"erent strategies to compute forbidden indices.
For example, one can maintain a set S that contains frontier vertices – set of vertices that are reachable
but their outgoing edges have not been explored yet. Algorithm Traversal-Sequential gives a sequential
implementation of the LLP algorithm with S as the set of frontier vertices. By using di"erent strategies for
removing an index from S, we can traverse the graph in di"erent order. If S is maintained as a queue, the
removal corresponds to removing from the head of the queue, and the addition corresponds to appending
at the end of the queue, we traverse the graph in a breadth-first manner. If S is maintained as a stack such
that removal corresponds to pop() and the addition corresponds to push() method on the stack, then we
traverse the graph in a depth-first search manner.

Algorithm Traversal-Sequential: Finding the reachable set of vertices from v0 in a Directed
Graph
1 var
2 G: vector of int initially ∝i : G[i] = 0
3 S: set of indices
4 S.add(0) // add 0 as the initial forbidden index
5 G[0] := 1
6 while ¬S.empty() do
7 j := S.removeAny(G) // remove any index from S
8 forall (k ′ dep(j)) do
9 if (G[k] = 0) then

10 G[k] := 1 // advance on k
11 S.add(k) // update frontier
12 end
13 end
14 end
15 return G ; // the optimal solution

In the previous section, we saw an algorithm to compute the set of reachable vertices from a given
vertex. Now suppose that we are interested in computing the breadth-first-search tree rooted at any given

4.5. LAYERING OF A DIRECTED ACYCLIC GRAPH 37

node v0. We first define the search lattice L to be the set of distance vectors where G[i] is the distance of
vertex i from v0. Initially, G[0] is zero for the vertex v0 and ↙ for all other vertices. We define G to be
feasible if

Bbfs(G) ↔ ∝j ↑= 0 : ∝(i, j) ′ E : G[j] ⇒ G[i] + 1.

Our goal is to maximize G subject to Bbfs.
A vertex j is defined to be forbidden if it has a predecessor i such that G[j] > G[i] + 1. If none of the

vertices is forbidden, we get that ∝j ↑= 0 : ∝(i, j) ′ E : G[j] ⇒ G[i] + 1. Whenever a vertex j is forbidden,
we advance the index j by setting G[j] to G[i] + 1. This is equivalent to ensuring that G[j] is at most
G[i] + 1 for any i ′ pre(j).

Algorithm LLP-Traversal-BFS: Finding the reachable set of vertices using BFS.
1 Process Pj

2 input: pre(j): list of 1..n;
3 init(j): if (j = 0) G[j] := 0 else G[j] := ↙;
4 ensure(j): G[j] ⇒ min{G[i] + 1 | i ′ pre(j)}

The algorithm terminates when there is no forbidden vertex. Any vertex k such that G[k] is infinite is
not reachable from the vertex v0.

We observe that Algorithm LLP-Traversal-BFS does not specify the order in which the algorithm
(sequential or parallel) should check if the ensure condition is not met. For example, when the total
number of threads is much smaller than the number of processes, then it may be worthwhile giving a
priority to the indices that are checked for forbidden predicate. We use the clause priority with the
LLP algorithm to put an order in which the indices should be checked for the forbidden or ensure clause.
Algorithm LLP-Traversal-BFS-priority shows an algorithm in which the priority of forbidden indices is
given by G[j].

Algorithm LLP-Traversal-BFS-priority: Finding the reachable set of vertices using BFS.
1 Process Pj

2 input: pre(j): list of 1..n;
3 init(j): if (j = 0) G[j] := 0 else G[j] := ↙;
4 ensure(j): G[j] ⇒ min{G[i] + 1 | i ′ pre(j)}
5 priority: G[j]

Algorithm LLP-Traversal-BFS is based on using the predecessor information for each vertex. Alterna-
tively, we can use the adjacency list for each vertex. The set S keeps the set of reachable indices. Initially,
only v0 is the reachable vertex. We explore all the outgoing edges from any vertex vj ′ S. The set T stores
all the vertices that become reachable when vertices in S are explored. If any vertex k adjacent to vj gets
its G[k] reduced because of the edge (vj , vk), it is added to the set T . This exploration is continued until
there are no unexplored vertices.

4.5 Layering of a Directed Acyclic Graph
Suppose that we are given a directed graph with no cycles. Such a graph can be “layered” as follows. Every
vertex i in the graph is assigned a number G[i] such that if there is a directed edge from i to j, then the

38 CHAPTER 4. BASIC GRAPH ALGORITHMS

number assigned to i is strictly less than that of j, i.e., for all edges (i, j) ′ E, G[i] is less than G[j]. An
application of this concept is the prerequisite structure of courses in a University and the integer assigned
to the course corresponds to the earliest semester in which the course can be taken by a student.

In this application, our lattice consists of vectors of natural numbers. We are determining the least
vector, G, that satisfies the predicate

Blayer ↔ ∝(i, j) ′ E : G[i] < G[j].

The predicate is lattice-linear because if it is false then there exist (i, j) ′ E such that G[i] ↗ G[j]. In this
case, the index j is forbidden and unless G[j] is advanced Blayer can never become true. For e!ciency, we
define a predicate

fixed(j) ↔ ∝(i, j) ′ E : G[i] < G[j].

Now, the predicate Blayer can be rewritten as

Blayer ↔ ∝j ′ [n] : fixed(j).

We will use fixed[j] as a variable in our program. Algorithm shown in Fig. LLP-Layering gives the layering
of a directed acyclic graph. We use the boolean array fixed to mark the vertices whose level number in G
are final. Initially, all vertices that do not have any predecessors are fixed and labeled with 0. A vertex
is forbidden if it is not fixed and all its predecessors are fixed. Whenever a vertex j is forbidden, we mark
its level as 1 more than any of its predecessors. In this algorithm, G[j] gives the length of the longest path
from any initial vertex to j.

Algorithm LLP-Layering: Layering of a Directed Acyclic Graph.
1 input: pre(j): list of 1..n;
2 init(j): G[j] := 0;
3 if pre(j) = {} then fixed[j] := true else fixed[j] := false;
4 forbidden(j): ¬fixed[j] ≃ ∝i ′ pre(j) : fixed[i]
5 advance(j): G[j] := maxi↔pre(j) G[i] + 1; fixed[j] := true;

The algorithm takes parallel time equal to the length of the longest path in the directed acyclic graph.
Its work complexity is O(n + m).

In many applications, we are interested in coming up with a total order on all vertices such that for
all edges (i, j), G[i] is strictly less than G[j]. This operation is called topological sort of a directed acyclic
graph. The reader is invited to modify LLP-Layering for such applications.

4.6 Problems

1. Algorithm LLP-Layering gives a level number G[i] for each vertex i such that for any edge (i, j), we
have that G[i] is strictly less than G[j]. Modify the algorithm to generate a total order on all vertices.

2. Algorithm LLP-Layering gives us the least integral labels satisfying that for all edges (i, j), G[i] is
strictly less than G[j]. Such a property is possible only for acyclic graphs. Modify the algorithm to
output “error” whenever there is a cycle in the input graph.

4.7. BIBLIOGRAPHIC REMARKS 39

4.7 Bibliographic Remarks
The reader is referred to [CLRS01] for basic graph algorithms.

40 CHAPTER 4. BASIC GRAPH ALGORITHMS

Chapter 5

Greedy Algorithms

"Greed is good." — Gordon Gekko, "Wall Street"

5.1 Introduction

Many problems can be solved as making n choices such that at the end of these choices we have the solution
of the problem. Greedy algorithms start with with the solution for the problem of trivial size, generally of
size 0 or 1. It then keeps increasing the size of the problem until we get back the original problem after
n steps. For many applications, this strategy results in a solution that is a global optimal or close to a
global optimal. Thus, many algorithms that we have seen earlier can be called greedy algorithms. Prim’s
Minimum Spanning Tree (MST) is as follows. Given a connected graph, we need to find a spanning tree
of that graph which is minimal in the total edge weight. The greedy approach is as follows. Start with an
arbitrary node and always add the smallest edge that connects any node in the tree to a node outside the
tree. Similarly, Kruskal’s Minimum Spanning Tree is as follows. Always pick the smallest edge that does
not cause a cycle in the MST being constructed. Similarly, Dijkstra’s Shortest Path Algorithm to find the
shortest path from the source to all vertices in the given graph is also greedy. It always picks the next
vertex with the shortest known distance.

5.2 Interval Scheduling Problem

We start with a standard simple greedy algorithm. Suppose that we have m intervals with the start times
si and finish times fi for jobs i = 1..m, where si < fi. We assume that activity i happens during the
open interval [si, fi). Two intervals i and j are compatible if fi ⇒ sj or fj ⇒ si. Our goal is to select a
maximum-sized subset of mutually compatible intervals. We assume that the intervals are sorted by their
finish times. We assume that jobs with the same finish times are sorted according to their start times.
Furthermore, no two intervals have identical start and finish times.

Let us begin with a sequential algorithm for this problem shown in Fig. IntervalSequential. Let G be
the set of mutually compatible intervals represented as a boolean array such that G[i] is 1 i" the activity
i is in the subset of mutually compatible intervals that can be selected. It is clear that the first activity
(with the least finishing time) is always in G. (Why?) We now traverse over all intervals as follows. We
use the variable cur to denote the current activity under consideration and the variable last as the last
activity that was included in G. We initialize last to 0. The current activity is included in G i" its start

41

42 CHAPTER 5. GREEDY ALGORITHMS

time is greater than or equal to the finish time of the last activity. If it is, our current activity becomes
the last activity and we explore the next activity.

Algorithm IntervalSequential: Sequential Interval Scheduling
Data: s: array[0..n → 1] of int // Start times
Data: f : array[0..n → 1] of int // Finish times
Output: G: array[0..n → 1] of 0..1 initially 0 // Selected intervals

1 G[0] ⇑ 1; // First interval always selected
2 last ⇑ 0; // Index of last selected interval
3 for i ⇑ 1 to n → 1 do
4 if s[i] ↗ f [last] then
5 G[i] ⇑ 1; // Interval i is compatible
6 last ⇑ i

7 end
8 end

The sequential algorithm takes O(n) time (assuming that the intervals are provided in a sorted manner
based on the finish times) and it is optimal.

Theorem 5.1 For the Activity Selection Problem, selecting activities in increasing order of their finish
times yields an optimal solution, i.e., the maximum number of mutually compatible activities.

Proof: We prove the theorem using the exchange argument. Let G be the set of activities chosen by the
greedy algorithm, which selects the activity with the earliest finish time first. Let O be an optimal solution
with the maximum number of activities. The greedy algorithm selects the activity with the earliest finish
time, say A1. Suppose O selects a di"erent first activity Ak. Since activities are sorted by finish time,
f1 ⇒ fk. Replacing Ak with A1 in O still allows the remaining selections in O to proceed without reducing
the total count. By repeatedly applying this argument for the next selected activity, we replace each
activity in O with the corresponding activity from G without decreasing the number of selected activities.
After at most n exchanges, O is transformed into G. Since O was an optimal solution, and G has the same
size, G is also optimal.

Suppose, we are given five jobs, each with a start time and an end time. The goal is to select the
maximum number of non-overlapping jobs.

Job Start Time End Time
j1 1 3
j2 2 5
j3 4 6
j4 6 8
j5 5 9

Table 5.1: List of jobs with their start and end times.

5.3. INTERVAL PARTITION PROBLEM 43

1 2 3 4 5 6 7 8 9

j1

j2

j3

j4

j5

An optimal schedule selects the maximum number of non-overlapping jobs. The optimal solution is:

{j1, j3, j4}

1 2 3 4 5 6 7 8 9

j1

j3

j4

5.3 Interval Partition Problem

Consider a university which is o"ering multiple courses for students. Every course i has a fixed slot [si, fi)
where si indicates the start time for the lecture in course i and the fi indicates the finish time for that
lecture. There are n courses in total. The university wants to use as few class rooms as possible for the
lecture. Our task is to assign a room to each course such that if two lectures overlap, then they must be
assigned di"erent rooms. Since each lecture is being modeled as an interval, this problem is called the
interval partition problem.

For this problem, we first look at the lower bound on the number of rooms required. Suppose that
there are m overlapping lectures. Then it is clear, that any room assignment must use at least m rooms.

We now show a simple greedy algorithm that achieves the lower bound on the number of rooms. We
sort the courses based on the start times of the lectures. We assign courses to rooms one at a time. The
first course is assigned room 1. Now suppose that k courses have been assigned their rooms. We assign
the course k + 1 as follows: assign it to the least numbered room that is available at the start time of the
lecture. It is clear that a course is assigned a new room only if there are overlapping lectures for all small
numbered rooms. Thus, our greedy algorithm achieves the minimum number of rooms assigned.

Given the intervals:

I1 = [1, 4], I2 = [2, 5], I3 = [6, 7], I4 = [3, 8], I5 = [9, 10]

44 CHAPTER 5. GREEDY ALGORITHMS

We sort them based on the start times.

(1, 4), (2, 5), (3, 8), (6, 7), (9, 10)

Time
1 2 3 4 5 6 7 8 9 10

I1 (Room 1)

I2 (Room 2)

I4 (Room 3)

I3 (Room 1)

I5 (Room 2)
Room 1

Room 2

Room 3

The minimum number of rooms required is equal to the maximum number of overlapping intervals,
which is 3.

Theorem 5.2 For the Interval Partitioning Problem, assigning intervals to the first available room in
order of their start times produces an optimal solution, i.e., it minimizes the number of rooms required.

Proof: The greedy algorithm sorts the intervals by increasing start time and assigns each interval to the
first available room. If no room is available, it assigns the interval to a new room. Let G be the number of
rooms used by this algorithm, and let O be the minimum number of rooms required in an optimal solution.
At any time t, let D(t) be the number of overlapping intervals. Since at least D(t) rooms are necessary
at that time, the minimum number of rooms required is at least max D(t). The greedy algorithm assigns
a new room only when all current rooms are occupied, ensuring that it never exceeds max D(t) rooms.
Thus, G ⇒ O and, since O must also use at least max D(t) rooms, we conclude that G = O. Therefore,
the greedy algorithm produces an optimal solution.

Now, let us determine the time complexity of our algorithm. The sorting of intervals based on the start
times can be done in O(n log n) time. Suppose that we keep the available rooms in a heap ordered by the
room number. Whenever we need a room for a lecture, we simply remove the minimum available in the
heap. This heap operation takes O(log n) time. Thus, we take O(n log n) time for the entire algorithm.

5.4 Minimizing Maximum Lateness of Jobs

Suppose that we have n jobs such that each job j takes time tj to execute and should ideally be completed
before its deadline dj . Our task is to schedule these jobs on a single processor. Suppose that the job j is
started at time sj . Then, the task finishes at time sj + tj . If sj + tj is less than or equal to the deadline dj ,
then this job is not late. Otherwise, this job has the lateness equal to sj + tj → dj . Our task is to schedule
these jobs such that the maximum lateness is minimized.

Let us start with a sequential algorithm. Should we consider these jobs in the order of their processing
times, their slack times (dj → tj)), or their deadlines dj? It turns out that for this problem, we should
consider jobs in the order of their deadlines.

5.4. MINIMIZING MAXIMUM LATENESS OF JOBS 45

Algorithm MinMaxLateness: A Sequential Program for the Minimizing Maximum Lateness
problem
1 var G: array[1 . . . n] of int initially 0;
2 const t: array[1 . . . n] of int; // completion times
3 const d: array[1 . . . n] of int ; // deadlines
4 int last := 0;
5 int lateness := 0;
6 for int i := 1 to n do
7 G[i] := last;
8 last := G[i] + t[i];
9 if (last > d[i]) then lateness := max{lateness, (last → d[i])};

Algorithm MinMaxLateness is quite simple. It processes jobs in the order of increasing deadlines. The
variable G[i] denotes the starting time of job i. The algorithm takes O(n) time when the input is provided
as sorted based on the deadlines.

Consider the following example.

Job ji Processing Time ti Deadline di

j1 3 4
j2 2 6
j3 1 5
j4 4 7

The schedule Using Earliest Deadline First (EDF) is shown next.

Time
0 1 2 3 4 5 6 7 8 9 10

j1 j3 j2 j4

d1 = 4 d3 = 5 d2 = 6 d4 = 7

The job j2 finishes at time 6 but had a deadline of 4. The job j4 finishes at time 10 but had a deadline
of 7. Using earliest deadline first, this schedule minimizes maximum lateness, which is 3 units.

Theorem 5.3 For the problem of scheduling n jobs with known processing times and deadlines on a single
machine to minimize the maximum lateness, the Earliest Deadline First (EDF) algorithm produces an
optimal solution.

Proof:
The EDF algorithm schedules jobs in increasing order of their deadlines. Let G be the schedule produced

by the EDF algorithm, and let O be an optimal schedule that minimizes maximum lateness. Suppose for
contradiction that O is di"erent from G and has a di"erent order of jobs while achieving a smaller maximum
lateness.

46 CHAPTER 5. GREEDY ALGORITHMS

Consider the first position in which O and G di"er. Let job j be scheduled earlier in O than job i, while
G places job i before job j. Since EDF sorts jobs by increasing deadlines, we have di ⇒ dj . Since both
schedules are contiguous, swapping i and j in O does not delay the completion time of any job before i, nor
does it improve the lateness of any job. Instead, it ensures that the job with an earlier deadline finishes
sooner, which prevents an increase in lateness. By iteratively applying this argument, we can transform O
into G without increasing the maximum lateness. Since O was assumed to be optimal, it follows that G is
also optimal. Therefore, EDF produces an optimal schedule.

5.5 Hu"man Tree

The goal of the Hu"man tree problem is to come up with an e!cient encoding of a set of symbols. We are
given n symbols. For each symbol i, the value p[i] gives the probability that it appears in the given text
such that

∑

i

p[i] = 1

Our goal is to design a prefix code such that the given text of symbols can be translated to a string such
that the text of symbols can be recovered from the string. We will create a binary tree such that leaves
correspond to the symbols and the path from the root to the leaf corresponds to the code for the symbol.
Note that only the leaves of the tree correspond to the symbol. Also note that leaves may be at di"erent
levels and therefore this method returns a variable length code for symbols rather than a fixed length code.

Given n symbols with their probabilities of occurrence, the Hu"man coding algorithm constructs an
optimal prefix code using the following greedy approach:

1. Insert all symbols into a min-priority queue sorted by probability.

2. While there is more than one node in the queue:

• Remove the two nodes with the smallest probabilities.

• Merge them into a new node whose probability is the sum of the two.

• Insert the new node back into the priority queue.

3. The final remaining node is the root of the Hu"man tree.

4. Assign binary codes by traversing the tree: assign ‘0’ to the left branch and ‘1’ to the right branch.

5.5. HUFFMAN TREE 47

Algorithm 1: Hu"man Coding
Input: Set of symbols S = {s1, s2, . . . , sn} and frequencies f(s1), f(s2), . . . , f(sn)
Output: Hu"man tree T

1 Q ⇑ priority queue (min-heap) of nodes, initialized with S
2 for each si ′ S do
3 Create a leaf node ni with frequency f(si) and symbol si

4 Insert ni into Q

5 end
6 for i = 1 to n → 1 do
7 x ⇑ extract-min(Q) ; // Remove node with smallest frequency
8 y ⇑ extract-min(Q) ; // Remove next smallest
9 z ⇑ new internal node with children x and y

10 f(z) ⇑ f(x) + f(y) ; // Sum frequencies
11 Insert z into Q

12 end
13 T ⇑ extract-min(Q) ; // Final tree (root)
14 return T

Consider the following symbols and their probabilities:

Symbol Probability
A 0.4
B 0.3
C 0.2
D 0.1

• Merge (C, D) to create node (CD) with probability 0.3.

• Merge (CD) with B to create node (BCD) with probability 0.6.

• Merge (BCD) with A to create the root node with probability 1.0.

The resulting Hu"man codes are shown below.

Symbol Hu"man Code
A 0
B 10
C 110
D 111

48 CHAPTER 5. GREEDY ALGORITHMS

1.0

A (0.4)

0

0.6

B (0.3)

0

0.3

C (0.2)

0

D (0.1)

1

1

1

The time and space complexity of the Hu"man coding algorithm depend on the use of a min-heap for
the priority queue Q.

• Time Complexity:

– Initialization: Creating n leaf nodes and inserting them into Q takes O(n log n), as each insertion
into a min-heap of size up to n is O(log n).

– Main Loop: The loop runs n → 1 times. Each iteration performs two extract-min operations
(each O(log n)) and one insertion (O(log n)), totaling O(3 log n) per iteration. Thus, the loop
takes O((n → 1) · 3 log n) = O(n log n).

– Final Extraction: Extracting the root is O(log n), negligible compared to the loop.
– Total: O(n log n) + O(n log n) = O(n log n).

• Space Complexity:

– Priority Queue: Q stores at most n nodes initially, reducing to 1, requiring O(n) space.
– Tree Nodes: The Hu"man tree has n leaf nodes and n → 1 internal nodes, totaling 2n → 1 nodes,

each storing a frequency and pointers (or symbol for leaves), using O(n) space.
– Total: O(n) + O(n) = O(n).

Thus, the algorithm runs in O(n log n) time and uses O(n) space, where n is the number of symbols.

5.6 LLP: Interval Scheduling Algorithm
We now explore LLP versions of all the problems discussed in the chapter. We maintain a linked list of all
the jobs under considerations. These jobs are in the order of their finish times. The algorithm will keep
a boolean G[j] for each of the job j. The variable G[j] is initially false and it is set to true only if it is
guaranteed to be in the maximal set of jobs that are chosen by the algorithm. We call a job j fixed if G[j]
is true. We now make the following observations:

1. If any job j has its start time greater than the finish time of the previous job, then that job is always
included in the final set. Thus, job j can be fixed.

2. For any job, if the previous job in the linked list is fixed and the start time of the current job is less
than or equal to the finish time of the previous job, then this job can be deleted.

5.7. LLP: INTERVAL PARTITION ALGORITHM 49

It follows from the above two rules that eventually all jobs will either be fixed or deleted. The algorithm
terminates when all jobs are fixed. The set of all fixed jobs is a maximal set of jobs that can be completed.

The LLP algorithm for the activity selection problem is shown in Fig. IntervalLLP.

Algorithm IntervalLLP: LLP Program for the Interval Scheduling problem
1 // Assume that all jobs are in a doubly linked list
2 // The variable prev denotes the previous node in the linked list
3 input:
4 s[j] : int, f [j]: int;
5 G[j]: boolean;
6 init: if (j = 1) then G[j] := true; else G[j]:= false;
7 forbidden: ¬G[j] ≃ f [prev] < s[j]
8 advance: G[j] := true;
9 forbidden: (j > 1) ≃ G[prev] ≃ s[j] < f [prev]

10 advance: delete this node from the linked list;

For example, consider the following four jobs: job1 = [1, 4), job2 = [2, 5), job3 = [4, 5), job4 = [5, 7).
The first job gets fixed because the first job is always fixed. The fourth job also gets fixed because its
starting point is bigger than the finishing time of the previous job. Since the first job is fixed and the
second job starts before the first job is finished, it is deleted from the list. Now, the third job is also fixed
because it starts after the first job is finished.

The sequential algorithm takes O(n) time.

5.7 LLP: Interval Partition Algorithm
We now explore an LLP version of the algorithm for Interval Partition. Let G[i] denote the room assigned
to course i (where courses are sorted based on the start times). We initialize G[i] to 1 for all i. This room
assignment is feasible i" there are no overlapping intervals. We now define feasibility of G for any set of
intervals. An assignment G is feasible if for any pair of intervals i, j whenever they overlap, they are in
di"erent rooms. Formally, let B(k) be defined as

∝i, j : (i ⇒ k) ≃ (j ⇒ k) ≃ sj ⇒ fi ↘ room(i) ↑= room(j)

B(k) denotes that the room assignment is feasible for courses 1 . . . k. Then, G is feasible if it satisfies B(n).
Observe that B(0) holds trivially.

The predicate B(n) may not be true for the initial assignment when there are overlapping intervals.
Also, note that if we had assigned a separate room for each interval, then the predicate is trivially true.
Our interest is in finding the least assignment to the rooms that makes the predicate true. We consider the
lattice of n dimensional vectors of natural numbers. The bottom element of this lattice is the vector with
all ones. We use fixed(i) to denote that the course i has been assigned a room that will not be changed.
Let pre(i) denote all courses numbered less than i that start prior to course i or at the same time as course
i and finish later than

We say that Pk is forbidden if all courses in pre(k) are fixed and ¬fixed(k). Whenever Pk is forbidden,
it can be advanced as follows. Let r be the least room that has not been assigned to any overlapping course
prior to k. Then, room(k) is set to r and fixed(k) is set to true.

50 CHAPTER 5. GREEDY ALGORITHMS

Algorithm IntervalPartition: An LLP Program for the Interval Partition Problem
1 Pj : Code for thread j
2 input:
3 s[j] : int, f [j]: int;
4 const pre[j]: set of 1..n initially pre[j] = {i | (i < j) ≃ (s[i] ⇒ s[j]) ≃ (s[j] < f [i])};
5 var:
6 G[j]: int initially 1;
7 fixed[j]: boolean initially false;
8 forbidden: (∝i ′ pre(j) : fixed(i)) ≃ ¬fixed(j)
9 advance: G[j] := mink↔pre(j){r | r ↑= G[k]};

10 fixed[j] := true;

As before, we assume that the intervals are provided to us sorted by their start times. Each index j
can keep track of the number of intervals in pre[j] that have been fixed. Whenever all the prerequisite
intervals are fixed, the index j is forbidden. We have to compute the minimum room that is available when
all prerequisite intervals are fixed.

5.8 LLP: Minimizing Maximum Lateness of Jobs
We now consider the LLP version of this algorithm. Variable G[j] denotes the completion time for job j.

Algorithm MinLateLLP: LLP Program for the Minimum Lateness problem
1 // Assume that all jobs are in a doubly linked list
2 // The variable prev denotes the previous node in the linked list
3 input:
4 t[j]: int; // time required for job j
5 d[j]: int; // deadline for job j
6 G[j]: int init 0;
7 forbidden: ¬fixed[j] ≃ ((j = 1) ⇐ (fixed[j → 1])
8 advance: fixed[j] = true; if (j > 1) then G[j] := G[j → 1] + t[j]; else G[j] := t[j]

5.9 LLP: Hu"man Coding
We now give an LLP algorithm for Hu"man coding.

5.10 Summary
The greedy strategy for Interval Scheduling prioritizes activities with the earliest finish time to maximize
the number of non-overlapping intervals, ensuring that more activities can be accommodated. In Interval
Partitioning, assigning each interval to the earliest available room ensures minimal room usage by e!ciently

5.11. PROBLEMS 51

Algorithm LLP-Hu!manTree1: Finding Hu"man Code
1 input: p:array of real;// frequency of each symbol
2 init: G[i, j] = 0 ∝i ↑= j;
3 G[i, i] = p[i];
4 always: s(i, j) =

∑k=j
k=i p[i]

5 ensure(i, j):
6 G[i, j] ↗ mini↗k<j G[i, k → 1] + s(i, j) + G[k + 1, j]

Problem Strategy Time Complexity
Interval Scheduling Earliest finish time O(n log n)
Interval Partitioning Earliest available room O(n log n)
Minimizing Lateness Earliest deadline O(n log n)
Hu"man Tree Merge smallest probabilities O(n log n)

Table 5.2: Summary of greedy algorithms.

tracking overlapping intervals. For Minimizing Maximum Lateness, scheduling jobs by their earliest dead-
line prevents unnecessary delays, minimizing the worst-case lateness across all jobs. Finally, in Hu!man
Tree Construction, merging the least probable symbols first ensures that frequent symbols receive shorter
codes, leading to an optimal encoding that minimizes the total cost of transmission.

Table 5.2 summarizes all four problems considered in this chapter. In time complexity, we have included
time to sort the array as required by the strategy.

5.11 Problems

1. A network processes requests that require a fixed bandwidth for a given time interval. Find the
minimum number of servers required to handle all requests without exceeding bandwidth limits.

2. A railway station needs to schedule maintenance for incoming trains before their next departure.
Each train has a maintenance duration and a deadline. Find the optimal order of maintenance to
minimize the worst delay.

3. Given n intervals and an integer k, find the maximum subset of intervals such that at most k intervals
overlap at any time.

4. Each task has a required start time and finish time, but there must be a mandatory idle gap of
at least g units between consecutive tasks in the same room. Find the minimum number of rooms
required.

5. Each task has a start and finish time, but also requires a specific type of machine. Di"erent machine
types may be limited in number. Find the minimum number of machines needed.

52 CHAPTER 5. GREEDY ALGORITHMS

5.12 Bibliographic Remarks
This chapter on greedy algorithms covers several classic problems—Interval Scheduling, Interval Partition-
ing, Minimizing Lateness, and Hu"man Tree construction: each with well-established foundations in the
literature. The Interval Scheduling Problem and Interval Partitioning Problem are covered in [CLRS09],
and [KT06]. For the Minimizing Lateness problem, scheduling jobs by earliest deadline (EDF) to minimize
maximum lateness is a well-known greedy solution, as shown in Algorithm MinMaxLateness. This algo-
rithm’s optimality, proven via an exchange argument, is a standard result in scheduling theory. [LRK76]
provides one of the earliest rigorous treatments of this problem, establishing the EDF rule’s e"ectiveness for
single-machine scheduling with deadlines. The Hu"man Tree construction, which builds an optimal prefix
code by greedily merging the least probable symbols, is a cornerstone of data compression. Introduced by
[Huf52], this algorithm’s greedy nature and optimality for variable-length coding are foundational to infor-
mation theory. Our sequential description mirrors the classic priority-queue implementation in O(n log n)
time, as detailed in [CLRS09].

Chapter 6

The Shortest Path Problem

6.1 Introduction

The single source shortest path (SSSP) problem has wide applications in transportation, networking and
many other fields. The problem takes as input a weighted directed graph with n vertices and e edges. We
are required to find cost[x], the minimum cost of a path from the source vertex v0 to all other vertices x
where the cost of a path is defined as the sum of edge weights along that path. Dijkstra’s algorithm (or
one of its variants) is the most popular single source shortest path algorithm used in practice.

6.2 Dijkstra’s Algorithm

We consider a directed weighted graph (V, E, w) where V is the set of vertices, E is the set of directed
edges and w is a map from the set of edges to positive reals (see Fig. 22.2 for a running example). To
avoid trivialities, we assume that the graph is loop-free and every vertex x, except the source vertex v0,
has at least one incoming edge.

Dijkstra’s algorithm maintains dist[i], which is a cost to reach vi from v0. Every vertex x in the graph
has initially dist[x] equal to ↙. Whenever a vertex is discovered for the first time, its dist[x] becomes
less than ↙. We use the predicate discovered(x) ↔ dist[x] < ↙. The variable dist decreases for a vertex
whenever a shorter path is found due to edge relaxation.

(a)

9

3

2 5

6

1

8
2

v0

v2

v1 v3

v4

Figure 6.1: A Weighted Directed Graph

53

54 CHAPTER 6. THE SHORTEST PATH PROBLEM

Algorithm Dijkstra: Finding the shortest costs from v0 .
1 var dist: array[0 . . . n → 1] of integer initially ∝i : dist[i] = ↙;
2 fixed: array[0 . . . n → 1] of boolean initially ∝i : fixed[i] = false;
3 H: binary heap of (j, d) initially empty;// j is the vertex and d is the cost
4 dist[0] := 0;
5 H.insert((0,dist[0]));
6 while ¬H.empty() do
7 (j, d) := H.removeMin();
8 if (fixed[j]) continue;
9 fixed[j] := true;

10 forall k: ¬fixed(k) ≃ (j, k) ′ E
11 if (dist[k] > dist[j] + w[j, k]) then
12 dist[k] := dist[j] + w[j, k];
13 H.add (k, dist[k]);
14 endwhile;

In addition to the variable dist, a boolean array fixed is maintained. Thus, every discovered vertex
is either fixed or non-fixed. The invariant maintained by the algorithm is that if a vertex x is fixed then
dist[x] gives the final shortest cost from vertex v0 to x. If x is non-fixed, then dist[x] is the cost of the
shortest path to x that goes only through fixed vertices.

A heap H keeps all vertices that have been discovered but are non-fixed along with their distance
estimates dist. We view the heap as consisting of tuples of the form (j, dist[j]) where the heap property
is with respect to dist values. The algorithm has one main while loop that removes the vertex with the
minimum distance from the heap with the method H.removeMin(), say vj , and marks it as fixed. It then
explores the vertex vj by relaxing all its adjacent edges going to non-fixed vertices vk. The value of dist[k]
is updated to the minimum of dist[k] and dist[j] + w[j, k]. This step is called edge relaxation. If vk is
not in the heap, then it is inserted, else if dist[k] has decreased then the label associated with vertex k is
inserted in the heap. We abstract this step as the method H.add(k, dist[k]). Since the vertex may already
be on the heap, the insertion may cause a vertex to be present in a heap with di"erent distances. Hence,
when we remove a vertex from the heap, if it is already fixed, we simply go to the next vertex in the heap.
The algorithm terminates when the heap is empty. At this point there are no discovered non-fixed vertices
and dist reflects the cost of the shortest path to all discovered vertices. If a vertex j is not discovered then
dist[j] is infinity reflecting that vj is unreachable from v0.

Observe that every vertex goes through the following states. Every vertex x is initially undiscovered (i.e.,
dist[x] = ↙). If x is reachable from the source vertex, then it is eventually discovered (i.e., dist[x] < ↙).
A discovered vertex is initially non-fixed, and is therefore in the heap H. Whenever a vertex is removed
from the heap it is a fixed vertex. A fixed vertex may either be unexplored or explored. Initially, a fixed
vertex is unexplored. It is considered explored when all its outgoing edges have been relaxed.

The following lemma simply summarizes the well-known properties of Dijkstra’s algorithm. We leave
them as an exercise.

Lemma 6.1 The outer loop in Dijkstra’s algorithm satisfies the following invariants.
(a) For all vertices x: fixed[x] ↘ (dist[x] = cost[x]).
(b) For all vertices x: dist[x] is equal to cost of the shortest path from v0 to x such that all vertices in the

6.3. BELLMAN-FORD’S ALGORITHM 55

path before x are fixed.

For complexity analysis, let n be the number of vertices and m be the number of edges. We analyze the
version of Dijkstra’s algorithm in which instead of adjusting the key in the heap for a vertex, we simply
insert the vertex in the heap. As a result the heap may have a vertex multiple times with di"erent keys.
When a vertex is removed, we check if it has already been fixed. If it is fixed, then we do not need to
explore it and we can remove the next vertex in the heap. Since a vertex can be inserted in the heap only
when an edge is relaxed, we get that there are at most m insertions from the heap. We can also conclude
that there are at most m deletions from the heap. Since an insertion or a deletion from a heap takes
O(log m) = O(log n) time, we get the overall time complexity of O(m log n).

Here is a walkthrough of Dijkstra’s algorithm on the graph, starting from vertex v0.

1. Set v0 as the source vertex and assign it a distance of 0. Assign all other vertices a tentative distance
of infinity. We insert the source vertex v0 in the heap H.

2. Since the heap is not empty, we remove the vertex at the top of the heap. It is v0 with a distance
of 0. We mark that vertex as fixed. We examine its neighbors, v1 and v2. For v0 ∞ v1, the existing
distance to v1 is infinity. The distance 0 (distance to v0) + 9 (edge weight from v0 to v1) is less
than infinity, so we update the distance to v1 to 9 and add it to the heap. For v0 ∞ v2, the existing
distance to v2 is infinity. The distance 0 + 2 is less than infinity, so update the distance to v2 to 2
and add v2 to the heap.

3. We remove the vertex at the top of the heap. The smallest distance among the unvisited vertices is
2 (for v2), so set v2 as the current vertex. We examine its neighbors, v3 and v4. For v2 ∞ v3, the
existing distance to v3 is infinity. Since 2 (distance to v2) + 6 (edge weight from v2 to v3) is less
than infinity, we update the distance to v3 to 8. For v2 ∞ v4, the existing distance to v4 is infinity.
Since 2 + 5 is less than infinity, we update the distance to v4 to 7.

4. Continuing in this manner until the heap becomes empty, we get the final distances as: v0: 0, v1: 9,
v2: 2, v3: 8, v4: 7.

6.3 Bellman-Ford’s Algorithm
In this section we give an algorithm that computes the shortest paths from any given vertex even when
edge weights are negative. Why could we not apply Dijkstra’s algorithm for this problem? Consider the
case where the node that can be reached from the source node on one edge with a minimum cost w has
a cost of x. Let this node be v. Dijkstra’s algorithm assumes that this is the shortest path to node v,
because any other path would already have incurred the cost of w by going to some other vertex. However,
in the presence of negative weights, there may be a longer path to v by incurring more cost initially but
then traversing an edge with negative cost.

When there are negative cost edges, we have to be careful that there are no negative cost cycles. In
presence of negative cost cycles, one may decrease the cost of going from s to some vertex v in an unbounded
manner by going through the cycle. For now, we will assume that the graph may have negative cost edges
but no negative cost cycles.

In 1950’s, Bellman and (independently) Ford gave an algorithm for graph with negative weights. The
algorithm uses dynamic programming. To set up a recurrence relation, we need to come up with an

56 CHAPTER 6. THE SHORTEST PATH PROBLEM

appropriate variable with an index k such that its base case when k is small is easy and when k is large,
we reach our goal. We let dk[v] be the cost of reaching v from the source vertex s with a path of at most k
edges. It is clear that the base case of k equal to 0 is quite simple. The value d0[v] equals 0 when v equals
s and ↙ otherwise. When k equals n → 1, we claim that dk[v] is exactly equal to the shortest path from
s to v. Why could there be not a path with n edges or more with a lower cost? If there is a path with n
edges, then at least some vertex w appears more than once. The path from w to itself forms a cycle. From
our assumption, there are no negative cost cycles. If the cycle is not negative, then we get a smaller path
with equal or lower cost by removing the cycle.

The recurrence relation is as follows: d0[v] = 0 is v equals s and ↙, otherwise.

dk[v] = min{dk→1[v], min
(u,v)↔E

dk→1[v] + w(u, v)}

We let p[v] denote the predecessor of node v in the shortest path. Initially, p[v] is null for all vertices.
Fig. Bellman-Ford Algorithm shows the procedure used when the edge weights in a directed graph may

be negative.
Algorithm Bellman-Ford Algorithm: Finding the shortest costs from v0 when edge weights
may be negative .

Input: Graph G = (V, E), source vertex s, edge weights w(u, v)
Output: Distance array d[], Predecessor array p[]

1 foreach vertex v ′ V do
2 d[v] ⇑ ↙;
3 p[v] ⇑ null;
4 end
5 d[s] ⇑ 0;
6 for k = 1 to |V | → 1 do
7 foreach edge (u, v) ′ E do
8 if d[u] + w(u, v) < d[v] then
9 d[v] ⇑ d[u] + w(u, v);

10 p[v] ⇑ u;
11 end
12 end
13 end
14 foreach edge (u, v) ′ E do
15 if d[u] + w(u, v) < d[v] then
16 return “Negative cycle detected”;
17 end
18 end
19 return d[], p[];

The first for loop initializes the value of d and p for the base case corresponding to k equal to zero. We
now compute dk for k equal to 1 . . . n → 1. Instead of computing the recurrence explicitly for each vertex,
we relax each edge to check if dk[v] can be reduced via some edge (u, v). Finally, we check that if there is
a negative cost cycle in the graph. If there is a negative cost cycle reachable from the source vertex, then
there would be an edge (u, v) in the graph such that d[v] can be reduced further by using that edge even
after k has reached the value n → 1.

6.4. ALL PAIRS SHORTEST PATH ALGORITHM 57

The time complexity of Bellman-Ford is O(|V | · |E|), where |V | is the number of vertices and |E| is the
number of edges, making it less e!cient than Dijkstra’s algorithm for graphs with non-negative weights
but more versatile due to its handling of negative weights.

In our algorithm, we have iterated over k from 1 to n → 1. What if the values of d does not change
in some iteration of k? The reader is invited to change the algorithm that checks for this condition and
terminates it sooner.

6.4 All Pairs Shortest Path Algorithm

Suppose that A[i, j] represents the weight of the direct edge from i to j denoting the cost of going from i
to j using at most one edge. We assume that all diagonal entries are zero and that there is no negative
weight cycle. Our goal is to find a matrix G[i, j] such that G[i, j] is the least cost of going from i to j by
using any number of edges. We apply the idea of dynamic programming again. However, now we define
dk(i, j) as the cost of going from vertex i to vertex j by using intermedaite vertices from 1..k. When k is
zero, it is clear that we cannot use any intermediate vertex. Thus,

d0[i, j] = 0 if (i = j), w(i, j) otherwise.

Observe that if there is no edge from i to j when i ↑= j, w(i, j) is ↙. Now, consider the case when k ↗ 1.
Then, we get the following recurrence:

dk[i, j] = min{dk→1[i, j], dk→1[i, k] + dk→1[k, j]}

Thus, we get the algorithm Floyd-Warshall.
Algorithm Floyd-Warshall: All pairs shortest path Algorithm

Input : A weighted graph represented by an n × n cost matrix G[i, j], where G[i, j] is the cost
from vertex i to j (possibly ↙ if no edge exists).

Output: Updated matrix G[i, j] containing shortest path costs between all pairs of vertices.
1 for k = 1 to n do
2 for i = 1 to n do
3 for j = 1 to n do
4 if G[i, k] + G[k, j] < G[i, j] then
5 G[i, j] ⇑ G[i, k] + G[k, j]
6 end
7 end
8 end
9 end

The reader is invited to make two changes to the algorithm. First, modify the algorithm to return
an error message when there is a negative cost cycle in the graph. Second, add variable p[u][v] to the
algorithm to return the predecessor of v in the path from u to v.

It is clear that the time complexity of Floyd-Warshall’s algorithm is O(n3).

58 CHAPTER 6. THE SHORTEST PATH PROBLEM

6.5 Bibliographic Remarks
The single source shortest path problem has a rich history. For the history of Dijkstra’s algorithm, the
reader is referred to the book by [Eri19]. One popular research direction is to improve the worst case
complexity of Dijkstra’s algorithm by using di"erent data structures. For example, by using Fibonacci
heaps for the min-priority queue, Fredman and Tarjan [FT87] gave an algorithm that takes O(e + n log n).
There are many algorithms that run faster when weights are small integers bounded by some constant
ϖ. For example, Ahuja et al [AMOT90] gave an algorithm that uses Van Emde Boas tree as the priority
queue to give an algorithm that takes O(e log log ϖ) time. Thorup [Tho00] gave an implementation that
takes O(n + e log log n) under special constraints on the weights. Raman [Ram97] gave an algorithm with
O(e + n

∀
log n log log n) time. The LLP algorithm for the shortest path is taken from [AKG20]. Bellman

and Ford’s algorithm is from [Bel58] and [For56].

Chapter 7

The Minimum Spanning Tree Problem

7.1 Introduction
Suppose that we have an undirected weighted graph on n vertices with m edges. Our goal is to find the
minimum spanning tree (MST). We assume that all edge weights are distinct. It is known that if the graph
is connected and all edge weights are distinct then there is a unique minimum spanning tree. If the graph
is not connected, then there is a unique minimum spanning forest. For simplicity of exposition, we will
assume that the underlying graph is connected.

Section 7.2 describes the notion of a fragment of a minimum spanning tree. This notion is useful in
understanding all the spanning tree algorithms which extend a fragment (or, fragments) appropriately.ru

The problem of finding the minimum spanning tree is a canonical problem for which a greedy approach
works. In this chapter, we first present a greedy sequential algorithm called Kruskal’s algorithm in Section
7.3. Kruskal’s algorithm chooses the least cost edge that is feasible as its next edge. It is sequential in
nature because it picks one edge at a time. We then show a parallel version of Kruskal’s algorithm in which
every processor is responsible for either choosing or rejecting one edge.

We then present another greedy sequential algorithm: Prim’s algorithm in Section 7.4. Prim’s algorithm
is greedy in a di"erent way. It chooses the next vertex that can be added to the existing tree with the least
cost.

In Section 7.5, we discuss Boruvka’s algorithm which chooses multiple edges at a time. Boruvka’s
algorithm maintains multiple fragments and adds edges to all of them in every iteration.

7.2 Fragments
The notion of a fragment is crucial in understanding MST algorithms. A fragment is simply a subtree of
the MST. Consider the graph in Fig. 7.1. The minimum spanning tree in this graph corresponds to the
edges {2, 3, 4, 7}. The subtree formed by edges 3 and 4 is a fragment with three vertices {a, b, c} and two
edges {(a, c), (b, c)}.

A crucial property of the MST is as follows.

Lemma 7.1 Let F be a fragment. Let e be the edge with minimum weight that is outgoing from F . Then,
F ∃ {e} is also a fragment.

59

60 CHAPTER 7. THE MINIMUM SPANNING TREE PROBLEM

a

b
5

c
4

3
d7

9
e11

2

Figure 7.1: An undirected weighted graph

Proof: In the minimum spanning tree T , there must be at least one edge going out of the fragment F .
Let that edge be f . If we add e to T and remove f , we get another tree T ↑ with lower weight than T , a
contradiction because we assumed that T is the minimum spanning tree.

In the fragment formed by edges with weights 3 and 4, there are three outgoing edges — edges with
weight 7, 9 and 11. The edge 5 is not outgoing since it connect vertices that are part of the fragment.
According to Lemma 7.1, the edge with weight 7 can be added to the edges with weight 3 and 4 to grow
the fragment.

7.3 Kruskal’s Algorithm
Kruskal’s algorithm is a canonical greedy algorithm for the minimum spanning tree problem. It chooses
edges one at a time in a greedy fashion. Let T be the set of edges chosen by the algorithm at any stage.
The algorithm maintains the invariant that T does not have any cycle. Initially T is empty and therefore
trivially satisfies the invariant. The algorithm considers the edges in the increasing order of weights. For
this reason it is sometimes also known as the shortest-edge-next algorithm. Suppose that the algorithm
has chosen edges in T so far. To grow T , it finds the least weight edge that does not form a cycle with
existing edges in T . If any edge e forms a cycle with T , then it is rejected and the algorithm considers the
least weight edge of the remaining edges.

In Algorithm Kruskal, the variable T keeps the set of all edges that are chosen and the variable Rejected
keeps the set of all edges that are rejected. Consider the graph shown in Fig. 7.1. Kruskal’s algorithm will
first choose the edge with weight 2 since it has the least weight. It then chooses the edges with weight 3
and 4 because these edges do not form any cycle. The next edge has weight 5. However, this edge needs
to be rejected because it forms a cycle with the already chosen edges with weights 3 and 4. The algorithm
then chooses the edge with weight 7 and terminates.

The algorithm is dominated by the cost of sorting the edges: O(m log n). Checking whether the edge
e forms a cycle with T can be done e!ciently using find-union data structure.

The Find-Union data structure maintains a collection of disjoint sets, supporting two primary opera-
tions:

• Find: Determines which set a particular element belongs to by returning its representative (or
"root"). With path compression, this operation is nearly constant time, O(ω(n)), where ω(n) is the
inverse Ackermann function.

7.3. KRUSKAL’S ALGORITHM 61

Algorithm Kruskal: Computing Minimum Spanning Tree
1 Input: Undirected Weighted Graph: (V, E, w).
2 Output: Minimum Weight Spanning Tree
3 var
4 T, Rejected: set of edges initially {};
5 while (|T | < n → 1) do
6 if T ∃ Rejected = E then return null; // no spanning tree in the graph
7 e := the least weight edge that is not in T ∃ Rejected
8 if e forms a cycle in T then
9 Rejected := Rejected ∃ {e}

10 else T := T ∃ {e}

11 endwhile
12 return T

• Union: Merges two sets into one by linking their roots, typically using rank or size heuristics to keep
trees balanced, also achieving O(ω(n)) amortized time.

Initially, each element is in its own set. As Kruskal’s algorithm processes edges, Union merges sets of
vertices connected by selected edges, while Find checks if adding an edge would form a cycle (i.e., if its
vertices are already in the same set).

Here’s the basic implementation of find-union data structure.

Algorithm Find: Find the root of x’s set with path compression
1 Input: Vertex x
2 Output: Root of the set containing x
3 var
4 parent: array of int
5 if parent[x] ↑= x then parent[x] := Find(parent[x]) // path compression
6 ;
7 return parent[x]

62 CHAPTER 7. THE MINIMUM SPANNING TREE PROBLEM

Algorithm Union: Union by rank of sets containing x and y

1 Input: Vertices x, y
2 Output: Unified set containing x and y
3 var
4 parent: array of int
5 rank: array of int
6 rootX := Find(x)
7 rootY := Find(y)
8 if rootX = rootY then return;

// already in same set, no union needed
9 if rank[rootX] < rank[rootY] then

10 parent[rootX] := rootY
11 end
12 else if rank[rootX] > rank[rootY] then
13 parent[rootY] := rootX
14 end
15 else
16 parent[rootY] := rootX
17 rank[rootX] := rank[rootX] + 1 // increment rank if equal
18 end

Kruskal’s algorithm sorts all edges by weight, then iteratively adds the smallest edge to the MST if it
doesn’t form a cycle. The Find-Union structure ensures cycle detection:

1. Sort edges in non-decreasing order of weight.

2. For each edge (u, v), if Find(u) ↑= Find(v), include the edge and perform Union(u, v).

3. Repeat until the MST has n → 1 edges, where n is the number of vertices.

Consider a graph with 5 vertices (A, B, C, D, E) and the following edges with weights:

• A → B : 4, A → C : 8, B → C : 11, B → D : 8, C → D : 2, C → E : 6, D → E : 10

We apply Kruskal’s algorithm, using Find-Union to build the MST for the following graph.

A

B

C

D

E

4
8

11

8

2

6

5

1. Sort Edges: C → D(2), A → B(4), D → E(5), C → E(6), A → C(8), B → D(8), B → C(11).

2. Initialize: Each vertex in its own set: {A}, {B}, {C}, {D}, {E}.

3. Edge C → D(2): Find(C) = C, Find(D) = D. Union: {A}, {B}, {C, D}, {E}.

4. Edge A → B(4): Find(A) = A, Find(B) = B. Union: {A, B}, {C, D}, {E}.

7.4. PRIM’S ALGORITHM 63

5. Edge D → E(5): Find(D) = C, Find(E) = E. Union: {A, B}, {C, D, E}.

6. Edge C → E(6): Find(C) = C, Find(E) = C. Same set, skip.

7. Edge A → C(8): Find(A) = A, Find(C) = C. Union: {A, B, C, D, E}. MST complete.

8. Reject Others: B → D(8), B → C(11) form cycles.

The MST includes edges C → D(2), A → B(4), D → E(5), A → C(8), with total weight 19.

A

B

C

D

E

4
8

2

5

The Find-Union data structure enables Kruskal’s algorithm to e!ciently construct an MST by man-
aging vertex sets and avoiding cycles. With optimizations like path compression and union by rank, it
achieves near-linear time complexity

7.4 Prim’s Algorithm
Prim’s algorithm is also a greedy algorithm. It builds the minimum spanning tree by increasing the size
of a single fragment by adding the minimum weight outgoing edge of the fragment. It simply exploits the
Lemma 7.1 to increase the size of fragment until it becomes the MST. At any stage, Prim’s algorithm has
a fragment F . It finds the minimum outgoing edge from that fragment e. This edge can be viewed as the
edge from the fragment to its nearest neighbor. Therefore, this algorithm is sometimes also known as the
nearest-neighbor-next algorithm. To find the nearest neighbor, every vertex v maintains a label d which
corresponds to the cost of adding v to the fragment. At every iteration, the algorithm chooses the vertex
v with the minimum d value and adds it to the fragment. The array fixed keeps track of the vertices in
the fragment. Whenever, a new vertex v is fixed and added to the fragment, the d values for any adjacent
vertex v↑ is updated as follows. We check whether the weight of the edge (v, v↑) is lower than the previous
value of d[v↑]. If this is true, then d[v↑] is updated to w[v, v↑]. We also use parent pointer with each node
which keeps track of the node v that is responsible for the d value of v↑.

Consider the graph shown in Fig. 7.1 again. For Prim’s algorithm, we start from a fixed node. Suppose
we start from the vertex a. Then, the nearest neighbor is c with the cost of 4. The next nearest neighbor to
the fragment with vertices {a, c} is the vertex b. The cost of adding b is 3. At this point, we have vertices
{a, b, c} in the fragment. The cost to add vertex d is 7 and to add the vertex e is 11. We add the vertex d
to our fragment with the cost 7. Finally, e is added with the cost 2. Hence, the edges are added to the tree
in the order 4, 3, 7, 2. Note that the set of edges chosen are identical to Kruskal’s algorithm even though
the order in which they are chosen is di"erent. This is not surprising because there is a unique minimum
spanning tree when all edge weights are unique (Problem 1).

The step of finding the vertex v with minimum d value can be done either by simply traversing the
array d or by maintaining d in a heap. If we simply traverse the array d to find the minimum, the work
complexity of the above algorithm is O(n2 + e). In every iteration of the while loop, we perform O(n)
work for finding the minimum and there are O(n) iterations of the loop. The work for processing edges
over all iterations is O(e) because every edge is processed at most once. If we use a heap to store d values

64 CHAPTER 7. THE MINIMUM SPANNING TREE PROBLEM

Algorithm Prim: Finding a Minimum Spanning Tree (MST)
1 Input: Undirected Weighted Graph: (V, E, w).
2 Output: Minimum Weight Spanning Tree
3 var
4 d: array[0..n → 1] of real initially ↙; //d[v] is the cost to add vertex v
5 parent: array[0..n → 1] of int initially →1; // parent[v] is the node that corresponds to d[v] cost
6 fixed : array[0..n → 1] of boolean initially false; //vertices whose d value is fixed
7 T : set of edges initially {};
8 d[0] := 0;
9 while (|T | < n → 1) do

10 v := arg mini{d[i] | ¬fixed[i]} ;
11 if d[v] = ↙ then return null;// no spanning tree in the graph
12 if parent[v] ↑= →1 then add (v, parent[v]) to T
13 fixed[v] := true;
14 forall (v, v↑) ′ E:
15 if w[v, v↑] < d[v↑] then
16 d[v↑] := w[v, v↑];
17 parent[v↑] := v;
18 end // forall
19 end //while

of all the vertices that are not fixed, we require O(m) insertions on the heap resulting in O(m log n) work
complexity. This approach results in better work complexity when the graph is sparse and m equals O(n).

7.5 Boruvka’s Algorithm: Sequential Implementation
In Prim’s algorithm, we started with a trivial fragment including just the vertex v0. We kept increasing the
size of the fragment till it became a spanning tree. In Boruvka’s algorithm, we may have more than one
fragment. We increase the size of all fragments by adding the minimum outgoing edge for each fragment.

Algorithm BoruvkaSeq presents the sequential Boruvka algorithm for finding the MST. We use T to
denote the set of tree edges. Initially, T is empty. When we determine the components in (V, T), we get that
there are n components as each vertex is a component by itself when T is empty. The algorithm finds the
minimum weight outgoing edge for each component as follows. At any iteration, we use BFS to find the least
numbered vertex that any vertex is connected to in the graph (V, T). This vertex serves as the identifier
for the component of the node i, and we use the variable cid[i] to store it. Once we have determined the
component identity of all nodes, we move to the next step of determining the minimum weight outgoing
edge for each component. We traverse all edges and for each edge that connects two di"erent components
we check whether it is cheaper than previously known outgoing edge for the component on either side.
Once we have determined all minimum weight edges for every component, we add these to T and start the
next iteration.

For example, consider the graph in Fig. 7.1. Initially, T is empty and there are 5 components. We we
compute mwe for each component, we get the edges 4, 3, 3, 2, 2 as the minimum weight edges of a, b, c, d, e,
respectively. Once, these edges are added we have two components: {a, b, c} and {d, e}. We then find

7.5. BORUVKA’S ALGORITHM: SEQUENTIAL IMPLEMENTATION 65

Algorithm BoruvkaSeq: Finding MST
1 Input: Undirected connected Weighted Graph: (V, E, w).
2 Output: Minimum Weight Spanning Tree
3 var
4 T : { set of edges } initially {};
5 cid: array[1..n] of 0..n initially all 0;
6 mwe: array[1..n] of edge initially all null;
7 dist: array[1..n] of 0..n initially all ↙;
8 while (|T | < n → 1) do
9 visited: array[1..n] of boolean initially all false;

10 for i := 1 to n do
11 if (¬visited[i])
12 // do a BFS in the graph (V, T) from vertex i setting cid of every visited vertex to i
13 BFS(i);
14 for (i, j) ′ E such that (cid[i] ↑= cid[j]) do
15 if w[i, j] < dist[cid[i]]
16 dist[cid[i]] = w[i, j]
17 mwe[cid[i]] = (i, j)
18 if w[i, j] < dist[cid[j]]
19 dist[cid[j]] = w[i, j]
20 mwe[cid[j]] = (i, j)
21 forall i do:
22 T := T ∃ mwe[cid[i]];
23 endwhile
24 return T

66 CHAPTER 7. THE MINIMUM SPANNING TREE PROBLEM

mwe of these two components as the edge 7. On adding this edge, we have chosen (n → 1) edges and the
algorithm terminates with the edges {2, 3, 4, 7}.

After every iteration, the number of connected components in (V, T) reduces by at least a factor of two.
This is because every component gets attached to some other component. The worst case is when every
least weight edge chosen by any component is also chosen as the least weight edge by the component on
the other side of the edge. Hence, the algorithm takes at most O(log n) iterations of the while loop. It is
easy to see that the least weight edge outgoing from each component is found in O(m) work. Thus, the
algorithm takes O(m log n) work.

7.6 Problems
1. Show that there is a unique minimum spanning tree in any weighted undirected graph when all edge

weights are distinct.

7.7 Bibliographic Remarks
Sequential algorithms for minimum spanning tree can be found in [CLRS01]. Parallel Boruvka algorithm
is available in [SMDD19].

Chapter 8

Sorting Algorithms

8.1 Introduction

In this chapter we consider some basic ideas in designing algorithms which are crucially based on the notion
of order on a set of elements of size n. We will assume that the order is total, i.e., for every two elements
x and y, either x is less than or equal to y, or y is less than or equal to x in that order.

Before we discuss sorting algorithms, let us consider the problem of searching an element in a sorted
array. Suppose that we are given a sorted array A of size n and an element x. We are interested in finding
if there exists an i such that A[i] equals x. On a single processor, we can accomplish this using binary
search in O(log n) time. The idea is to compare x with the middle element of the array. If the middle
element equals x, we are done; otherwise, the range of indices of A which can possibly have x is divided
by a factor of 2.

This chapter is organized as follows. Section 8.2 discusses sorting algorithms based on swapping con-
secutive entries that are out of order. This is a general class of algorithms that are very natural. However,
these algorithms take O(n2) sequential time in the worst case. Section 8.3 discusses MergeSort. Section
8.4 discusses QuickSort. Since MergeSort and QuickSort are based on divide-and-conquer paradigm, they
are revisited in Chapter 9. All these sorting algorithms are based on the comparison of two entries in the
array. Finally, Section 8.5 describes a sorting algorithm that is not based on the comparison of two entries.

8.2 Sorting Algorithms based on Swapping Consecutive Entries

Let A be an array of distinct integers. Our goal is to sort the array. At face value, this problem does not
appear to be searching for a satisfying element in a lattice. However, with a little e"ort, it can be viewed
from that angle. Observe that the problem of sorting the array is same as finding an permutation φ such
that on applying that permutation to the array, we get a sorted array. For example, if the input array is
[45, 12, 15], then we know that the permutation [3, 1, 2] will sort the array once the entry i in array A goes
to φ(i). There are many di"erent ways to represent a permutation. Let us define the inversion number of
any entry i as the number of entries less than i that appear to the right of i in the permutation. Thus, the
permutation [3, 1, 2] can be equivalently written using the concept of inversions as [2, 0, 0] because there
are two numbers less than 3 that appear to the right of 3, zero numbers less than 1 that appear to the

67

68 CHAPTER 8. SORTING ALGORITHMS

right of 2 and zero numbers less than 2 that appear to the right of 2. The reader can verify that there is
a 1-1 correspondence between the set of inversions and the set of permutations.

We now consider the set of all inversions. Note that the last entry on an inversion table is always zero
because there cannot be any inversion after the last entry in the array. The first entry can have 0 . . . n → 1
inversions, the second entry can have 0 . . . n → 2 inversions, and so on. Thus, the total number of inversion
vectors possible are n!. We define an order between two inversion vectors base on component-wise order.
The set of all inversions forms a finite distributive lattice under this order. The bottom element is the
zero vector which corresponds to the identity permutation. When the zero inversion vector is applied to
any array, we get back the same array. Our goal is to find the inversion vector which on its application
gives us the sorted array. G is initialized to the zero inversion vector. Let us formalize the definition of a
feasible inversion vector. Suppose that we are at an inversion vector G such that it is less than the unique
inversion vector that sorts A. When G is applied to A, the array is not sorted. This means that there
exists an index i such that still has nonzero inversions, i.e, there exists j > i such that A[j] < A[i]. It is
clear that any inversion vector in which the number of inversions for i is not increased cannot result in the
sorted array. To check for forbidden indices, instead of checking for all inversions, we will only check for
immediate inversion in our first algorithm. If A[i] > A[i + 1] on applying G, then clearly i is forbidden in
G. Swapping A[i] and A[i + 1] will advance G vector by incrementing G[i].

Instead of first finding the inversion vector and then applying it, we will continue to apply inversions
as we traverse the lattice searching for the optimal inversion vector. In fact, we will not even maintain the
inversion vector; we will only keep the e"ect of applying the inversion vector to the original array.

Algorithm LLP-Sort1: High-Level LLP Sorting via Adjacent Swaps
1 Pj : Code for thread j
2 var
3 A[1..n]: array of int ; // Input array
4 G[1..n]: array of 0..n → 1 initially 0 ; // Inversion vector (abstract)

5 forbidden(j): A[j] > A[j + 1] ; // G[j] misses an inversion
6 advance(j): swap(A[j], A[j + 1]) ; // Increment G[j]

Algorithm LLP-Sort1 is a non-deterministic algorithm since multiple j may be forbidden at any point.
One can create many instances of deterministic algorithms with di"erent order of evaluating forbidden
indices.

Algorithm Bubble-Sort checks forbidden indices from 1 to n→1 in round robin order until no forbidden
index is found. We leave it as an exercise to show that the repeat loop is executed at most n times giving
us the sequential time complexity of O(n2).

Another schedule is to increase the size of the sorted array one at a time. Suppose that A[1..i → 1]
is sorted. This means that the inversion vector is zero vector for A[1..i → 1]. We now consider the array
A[1..i]. Since there is at most one entry added at the end, the inversion number for any entry can increase
by at most one. We simply have to check for inversion with respect to the new entry.

The time complexity is clearly O(n2) due to nested for loops. We leave it for the reader to show how
the second for loop can be cut short.

We now prove that any comparison-based sorting algorithm that restricts itself to comparing consecutive
entries (adjacent elements) in an array of size n requires at least !(n2) comparisons in the worst case. This
applies to algorithms like Bubble Sort or Insertion Sort, where comparisons are limited to pairs of elements

8.2. SORTING ALGORITHMS BASED ON SWAPPING CONSECUTIVE ENTRIES 69

Algorithm Bubble-Sort: Bubble Sort
1 var
2 A[1..n]: array of int ; // Input array
3 found: boolean
4 repeat
5 found ⇑ false
6 for j = 1 to n → 1 do
7 if A[j] > A[j + 1] then
8 found ⇑ true
9 swap(A[j], A[j + 1])

10 end
11 end
12 until ¬found

Algorithm Insertion-Sort: Insertion Sort
1 var
2 A[1..n]: array of int ; // Input array

3 for i = 1 to n do
4 for j = i → 1 downto 1 do
5 if A[j] > A[j + 1] then
6 swap(A[j], A[j + 1])
7 end
8 end
9 end

70 CHAPTER 8. SORTING ALGORITHMS

at positions i and i + 1.

Theorem 8.1 Consider an array A = [a1, a2, . . . , an] of n distinct elements. A sorting algorithm using
only consecutive comparisons requires at least !(n2) comparisons.

Proof: An adjacent comparison between ai and ai+1 can identify or resolve an inversion—a pair where
ai > ai+1 in the current permutation, which must be swapped to achieve sorted order (a1 < a2 < · · · < an).
Each comparison either: (1) confirms ai < ai+1 (no swap needed), or (2) detects ai > ai+1, potentially
leading to a swap (e.g., in Bubble Sort).

The maximum number of inversions in a permutation of n elements is achieved by the reverse order
[n, n → 1, . . . , 2, 1], with:

Number of inversions =
(

n

2

)

= n(n → 1)
2 .

Each adjacent comparison can resolve at most one inversion (e.g., swapping ai and ai+1), so a permutation
with n(n→1)

2 inversions requires at least that many comparisons to sort fully.

8.3 Merge Sort
Merge Sort is the classic example of divide-and-conquer method of designing algorithms. To sort an array,
A, assume that the left-half and the right-half of the arrays are sorted. Then we are simply left with the
task of merging these two sorted halves. How do we sort the left and the right halves? By using recursion
with the base case when the halves have only single elements and are already sorted. So, it is su!cient
to consider the following problem: we have two sorted arrays B and C, each of size n. We would like to
merge them into another array D such that D is sorted.

Algorithm MergeSort-Seq: Sequential Merge Sort
1 MergeSort(A, low, high)
2 if low < high then
3 mid ⇑ ⇔(low + high)/2↖

4 B ⇑ MergeSort(A, low, mid)
5 C ⇑ MergeSort(A, mid, high)
6 return MergeTwo(B, C)
7 end
8 else
9 return A[low]

10 end

It is easy to design a sequential algorithm that merges them two arrays B and C into D. We simply
keep two indices i and j in arrays B and C, respectively. At any step of the algorithm, we compare B[i]
and C[j]. If B[i] is smaller than C[j], then we copy B[i] into the next available slot in D and advance
index i. If C[j] is smaller than B[i], then we copy C[j] into the next available slot in D and advance index
j. This algorithm takes O(n) time.

8.3. MERGE SORT 71

Algorithm MergeTwo: Merging Two Sorted Arrays
1 var
2 B[1..m], C[1..n]: arrays of int ; // Sorted inputs
3 D[1..m + n]: array of int ; // Output

4 i, j, k ⇑ 1, 1, 1
5 while i ⇒ m and j ⇒ n do
6 if B[i] < C[j] then
7 D[k] ⇑ B[i]
8 i ⇑ i + 1
9 end

10 else
11 D[k] ⇑ C[j]
12 j ⇑ j + 1
13 end
14 k ⇑ k + 1
15 end
16 while i ⇒ m do
17 D[k] ⇑ B[i]; i ⇑ i + 1; k ⇑ k + 1
18 end
19 while j ⇒ n do
20 D[k] ⇑ C[j]; j ⇑ j + 1; k ⇑ k + 1
21 end

72 CHAPTER 8. SORTING ALGORITHMS

Sequentially, MergeTwo takes O(m+n) time. For n total elements, Merge Sort’s recurrence is T (n) =
2T (n/2) + O(n), yielding O(n log n) time.

8.4 Quicksort
Quicksort (due to C.A.R. Hoare) is one of the fastest sorting algorithms on sequential computers. It has
O(n2) worst case time complexity but requires O(n log n) time on average. The algorithm is based on first
partitioning the array into two parts based on a pivot. Once we have the property that the lower half of
the array is less than or equal to pivot and the upper half of the array has elements greater than pivot,
then we can recurse on each half. Since sorting on each half is independent, they can be sorted in parallel.

There are multiple methods to choose a pivot to partition the array A. Choosing an element at random
is an easy method that will result in approximately equal sized partitions on average. This gives us the
average case sequential time complexity of O(n log n). In the worst case, however, the recursion may reduce
the range by only 1, resulting in the sequential time compexity of O(n2).

Algorithm QuickSort-Seq: Sequential QuickSort
1 QuickSort(A, low, high)
2 if low < high then
3 pivot ⇑ chooseP ivot()
4 (p, q) ⇑ Partition(A, pivot, low, high)
5 QuickSort(A, low, p)
6 QuickSort(A, q, high)
7 end

We describe a slight variant of the Quicksort algorithm in which we partition the array into three parts.
Algorithm Three-Way-Partition takes array A, low and high as input parameters. The part of the array
this method sorts is given by

{A[i] | low ⇒ i < high}

Note that when low equals high, the range is empty.
The method partition returns two indices p and q. All elements in the range [lo . . . p) are strictly less

than the pivot, in the range [p . . . q) are equal to the pivot and in the range [q . . . high) are greater than
the pivot. We only need to recurse on the first and the third part. Depending upon the pivot, any (or
both!) of the first and the third parts may be empty.

Once we have a pivot, how do we partition the array into three parts: the first partition with all
elements less than the pivot, the second one with all elements equal to the pivot and the the third partition
with elements strictly greater than the pivot. Algorithm Three-Way-Partition is due to Dijkstra who
called this problem as the Dutch National Flag problem. The while loop maintains the invariant that
entries [low . . . p) are less than pivot, [p . . . q) are equal to pivot and [k . . . high) are greater than pivot. The
algorithm initializes p and q to low, therefore the first two ranges are empty initially and trivially satisfies
the invariants. It also initializes k to high making the range [k . . . high) empty and thereby ensuring that
the invariant holds initially. The range [q..k) corresponds to the initial input and initially contains entries
that may be less than, equal to, or greater than the pivot. In each iteration of the while loop, this range is
reduced by one by either increasing q or decreasing k. Depending upon the comparison between A[q] and
the pivot, the entry A[q] is placed in the appropriate range maintaining the invariants.

8.4. QUICKSORT 73

Algorithm Three-Way-Partition: Three-Way Partition (Dutch National Flag)
1 Partition(A, pivot, low, high) returns (int, int)
2 p, q ⇑ low
3 k ⇑ high
4 while q < k do
5 if A[q] < pivot then
6 swap(A[p], A[q])
7 p ⇑ p + 1
8 q ⇑ q + 1
9 end

10 else if A[q] > pivot then
11 k ⇑ k → 1
12 swap(A[q], A[k])
13 end
14 else
15 q ⇑ q + 1
16 end
17 end
18 return (p, q)

It is easy to verify that the algorithm takes O(n) time when the range has n elements. A parallel
version for QuickSort based on divide and conquer is discussed in Chapter 9.

We prove that any comparison-based sorting algorithm for an array of n distinct elements requires at
least !(n log n) comparisons in the worst case. This result applies to algorithms using unrestricted pairwise
comparisons (e.g., Merge Sort), contrasting with the !(n2) bound for consecutive-only comparisons. We
use a decision-tree model.

Theorem 8.2 Given an array A = [a1, a2, . . . , an] of n distinct elements, a comparison-based sorting
algorithm uses binary comparisons (ai < aj) to sort A into aω(1) < aω(2) < · · · < aω(n), where φ is a
permutation. The minimum number of comparisons needed to sort any input permutation in the worst case
is !(n log n).

Proof: We model the sorting algorithm as a decision tree, where internal nodes represent comparisons,
and leaves correspond to permutations. The worst-case number of comparisons is the tree’s height.

For n distinct elements, there are n! possible permutations. The algorithm must distinguish all n!
permutations, so the decision tree requires at least n! leaves.

In a comparison-based algorithm, each node compares two elements (ai vs. aj), branching on < or
>. With distinct elements, each node has two children (binary tree). After k comparisons, the maximum
number of leaves is 2k.

To cover all permutations:
2k

↗ n!.

Taking the base-2 logarithm:
k ↗ log2(n!).

74 CHAPTER 8. SORTING ALGORITHMS

The value log2(n!) represents the minimum comparisons needed. For large n, it is well-known that:

log2(n!) = !(n log n),

since n! grows factorially, and its logarithm reflects the information required to order n elements. This can
be seen intuitively: sorting halves the problem repeatedly (e.g., in Merge Sort), requiring log n levels, each
with O(n) comparisons.

For n = 3, there are 3! = 6 permutations. A decision tree might start with a1 < a2:
1:2

2:3

1:3

123 132

1:3

213 231

1:3

2:3

312 321

Since k ↗ log2(n!), and log2(n!) = !(n log n):

k = !(n log n).

This is the minimum number of comparisons in the worst case, as the tree must be tall enough to reach n!
leaves.

8.5 Radix Sort
All our sorting algorithms, so far, have been based on comparison. Any comparison-based sorting algorithm
must do at least O(n log n) work. We now show an algorithm that works when keys for sorting have a
fixed number of digits (in any radix r, generally a power of 2). In our examples below, we simply use
digits to the base 10, as they are easy for us humans. Suppose that we need to sort the following list.
[85, 72, 94, 45, 13, 12, 61, 81]. Here, our keys have two digits. The idea of the radix sort is to sort numbers,
one digit at a time. When sorting on a single digit, we use a simple linear time sort by exploiting that there
are only r possibilities for each digit. On getting any number, we can simply add it to the pile associated
with that value. The number of passes we will make on the array is equal to the number of digits.

It may appear that it is easier to sort starting from the most significant digit (msd) first. If we employed
that strategy, we would get [13, 12, 45, 61, 72, 85, 81, 94] after the first pass. The second pass would consist
of sorting all subarrays with the same msd and we would get the array [12, 13, 45, 61, 72, 81, 85, 94]. The
problem with this approach is that we are forced to maintain di"erent subarrays - one for each digit after the
first pass. With every subsequent pass, it gets even more cumbersome. Hence, somewhat counterintuitively,
we will employ the least significant digit first strategy. After the first pass, [61, 81, 72, 12, 13, 94, 85, 45]. We
do not need to remember any sublists that are created during the first pass. Now, we sort on the second
least significant digit. We need to ensure that if two numbers have the same digit, then their order is

8.6. SUMMARY 75

preserved. In other words, we require our sorting algorithms at each pass to be stable. After the second
pass, we get the sorted array [12, 13, 45, 61, 72, 81, 85, 94]. Since 12 appeared before 13 after the first pass,
the order is preserved after the second pass.

Thus, the sequential algorithm is simply stated as Algorithm RadixSort.

Algorithm RadixSort: Radix Sort
1 RadixSort(A[1..n])
2 for i = 1 to k do
3 StableSort(A, digit i)
4 end

The time complexity of this algorithm is O(kn) assuming that the stable sort is accomplished in O(n)
time. For r = 10, sorting [85, 72, 94, 45, 13, 12, 61, 81] yields O(kn) time (here, k = 2, O(n) per pass).

8.6 Summary
The following table lists all the algorithms for comparison-based sorting discussed in this chapter.

Problem Algorithm Time
Sorting Bubble Sort O(n2)
Sorting Insertion Sort O(n2)
Sorting Merge Sort O(n log n)
Sorting QuickSort O(n2) worst, O(n log n) avg
Sorting Radix Sort O(kn)

8.7 Problems
1. Implement the binary search algorithm discussed in Section 8.1.

2. Show that any algorithm that is based on comparison of consecutive entries must take O(n2) comparisons in
the worst case.

3. Give an algorithm to merge k sorted arrays of size n into a single sorted array.

4. We have partitioned the array into three parts in the QuickSort algorithm. Give a version of the QuickSort
algorithm in which the array is partitioned only in two parts: entries that are less than pivot and the entries
that are greater than or equal to the pivot.

5. Give a randomized version of Quicksort in which the pivot is chosen at random. Give the expected running
time of your algorithm.

8.8 Bibliographic Remarks
Quicksort is a divide-and-conquer algorithm that was invented by Tony Hoare in 1962 [Hoa61] It is one of the
most widely used sorting algorithms and has a time complexity of O(n log n) in the average case. Merge sort is
another divide-and-conquer algorithm that was first described by John von Neumann in 1945. Radix sort is a
non-comparison-based sorting algorithm that was first described by Herman Hollerith in 1887.

76 CHAPTER 8. SORTING ALGORITHMS

Chapter 9

Divide and Conquer

9.1 Introduction
A useful strategy for solving a problem is to divide the problem into sub-problems, solve the sub-problems and then
merge the solutions to the sub-problems to get the solution of the original problem. When the sub-problem is of
trivial size, then it can simply be solved by case analysis. We give many examples of this approach.

9.2 Mergesort: Revisited
To sort an array of size n, we divide it into two subarrays of size n/2 and sort each of the parts. The main trick is
to determine how to merge these two sorted arrays.

Algorithm MergeSort: MergeSort
Input: Array A, indices low, high
Output: Sorted array A[low..high]

1 MergeSort(A, low, high)
2 if low < high then
3 mid ⇑ ⇔(low + high)/2↖;
4 B ⇑ MergeSort(A, low, mid);
5 C ⇑ MergeSort(A, mid + 1, high);
6 return MergeTwo(B, C);
7 end
8 else
9 return A;

10 end

Now, we merge the two sorted subarrays to get the sorted version of the original array. Let us first look at the
sequential time complexity. We have the following recurrence

T (n) = 2T (n/2) + O(n); T (1) = O(1)

Solving this recurrence, we get the sequential time complexity as T (n) = O(n log n).

77

78 CHAPTER 9. DIVIDE AND CONQUER

9.3 The Master Theorem
The Master Theorem provides a method for solving recurrence relations of the form:

T (n) = aT
(n

b

)
+ O(nc)

where:
• a ↗ 1 is the number of subproblems,
• b > 1 is the factor by which the problem size is reduced,
• O(nc) (with c ↗ 0) is the cost of work done outside the recursive calls.

The time complexity is given by:

T (n) =

O(nlogb a) if c < log
b

a

O(nc log n) if c = log
b

a

O(nc) if c > log
b

a

Proof of Correctness
We prove the Master Theorem using recursion tree expansion.

Step 1: Expand the Recursion
T (n) = aT (n/b) + O(nc)

= a

aT (n/b2) + O((n/b)c)

+ O(nc)

= a2T (n/b2) + O(a(n/b)c) + O(nc)
For k levels:

T (n) = akT (n/bk) +
k→1∑

i=0
O(ai(n/bi)c)

The sum is:
k→1∑

i=0
ai(n/bi)c = nc

k→1∑

i=0

(a

bc

)i

Step 2: Stopping Condition
The recursion stops when n/bk = 1, so k = log

b
n:

T (n) = alogb nT (1) + O

nc

logb n→1∑

i=0

(a

bc

)i

Since alogb n = nlogb a and T (1) = O(1), the first term is O(nlogb a).

Step 3: Analyze the Sum
For r = a/bc:

• If c < log
b

a, then r > 1, the sum is O(nlogb a), and T (n) = O(nlogb a).
• If c = log

b
a, then r = 1, the sum is O(log n), and T (n) = O(nc log n).

• If c > log
b

a, then r < 1, the sum is O(nc), and T (n) = O(nc).

9.3. THE MASTER THEOREM 79

Example 1: Merge Sort (Case 2)
T (n) = 2T (n/2) + O(n)

a = 2, b = 2, c = 1. Since log2 2 = 1 = c, case 2 applies:

T (n) = O(n log n)

Example 2: Binary Search (Case 1)
T (n) = T (n/2) + O(1)

a = 1, b = 2, c = 0. Since log2 1 = 0 = c, case 2 applies (noting O(n0) = O(1)):

T (n) = O(log n)

Example 3: Strassen’s Matrix Multiplication (Case 1)
T (n) = 7T (n/2) + O(n2)

a = 7, b = 2, c = 2. Since log2 7 ¬ 2.81 > 2, case 1 applies:

T (n) = O(n2.81)

Example 4: Karatsuba’s Algorithm (Case 1)
T (n) = 3T (n/2) + O(n)

a = 3, b = 2, c = 1. Since log2 3 ¬ 1.58 > 1, case 1 applies:

T (n) = O(n1.58)

Example 5: (Case 3)
T (n) = 2T (n/2) + O(n2)

a = 2, b = 2, c = 2. Since log2 2 = 1 < 2, case 3 applies. Thus:

T (n) = O(n2)

Additional Examples
(a) T (n) = 2T (n/2) + O(n2)
a = 2, b = 2, c = 2. Since log2 2 = 1 < 2, case 3 applies.

T (n) = O(n2)

(b) T (n) = 9T (n/3) + O(n)
a = 9, b = 3, c = 1. Since log3 9 = 2 > 1, case 1 applies:

T (n) = O(n2)

(c) T (n) = T (2n/3) + O(1)
a = 1, b = 3/2, c = 0. Since log3/2 1 = 0 = c, case 2 applies:

T (n) = O(log n)

80 CHAPTER 9. DIVIDE AND CONQUER

9.4 Nearest Neighbors in the Euclidean Space
We are given n points in the two-dimensional Euclidean space. Our goal is to find a pair of points with the smallest
distance between them. That is, determine two points (pi, pj) such that the Euclidean distance between them is
minimized:

d(pi, pj) =

(xi → xj)2 + (yi → yj)2

The easiest algorithm would be to compute the distance between every pair of points and choose a pair with the
least distance. This approach requires O(n2) sequential time. Our goal is to reduce the sequential time complexity
for this problem.

The divide-and-conquer approach for this problem is as follows. We divide the set of points into two sets S1 and
S2. Suppose that we have the nearest neighbors in S1 and S2. Now, if we had the nearest neighbors such that one
point is in S1 and the second point is in S2, then we simply have to choose the smallest of these three distances:
nearest neighbors in S1, nearest neighbors in S2, and the nearest neighbors in across the partition. Suppose the
distance of the nearest neighbors in S1, or in S2 is ϱ. Then, we only need to consider nearest neighbors across the
partition if they are closer than ϱ. Let Sy be the set of points within ϱ of the dividing line sorted in the y-coordinate.
We claim that if s, s↑

′ S are such that d(s, s↑) < ϱ, then s and s↑ are within 15 positions of each other in the sorted
list S. Let L be the vertical line that splits the set of points based on x-coordinate. We consider boxes of size ϱ/2
around L. We first show that there cannot be two points within a box. The largest distance within a box is

∀
2(ϱ/2).

This is equal to ϱ/
∀

2 which is less than ϱ.
We next claim that there cannot be two points that are sixteen positions apart in Sy and still have distance less

than ϱ. Since the points are sixteen positions apart and at most one point in each box, we get that there are at least
three rows of boxes between these two points. However, this means that the distance between them is at least 3 ∋ ϱ/2
which is greater than ϱ.

Hence, it is su!cient to consider points that are at most 15 positions apart in Sy.

Algorithm Closest-Pair: Closest Pair of Points
Input: Set of n points P in 2D space
Output: The closest pair of points

1 Function ClosestPair(P):
2 if n ⇒ 3 then
3 return BruteForce(P) // Base case: use brute-force for small input
4 end
5 Sort P by x-coordinate
6 Split P into left (PL) and right (PR) halves
7 (p1, p2) ⇑ ClosestPair(PL)
8 (p3, p4) ⇑ ClosestPair(PR)
9 ϱ ⇑ min(d(p1, p2), d(p3, p4))

10 S ⇑ points within ϱ of the dividing line
11 Sort S by y-coordinate
12 for each point p in S do
13 for each of the next 15 points q do
14 if d(p, q) < ϱ then
15 Update ϱ and closest pair
16 end
17 end
18 end
19 return closest pair

Consider the following set of points:

P = {(1, 2), (3, 7), (5, 4), (8, 9), (9, 6), (10, 3)}

9.5. COUNTING INVERSIONS IN AN ARRAY USING DIVIDE AND CONQUER 81

Now the algorithm can be summarized as:
1. Sorting: Arrange by x-coordinate: [(1, 2), (3, 7), (5, 4), (8, 9), (9, 6), (10, 3)]
2. Divide: Split into two halves:

PL = [(1, 2), (3, 7), (5, 4)]
PR = [(8, 9), (9, 6), (10, 3)]

3. Recursive Closest Pair: - Left half: Closest pair is (1, 2) and (5, 4) with d = 4.47. - Right half: Closest pair is
(9, 6) and (10, 3) with d = 3.16.
4. Combine Step: - Points near the vertical dividing line: are (5, 4), (8, 9), (9, 6). - Checking only points within
ϱ = 3.16:
- (5, 4) and (9, 6) have d = 4.47 (not better).
- (8, 9) and (9, 6) have d = 3.16 (same as right half).
- (5, 4) and (9, 6) have d = 2.24 (new minimum).
5. Final Output: (5, 4) and (9, 6) with distance 2.24.

The time complexity is as follows. For sorting the points, we spend O(n log n) time. To recursively solving
subproblems, we use O(n log n) time. For checking points in the strip we spend O(n) time. Thus, the overall time
complexity is O(n log n).

9.5 Counting Inversions in an Array using Divide and Conquer
Given an array A[1 . . . n], an inversion is a pair of indices (i, j) such that i < j and A[i] > A[j]. The goal is to count
the total number of inversions in the array e!ciently. A brute-force approach iterates through all pairs and checks
if A[i] > A[j], requiring O(n2) time. Using Merge Sort with an additional counting step, we can solve this problem
in O(n log n) time.

We modify the Merge Sort algorithm to count inversions e!ciently: (1) Recursively count inversions in the left
and right halves. (2) Count the number of inversions across the two halves while merging. (3) Sum up all these
counts.

Input: Array A of size n
Output: Total number of inversions

1 Function CountInversions(A, left, right):
2 if left ↗ right then
3 return 0 // Base case: single element has no inversions
4 end
5 mid ⇑ (left + right)/2
6 invLeft ⇑ CountInversions(A, left, mid)
7 invRight ⇑ CountInversions(A, mid + 1, right)
8 invMerge ⇑ MergeAndCount(A, left, mid, right)
9 return invLeft + invRight + invMerge

10 Function MergeAndCount(A, left, mid, right):
// left as an exercise

Consider the array:

A = [8, 4, 2, 1]

Step-by-step inversion count:

• Left half [8, 4]: 1 inversion (8, 4).

• Right half [2, 1]: 1 inversion (2, 1).

• Merging left and right halves:

82 CHAPTER 9. DIVIDE AND CONQUER

– (8, 2), (8, 1), (4, 2), (4, 1) contribute 4 more inversions.

Total inversions: 6.
It is easy to see that the merge sort recursion takes O(n log n) time. The Merge step inversion counting takes

O(n) time. Thus, the overall time complexity is O(n log n).

9.6 Planar Convex Hull
Suppose that we are given S, a set of points on a plane. The convex hull of S is the smallest convex polygon that
contains all points of S. The convex polygon can be described by the ordered list of points (in the clockwise direction)
that defines the boundary of the polygon. Our task is to compute the convex hull of S.

A

B

C

D

E

F

G

Figure 9.1: An example of Planar Convex Hull

Let points {p1, ..., pn} be sorted in their x-coordinate. For simplicity, we assume that x coordinates are unique.
It is easy to verify that the point with the smallest x-coordinate, p1 and the largest x-coordinate pn are always in the
convex hull. These two points also divide up the convex hull into two sets: the upper hull and the lower hull. The
upper hull consists of all points in the convex hull starting from p1 and ending at pn (but not including pn) in the
clockwise direction. The lower hull consists of all points starting from pn and ending at p1 (but not including p1).

To compute the convex hull of S, we divide the set of points into two sets S1 and S2 such that S1 has first n/2
points with smaller x coordinate and S2 has n/2 points with the larger x coordinate. Similar to mergesort, we can
compute convex hulls of S1 and S2. The only task left is to merge the convex hull of S1 and S2 to get the convex
hull of S. We first get the upper hulls of S1 and S2 and merge them to get the upper hull of S. This procedure can
be repeated for lower hulls. To merge upper hulls, we need to determine the upper common tangent of UH(S1) and
UH(S2). It is known that the upper common tangent can be determined sequentially in O(n) time. Hence, we get
the following recurrence:

T (n) ⇒ 2T (n/2) + O(n)

Solving this recurrence, we get T (n) = O(n log n).

9.7 Karatsuba’s Multiplication Algorithm
A notable application of divide and conquer approach is Karatsuba’s multiplication algorithm, which computes the
product of two large integers faster than the classical grade-school method. Introduced by Anatoly Karatsuba in
1960, it reduces the complexity from O(n2) to O(nlog2 3) ¬ O(n1.585), where n is the number of digits.

9.7. KARATSUBA’S MULTIPLICATION ALGORITHM 83

Left subset Right subset

Figure 9.2: Using Divide and Conquer for Planar Convex Hull

Consider multiplying two polynomials A(x) = a0 + a1x and B(x) = b0 + b1x, where coe!cients are single-digit
numbers (e.g., base-10 digits). Their product is:

C(x) = A(x) · B(x) = a0b0 + (a0b1 + a1b0)x + a1b1x2.

Naive multiplication computes each term (a0b0, a0b1, a1b0, a1b1), requiring 4 multiplications and 1 addition, yielding
O(n2) for degree-n polynomials.

Now, represent two n-digit numbers X = x1 · 10n/2 + x0 and Y = y1 · 10n/2 + y0 (assuming n is even), where
x1, x0, y1, y0 are n/2-digit numbers. Their product is:

X · Y = (x1 · 10n/2 + x0)(y1 · 10n/2 + y0) = x1y1 · 10n + (x1y0 + x0y1) · 10n/2 + x0y0,

akin to polynomial multiplication with x = 10n/2. Naive computation requires 4 multiplications of n/2-digit numbers,
suggesting O(n2) overall. Karatsuba’s algorithm optimizes this to 3 multiplications.

Karatsuba’s insight reduces the number of multiplications by computing: 1. p1 = x0y0, 2. p2 = x1y1, 3.
p3 = (x0 + x1)(y0 + y1).

Then:

X · Y = p2 · 10n + [p3 → (p1 + p2)] · 10n/2 + p1.

p3 = x0y0 + x0y1 + x1y0 + x1y1 = p1 + p2 + (x1y0 + x0y1), Thus, p3 → (p1 + p2) = x1y0 + x0y1.
This requires only 3 multiplications (p1, p2, p3) instead of 4, plus additional additions/subtractions, which are

O(n).
For n-digit numbers:

• Split: X = x1 · 10n/2 + x0, Y = y1 · 10n/2 + y0.

• Recursively compute p1, p2, p3 on n/2-digit numbers.

• Combine using the formula above.

The recurrence is:
T (n) = 3T (n/2) + O(n),

solving to T (n) = O(nlog2 3) via the Master Theorem (Case 1: a = 3, b = 2, log
b

a ¬ 1.585).

84 CHAPTER 9. DIVIDE AND CONQUER

Algorithm Karatsuba: Karatsuba’s Multiplication Algorithm
1 Input: Numbers X, Y , digit length n (power of 2)
2 Output: Product X · Y
3 if n = 1 then
4 return X · Y // base case: single-digit multiplication
5 end
6 x1 := ⇔X/10n/2

↖, x0 := X mod 10n/2 // high and low halves of X

7 y1 := ⇔Y/10n/2
↖, y0 := Y mod 10n/2 // high and low halves of Y

8 p1 := Karatsuba(x0, y0, n/2) // low product
9 p2 := Karatsuba(x1, y1, n/2) // high product

10 p3 := Karatsuba(x0 + x1, y0 + y1, n/2) // middle term helper
11 return p2 · 10n + [p3 → (p1 + p2)] · 10n/2 + p1

Consider X = 1234, Y = 5678, n = 4 (pad to power of 2 if needed).

Step 1: Divide
• 10n/2 = 102 = 100,

• x1 = ⇔1234/100↖ = 12, x0 = 1234 mod 100 = 34,

• y1 = ⇔5678/100↖ = 56, y0 = 5678 mod 100 = 78.

Step 2: Conquer (Recurse)
• p1 = 34 · 78 = 2652 (base case, n/2 = 2),

• p2 = 12 · 56 = 672 (base case),

• p3 = (34 + 12) · (78 + 56) = 46 · 134 = 6164 (base case).

Step 3: Combine
• p3 → (p1 + p2) = 6164 → (2652 + 672) = 6164 → 3324 = 2840,

• X · Y = 672 · 104 + 2840 · 102 + 2652 = 6720000 + 284000 + 2652 = 7006652.

Verification: 1234 · 5678 = 7006652, correct.
Karatsuba’s algorithm reduces multiplications from 4 to 3 per level, trading them for additions/subtractions.

For n = 2k:
- Levels: k = log2 n,
- Multiplications: 3k = 3log2 n = nlog2 3,
- Additions: O(n log n).

Compared to FFT (O(n log n)), Karatsuba is slower but avoids complex numbers, making it simpler for integer
arithmetic. The example shows its practicality for small numbers, scaling e!ciently for larger n.

9.8 Strassen’s Matrix Multiplication
Strassen’s algorithm is a divide-and-conquer approach to matrix multiplication that reduces the time complexity
from the naive O(n3) to O(nlog2 7) ¬ O(n2.807) for multiplying two n × n matrices. Unlike the standard method,
which performs 8 recursive multiplications for 2×2 submatrices, Strassen’s method uses 7 multiplications by cleverly
combining submatrix operations, trading some multiplications for additional additions.

9.8. STRASSEN’S MATRIX MULTIPLICATION 85

Algorithm Strassen: Strassen’s Matrix Multiplication
Data: A, B: n × n matrices, n a power of 2
Result: C: n × n matrix, C = A · B

1 if n = 1 then
2 C[1, 1] ⇑ A[1, 1] · B[1, 1] ;
3 Return C ;
4 end
5 Divide A into A11, A12, A21, A22 ; // Each n/2 × n/2
6 Divide B into B11, B12, B21, B22 ; // Each n/2 × n/2
7 M1 ⇑ Strassen(A11 + A22, B11 + B22) ;
8 M2 ⇑ Strassen(A21 + A22, B11) ;
9 M3 ⇑ Strassen(A11, B12 → B22) ;

10 M4 ⇑ Strassen(A22, B21 → B11) ;
11 M5 ⇑ Strassen(A11 + A12, B22) ;
12 M6 ⇑ Strassen(A21 → A11, B11 + B12) ;
13 M7 ⇑ Strassen(A12 → A22, B21 + B22) ;
14 C11 ⇑ M1 + M4 → M5 + M7 ;
15 C12 ⇑ M3 + M5 ;
16 C21 ⇑ M2 + M4 ;
17 C22 ⇑ M1 → M2 + M3 + M6 ;

18 Return C =

C11 C12
C21 C22

;

86 CHAPTER 9. DIVIDE AND CONQUER

Given two n×n matrices A and B, where n is a power of 2 (padded with zeros if necessary), Strassen’s algorithm
divides each matrix into four n/2 × n/2 submatrices:

A =

A11 A12
A21 A22

, B =

B11 B12
B21 B22

.

The product C = A · B is computed as:

C =

C11 C12
C21 C22

,

where traditionally:

• C11 = A11B11 + A12B21,

• C12 = A11B12 + A12B22,

• C21 = A21B11 + A22B21,

• C22 = A21B12 + A22B22.

This requires 8 multiplications and 4 additions of n/2×n/2 matrices. Strassen’s insight is to define 7 intermediate
products (M1 to M7) that allow the computation of C with fewer multiplications:

The recurrence relation for Strassen’s algorithm is:

T (n) = 7T (n/2) + O(n2),

where 7 is the number of recursive multiplications, and O(n2) accounts for the additions/subtractions of n/2 × n/2
matrices. Using the Master Theorem (a = 7, b = 2, f(n) = O(n2), log

b
a = log2 7 ¬ 2.807 > 2):

T (n) = O(nlog2 7) ¬ O(n2.807).

This is an improvement over the standard O(n3).

9.9 Summary
In this chapter, we have shown that many problems can be solved using the divide-and-conquer approach. The
following table summarizes some problem discussed in this chapter.

Problem Time Complexity Description
MergeSort O(n log n) Splits array and merges sorted halves.
Closest Pair O(n log n) Closest pair in 2D using strip merging.
Counting Inversions O(n log n) Counts inversions via MergeSort.
Convex Hull O(n log n) Computes smallest convex polygon.
Karatsuba Multiplication O(nlog2 3) Multiply two integers.
Strassen Matrix Multiplication O(nlog2 7) Multiply two matrices.

Table 9.1: Sequential Divide-and-Conquer Algorithms

9.10. BIBLIOGRAPHIC REMARKS 87

9.10 Bibliographic Remarks
The general divide-and-conquer strategy and the Master Theorem are thoroughly treated in [CLRS09]. Strassen’s
Matrix Multiplication (Section 10), first proposed by [Str69], reduces the complexity to O(n2.807). Karatsuba’s
Multiplication introduced by [KO62], achieves O(n1.585). The Closest Pair problem leverages a divide-and-conquer
approach from [SH75], optimized to O(n log n).

Counting Inversions via Mergesort, achieving O(n log n), is a standard application. The Planar Convex Hull
builds on [Gra79], with its O(n log n).

For further reading, we refer the readers to [Hoa62], [Str69], [KO62], [SH75], and [Gra79].

9.11 Problems
1. Solve the problem of computing the Fast-Fourier-Transform in using the divide and conquer approach.

88 CHAPTER 9. DIVIDE AND CONQUER

Chapter 10

Dynamic Programming

10.1 Introduction
Dynamic programming is applicable to problems where it is easy to set up a recurrence relation such that the solution
of the problem can be derived from the solutions of problems with smaller sizes. The problem can be solved using
recursion; however, recursion can result in many duplicate computations. By using memoization, we can avoid
recomputing previously computed values. We assume that the problem is solved using dynamic programming with
such bottom-up approach in this chapter.

The LLP algorithm views solving a problem as searching for an element in a finite distributive lattice [Bir67,
DP90, Gar15] that satisfies a given predicate B. The predicate is required to be lattice-linear. For all the problems
considered in this chapter, the longest subsequence problem, the optimal binary search tree problem, and the knapsack
problem, this is indeed the case.

There are also some key di"erences between dynamic programming (the bottom-up approach) and the LLP
algorithm. The usual dynamic programming problem seeks a structure that minimizes (or maximizes) some scalar.
For example, the longest subsequence problem asks for the subsequence in an array A[1..n] that maximizes the sum.
In contrast, the LLP algorithm seeks to minimize or maximize a vector. In the longest subsequence problem with
the LLP approach, we are interested in the longest subsequence in the array A[1..i] for each i ⇒ n that ends at
the index i. Thus, instead of asking for a scalar, we ask for the vector of size n. We get an array G[1..n] and the
solution to the original problem is just the maximum value in the array G. Similarly, the optimal binary search tree
problem [Knu71] asks for the construction of an optimal binary search tree on n symbols such that each symbol i
has probability pi of being searched. Our goal is to find the binary search tree that minimizes the expected cost of
search in the tree. The LLP problem seeks the optimal binary search tree for all ranges i . . . j instead of just one
range 1..n. Finally, the knapsack problem [HS74, IK75] asks for the maximum valued subset of items that can fit in a
knapsack so that the profit is maximized and the total weight of the knapsack is at most W . The LLP problem seeks
the maximum profit obtained by choosing items from 1..i and the total weight from 1..W . In all these problems,
traditionally we are seeking a single structure that optimizes a single scalar; whereas the LLP algorithm asks for a
vector. It turns out that in asking for an optimal vector instead of an optimal scalar, we do not lose much since
the existing solutions also end up finding the optimal solutions for the subproblems. The LLP algorithm returns a
vector G such that G[i] is optimal for i.

Yet another di"erence between dynamic programming and the LLP algorithm is that we can use the LLP
algorithm to solve a constrained version of the problem, so long as the constraint itself is lattice-linear. Suppose
that we are interested in the longest subsequence such that successive elements di"er by at least 2. It can be (easily)
shown that this constraint is lattice-linear. Hence, the LLP algorithm is applicable because we are searching for an
element that satisfies a conjunction of two lattice-linear predicates. Since the set of lattice-linear predicates is closed
under conjunction, the resulting predicate is also lattice-linear and the LLP algorithm is applicable. Similarly, the

89

90 CHAPTER 10. DYNAMIC PROGRAMMING

predicate that the symbol i is not a parent of symbol j is lattice-linear and the constrained optimal binary search
tree algorithm returns the optimal tree that satisfies the given constraint. In the Knapsack problem, it is easy to
solve the problem with the additional constraint that if the item x is included in the Knapsack, then the item y is
also included.

This chapter is organized as follows. Section 10.4 applies the LLP method to the longest subsequence problem.
Section 10.6 gives an LLP algorithm for the optimal binary search tree construction problem. Section 10.10 gives an
LLP algorithm for the knapsack problem.

10.2 Recursion vs Dynamic Programming
Dynamic programming is applicable to problems in which it is easy to set up a recurrence relation so that the solution
of the problem at hand can be derived from the solutions to problems with smaller sizes. One can solve the problem
using recursion; however, recursion may result in many duplicate computations.

As a simple example, suppose that our goal is to compute the Fibonacci number Fi such that it satisfies the
following conditions:

• F0 = 1

• F1 = 1

• Fi = Fi→1 + Fi→2 for i ↗ 2

A recursive algorithm is as follows:

F(n):
if n < 2:

return 1
else:

return F(n-1) + F(n-2)

If we use recursion to find F (4), we will call F (3) and F (2). Now, F (3) will call F (2) and F (1). Thus, F (2) is
being called twice.

Using memoization for dynamic programming, we avoid such duplicate computations. Memoization is used to
remember previously computed values.

An implementation using memoization is as follows:

F(n):
Table: map of (int, int)
if (n, v) exists in Table for n:

return v
else:

if n < 2:
return 1

else:
answer = F(n-1) + F(n-2)
Store (n, answer) in Table

Alternatively, instead of computing F (n) in a top-down manner, one can compute it in a bottom-up fashion.
Assume that we keep an array A such that A[i] will eventually store F (i). We start by filling in the array A from
the lower to higher indices. The recurrence relation guarantees that if we have two previous entries, we can fill any
entry A[i]. Thus, we can compute F (n) in O(n) time.

In this example, we had a simple array. For more non-trivial examples, we may have two-dimensional or three-
dimensional tables.

10.3. WEIGHTED INTERVAL SCHEDULING 91

10.3 Weighted Interval Scheduling

We revisit the problem of Interval Scheduling from Chapter 5. This time we consider a generalization of the problem
in which each interval is assigned weight denoting its priority. We would like to compute a subset of intervals such
that they are non-overlapping and have the maximum weight. In this generalization, we can no longer guarantee
that the interval that finishes earliest and starts after the last chosen interval is always selected.

As before, we assume that the intervals are sorted according to their finish times. Let Opt(j) denote the optimal
value that can be obtained from the intervals 1 . . . j. When j is zero, the set of intervals selected is empty and Opt(0)
is zero. Let p(j) be the largest interval before interval j which is disjoint from the interval j. The, we can set up
a recurrence relation as follows. The maximum value that we can obtain from the intervals 1 . . . j is equal to the
maximum of two values obtained by including the interval j, or by not including the interval j. If we include the
interval j, then the value obtained is wj + Opt(p(j)). If we do not include the interval j, then the value obtained is
Opt(j → 1). Thus, we have

Opt(j) = max{wj + Opt(p(j)), Opt(j → 1)}

This recurrence relation allows us to obtain the algorithm for weighted interval scheduling as shown in Fig.
WeightedIntervalSequential

Algorithm WeightedIntervalSequential: A Sequential Program for the Weighted Interval
Scheduling problem
1 var G: array[0 . . . n → 1] of 0..1 initially 0;
2 // jobs are sorted by their finish times
3 const s: array[0 . . . n → 1] of int; // start times
4 const f : array[0 . . . n → 1] of int ; // finish times
5 const w: array[0 . . . n → 1] of int; //weight of the interval
6 p: array[0 . . . n → 1] of int; //previous non-overlapping interval
7 opt: array[0 . . . n → 1] of int; //optimal value
8 // p[j] is the largest interval i such that f [i] < s[j]
9 p[0] := 0;

10 // Compute p[j] as the largest i such that f [i] < s[j]; // Since f is sorted, we can compute all p[j]
in O(log n) time using binary search

11 opt[0] := 0;
12 for int cur := 1 to n → 1 do
13 opt[cur] := opt[cur → 1];
14 if (w[cur] + opt[p[cur]] ↗ opt[cur → 1]) then
15 opt[cur] := w[cur] + opt[p[cur]]
16 G[cur] := 1;
17 else
18 G[cur] := 0;

The sequential algorithm takes O(n) time when p array is available. This time complexity is optimal. Computing
p array takes O(n log n) time.

92 CHAPTER 10. DYNAMIC PROGRAMMING

Consider the following 5 intervals, sorted by finish time:

Interval si fi wi

1 1 3 4
2 2 5 6
3 4 6 5
4 6 8 3
5 5 9 7

The intervals are shown in Fig. 10.1. We first compute p(i) (latest non-overlapping interval before i):
- p(1) = 0 (none before 1)
- p(2) = 0 (f1 = 3 > s2 = 2)
- p(3) = 1 (f1 = 3 < s3 = 4, f2 = 5 > s3)
- p(4) = 3 (f3 = 6 = s4, compatible)
- p(5) = 2 (f2 = 5 = s5, compatible)

Now, we compute OPT (i):
- OPT (0) = 0
- OPT (1) = max(OPT (0), w1 + OPT (p(1))) = max(0, 4 + 0) = 4 (select 1)
- OPT (2) = max(OPT (1), w2 + OPT (p(2))) = max(4, 6 + 0) = 6 (select 2)
- OPT (3) = max(OPT (2), w3 + OPT (p(3))) = max(6, 5 + 4) = 9 (select 1, 3)
- OPT (4) = max(OPT (3), w4 + OPT (p(4))) = max(9, 3 + 9) = 12 (select 1, 3, 4)
- OPT (5) = max(OPT (4), w5 + OPT (p(5))) = max(12, 7 + 6) = 13 (select 2, 5)

Time
1 2 3 4 5 6 7 8 9

1(4)

2(6)

3(5)

4(3)

5(7)

Figure 10.1: Weighted intervals (weights in parentheses) with optimal selection (thick lines).

10.4 Longest Increasing Subsequences
The Longest Increasing Subsequence (LIS) problem involves finding a subsequence of a given array of integers where
the elements are in strictly increasing order, and the subsequence is as long as possible. A subsequence is derived by
deleting zero or more elements from the original array without changing the order of the remaining elements.

For example, in the array [10, 9, 2, 5, 3, 7, 101, 18], one possible LIS is [2, 5, 7, 101] with length 4. The problem has
applications in data analysis, sequence alignment, and more. We present an iterative dynamic programming solution
to compute the LIS length e!ciently.

10.4. LONGEST INCREASING SUBSEQUENCES 93

Our problem can be stated as follows. Given an array A = [a1, a2, . . . , an] of n integers, find the length of the
longest subsequence [ai1 , ai2 , . . . , aik] such that:

i1 < i2 < · · · < ik and ai1 < ai2 < · · · < aik .

We use an iterative dynamic programming approach to solve the LIS problem. Define dp[i] as the length of the
longest increasing subsequence ending at index i (including ai).

The idea is to build the dp array iteratively by comparing each element with all previous elements.
• Initialize dp[i] = 1 for all i (each element is an LIS of length 1 by itself).
• For each i, check all j < i. If a[j] < a[i], update dp[i] as max(dp[i], dp[j] + 1).
• The length of the LIS is the maximum value in the dp array.

Algorithm LongestIncreasingSubsequence: Longest Increasing Subsequence (Iterative)
Input: Array A of n integers
Output: Length of the LIS

1 Initialize array dp[0 . . . n → 1] with all elements set to 1
2 for i = 1 to n → 1 do
3 for j = 0 to i → 1 do
4 if A[j] < A[i] then dp[i] = max(dp[i], dp[j] + 1)
5 end
6 end
7 return max(dp[0], dp[1], . . . , dp[n → 1])

dp[i] represents the longest increasing subsequence ending at A[i], considering all prior elements. By checking
all j < i, we ensure every possible subsequence ending at i is evaluated. The maximum dp[i] gives the overall LIS
length, as it captures the longest chain possible.

Consider the array A = [3, 10, 2, 1, 20]. We compute the LIS length step-by-step and visualize the process.

• A[0] = 3, dp[0] = 1 (base case).
• A[1] = 10, 3 < 10, dp[1] = max(1, 1 + 1) = 2.
• A[2] = 2, 3, 10 > 2, dp[2] = 1.
• A[3] = 1, 3, 10, 2 > 1, dp[3] = 1.
• A[4] = 20, 3 < 20, 10 < 20, 2 < 20, 1 < 20, dp[4] = max(1, 1 + 1, 2 + 1, 1 + 1, 1 + 1) = 3.

Final dp = [1, 2, 1, 1, 3], LIS length = max(dp) = 3. One LIS is [3, 10, 20].

3 10 2 1 20

1 2 1 1 3

A

dp

The highlighted dp[4] = 3 indicates the LIS length. Arrows show one possible LIS: [3, 10, 20].
The algorithm has two nested loops:

Outer loop: i from 1 to n → 1, O(n) iterations.
Inner loop: j from 0 to i → 1, up to O(n) iterations per i.

The total comparisons equal 0 + 1 + 2 + · · · + (n → 1) = (n→1)n

2 , which is O(n2).
Thus, the overall time complexity is O(n2). Space complexity is O(n) for the dp array.

94 CHAPTER 10. DYNAMIC PROGRAMMING

10.5 Longest Increasing Subsequence Using LLP Method
We are given an integer array as input. For simplicity, we assume that all entries are distinct. Our goal is find for
each index i the length of the longest increasing sequence that ends at i. For example, suppose the array A is {35
38 27 45 32}. Then, the desired output is {1 2 1 3 2}. The corresponding longest increasing subsequences are:
(35), (35, 38), (27), (35, 38, 45), (27, 32).

We can define a graph H with indices as vertices. For this example, we have five vertices numbered v1 to v5. We
draw an edge from vi to vj if i is less than j and A[i] is also less than A[j]. This graph is clearly acyclic as an edge
can only go from a lower index to a higher index. We use pre(j) to be the set of indices which have an incoming
edge to j. The length of the longest increasing subsequence ending at index j is identical to the length of the longest
path ending at j.

To solve the problem using LLP, we model it as a search for the smallest vector G that satisfies the constraint
B ↔ ∝j : G[j] ↗ 1 ≃ ∝j : G[j] ↗ max{G[i] + 1 | i ′ pre(j)}.

The underlying lattice we consider is that of all vectors of natural numbers less than or equal to the maximum
element in the lattice. A vector in this lattice is feasible if it satisfies B. We first show that the constraint B is
lattice-linear.

Lemma 10.1 The constraint B ↔ (∝j : G[j] ↗ 1) ≃ (∝j : G[j] ↗ max{G[i] + 1 | i ′ pre(j)}) is lattice-linear.

Proof: Since the predicate B is a conjunction of two predicates, it su!ces to show that each of them is lattice-linear.
The first conjunct is lattice linear because the constant function 1 is monotone. The second conjunct can be viewed
as a conjunction over all j. For a fixed j, the predicate G[j] ↗ max{G[i] + 1 | i ′ pre(j)} is lattice-linear.

Our goal is to find the smallest vector in the lattice that satisfies B. To ensure that no G[j] is updated more
than once, we introduce a boolean fixed for each index such that we update G[j] only when it is not fixed and all
its predecessors are fixed. We now have the Algorithm LLP-Longest-Increasing-Subsequence.

Algorithm LLP-Longest-Increasing-Subsequence: Finding the Longest Increasing Subse-
quence.
1 Pj : Code for thread j
2 input: A:array of int;
3 var G: array[1 . . . n] of int;
4 fixed: array[1 . . . n] of boolean;
5 init: G[j] = 1; fixed[j] := false;
6 pre(j) := {i ′ 1..j → 1|A[i] < A[j]};
7 forbidden: ¬fixed[j] ≃ (∝i ′ pre(j) : fixed[i]);
8 advance: G[j] := max{G[i] + 1 | i ′ pre(j)};
9 fixed[j] := true;

Let us now analyze the complexity of the algorithm. The sequential complexity is simple because we can maintain
the list of all vertices that are forbidden because all its predecessors are fixed. Once we have processed a vertex, we
never process it again. This is similar to a sequential algorithm of topological sort. In this case, we examine a vertex
exactly once only after all its predecessors are fixed. The time complexity of this algorithm is O(n2).

We now add lattice-linear constraints to the problem. Instead of the longest increasing subsequence, we may be
interested in the longest increasing subsequence that satisfies an additional predicate.

Lemma 10.2 All the following predicates are lattice linear.

1. For any j, G[j] is greater than or equal to the longest increasing subsequence of odd integers ending at j.

10.6. OPTIMAL BINARY SEARCH TREE 95

2. G[j] is greater than or equal to the longest increasing subsequence such that jth element in the subsequence
exceeds (j → 1)th element by at least k.

Proof:

1. Since lattice-linear predicates are closed under conjunction, it is su!cient to focus on a fixed j. If G[j] is less
than the length of the longest increasing subsequence of odd integers ending at j, then the index j is forbidden.
Unless j is increased the predicate can never become true.

2. We view this predicate as redrawing the directed graph H such that we draw an edge from vi to vj if i is less
than j and A[i] + k is less than or equal to A[j].

10.6 Optimal Binary Search Tree
The Optimal Binary Search Tree (OBST) problem involves constructing a binary search tree (BST) for n symbols
that minimizes the expected search cost, given the probability of each symbol’s occurrence. Each symbol i (ranging
from 0 to n → 1) has a probability p[i] of being searched, and these probabilities sum to 1, i.e.,

∑
n→1
i=0 p[i] = 1.

The objective is to arrange the symbols in a BST to minimize the total cost, defined as the sum of each symbol’s
probability multiplied by its depth, where the root has depth 0. For instance, given three symbols A, B, and C with
probabilities p = [0.4, 0.3, 0.3], an optimal BST might place A as the root to reduce the average search time. This
problem finds applications in areas like database indexing and compiler design, where e!cient search structures are
crucial. We present an iterative dynamic programming solution to compute the minimum cost.

Formally, given n symbols indexed from 0 to n → 1, each associated with probability p[i], and defining the sum
of probabilities from i to j as s(i, j) =

∑
j

k=i
p[k], the task is to construct a BST that minimizes the expected search

cost, expressed as Cost =
∑

n→1
i=0 p[i] · depth(i), where depth(i) represents the depth of symbol i in the tree.

To solve this, an iterative dynamic programming approach is employed. Two key arrays are defined: dp[i][j]
represents the minimum cost of a BST for symbols from i to j (inclusive), and s(i, j) denotes the sum of probabilities
from i to j, which serves as the cost increment at each level. The solution builds the dp table iteratively over
increasing lengths of subarrays. When considering a single symbol (j = i), the cost is simply dp[i][i] = p[i], reflecting
a leaf node’s contribution. For larger ranges, each symbol r from i to j is tested as the root, combining the left subtree
[i, r →1] and right subtree [r +1, j]. The total cost for a root r is computed as dp[i][r →1]+dp[r +1][j]+s(i, j), where
s(i, j) accounts for the increased depth of all symbols in the subtree. To optimize, s(i, j) is precomputed iteratively.

Here is the algorithm in pseudocode:
The correctness of this approach stems from the fact that dp[i][j] computes the minimum cost by exhaustively

trying each possible root r and combining the optimal costs of the resulting subproblems. The term s(i, j) ensures
that the cost reflects the depth increase for all symbols in the subtree. By filling the table bottom-up, from single
symbols to the full range, the iterative method guarantees that dp[0][n → 1] yields the optimal cost.

Consider an example with n = 4 symbols A, B, C, and D, with probabilities p = [0.25, 0.2, 0.3, 0.25]. The
computation proceeds as follows, and key steps are highlighted using itemization for clarity:

• For length l = 0, base cases are set: dp[0][0] = 0.25, dp[1][1] = 0.2, dp[2][2] = 0.3, dp[3][3] = 0.25, with
corresponding s[i][i] = p[i].

• For l = 1, consider i = 0, j = 1: s[0][1] = 0.25 + 0.2 = 0.45. Testing r = 0 gives 0.45 + 0 + 0.2 = 0.65, r = 1
gives 0.45 + 0.25 + 0 = 0.7, so dp[0][1] = 0.65 (root A). Similarly, dp[1][2] = 0.65 (root C), dp[2][3] = 0.65 (root
C).

• For l = 2, consider i = 0, j = 2: s[0][2] = 0.45 + 0.3 = 0.75. Testing r = 0 gives 0.75 + 0 + 0.65 = 1.4, r = 1
gives 0.75 + 0.25 + 0.3 = 1.3, r = 2 gives 0.75 + 0.65 + 0 = 1.4, so dp[0][2] = 1.3 (root B).

96 CHAPTER 10. DYNAMIC PROGRAMMING

Algorithm Optimal-Binary-Search-Tree: Optimal Binary Search Tree (Iterative)
Input: Array p[0 . . . n → 1] of probabilities
Output: Minimum cost of OBST

1 Initialize dp[0 . . . n → 1][0 . . . n → 1] and s[0 . . . n → 1][0 . . . n → 1] with 0
2 for i = 0 to n → 1 do
3 dp[i][i] = p[i]
4 s[i][i] = p[i]
5 end
6 for l = 1 to n → 1 do
7 for i = 0 to n → 1 → l do
8 j = i + l
9 s[i][j] = s[i][j → 1] + p[j]

10 dp[i][j] = ↙

11 for r = i to j do
12 left_cost = 0
13 right_cost = 0
14 if r > i then left_cost = dp[i][r → 1]
15 if r < j then right_cost = dp[r + 1][j]
16 cost = s[i][j] + left_cost + right_cost
17 dp[i][j] = min(dp[i][j], cost)
18 end
19 end
20 end
21 return dp[0][n → 1]

10.7. OPTIMAL BINARY SEARCH TREE WITH LLP 97

• For l = 3, i = 0, j = 3: s[0][3] = 0.75 + 0.25 = 1.0. Testing r = 0 gives 1.0 + 0 + 1.15 = 2.15 (using
dp[1][3] = 1.15), r = 1 gives 1.0 + 0.25 + 0.65 = 1.9, r = 2 gives 1.0 + 0.65 + 0.25 = 1.9, r = 3 gives
1.0 + 1.3 + 0 = 2.3, so dp[0][3] = 1.9 (root B or C).

The minimum cost is dp[0][3] = 1.9, with B as a possible optimal root. The resulting optimal BST can be
visualized as follows:

B(0.2)

A(0.25) C(0.3)

D(0.25)

Cost = 0.25 · 1 + 0.2 · 0 + 0.3 · 1 + 0.25 · 2 = 1.9

In this tree, B is the root at depth 0, A and C are at depth 1, and D is at depth 2, resulting in a cost of
0.25 · 1 + 0.2 · 0 + 0.3 · 1 + 0.25 · 2 = 1.9, matching dp[0][3].

To analyze the time complexity, consider the three nested loops in the algorithm. The outer loop iterates over
lengths l from 1 to n → 1, which takes O(n) time. For each l, the middle loop iterates over starting indices i from
0 to n → 1 → l, also O(n) per length. Within these, the inner loop tests each root r from i to j, which can be up
to O(n) iterations. This results in a total of O(n) · O(n) · O(n) = O(n3) operations. Precomputing s[i][j] requires
O(n2) time, as each entry builds on the previous, but this is dominated by the main computation. The overall time
complexity is thus O(n3), with a space complexity of O(n2) for the dp and s tables.

In conclusion, this iterative dynamic programming solution constructs an OBST with the minimum expected
search cost in O(n3) time.

10.7 Optimal Binary Search Tree with LLP
Suppose that we have a fixed set of n symbols called keys with some associated information called values. Our goal
is to build a dictionary based on binary search tree out of these symbols. The dictionary supports a single operation
search which returns the value associated with the the given key. We are also given the frequency of each symbol as
the argument for the search query. The cost of any search for a given key is given by the length of the path from the
root of the binary search tree to the node containing that key. Given any binary search tree, we can compute the
total cost of the tree for all searches. We would like to build the binary search tree with the least cost.

Let the frequency of key i being searched is pi. We assume that keys are sorted in the increasing order of symbols.
Our algorithm is based on building progressively bigger binary search trees. The main idea is as follows. Suppose
symbol k is the root of an optimal binary search tree for symbols in the range [i..j]. The root k divides the range into
three parts – the range of indices strictly less than k, the index k, and the range of indices strictly greater than k.
The left or the right range may be empty. Then, the left subtree and the right subtree must themselves be optimal
for their respective ranges. Let G[i, j] denote the least cost of any binary search tree built from symbols in the range
i..j. We use the symbol s(i, j) as the sum of all frequencies from the symbol i to j, i.e.,

s(i, j) =
j∑

k=i

pk

For convenience, we let s(i, j) equal to 0 whenever i > j, i.e., the range is empty.

98 CHAPTER 10. DYNAMIC PROGRAMMING

We now define a lattice linear constraint on G[i, j]. Let i ⇒ k ⇒ j. Consider the cost of the optimal tree such
that symbol k is at the root. The cost has three components: the cost of the left subtree if any, the cost of the search
ending at this node itself and the cost of search in the right subtree. The cost of the left subtree is

G[i, k → 1] + s(i, k → 1)

whenever i < k. The cost of the node itself is s(k, k). The cost of the right subtree is

G[k + 1, j] + s(k + 1, j)

Combining these expressions, we get

G[i, j] = min
i↓k↓j

(G[i, k → 1] + s(i, j) + G[k + 1, j])

This is also the least value of G[i, j] such that

G[i, j] ↗ min
i↓k↓j

(G[i, k → 1] + s(i, j) + G[k + 1, j])

We now show that the above predicate is lattice-linear.
Lemma 10.3 The constraint B ↔ ∝i, j : G[i, j] ↗ mini↓k↓j(G[i, k → 1] + s(i, j) + G[k + 1, j]) is lattice-linear.
Proof: Suppose that B is false, i.e., ⇓i, j : G[i, j] < mini↓k↓j(G[i, k → 1] + s(i, j) + G[k + 1, j]). This means that
there exists i, j, k with i ⇒ k ⇒ j such that G[i, j] < (G[i, k → 1] + s(i, j) + G[k + 1, j]). This means the the index
(i, j) is forbidden and unless G[i, j] is increased, the predicate B can never become true irrespective of how other
components of G are increased.

We now have our LLP-based algorithm for Optimal Binary Search Tree as Algorithm LLP-OptimalBinarySearchTree.
The program has a single variable G. It is initialized so that G[i, i] equals p[i] and G[i, j] equals zero whenever i is
not equal to j. The algorithm advances G[i, j] whenever it is smaller than mini↓k↓j G[i, k → 1] + s(i, j) + G[k + 1, j].
In Algorithm LLP-OptimalBinarySearchTree, we have used the always clause as a macro that uses s(i, j) as a short
form for

∑
j

k=i
p[k].

Algorithm LLP-OptimalBinarySearchTree: Finding An Optimal Binary Search Tree
1 Pi,j : Code for thread (i, j)
2 input: p:array of real;// frequency of each symbol
3 init: G[i, j] = 0 ∝i ↑= j;
4 G[i, i] = p[i];
5 always: s(i, j) =

∑j
k=i p[k]

6 ensure:
7 G[i, j] ↗ mini↗k↗j G[i, k → 1] + s(i, j) + G[k + 1, j]
8 priority: (j → i)

Although, the above algorithm will give us correct answers, it is not e!cient as it may update G[i, j] before
G[i, k] and G[k, j] for i ⇒ k ⇒ j have stabilized. However, the following scheduling strategy ensures that we update
G[i, j] at most once. We check for whether G[i, j] is forbidden in the order of j → i. Hence, initially all G[i, j] such
that j = i + 1 are updated. This is followed by all G[i, j] such that j = i + 2, and so on. We capture this scheduling
strategy with the priority statement. We pick G[i, j] to update such that (j → i) have minimal values. Of course, our
goal is to compute G[1, n]. With the above strategy of updating G[i, j], we get that G[i, j] is updated at most once.
Since there are O(n2) possible values of G[i, j] and each takes O(n) work to update, we get the work complexity of
O(n3).

We now consider the constrained versions of the problem.

10.8. CHAIN MATRIX MULTIPLICATION 99

Lemma 10.4 All the following predicates are lattice linear.

1. Key x is not a parent for any key.

2. The di!erence in the sizes of the left subtree and the right subtree is at most 1.

Proof:

1. This requirement changes the ensure predicate to G[i, j] ↗ mini↓k↓j,k ↔=x G[i, k → 1] + s(i, j) + G[k + 1, j]. The
right hand side of the constraint continues to be monotonic and therefore it is lattice linear.

2. This requirement changes the ensure predicate to G[i, j] ↗ mini↓k↓j,|k→1→i,j→k→1|↓1 G[i, k →1]+s(i, j)+G[k +
1, j]. This change simply restricts the values of k, and the right hand side continues to be monotonic.

10.8 Chain Matrix Multiplication
A problem very similar to Optimal Binary Search tree is that of constructing an optimal way of multiplying a
chain of matrices. Since matrix multiplication is associative, the product of matrices (M1 ∋ M2) ∋ M3 is equal to
M1 ∋ (M2 ∋M3). However, depending upon the dimensions of the matrices, the computational e"ort may be di"erent.
For example, consider the dimensions (30 times 10), (10 times 30), (30 times 2) results in a matrix of size 30 times
2. If we multiply the first two matrices using the standard simple matrix multiplication, we get 30 times 10 times
30 = 9000 operations to get 30 times 30 matrix. Multiplying M3 requires 1800 additional operations. If we multiply
M2 and M3 first, then we require 600 operations first. Multiplying M1 adds 30 × 10 × 2 = 600 additional operations.
We let the dimension of matrix Mi be mi→1 × mi. Note that this keep the matrix product well-defined because
the dimension of matrix Mi+1 would be mi × mi+1 and the product Mi × Mi+1 is well-defined. We can view any
evaluation of a chain as a binary tree where the intermediate notes are the multiplication operation and the leaves
are the matrices themselves. Suppose, our goal is to compute the optimal binary tree for multiplying matrices in
the range Mi . . . Mj . Borrowing ideas from the previous section, we let G[i, j] denote the optimal cost of computing
the product of matrices in the range Mi . . . Mj . Suppose that this product is broken into products of Mi . . . Mk and
Mk+1 . . . Mj and then multiplication of these two matrices. We can compute the cost of this tree as

G[i, k] + G[k + 1, j] + mi→1mkmj

Then, we have the following predicate on G.

G[i, j] ↗ min
i↓k<j

(G[i, k] + mi→1mkmj + G[k + 1, j]

The reader will notice the similarity with the optimal binary search tree problem and this problem and the same
algorithm can be adapted to solve this problem.

10.9 Segmented Least Squares Problem
The Segmented Least Squares problem involves fitting a set of n points in the x-y plane with a sequence of straight
line segments. The goal is to minimize the total sum of squared errors between the points and their corresponding
line segments, plus a penalty C for each segment used. This balances fitting accuracy with model simplicity. We
present a dynamic programming solution, followed by an example with illustrations.

Given n points p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn), sorted by increasing x-coordinates (x1 < x2 <
· · · < xn), we aim to:

• Partition the points into segments.

• For each segment, compute the least squares line that minimizes the sum of squared errors.

100 CHAPTER 10. DYNAMIC PROGRAMMING

• Minimize the total cost: sum of squared errors across all segments plus C times the number of segments.

For points pi, pi+1, . . . , pj , the least squares line minimizes:

eij =
j∑

k=i

(yk → (axk + b))2,

where a and b are the slope and intercept of the line, computed as:

a = n
∑

(xkyk) →
∑

xk

∑
yk

n
∑

x2
k

→ (
∑

xk)2 , b =
∑

yk → a
∑

xk

n
,

for k = i to j, and n = j → i + 1.
The total cost for a segmentation is:

Cost =
∑

segments
eij + C · (number of segments).

Define OPT (j) as the minimum cost of segmenting points p1, p2, . . . , pj . The recurrence relation is:

OPT (j) = min
0↓i<j

[OPT (i) + ei+1,j + C] ,

where:

• OPT (0) = 0 (base case: no points),

• ei+1,j is the error of fitting a single line to points pi+1 to pj ,

• C is the penalty for adding a new segment starting at pi+1.

To compute OPT (j) for all j = 1 to n:

1. Precompute eij for all i, j pairs (O(n3) time with O(n2) space).

2. For each j, evaluate the minimum over all i < j (O(n) per j).

3. Store the optimal i for each j to reconstruct the segments.

Total time complexity: O(n3), space complexity: O(n2).

10.9. SEGMENTED LEAST SQUARES PROBLEM 101

Algorithm Segmented-Least-Squares: Segmented Least Squares
Input: Points P = {(x1, y1), . . . , (xn, yn)}, penalty C
Output: Optimal cost OPT (n), segment boundaries

1 // Precompute error eij for all segments;
2 for i = 1 to n do
3 for j = i to n do
4 Compute eij using least squares fit for pi to pj ;
5 end
6 end
7 // Initialize DP array;
8 OPT [0] = 0;
9 for j = 1 to n do

10 OPT [j] = ↙;
11 for i = 0 to j → 1 do
12 cost = OPT [i] + ei+1,j + C;
13 if cost < OPT [j] then
14 OPT [j] = cost;
15 last[j] = i // Store the last break point;
16 end
17 end
18 end
19 // Reconstruct segments;
20 segments = [];
21 j = n;
22 while j > 0 do
23 i = last[j];
24 Add segment from pi+1 to pj to segments;
25 j = i;
26 end
27 return OPT [n], segments

Consider n = 6 points: (1, 1), (2, 2), (3, 4), (4, 3), (5, 2), (6, 1), with penalty C = 1.
Compute eij for key segments (simplified for brevity):

• e1,2: Line for (1, 1), (2, 2), y = x, error = 0.

• e1,3: Line for (1, 1), (2, 2), (3, 4), y = 1.5x → 0.5, error = 0.5.

• e3,4: Line for (3, 4), (4, 3), y = →x + 7, error = 0.

• e4,6: Line for (4, 3), (5, 2), (6, 1), y = →x + 7, error = 0.

• e1,6: Line for all points, y = 2.2 → 0.2x, error = 7.6.

• OPT (0) = 0,

• OPT (1) = e1,1 + C = 0 + 1 = 1,

• OPT (2) = min(OPT (0) + e1,2 + C, OPT (1) + e2,2 + C) = min(0 + 0 + 1, 1 + 0 + 1) = 1 (segment 1 → 2),

• OPT (3) = min(OPT (0) + e1,3 + C, OPT (2) + e3,3 + C) = min(0 + 0.5 + 1, 1 + 0 + 1) = 1.5 (segment 1 → 3),

• OPT (4) = min(OPT (0)+e1,4+C, OPT (2)+e3,4+C, OPT (3)+e4,4+C) = min(2.67+1, 1+0+1, 1.5+0+1) = 2
(segments 1 → 2, 3 → 4),

• OPT (5) = min(. . .) = 3 (segments 1 → 2, 3 → 4, 5 → 5),

102 CHAPTER 10. DYNAMIC PROGRAMMING

• OPT (6) = min(OPT (0)+e1,6+C, OPT (2)+e3,6+C, OPT (3)+e4,6+C) = min(7.6+1, 1+1+1, 1.5+0+1) = 2.5
(segments 1 → 3, 4 → 6).

Optimal solution: Segments 1 → 3 (y = 1.5x → 0.5) and 4 → 6 (y = →x + 7), cost = 0.5 + 0 + 2C = 2.5.

x

y

1 2 3 4 5 6

1

2

3

4

(1, 1)

(2, 2)

(3, 4)

(4, 3)

(5, 2)

(6, 1)

Figure 10.2: Input points (1, 1), (2, 2), (3, 4), (4, 3), (5, 2), (6, 1) in the x-y plane.

x

y

1 2 3 4 5 6

1

2

3

4

(1, 1)

(2, 2)

(3, 4)

(4, 3)

(5, 2)

(6, 1)

y
=

1.5
x

→
0.5

y =
→
x +

7

Figure 10.3: Segmented least squares solution: segments 1 → 3 (y = 1.5x → 0.5) and 4 → 6 (y = →x + 7).

10.10 Knapsack Problem
We are given n items with weights w1, w2, . . . , wn and values v1, v2, . . . , vn. We are also given a knapsack that has a
capacity of W . Our goal is to determine the subset of items that can be carried in the knapsack and that maximizes
the total value. The standard dynamic programming solution is based on memoization of the following dynamic
programming formulation [Vaz01, DPW10]. Let G[i, w] be the maximum value that can be obtained by picking
items from 1..i with the capacity constraint of w. Then, G[i, w] = max(G[i → 1, w → wi] + vi, G[i → 1, w]). The first
argument of the max function corresponds to the case when the item i is included in the optimal set from 1..i, and

10.10. KNAPSACK PROBLEM 103

the second argument corresponds to the case when the item i is not included and hence the entire capacity can be
used for the items from 1..i → 1. If wi > w, then the item i can never be in the knapsack and can be skipped. The
base cases are simple. The value of G[0, w] and G[i, 0] is zero for all w and i. Our goal is to find G[n, W]. By filling
up the two dimensional array G for all values of 0 ⇒ i ⇒ n and 0 ⇒ w ⇒ W , we get an algorithm with time complexity
O(nW).

The following algorithm computes G[n, W] and tracks selected items:

Algorithm Knapsack Algorithm: 0/1 Knapsack Dynamic Programming
Input: Weights w[1..n], Values v[1..n], Capacity W
Output: Maximum value and selected items

1 for w = 0 to W do G[0, w] ⇑ 0 ;
2 for i = 0 to n do G[i, 0] ⇑ 0 ;
3 for i = 1 to n do
4 for w = 1 to W do
5 if wi > w then G[i, w] ⇑ G[i → 1, w] ;
6 else G[i, w] ⇑ max(G[i → 1, w], G[i → 1, w → wi] + vi) ;
7 end
8 end
9 selected ⇑ ∅;

10 i ⇑ n;
11 w ⇑ W ;
12 while (i > 0) ≃ (w > 0) do
13 if G[i, w] ↑= G[i → 1, w] then
14 selected ⇑ selected ∃ {i};
15 w ⇑ w → wi;
16 end
17 i ⇑ i → 1;
18 end
19 return G[n, W], selected;

Consider n = 4 items with weights w = [2, 3, 4, 5], values v = [3, 4, 5, 6], and capacity W = 8. The dynamic
programming table G[i, w] is computed as follows (key steps shown):

• G[0, w] = 0 for w = 0 to 8.
• i = 1, w1 = 2, v1 = 3:

– w = 2: G[1, 2] = max(0, 3) = 3
– w = 8: G[1, 8] = 3

• i = 2, w2 = 3, v2 = 4:

– w = 5: G[2, 5] = max(3, 7) = 7
– w = 8: G[2, 8] = 7

• i = 3, w3 = 4, v3 = 5:

– w = 8: G[3, 8] = max(7, 9) = 9

• i = 4, w4 = 5, v4 = 6:

– w = 8: G[4, 8] = max(9, 9) = 9

Final value: G[4, 8] = 9. Backtracking: - G[4, 8] = G[3, 8], item 4 not included. - G[3, 8] > G[2, 8], item 3
included (w = 8 → 4 = 4). - G[2, 4] > G[1, 4], item 2 included (w = 4 → 3 = 1). - G[1, 1] = 0, item 1 not included.

Selected items: {2, 3}, weight = 3 + 4 = 7 ⇒ 8, value = 4 + 5 = 9.

104 CHAPTER 10. DYNAMIC PROGRAMMING

10.11 Knapsack Using LLP Formulation
We can model this problem using lattice-linear predicates as follows. We model the feasibility as G[i, w] ↗ max(G[i→

1, w → wi] + vi, G[i → 1, w]) for all i, w > 0 and wi ⇒ w. Also, G[i, w] = 0 if i = 0 or w = 0. Our goal is to find the
minimum vector G that satisfies feasibility.

Lemma 10.5 The constraint B ↔ ∝i, w : G[i, w] ↗ max(G[i→1, w →wi]+vi, G[i→1, w]) for wi ⇒ w is lattice-linear.

Proof: If the predicate B is false, there exists i and w such that G[i, w] < max(G[i → 1, w → wi] + vi, G[i → 1, w]).
The value G[i, w] is forbidden; unless G[i, w] is increased the predicate can never become true.

Algorithm LLP-Knapsack: Finding An Optimal Solution to the Knapsack Problem
1 Pi,j : Code for thread (i, j)
2 input: w, v:array[1..n] of int;// weight and value of each item
3 var: G:array[0 . . . n, 0 . . . W] of int;
4 init: G[i, j] = 0 if (i = 0) ⇐ (j = 0);
5 ensure:
6 G[i, j] ↗ max{G[i → 1, j → wi] + vi, G[i → 1, j]} if j ↗ wi

7 ↗ G[i → 1, j], otherwise.

Algorithm LLP-Knapsack updates the value of G[i, j] based only on the values of G[i → 1, .]. Furthermore, G[i, j]
is always at least G[i → 1, j]. Based on this observation, we can simplify the algorithm as follows. We consider the
problem of adding just one item to the knapsack given the constraint that the total weight does not exceed W . We
maintain the list of all optimal configurations for each weight less than W .

Algorithm LLP-IncrKnapsack2: Finding An Optimal Solution to the Incremental Knapsack
Problem
1 Pj : Code for thread j
2 input: w, v: int;// weight and value of the next item
3 C: array[0 . . . W] of int;
4 var: G:array[0 . . . W] of int;
5 init: ∝j : G[j] = C[j];
6 ensure:
7 G[j] ↗ C[j → w] + v if j ↗ w

The incremental algorithm can be implemented in O(1) parallel time using O(W) processors as shown in Fig.
LLP-IncrKnapsack2. Each processor j can check whether G[j] needs to be advanced.

We can now invoke the incremental Knapsack algorithm as Algorithm Knapsack2.
We now add some lattice-linear constraints to the Knapsack problem. In many applications, some items may be

related and the constraint xa ↘ xb means that if the item xa is included in the Knapsack then the item xb must also
be included. Thus, the item xa has profit of zero if xb is not included. The item xb has utility even without xa but
not vice-versa. Without loss of generality, we assume that all weights are strictly positive, and that index b < a. In
the following Lemma, we use an auxiliary variable S[i, j] that keeps the set of items included in G[i, j] and not just
the profit from those items.

10.12. PROBLEMS 105

Algorithm Knapsack2: Finding An Optimal Solution to the Knapsack Problem
1 Pj : Code for thread j
2 input: w, v:array[1..n] of int;// weight and value of each item
3 var: G:array[0 . . . W] of int;
4 init: ∝j : G[j] = 0;
5 for i := 1 to n do
6 G := IncrKnapsack2(w[i], v[i], G);

Lemma 10.6 First assume that (i ↑= a). Let B(i, w) ↔ G[i, w] ↗ max(G[i → 1, w → wi] + vi, G[i → 1, w]) for (wa ⇒ w)
and G[i, w] ↗ G[i → 1, w], otherwise. This predicate corresponds to any item i di!erent from a. The value with a bag
of capacity w is always greater than or equal to the choice of picking the item or not picking the item.

Let B(a, w) ↔ G[a, w] ↗ max(G[a → 1, w → wa] + va, G[a → 1, w]) if b ′ S[a → 1, w → wa] ≃ (wa ⇒ w) and
G[a, w] ↗ G[a → 1, w], otherwise.

Then, B(i, w) is lattice-linear for all i and w.

Proof: Suppose that B(i, w) is false for some i and w. Unless G[i, w] is increased, it can never become true.

10.12 Problems
1. We are given a directed acyclic graph (V, E) with n nodes and m edges. Our goal is to assign a number, label

to each vertex from 1..n such that for all edges (i, j) ′ E, label[i] < label[j]. Define B as ∝(i, j) ′ E : label[j] ↗

label[i] + 1. Show that B is lattice-linear predicate.

2. Modify the algorithm for Optimal Binary Search Tree to return not only the optimal cost but also the tree
itself.

3. (Longest Path in Directed Acyclic Graphs) We are given a directed acyclic graph (V, E) with n nodes
and m edges such that each edge has a positive real cost. We are also given a distinguished vertex v0. Give
an LLP based algorithm to find the longest path from v0 to all vertices.

4. We are given a polygon and are required to triangulate it optimally. We are given a weight function that takes
a triangle on vertices vi, vj and vk and returns a real-valued function w(vi, vj , vk). Our goal is to triangulate the
given polynomial and triangulate it to minimize the sum of weights of all triangles. (Hint: Devise a recurrence
relation similar to the matrix chain product problem.)

10.13 Bibliographic Remarks
This chapter 14 explores the paradigm of solving optimization problems by breaking them into overlapping sub-
problems, with applications to the Longest Increasing Subsequence (LIS), Optimal Binary Search Tree (OBST),
Knapsack, Weighted Interval Scheduling, Segmented Least Squares, and Chain Matrix Multiplication. The chapter
introduces dynamic programming (DP) as a method to establish recurrence relations, avoiding redundant computa-
tions through memoization or bottom-up computation, as originally formalized by Bellman [Bel52]. Cormen et al.
[CLRS01] provide a comprehensive treatment of sequential DP algorithms for these problems.

The chapter contrasts traditional DP with the Lattice-Linear Predicate (LLP) algorithm, which models problems
as searches for extremal vectors in a finite distributive lattice. This approach, detailed in Garg [Gar22], enables
parallel computation with minimal synchronization overhead and supports lattice-linear constraints.

106 CHAPTER 10. DYNAMIC PROGRAMMING

The OBST problem, introduced by Knuth [Knu71], minimizes expected search cost in a binary search tree, with
the LLP approach achieving O(n log n) parallel time. The Knapsack problem, formulated in Horowitz and Sahni
[HS74] and Ibarra and Kim [IK75], is solved in O(nW) time via DP, with LLP reducing parallel time to O(n) using
W processors. Vazirani [Vaz01] and Williamson [DPW10] provide modern DP formulations for Knapsack, including
approximation techniques.

Weighted Interval Scheduling and Segmented Least Squares, covered in Kleinberg and Tardos [KT06], extend
greedy and DP techniques to optimization problems with weighted objectives and error minimization, respectively.
The Chain Matrix Multiplication problem, structurally similar to OBST, is addressed using a recurrence akin to
Knuth’s formulation, as noted in Aho, Hopcroft, and Ullman [AHU74]. Papadimitriou and Steiglitz [PS82] o"er
additional context for combinatorial optimization problems like Knapsack and matrix multiplication.

Chapter 11

Max Flow

11.1 Introduction
The Ford-Fulkerson algorithm is a greedy algorithm that computes the maximum flow in a flow network. It was
published in 1956 by L. R. Ford, Jr. and D. R. Fulkerson.

The maximum flow problem is one of the most fundamental problems in network theory with diverse applications,
ranging from tra!c systems and communication networks to supply chains and project scheduling. Understanding
how to e!ciently compute the maximum flow allows for optimizing resources and improving system performance.

This chapter provides a comprehensive overview of the Ford-Fulkerson algorithm, including its theoretical foun-
dations, correctness proof, and complexity analysis. Additionally, we explore related concepts such as the Max-Flow
Min-Cut Theorem and discuss strongly polynomial algorithms in the context of network flows.

Definition 11.1 (Flow Network) A flow network is a directed graph G = (V, E) with a source vertex s ′ V , a
sink vertex t ′ V , and a capacity function c : E ∞ R+ that assigns a non-negative capacity c(u, v) to each edge
(u, v) ′ E.

Definition 11.2 (Flow) A flow in a flow network G is a function f : E ∞ R+ that satisfies:
1. Capacity constraint: ∝(u, v) ′ E, 0 ⇒ f(u, v) ⇒ c(u, v)
2. Flow conservation: ∝v ′ V \ {s, t},

∑
u:(u,v)↗E

f(u, v) =
∑

w:(v,w)↗E
f(v, w)

Definition 11.3 (Value of Flow) The value of a flow f is defined as the total flow out of the source:

|f | =
∑

v:(s,v)↗E

f(s, v)

Definition 11.4 (Residual Network) Given a flow network G = (V, E) and a flow f , the residual network Gf =
(V, Ef) consists of edges with remaining capacity, defined as:

Ef = {(u, v) ′ V × V : cf (u, v) > 0}

where cf (u, v) is the residual capacity defined as:

cf (u, v) =

c(u, v) → f(u, v) if (u, v) ′ E

f(v, u) if (v, u) ′ E

0 otherwise

Definition 11.5 (Augmenting Path) An augmenting path is a simple path from source s to sink t in the residual
network Gf .

107

108 CHAPTER 11. MAX FLOW

11.2 The Ford-Fulkerson Algorithm
The algorithm works by finding augmenting paths in the residual network and increasing the flow along these paths
until no more augmenting paths can be found.

Algorithm 2: Ford-Fulkerson Algorithm
Input: Graph G, source s, sink t
Output: Maximum flow f

1 Initialize flow f(u, v) = 0 for all edges (u, v) in G
2 while there exists an augmenting path p from s to t in the residual network Gf do
3 Let cf (p) = min{cf (u, v) : (u, v) ′ p} be the residual capacity of path p
4 for each edge (u, v) in p do
5 if (u, v) ′ E then
6 f(u, v) = f(u, v) + cf (p) // Increase flow
7 else
8 f(v, u) = f(v, u) → cf (p) // Decrease flow in reverse edge
9 end

10 end
11 end
12 return f

Theorem 11.6 The Ford-Fulkerson algorithm correctly computes the maximum flow in any flow network with finite
capacities.

Proof: The algorithm repeatedly augments the flow along augmenting paths found in the residual graph. Each
augmentation strictly increases the total flow value by at least the minimum residual capacity of the augmenting
path. Since the capacities are finite and non-negative, the total flow is bounded above.

The algorithm terminates when there are no more augmenting paths in the residual graph. By the Max-Flow
Min-Cut Theorem, a flow is maximum if and only if there is no augmenting path in the residual graph. Therefore,
when the algorithm terminates, the current flow is maximal.

Let’s consider a simple flow network and demonstrate the Ford-Fulkerson algorithm step by step.
Consider a flow network with 6 vertices {s, a, b, c, d, t} and the following capacities:

s a b

c d

t16

13

12

4

14

9

4 20

Initially, all flow values are 0. The edge labels show capacity.

First Iteration
Finding the First Augmenting Path
We look for a path from s to t in the residual network. Let’s choose the path s ∞ a ∞ b ∞ t.

11.2. THE FORD-FULKERSON ALGORITHM 109

s a b

c d

t16

13

12

4

14

9

4 20

The minimum residual capacity on this path is min{16, 12, 9} = 9. We augment the flow by 9 units along this
path.

Updated Flow After First Iteration

s a b

c d

t9/16

0/13

9/12

0/4

0/14

9/9

0/4 0/20

The flow value is now 9. The edge labels show flow/capacity. The residual network now includes reverse edges
where flow was pushed.

Second Iteration

Finding the Second Augmenting Path

We find another path in the residual network: s ∞ c ∞ d ∞ t.

s a b

c d

t9/16

0/13

9/12

0/4

0/14

9/9

0/4 0/20

The minimum residual capacity on this path is min{13, 14, 20} = 13. We augment the flow by 13 units.

110 CHAPTER 11. MAX FLOW

Updated Flow After Second Iteration

s a b

c d

t9/16

13/13

9/12

0/4

13/14

9/9

0/4 13/20

The flow value is now 9 + 13 = 22.

Third Iteration

Finding the Third Augmenting Path

We find another path: s ∞ a ∞ c ∞ d ∞ t.

s a b

c d

t9/16

13/13

9/12

0/4

13/14

9/9

0/4 13/20

The minimum residual capacity on this path is min{7, 4, 1, 7} = 1. We augment the flow by 1 unit.

Updated Flow After Third Iteration

s a b

c d

t10/16

13/13

9/12

1/4

14/14

9/9

0/4 14/20

The flow value is now 10 + 13 = 23.

Fourth Iteration

Finding the Fourth Augmenting Path

We find one more path: s ∞ a ∞ b ∞ d ∞ t.

11.3. MIN-CUT INTERPRETATION 111

s a b

c d

t10/16

13/13

9/12

1/4

14/14

9/9

0/4 14/20

The minimum residual capacity on this path is min{6, 3, 4, 6} = 3. We augment the flow by 3 units.

Final Flow

s a b

c d

t13/16

13/13

12/12

1/4

14/14

9/9

3/4 17/20

The flow value is now 13 + 13 = 26. There are no more augmenting paths in the residual network, so the
algorithm terminates. The maximum flow is 26.

11.3 Min-Cut Interpretation
Theorem 11.7 In any flow network, the maximum value of a flow is equal to the minimum capacity of an s-t cut.

Proof: Let f be a flow with maximum value, and let (S, T) be any cut of the network, where s ′ S and t ′ T .
The value of the flow |f | cannot exceed the capacity of the cut c(S, T), since no more than c(S, T) units of flow can
cross from S to T .

When the Ford-Fulkerson algorithm terminates, there are no augmenting paths in the residual graph. Define S
as the set of vertices reachable from s in the residual graph, and T = V \ S. Since no augmenting paths remain, all
edges from S to T in the original graph are saturated, and all edges from T to S carry no flow.

Therefore, the value of the flow equals the capacity of the cut (S, T), proving that the maximum flow equals the
minimum cut capacity.

According to the Max-Flow Min-Cut theorem, the value of the maximum flow equals the capacity of the minimum
cut. In our example, we can identify the minimum cut by finding the set of vertices reachable from s in the final
residual network.

Let’s identify the cut. The set of vertices reachable from s in the final residual network are {s, a, c}. The
remaining vertices {b, d, t} form the other side of the cut.

The cut edges are:

• (a, b) with capacity 12

• (c, d) with capacity 14

112 CHAPTER 11. MAX FLOW

The total capacity is 12 + 14 = 26, which is exactly equal to the maximum flow, confirming the Max-Flow
Min-Cut theorem.

Let us determine the running time of Ford-Fulkerson algorithm. Suppose that all capacities in the graph are
integral. Let f↘ be the maximum flow in the graph. Every iteration of Ford-Fulkerson’s algorithm finds an augmenting
path in the residual network of at least one unit. This step takes O(|E|) time. Hence, the total running time is
O(f↘

|E|). This algorithm is pseudo-polynomial because it depends on the unary representation of the capacity C of
edges. It is desirable to get an algorithm with the time complexity that is dependent only on the number of vertices
and the edges of the graph and not the capacity. For large capacities, this can lead to ine!ciencies, motivating
strongly polynomial algorithms like Edmond-Karp and Dinitz’s algorithm.

11.4 Edmond-Karp Algorithm
The Edmond-Karp modification improves the Ford-Fulkerson algorithm by selecting augmenting paths with the
fewest possible edges, using a breadth-first search (BFS) to find shortest paths in the residual graph. This ensures
that each augmentation is performed e!ciently.

This approach guarantees a strongly polynomial runtime of O(|E|
2
|V |), independent of the numerical values of

capacities. The algorithm works in phases, where each phase builds a level graph and finds blocking flows, reducing
the number of necessary augmentations. Overall, Edmonds-Karp’s algorithm does at most (|E||V |) augmentations
and each augmentation takes at O(|E|) time (via BFS) giving us the time complexity of O(|E|

2
|V |.

By focusing on shortest paths and limiting the number of augmentations, the Edmond-Karp algorithm provides
significant performance improvements, especially for large-scale networks.

Consider a network with vertices s, a, b, t and edges: s ∞ a with capacity 1000, s ∞ b with capacity 1000, a ∞ b
with capacity 1, a ∞ t with capacity 1000, b ∞ t with capacity 1000.

In the basic Ford-Fulkerson algorithm, choosing poor augmenting paths may lead to many iterations due to the
small capacity edge a ∞ b. In the example with vertices s, a, b, t, Ford-Fulkerson may choose paths like s ∞ a ∞ b ∞ t
repeatedly. Due to the bottleneck capacity of 1 on the edge a ∞ b, only 1 unit of flow is added per iteration. This
leads to many redundant iterations before utilizing the larger capacity paths e"ectively. However, with Edmonds-
Karp’s method using BFS, the shortest paths are found, and the blocking flow quickly saturates the large capacity
edges in just a few phases, significantly reducing the total number of iterations.

s a

b

t1000

1000 1

1000

1000

Algorithm 3: Edmonds-Karp Algorithm
Input: Graph G = (V, E), capacities c, source s, sink t
Output: Maximum flow f

1 Initialize f(u, v) ⇑ 0 for all (u, v) ′ E;
2 while there exists an augmenting path in Gf do
3 Use BFS to find shortest path p from s to t in Gf ;
4 Compute cf (p) = min(u,v)↗p cf (u, v);
5 for each edge (u, v) ′ p do
6 f(u, v) ⇑ f(u, v) + cf (p);
7 f(v, u) ⇑ f(v, u) → cf (p);
8 end
9 end

10 return f ;

11.5. LATTICE OF MINCUTS 113

11.5 Lattice of Mincuts
In this section, we first show that the property of a cut (S, T) being a mincut is lattice-linear. A set S △ V is a
mincut if:

• s ′ S, t /′ S (i.e., S is a cut).

• val(S) =
∑

(u,v)↗E:u↗S,v↗V \S
c(u, v) ⇒ val(S↑) for all cuts S↑.

We can now show:

Lemma 11.8 The predicate B(S) = (s ′ S and t /′ S) and (val(S) is minimum) is lattice-linear with e"cient
advancement.

Proof: We use submodularity of the cut function. For min cuts S1, S2, the submodularity inequality is:

val(S1) + val(S2) ↗ val(S1 ∃ S2) + val(S1 ↓ S2).

If val(S1) = val(S2) = µ (the min cut capacity), then val(S1 ∃ S2) + val(S1 ↓ S2) ⇒ 2µ. Since val(S) ↗ µ for any cut,
each term must equal µ. Thus, S1 ↓ S2 and S1 ∃ S2 are min cuts (noting s ′ S1 ↓ S2, t /′ S1 ∃ S2).

For the advancement property, suppose S is not a min cut (e.g., val(S) > µ). If S equals V → {t}, then we know
that there is no S↑

ℜ S such that S↑ is a mincut and thus all indices are forbidden. Otherwise, there is at least some
vertex v such that there exists an edge (u, v), u ′ S, v /′ S, with residual capacity c(u, v) > f(u, v). If v equals t,
we know that there is no S↑

ℜ S such that S↑ is a mincut and thus all indices are forbidden. Otherwise, unless we
advance by including v in S, the cut can not be a mincut.

11.6 An Algorithm to Find Mincuts Satisfying a Lattice-Linear Predi-
cate B

Since finding a mincut satisfying B is NP-complete in general, we focus on special cases of B. We first assume that
the given predicate B is lattice-linear. This means that the set of cuts that satisfy B form an inf-semilattice and we
have e!cient advancement property. Since the set of mincuts form a sublattice, we get that the set of mincuts that
satisfy B also forms an inf-semilattice.

We now have a simple algorithm to find a mincut that satisfies B.
The algorithm alternates between finding the mincut after G and finding G that satisfies B. If it cannot find a

mincut or a cut satisfying B, it returns null. Assuming that the complexity of computing ⇓j : forbidden(G, j, B) is
O(m), the above algorithm takes O(MF (n, m) + mn) given the join-irreducible elements of the mincut lattice. The
outer while loop executes at most n times because at least one bit in the vector G becomes 1 after every iteration.

We now show that for many lattice-linear predicates, the complexity of the above algorithm is O(MF (n, m)+kn)
where k is a parameter dependent upon the predicate B.

To concretize our discussion, consider the predicate B(S) that holds whenever either both vertices u and v belong
to S or neither belong to S. We are interested in finding S such that S is a mincut and satisfies B(S).

We note here that the predicate when evaluated over an increasing sets of S, can transition at most twice. Either
it is initially false and then turns true. This happens when S initially has u or v, and then later it gets both.
Alternatively, it may be initially true, then turn false and then finally turn true. This happens when initially, neither
u nor v is in S. Then, one of them gets added to S and finally both of them get added.

The predicate B that can transition at most k times is termed as k-Transition predicate. Formally,

Definition 11.9 A predicate B : J(P) ∞ {true, false} on the ideals of a poset P is a k-Transition Predicate if, for
any chain of ideals I1 △ I2 △ · · · △ In ′ J(P), the sequence B(I1), B(I2), . . . , B(In) has at most k transitions, where
a transition occurs at index i if B(Ii) ↑= B(Ii+1).

114 CHAPTER 11. MAX FLOW

Algorithm LLP-MincutWithB: To find the minimum vector that satisfies B

1 vector function getLeastMincutSatisfyingPred(B: predicate)
2 var G: vector of reals initially ∝i : G[i] = 0;
3 G ⇑ LeastMincut
4 while ¬B(G) do
5 while ⇓j : forbidden(G, j, B) do
6 if (G[j] = 1) then return null;
7 else G[j] := 1;
8 endwhile;
9 if there does not exist LeastMincut ↗ G

10 return null; //no such cut
11 else G ⇑ LeastMincut ↗ G
12 endwhile;
13 return G; // the optimal solution

For example, the stable predicates [CL85] are 1-Transition predicates. Similarly, predicates that are true on a
single mincut [GS24] are also 1-Transition predicates. We will assume that the algorithm for detecting whether B is
true on a cut S is O(m).

Thus, if the lattice-linear predicate is a k-transition predicate, then the time complexity is bounded by O(MF (n, m)+
km).

11.7 Bibliographic Remarks
The maximum flow problem and its solutions have been extensively studied in combinatorial optimization and
network theory. The original Ford-Fulkerson algorithm was introduced in 1956 [JF56], with the foundational Max-
Flow Min-Cut Theorem proving its correctness. The Dinitz algorithm [Din70], and the algorithm by Karp and
Edmonds [EK72], o"ered significant improvements with strongly polynomial time guarantees.

More advanced algorithms such as Goldberg and Tarjan’s push-relabel method [GT88] provide even better per-
formance in practice and theory, particularly for dense networks. For further reading and comprehensive treatments
of flow algorithms, we refer to standard textbooks such as Ahuja, Magnanti, and Orlin [AMO93], Schrijver [Sch03],
and Korte and Vygen [KV18].

Chapter 12

Bipartite Matching

12.1 Introduction
In this chapter, we discuss algorithms for the matching problems in bipartite graphs. This chapter is organized as
follows. Section 12.2 describes the classical sequential augmenting path algorithm. The algorithm allows one to
increase the size of any matching by finding an augmenting path in the bipartite graph. Section 12.3 describes an
algorithm to find the chain cover of a poset given a matching algorithm.

12.2 Sequential Algorithm
Given an undirected graph (V, E), a matching M is a subset of edges E such that no two edges are incident on
the same vertex. As an example, consider a bipartite graph (L, R, E) such that the vertex set L denotes a set of
men, R denotes a set of women and E denotes a symmetric “likes” relation, Then, a matching, M , is simply a set
of edges such that no man or a woman is adjacent to two edges in M . If the number of men and and the number
of women are both equal to n and every man gets matched, then we call that matching, a perfect matching. The
perfect matching may not always exist. The following famous Theorem gives a necessary and su!cient condition
for a perfect matching to exist in a bipartite graph. It is based on the notion of overdemanded subset. We say that
L↑

△ L is overdemanded if there exists R↑
△ R such that the set of neighbors of R↑ in the graph is L↑ and the size of

R↑ is strictly bigger than L↑. Intuitively, L↑ is overdemanded because R↑ can only match with vertices in L↑ but the
size of L↑ is smaller than size of R↑. We can now state the Theorem.

Theorem 12.1 (Hall’s Theorem) The necessary and su"cient condition for a perfect matching to exist in a
bipartite graph (L, R, E) where |L| = |R|, is that L does not have any overdemanded subset L↑.

Observe that even though Hall’s theorem gives us insight about the perfect matching, it cannot be directly
applied to e!ciently check for perfect matching because there are 2n possible subsets of L.

We now give an e!cient algorithm for a more general problem called the maximum cardinality matching problem.
This problem requires us to find a matching of the largest size. When the number of men and the number of women
are equal to n, then a perfect matching exists i" the size of the maximum cardinality matching is n. The algorithm
is based on the idea of increasing the size of a matching by the idea of an augmenting path. Suppose the algorithm
has a matching Mt at iteration t. Then, the algorithm is guaranteed to find a matching Mt+1 of size one bigger than
Mt whenever a matching with a bigger size exists. If we can make this idea work, then we can start with M0 as the
empty matching and then keep applying the idea to reach a maximum cardinality matching.

To understand the idea of an augmenting path for a matching M , we define a vertex to be exposed if it is not
incident on any edge in M . Now suppose that there exists a path from an exposed vertex to another exposed vertex
that alternates between unmatched and matched edges. Such a path must start with an unmatched edge and end
with an unmatched edge (by the definition of exposed vertices). Furthermore, such a path has an odd number of

115

116 CHAPTER 12. BIPARTITE MATCHING

Bipartite
Graph Matching Vertex

Cover

Poset
Chain

Decom-
position

Antichain

s,t-directed
graph

s,t vertex
disjoint
paths

s,t cuts

Konig

Dilworth

Menger

Figure 12.1: Various Structures and Transformations between them

x1

x2

x3

x4

y1

y2

y3

y4

Figure 12.2: A Bipartite Graph

12.2. SEQUENTIAL ALGORITHM 117

edges with the unmatched edges exactly one more than the matched edges. Then, by simply switching the matched
with unmatched edges along that path we can increase the size of matching by one.

Algorithm Seq-AugmentingPath: Finding a maximum cardinality matching
1 M := {};
2 while there exists an alternating path P in (L, R, E) for M
3 M := matching M with edges switched in the path P
4 end;
5 return M ;

x1

x2

x3

x4

y1

y2

y3

y4

Figure 12.3: A Matching M shown with dashed edges in the Bipartite Graph

How do we find an alternating path? One can start with any exposed vertex and do a breadth-first-search such
that the bfs tree alternates between unmatched and matched edges. Such a search will either result in finding an
alternating path or an overdemanded set. In our example of the matching M in Fig. 12.3, if we start from x4, we
get the alternating path x4, y3, x1, y2. If there are 2n vertices and m edges, every iteration of the while loop takes
O(m) time for breadth-first-search and there can be at most n iterations, giving us the time complexity of O(nm).
By augmenting along multiple paths in every iteration, the complexity can be reduced to O(

∀
nm) [HK71].

We now give a sequential algorithm for a slight variant of the matching problem in a bipartite graph (L, R, E).
Let vertices in L be numbered 1..n. Let Li denote the set of vertices {v1, v2, . . . , vi}, for all 1 ⇒ i ⇒ n. The output
of our algorithm is a vector G such that

∑
i
G[i] is the size of the maximum matching in the graph (Li, R, Ei) where

Ei is the edges restricted to the set Li ∃ R. For simplicity, we set L0 to ∅. We let S be the matched vertices in R. It
is su!cient to describe the sequential algorithm when a new vertex vi is added to the left hand side. We simply look
for an alternating path from vi to any unmatched vertex in R. If we find any such path, then the newly matched
vertex in R is added to S. If there is no path, then Li is a constricted set, and the set of vertices in R matched to
Li→1 is identical to the set of vertices matched to Li. In either case, we continue the procedure to the next vertex in
L, if any.

Algorithm BipartiteMatching searches the element in the boolean lattice Bn such that G[i] equals 1 if the size
of the bipartite matching for (Li, R, Ei) is one more than for (Li→1, R, Ei→1), and 0 otherwise. The time complexity
of the algorithm is O(nm) because the for loop has n iterations and each iteration takes O(m) to search for a path.
The matching itself is stored in all nonzero S entries.

118 CHAPTER 12. BIPARTITE MATCHING

Algorithm BipartiteMatching: A Sequential Algorithm for Bipartite Matching
1 input: (L, R, E): bipartite graph
2 var: G: array[1..n] of int ;
3 init: ∝j : G[j] := 0;
4 S: array[1..n] of 0..n;
5 init: ∝j : S[j] := 0;
6 for j := 1 to n do
7 if there exists an alternating path from vj to any vertex k in R with (S[k] = 0)
8 Assign S[] in the alternating path;
9 G[j] := 1;

10 endfor
11 return G

A key advantage of Algorithm BipartiteMatching is that it is a deterministic algorithm. Given a labeling of
indices in L, it produces a single fixed G.

12.3 Chain Partition of a Poset
In this section, we show that maximum matching in a bipartite graph also allows us to partition a poset into the
minimum number of chains.

x3

x2

x1

x4

x5

Figure 12.4: A poset

Assume that we have an algorithm for bipartite matching. How do we use it for chain decomposition? This
relationship between chain decomposition and bipartite matching is based on the idea of a strict split of a poset.

Definition 12.2 (Strict Split of a Poset) Given a poset P , the strict split of the poset P , denoted by S(P) is
a bipartite graph (L, R, E) where L = {x→

|x ′ P}, R = {x+
|x ′ P}, and E = {(x→, y+)|x < y in P}.

x+
1 x+

2 x+
3 x+

4 x+
5

x→
3x→

2x→
1 x→

4 x→
5

Figure 12.5: A Strict Split of the Poset in Fig. 12.4

12.4. PROBLEMS 119

We state the following theorem due to Fulkerson [Ful56].

Theorem 12.3 [Ful56] Any matching in S(P) can be reduced to a chain cover of P .

Proof: We start with the trivial chain partition of P with each element in P being a chain. Thus, initially we have
n chains for n elements. We now consider each edge (x→, y+) in the matching. Each such edge implies that x < y
in P and we combine the chains corresponding to x and y. Since there can be at most one edge incident on x→ in a
matching, x is the top element of its chain and similarly y is the lowest element of the chain. Therefore, these chains
can be combined into one chain. If there are e edges in the matching, after this procedure we have a chain cover
with n → e chains.

Thus one can use any algorithm for bipartite matching to determine a chain cover.

12.4 Problems
1. Show that the minimum size of a vertex cover is equal to the maximum size of a matching in a bipartite graph.

2. Give a linear program formulation for the maximum matching problem and show that its dual corresponds to
the minimum vertex cover problem.

3. Prove Hall’s Theorem.

4. Edmond’s matrix is defined for a bipartite graph (U, V, E) with |U | = |V | = n as follows. Let the vertices in U be
u1, u2, . . . un and the vertices in V be v1, v2, . . . , vn. We set A[i, j] = xi,j if (ui, vj) ′ E and 0 otherwise. Show
that Edmond’s matrix of a balanced bipartite graph has a perfect matching i" the polynomial corresponding
to the determinant of Edmond’s matrix is not identically zero.

5. We are given an unweighted graph with two distinguished vertices s and t. We are required to find the total
number of paths from s to t such that these paths do not share any edge. Give an algorithm to find this number,
and justify its correctness. Suppose that the graph has n vertices and m edges, give the time complexity of
your algorithm.

6. Modify Algorithm BipartiteMatching to output the vertex cover in addition to bipartite matching.

Bibliographic Remarks
The sequential augmenting path algorithm, detailed in Section 12.2, is a cornerstone of matching theory, achieving
a time complexity of O(nm) for a graph with n vertices and m edges. This algorithm is enhanced by the seminal
work of Hopcroft and Karp [HK71], who introduced a method to augment multiple paths per iteration, reducing
the complexity to O(

∀
nm). Their approach remains a standard for e!cient bipartite matching. Hall’s Theorem,

presented in the chapter, is a fundamental result characterizing the existence of perfect matchings, with roots in early
combinatorial optimization. For a deeper exploration of matching theory, including Hall’s Theorem and its extensions,
Lovász and Plummer [LP86] o"er a classic and authoritative reference. Section 12.3 connects bipartite matching to
poset chain partitions through the strict split construction, leveraging Fulkerson’s theorem [Ful56]. Fulkerson’s result
elegantly reduces matchings in the bipartite graph S(P) to chain covers in the poset P , demonstrating the interplay
between graph theory and order theory.

120 CHAPTER 12. BIPARTITE MATCHING

Chapter 13

Intractability

This chapter discusses NP-completeness, a foundational concept in computational complexity that identifies the
hardest problems in NP. We define P and NP, explore polynomial-time reductions, prove NP-completeness for a
broad set of problems: 3-SAT, Clique, Vertex Cover, Hamiltonian Path, Independent Set, and TSP. We also discuss
methods to deal with NP-complete problem.

The classes P and NP classify computational problems by their solvability and verifiability. P includes problems
with polynomial-time deterministic algorithms, while NP includes those verifiable in polynomial time nondetermin-
istically. The unresolved question P = NP drives much of complexity theory.

The problems are specified as requiring an output for the given input. We will use n for the size of the input. Our
interest would be in determining the time required to compute the output. The output that we require would be
binary. For example, our input may be a boolean expression B on boolean variables. We would require the output
to be 1 if the boolean expression is satisfiable and 0 otherwise. At first, it may seem that in practical applications,
the user may be interested in finding a satisfying assignment rather than simply that B is satisfiable. However, if
somebody gave us a method f to e!ciently check whether B is satisfiable then we can use f to determine a satisfying
assignment. If B is satisfiable, then we can easily compute another boolean expression B↑ in which the boolean
variable x1 is set to true. We now ask whether B↑ is satisfiable. If B↑ is satisfiable, we continue with other variables.
If B↑ is not satisfiable, then we know that x1 must be false. We compute a boolean expression B↑↑ from B by setting
x1 to false. Thus, in n applications of f , we would have found a satisfying assignment. This idea is applicable to all
problems considered in this chapter and we will restrict ourselves to such problems.

13.1 Class P
The complexity class P is the set of all decision problems L △ {0, 1}

↘ for which there exists a deterministic Turing
machine M and a polynomial function p : N ∞ N such that:

1. M halts on every input x ′ {0, 1}
↘ in at most p(|x|) steps, where |x| denotes the length of x,

2. M accepts x if and only if x ′ L.

Formally, P = {L | there exists a deterministic Turing machine M and a polynomial p such that M decides L in time O(p(n))},
where n is the input size.

• P: The complexity class of decision problems solvable in polynomial time by a deterministic Turing machine.
The boldface emphasizes it as a formal class name.

• L: A language, representing a decision problem, which is a set of strings over the binary alphabet {0, 1}.

• M : A deterministic Turing machine, a theoretical model of computation with a single, fixed sequence of steps
for any input. For our purposes, we can use any practical programming language such as Java or C++.

121

122 CHAPTER 13. INTRACTABILITY

• p: A polynomial function p : N ∞ N, mapping natural numbers (input sizes) to natural numbers (time bounds).

Informally, a problem L is in P if we can write a program that determines if the given instance x is in L in time
that is polynomial in the size of x. Most problems we have seen in this book so far belong to P.

13.2 Polytime Reductions
We define a relation between various problems as follows. We say that a problem φ1 is at least as hard as another
problem φ2 if by using solutions to the problem φ2 we can solve the problem φ1 in time polynomial in the size of the
problem. Formally, φ2 is polynomially reducible to φ1 if arbitrary instances of φ2 can be solved using a function that
is a polynomial in the size of input and makes at most polynomial calls to a function that solves φ1. We denote this
relation as φ2 ⇒P φ1. It is easy to verify that ⇒P is a reflexive and transitive relation.

A consequence of the above definition is that if there exists an e!cient algorithm to solve φ1, then we can use
that solution to solve φ2. Another consequence, important to this chapter, is that if φ2 is hard to solve, then φ1 is
also hard to solve.

Independent Set ⇒P Vertex Cover
Let us show that the problem of vertex cover is harder than the problem of independent set in an undirected graph.
Let G = (V, E) be an undirected graph with vertex set V and edge set E.

The Independent Set problem asks: Given a graph G and an integer k, does there exist a subset S △ V of at
least k vertices such that no two vertices in S are adjacent (i.e., ∝u, v ′ S, {u, v} /′ E)? Such a set S is called an
independent set.

The Vertex Cover problem asks: Given a graph G and an integer k, does there exist a subset C △ V of at most
k vertices such that every edge in E is incident to at least one vertex in C (i.e., ∝{u, v} ′ E, u ′ C or v ′ C)? Such
a set C is called a vertex cover.

We argue that the Vertex Cover problem is at least as hard as the Independent Set problem by providing a
polynomial-time reduction from Independent Set to Vertex Cover. Given an instance (G = (V, E), k) of Independent
Set, construct an instance of Vertex Cover as follows:

• Use the same graph G = (V, E).

• Set the parameter k↑ = |V | → k.

The reduction is polynomial-time since it only involves computing |V | and subtracting k.
We claim that G has an independent set of size at least k if and only if G has a vertex cover of size at most

k↑ = |V | → k.

• (↘): Suppose S △ V is an independent set with |S| ↗ k. Define C = V \ S. Since S is independent, no edge
{u, v} ′ E has both u, v ′ S. Thus, for every edge {u, v} ′ E, at least one of u or v is in C = V \ S. Hence,
C is a vertex cover. Moreover, |C| = |V | → |S| ⇒ |V | → k = k↑.

• (ℑ): Suppose C △ V is a vertex cover with |C| ⇒ k↑ = |V | → k. Define S = V \ C. For any edge {u, v} ′ E,
since C is a vertex cover, at least one of u or v is in C, so at most one is in S. But if both u, v ′ S, then neither
is in C, contradicting that C covers {u, v}. Thus, no edge connects vertices in S, so S is an independent set.
Moreover, |S| = |V | → |C| ↗ |V | → k↑ = |V | → (|V | → k) = k.

Since Independent Set is NP-complete, and we have reduced Independent Set to Vertex Cover in polynomial
time, Vertex Cover is at least as hard as Independent Set (in the sense that solving Vertex Cover e!ciently would
imply solving Independent Set e!ciently). Formally, Independent Set ⇒p Vertex Cover.

13.2. POLYTIME REDUCTIONS 123

Vertex Cover ⇒P Independent Set
Conversely, we argue that the Independent Set problem is at least as hard as the Vertex Cover problem by providing
a polynomial-time reduction from Vertex Cover to Independent Set.

Given an instance (G = (V, E), k) of Vertex Cover, construct an instance of Independent Set as follows:

• Use the same graph G = (V, E).

• Set the parameter k↑ = |V | → k.

The reduction is polynomial-time, identical to the previous reduction.
Since we have reduced Vertex Cover to Independent Set in polynomial time, Independent Set is at least as hard

as Vertex Cover. Formally, Vertex Cover ⇒p Independent Set.
The bidirectional reductions show that Independent Set and Vertex Cover are computationally equivalent in

terms of polynomial-time solvability: Independent Set ⇒p Vertex Cover and Vertex Cover ⇒p Independent Set. The
reductions exploit the complementary relationship: S is an independent set if and only if V \ S is a vertex cover.

Set Cover Problem: Vertex Cover ⇒P Set Cover
We now show that the problem of Set Cover is harder than the vertex cover. The Set Cover problem is defined as
follows: Given a universe U of n elements {e1, e2, . . . , en}, a collection S = {S1, S2, . . . , Sm} of subsets of U such that

m

i=1 Si = U , and an integer k, does there exist a subcollection C △ S of at most k subsets such that

Si↗C Si = U?
In other words, we seek a cover of U using at most k subsets from S.

It is easy to see that the vertex cover is a special case of set cover. Let {e1, e2, . . . , en} be the edges in an
undirected graph. For each vertex vi, we define a set Si as all the edges that are incident on vi. Then, choosing k
sets to cover the universe is identical to choosing k vertices that cover all the edges. Hence, we conclude that Vertex
Cover ⇒P Set Cover.

Satisfiability and 3-SAT
So far, our problems were graph-theoretic. Let us now investigate problems that relate to satisfiability of boolean
expression. A boolean expression is said to be in Conjunctive Normal Form (CNF) if it is a conjunction of clauses
where each clause is a disjunction of literals. A literal is any boolean variable or its negation. We call the problem
of checking satisfiability of a boolean expression in CNF as the problem SAT. We define 3-SAT as the special case
of SAT where each clause has exactly three literals. We now investigate the complexity of 3-SAT problem compared
to the independent set problem.

SAT ⇒P 3-SAT
It is clear that SAT is a harder problem than 3-SAT because 3-SAT is a special case of the SAT problem. Somewhat
surprisingly, we now show that 3-SAT is as hard as SAT problem. Suppose that we are given an instance of the SAT
problem. We convert it into 3-SAT problem as follows. Every clause with a single literal can be changed to four
clauses with Given a CNF formula ε = C1 ≃ · · · ≃ Cm, where Ci = li1 ⇐ · · · ⇐ liki , we construct a 3-CNF formula ↼
such that ε is satisfiable if and only if ↼ is satisfiable.

For each clause Ci:

• Case 1: ki = 1 (e.g., (l1)): Introduce dummy variables yi, zi. Replace with:

(l1 ⇐ yi ⇐ zi) ≃ (l1 ⇐ yi ⇐ ¬zi) ≃ (l1 ⇐ ¬yi ⇐ zi) ≃ (l1 ⇐ ¬yi ⇐ ¬zi).

• Case 2: ki = 2 (e.g., (l1 ⇐ l2)): Introduce yi. Replace with:

(l1 ⇐ l2 ⇐ yi) ≃ (l1 ⇐ l2 ⇐ ¬yi).

124 CHAPTER 13. INTRACTABILITY

• Case 3: ki = 3: Keep unchanged: (l1 ⇐ l2 ⇐ l3).

• Case 4: ki > 3 (e.g., (l1 ⇐ · · · ⇐ lk)): Introduce yi,1, . . . , yi,k→2. Replace with:

(l1 ⇐ l2 ⇐ yi,1) ≃ (¬yi,1 ⇐ l3 ⇐ yi,2) ≃ · · · ≃ (¬yi,k→3 ⇐ lk→1 ⇐ lk).

It is easy to verify that ε is true i" ↼ is true. It is also easily verified that this reduction can be done in polynomial
time.

3-SAT ⇒P Independent set
We claim that 3-SAT ⇒P Independent set. Suppose that someone gives us an instance of 3-SAT problem defined
as follows: Given a Boolean formula ε in conjunctive normal form (CNF), where each clause contains exactly three
literals, does there exist an assignment of truth values to the variables that satisfies ε? We construct a reduction
from a 3-SAT instance ε with n variables and m clauses to an Independent Set instance (G = (V, E), k) such that ε
is satisfiable if and only if G has an independent set of size at least k. The graph G encodes the clauses and variable
assignments, ensuring that selecting a valid independent set corresponds to a satisfying truth assignment. Given a
3-SAT formula ε with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm, where each clause Cj = (lj1 ⇐ lj2 ⇐ lj3)
and ljk is a literal (xi or ¬xi), construct the graph G = (V, E) and integer k as follows:

For each clause Cj (j = 1, 2, . . . , m), create three vertices vj1, vj2, vj3, one for each literal lj1, lj2, lj3. These form
a clause gadget for Cj , represented as a triangle (complete subgraph K3). Thus, V = {vj1, vj2, vj3 | j = 1, 2, . . . , m}.
We construct edges as follows.

• Within clause gadgets: For each clause Cj , add edges to form a triangle: {vj1, vj2}, {vj2, vj3}, {vj3, vj1}.
This ensures at most one vertex per clause is selected in an independent set.

• Between clause gadgets: For any two vertices vjk and vj→k→ (j ↑= j↑), add an edge {vjk, vj→k→} if the literals
ljk and lj→k→ are inconsistent. Two literals are inconsistent if one is xi and the other is ¬xi for the same variable
xi.

Set k = m, the number of clauses. We claim that ε is satisfiable if and only if G has an independent set of size at
least k = m.

• (↘) : Suppose ε is satisfiable with a truth assignment ↽ : {x1, . . . , xn} ∞ {true, false}. For each clause
Cj = (lj1 ⇐ lj2 ⇐ lj3), at least one literal, say ljk, is true under ↽ . Select vertex vjk in G for clause Cj .
Construct S = {vjk | ljk is true in Cj , j = 1, . . . , m}, choosing one vertex per clause. Thus, |S| = m. It is
easily verified that S is independent:

• (ℑ): Suppose G has an independent set S with |S| ↗ m. Since each clause gadget is a triangle, at most one
vertex per clause can be in S (vertices vj1, vj2, vj3 are pairwise adjacent). With m clauses and |S| ↗ m, S
must include exactly one vertex from each clause’s triangle, so |S| = m. For each Cj , let vjk ′ S. Assign truth
values to make ljk true:

– If ljk = xi, set xi = true.
– If ljk = ¬xi, set xi = false.

This assignment is consistent because if xi = true and xi = false were assigned (via vjk = xi and vj→k→ = ¬xi

in S), then {vjk, vj→k→} ′ E, contradicting that S is independent. Thus, the assignment satisfies each clause
Cj (since ljk is true), making ε satisfiable.

13.3 NP-Complete Problems
In this section, we define the class of problems in NP and NP-Complete. As we saw earlier, the class P includes
problems that are solvable in O(nk) time with input size n for some fixed k. The class NP includes problems, where

13.3. NP-COMPLETE PROBLEMS 125

a yes certificate of the problem is verifiable in O(nk). What is a yes certificate? It is an input for all the yes instances
of the problem that is at most polynomial in size of n and certifies that the given instance is indeed an yes instance.
For the satisfiability problem, the assignment to the boolean variables gives us a yes certificate. The assignment
itself is of size n when the boolean expression is on n variables. Furthermore, by substituting the variables using
the assignment in the certificate, we can verify in polynomial time that the boolean expression is indeed true. As
another example, consider the subset sum problem. We are given a set, S, of integers, another integer t, and we are
asked if there is a subset S↑ such that the subset S↑ sums to t. Then, the yes certificate is simply the set S↑. The
following polynomial algorithm can be used to check that the certificate is indeed a yes certificate.

Algorithm 4: SubsetSumVerify(S, t)
Input : Set S of integers, target t
Output : True if a subset sums to t, False otherwise
Input : Certificate: Subset S↑

△ S
1 sum ⇑ 0 ;
2 for each x in S↑ do
3 sum ⇑ sum + x ;
4 end
5 if sum = t then
6 return True
7 end
8 return False

Observe that we ask for certification for only yes instances of the problem.
We now claim that

P △ NP.

Given any problem φ in P, there exists a polynomial time algorithm to solve φ. Hence, certification is trivial. It
could be just one bit specifying whether φ is a yes instance or not. Since the problem itself is in polynomial class,
we can simply run the algorithm as a checker to verify that the problem is a yes instance.

This naturally leads to the problem whether the containment is strict, i.e., is there any problem that is in NP
but not in P. In other words, is there a problem for which a solution can be checked e!ciently but computing the
solution is ine!cient. This is the most fundamental problem of the theory of computation.

A problem is NP-complete if it is in NP and every NP problem reduces to it in polynomial time. Reductions
transform instances while preserving answers, establishing relative hardness.

Theorem 13.1 (Cook-Levin Theorem) SAT is NP-complete.

Proof: Sketch: SAT is in NP (verify assignment in O(n)). Any Nondeterministic computation can be encoded as a
satisfiable Boolean formula in polynomial time, reducing all NP problems to SAT.

The following figure illustrates the relationship between P, NP-complete, and NP. P is a subset of NP, as
polynomial-time solvable problems are verifiable in polynomial time. NP-complete problems are the hardest in
NP, with every NP problem reducing to them in polynomial time. If P ↑= NP, NP-complete problems are disjoint
from P.

3-SAT ⇒P Clique
As yet another reduction, we show that the Clique problem is at least as hard as 3-SAT problem. Given G = (V, E)
and integer k, does G have a k-clique?

We construct a polynomial-time reduction from 3-SAT to Clique, showing that a 3-SAT formula ε is satisfiable
if and only if the constructed graph G has a clique of size at least k. Given a 3-SAT formula ε with n variables
x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm, where each clause Cj = (lj1 ⇐ lj2 ⇐ lj3) and ljk is a literal (xi or ¬xi),
construct an instance (G = (V, E), k) of Clique as follows:

126 CHAPTER 13. INTRACTABILITY

NP

P
Sorting

NP-complete

SAT

Graph Isomorphism

Figure 13.1: Relationship between P, NP-complete, and NP. P is a subset of NP, NP-complete problems
are a subset of NP (disjoint from P if P ↑= NP), and NP contains problems with polynomial-time verifiable
yes instances.

1. Vertices: For each literal ljk in clause Cj (i.e., the k-th literal in clause j, where k = 1, 2, 3), create a vertex
vjk. Thus, V = {vjk | j = 1, . . . , m, k = 1, 2, 3}, with |V | = 3m.

2. Edges: Add an edge {vjk, vj→k→} between vertices vjk and vj→k→ (where j ↑= j↑) if:

• The literals ljk and lj→k→ are consistent, meaning they do not contradict each other (e.g., ljk = xi and
lj→k→ = ¬xi is inconsistent, so no edge is added).

No edges are added between vertices within the same clause (j = j↑), as they represent literals in the same
clause.

3. Parameter: Set k = m, the number of clauses.

We claim that ε is satisfiable if and only if G has a clique of size at least k = m.

• (↘): Suppose ε is satisfiable with a truth assignment ↽ : {x1, . . . , xn} ∞ {true, false}. For each clause Cj ,
at least one literal ljk is true under ↽ . Select one such vertex vjk for each clause Cj , forming S = {vjk |

ljk is true, j = 1, . . . , m}. Since we pick one vertex per clause, |S| = m. Check if S is a clique:

– For vjk, vj→k→ ′ S (j ↑= j↑), an edge exists if ljk and lj→k→ are consistent. Since ↽ is a valid assignment, ljk

and lj→k→ are both true, so they cannot be inconsistent (e.g., xi and ¬xi). Thus, {vjk, vj→k→} ′ E.
– No vertices from the same clause are in S, so intra-clause edges are irrelevant.

Hence, S is a clique of size m = k.

• (ℑ): Suppose G has a clique S with |S| ↗ k = m. Since vertices from the same clause are not connected
(no edges within Cj), S can include at most one vertex per clause. With |S| ↗ m and m clauses, S must
include exactly one vertex per clause, so |S| = m. For each clause Cj , let vjk ′ S, corresponding to literal ljk.
Construct a truth assignment ↽ :

– If ljk = xi, set xi = true.
– If ljk = ¬xi, set xi = false.

The assignment is consistent because if xi = true (from vjk = xi) and xi = false (from vj→k→ = ¬xi), then ljk

and lj→k→ are inconsistent, so {vjk, vj→k→} /′ E, contradicting that S is a clique. Thus, ↽ is consistent, and since
each clause Cj has a true literal ljk, ε is satisfiable.

13.3. NP-COMPLETE PROBLEMS 127

Problem Definition Reduction From
3-Colorability Graph G 3-colorable? SAT
3D-Matching Perfect matching in X × Y × Z? 3-SAT
Knapsack Items fit W , value ↗ V ? Subset Sum
Hamiltonian Path Path visits all vertices once? 3-SAT
Hamiltonian Cycle Cycle visits all vertices once? Hamiltonian Path
Traveling Salesman Tour with weight ⇒ B? Hamiltonian Cycle

Figure 13.2: NP-Complete Problems and Reductions

3D-Matching ⇒P Subset Sum
As yet another reduction, we show that the subset sum problem is harder than the 3D-Matching problem. The
Subset Sum problem asks whether, given a set of positive integers S = {a1, . . . , an} and a target t, there exists
a subset S↑

△ S summing to t. We prove Subset Sum is NP-complete by showing it is in NP and NP-hard via a
polynomial-time reduction from 3D-Matching (3DM), using only 3n digits in base m+1 to ensure carry-free addition.
It is easy to verrify that the Subset Sum problem is in NP. We reduce 3DM to Subset Sum. Given a 3DM instance
with sets X = {x1, . . . , xn}, Y = {y1, . . . , yn}, Z = {z1, . . . , zn}, and triples T = {t1, . . . , tm} △ X × Y × Z, we
construct a Subset Sum instance (S, t) with 3n digits in base m + 1, such that a perfect matching of size n exists if
and only if a subset sums to t. Our construction is as follows.

• Elements: 3n elements: x1, . . . , xn, y1, . . . , yn, z1, . . . , zn.

• Base: Use base b = m + 1, where m = |T |. Each element appears in at most m triples, so sums in each digit
position are at most n ⇒ m < b, ensuring no carry.

• Numbers: Create a number aj for each triple tj = (xj1, yj2, zj3), with 3n digits corresponding to elements.
In base b:

aj = b3n→j1 + b2n→j2 + bn→j3 ,

where digits for xj1, yj2, zj3 (positions 3n → j1 + 1, 2n → j2 + 1, n → j3 + 1) are 1, others 0.

• Target:

t =
n∑

k=1
(b3n→k + b2n→k + bn→k).

In base b, t has 1 in each of the 3n digit positions.

• Set S: S = {a1, . . . , am}.

If 3DM has a matching: Let M △ T be a matching of n triples, covering each element exactly once. Then, we
select {aj | tj ′ M}. Each element appears in one triple, so each digit position sums to 1. The sum

∑
j↗M

(b3n→j1 +
b2n→j2 + bn→j3) = t, as each digit is 1 exactly once. Conversely, suppose that the Subset Sum has a solution. Let
S↑

△ S sum to t. t has 1 in each of 3n digits. Since each aj has three 1s, and sums are carry-free, exactly n numbers
are chosen (3n ones require n triples). Each element digit is 1, so each element is covered exactly once. The n triples
form a perfect matching.

We now list other problems which have been shown to be NP-complete. Table 13.2 summarizes six NP-complete
decision problems: 3-Colorability, 3D-Matching, Knapsack, Hamiltonian Path, Hamiltonian Cycle, and Traveling
Salesman. For each problem, we provide its definition and identify a known NP-complete problem that can be
polynomially reduced to it to prove NP-completeness. Each problem is in NP (solutions are verifiable in polynomial
time), and NP-hardness is established via the specified reduction.

1. 3-Colorability:

128 CHAPTER 13. INTRACTABILITY

• Definition: Given a graph G = (V, E), can the vertices be colored with three colors such that no adjacent
vertices share the same color?

• Reduction From: SAT. Construct a graph with gadgets for variables (true/false colors) and clauses
(ensuring at least one true literal), where a 3-coloring encodes a satisfying assignment.

2. 3D-Matching:

• Definition: Given sets X, Y , Z, each of size n, and triples T △ X × Y × Z, is there a subset of n triples
covering each element exactly once?

• Reduction From: 3-SAT. Create variable gadgets (true/false triples) and clause gadgets (triples for true
literals), where a matching corresponds to a satisfying assignment.

3. Knapsack:

• Definition: Given items with weights wi, values vi, capacity W , and target V , is there a subset with
weight ⇒ W , value ↗ V ?

• Reduction From: Subset Sum. Set vi = wi, W = t, V = t, making Knapsack equivalent to Subset Sum.

4. Hamiltonian Path:

• Definition: Given a graph G = (V, E), is there a path visiting each vertex exactly once?
• Reduction From: 3-SAT. Build a graph with variable paths (true/false) and clause nodes, where a

Hamiltonian path encodes a satisfying assignment.

5. Hamiltonian Cycle:

• Definition: Given a graph G = (V, E), is there a cycle visiting each vertex exactly once?
• Reduction From: Hamiltonian Path. Add a vertex connected to all others, where a Hamiltonian cycle

implies a Hamiltonian path in the original graph.

6. Traveling Salesman:

• Definition: Given a complete graph with edge weights and bound B, is there a tour of weight ⇒ B?
• Reduction From: Hamiltonian Cycle. Set weights: 1 for original edges, 2 otherwise, B = n. A tour of

weight n is a Hamiltonian cycle.

13.4 co-NP Class of Problems
In computational complexity theory, the class co-NP plays a crucial role alongside NP in understanding the structure
of decision problems. The complexity class co-NP consists of all decision problems whose complements are in NP.
Formally, a decision problem L △ {0, 1}

↘ is in co-NP if its complement L = {0, 1}
↘

\ L is in NP. Equivalently, a
problem L is in co-NP if there exists a polynomial-time verifiable certificate for no instances (i.e., instances x /′ L).
This means there is a polynomial-time Turing machine M and a polynomial p such that for every input x /′ L, there
exists a certificate c of length at most p(|x|) where M(x, c) = 1, and for every x ′ L, no such certificate exists.

In contrast, a problem L is in NP if there exists a polynomial-time verifiable certificate for yes instances (x ′ L).
Thus, co-NP is the class of problems where the evidence for rejection is e!ciently verifiable, while NP focuses on
evidence for acceptance.

The relationship between co-NP and NP is symmetric due to their complementary definitions:

• If L ′ NP, then L ′ co-NP.

• If L ′ co-NP, then L ′ NP.

This symmetry implies that NP and co-NP are dual classes. Notably:

13.4. CO-NP CLASS OF PROBLEMS 129

• P △ NP ↓ co-NP, since if a problem is in P, both its yes and no instances can be decided in polynomial time,
providing trivial certificates.

• NP↓co-NP contains problems like Integer Factorization (deciding if a number n has a factor d with 1 < d < n),
where both existence (NP) and non-existence (co-NP) of factors are verifiable with certificates (a factor or a
primality certificate).

A central question is whether NP = co-NP. If NP = co-NP, then for every NP problem, its complement would
also have e!ciently verifiable yes certificates, implying a symmetry in verification. However, it is widely believed that
NP ↑= co-NP, as their equality would collapse the polynomial hierarchy and have profound implications for problems
like SAT and UNSAT.

The following figure illustrates the relationship between NP, co-NP, and P. P is explicitly drawn as a distinct
region within the intersection of NP and co-NP, representing problems solvable in polynomial time. NP and co-NP
are dual classes, where a problem is in co-NP if its complement is in NP. Their intersection, NP ↓ co-NP, contains
P and problems like Integer Factorization, not known to be in P.

NP co-NP

NP ↓ co-NP

P
SortingSAT UNSAT

Integer Factorization

Figure 13.3: Relationship between NP, co-NP, and P. P is drawn within NP ↓ co-NP, which also includes
problems like Integer Factorization. It is unknown if NP = co-NP.

We present several examples of problems in co-NP, focusing on their complements in NP and their verification
mechanisms.

• The Tautology problem asks: Given a Boolean formula ε in disjunctive normal form (DNF), is ε true for
all possible truth assignments (i.e., is ε a tautology)? The complement is: Is ε not a tautology? This is in
NP because a no instance (non-tautology) has a certificate: a truth assignment making ε false, verifiable in
polynomial time by evaluating ε. Thus, Tautology is in co-NP.

• The Unsatisfiability(UNSAT) problem asks: Given a Boolean formula ε in conjunctive normal form (CNF),
is ε unsatisfiable (i.e., no truth assignment makes ε true)? The complement is SAT (Satisfiability), which is
in NP: a yes instance of SAT has a certificate (a satisfying assignment) verifiable in polynomial time. Thus,
UNSAT is in co-NP.

• The Non-Isomorphism problem for graphs asks: Given two graphs G1 = (V1, E1) and G2 = (V2, E2), are G1
and G2 not isomorphic (i.e., there exists no bijection f : V1 ∞ V2 preserving edges)? The complement, Graph
Isomorphism, is in NP: a yes instance has a certificate (a bijection f) verifiable in polynomial time by checking
edge preservation. Thus, Non-Isomorphism is in co-NP. It is not known if Non-Isomorphism is co-NP-complete.

Several open problems in complexity theory involve co-NP, reflecting its central role in understanding computa-
tional limits. We highlight key questions:

• Does NP = co-NP? The most significant open problem is whether NP = co-NP. If NP = co-NP, then for every
NP-complete problem like SAT, its complement (UNSAT) would also be in NP, implying e!cient certificates

130 CHAPTER 13. INTRACTABILITY

for unsatisfiability. This would collapse the polynomial hierarchy, as the hierarchy relies on the distinction
between NP and co-NP. Most researchers believe NP ↑= co-NP due to the intuitive asymmetry: verifying
satisfiability (NP) seems easier than verifying unsatisfiability (co-NP).

• Which problems lie in NP↓co-NP? Known examples include Primality and Integer Factorization, but identify-
ing others (e.g., Graph Isomorphism) is open. It is conjectured that NP↓co-NP ↑= NP and NP↓co-NP ↑= co-NP,
but the boundaries are unclear.

13.5 Approximation Algorithms
Approximation algorithms o"er polynomial-time solutions for NP-complete optimization problems.

Example: Vertex Cover Approximation

Algorithm 5: ApproxVertexCover(G)
Input : Graph G = (V, E)
Output : Vertex cover C

1 C ⇑ ∅ ;
2 E↑

⇑ E ;
3 while E↑

↑= ∅ do
4 Pick any edge (u, v) ′ E↑ ;
5 C ⇑ C ∃ {u, v} ;
6 Remove all edges incident to u or v from E↑ ;
7 end
8 return C

Time: O(m).
Ratio: 2-approximation.
It is easy to see that each edge requires at least one vertex in OPT . The algorithm picks two per iteration, so
|C| ⇒ 2 · |OPT |.

13.6 Problems
1. You are given a graph G = (V, E) with non-negative lengths we ↗ 0 for all edges e ′ E. You are also given

a source node s and destination node t and an integer K. Show that deciding whether there is an s-t path of
length exactly K is NP-complete.

2. Consider the Job Scheduling with Deadlines problem: Given n jobs with processing times pi, deadlines di, and
profits ri, and a single processor, select a subset of jobs to maximize total profit such that each selected job
completes by its deadline (job i takes pi time units, must finish by di, and jobs are non-preemptive). Prove
this problem is NP-complete.

13.7 Bibliographic Remarks
The Cook-Levin Theorem (Theorem 13.1), independently established by Cook [Coo71] and Levin [Lev73], marks SAT
as the first NP-complete problem, showing that every NP problem can be reduced to SAT in polynomial time. This
result laid the groundwork for identifying other NP-complete problems, as detailed in the chapter’s reductions (e.g.,
SAT ⇒P 3-SAT, 3-SAT ⇒P Independent Set, 3-SAT ⇒P Clique). Karp [Kar72] significantly expanded this landscape
by proving NP-completeness for 21 fundamental problems, including Clique, Vertex Cover, and Hamiltonian Path,

13.7. BIBLIOGRAPHIC REMARKS 131

many of which are covered in the chapter’s Figure 13.2. For a comprehensive treatment of NP-completeness and its
reductions, Garey and Johnson [GJ79] remains a definitive reference.

Polynomial-time reductions, as illustrated in Sections 13.2 and 13.3, are central to establishing the hardness of
problems like Independent Set, Vertex Cover, and 3-SAT. These reductions exploit structural relationships, such
as the complementary nature of Independent Set and Vertex Cover, to demonstrate computational equivalence.
The chapter’s treatment of co-NP (Section 13.4) introduces the dual class of problems with e!ciently verifiable no
certificates, with examples like UNSAT and Tautology. Papadimitriou [Pap94] o"ers an authoritative resource on
complexity classes, including NP, co-NP, and their intersections.

132 CHAPTER 13. INTRACTABILITY

Chapter 14

The Housing Allocation Problem

14.1 Introduction
The housing market problem proposed by Shapley and Scarf [SS74] is a matching problem with one-sided preferences.
There are n agents and n houses. Each agent ai initially owns a house hi for i ′ {1, n} and has a completely ranked
list of houses. There are variations of this problem when the agents do not own any house initially. In this paper,
we focus on the version with the initial endowment of houses for the agents. The list of preferences of the agents is
given by pref [i][k] which specifies the kth preference of the agent i. Thus, pref [i][1] = j means that ai prefers hj as
his top choice. The goal is to come up with an optimal house allocation such that each agent has a house and no
subset of agents can improve the satisfaction of agents in this subset by exchanging houses within the subset. It can
be shown that there is a unique such matching called the core for any housing market. The standard algorithm for
this problem is Gale’s Top Trading Cycle Algorithm that takes O(n2) time. This algorithm is optimal in terms of
the time complexity since the input size is O(n2). Our interest in this paper is to design parallel algorithms for this
problem.

In this chapter, we focus on computing the core and give a parallel algorithm for finding the core that is nearly
linear in the number of agents. Our algorithm takes expected O(n log2 n) time and expected O(n2 log n) work.

Section 14.2 gives Gale’s Top Trading Cycle Algorithm. Section 14.3 applies LLP method to the unconstrained
Housing market problem and derives a high-level parallel algorithm.

14.2 Gale’s Top Trading Cycle Algorithm
Consider the housing market instance shown in Fig. 14.1. There are four agents a1, a2, a3 and a4. Initially, the agent
ai holds the house hi. The preferences of the agents is shown in Fig. 14.1.

The Top Trading Cycle (TTC) algorithm attributed to Gale by Shapley and Scarf [SS74] works in stages. At
each stage, it has the following steps:

Step 1. We construct the top choice directed graph Gt = (A, E) on the set of agents A as follows. We add a
directed edge from agent ai ′ A to agent aj ′ A if aj holds the current top house of ai. Fig. 14.2 shows the directed
graph at the first stage.

Step 2. Since each node has exactly one outgoing edge in Gt, there is at least one cycle in the graph (possibly,
a self-loop). All cycles are node disjoint. We find all the cycles in the top trading graph and implement the trade
indicated by the cycles, i.e, each agent which is in any cycle gets its current top house.

Step 3. Remove all agents which get their current top houses and remove all houses which are assigned to some
agent from the preference list of remaining agents.

133

134 CHAPTER 14. THE HOUSING ALLOCATION PROBLEM

a1 : h2, h3, h1, h4

a2 : h1, h4, h2, h3

a3 : h1, h2, h4, h3

a4 : h2, h1, h3, h4

Agents’ Preferences

a1 : h1

a2 : h2

a3 : h3

a4 : h4

Initial Allocation

a1 : h2

a2 : h1

a3 : h4

a4 : h3

Matching returned by the TTC algorithm

Figure 14.1: Housing Market and the Matching returned by the Top Trading Cycle Algorithm

The above steps are repeated until each agent is assigned a house. At each stage, at least one agent is assigned
a final house. Thus, this algorithm takes O(n) stages in the worse case and needs O(n2) computational steps.

a1 a2

a3 a4

Figure 14.2: The top choice graph at the first stage.

14.3 Applying LLP Algorithm to the Housing Market Problem
We model the housing market problem as that of predicate detection in a computation. There are n agents and n
houses. Each agent proposes to houses in the decreasing order of preferences. These proposals are considered as
events executed by n processes representing the agents. Thus, we have n events per process. Each event is labeled
as (i, h, k), which corresponds to the agent i proposing to the house h as his choice number k.

The global state corresponds to the number of proposals made by each of the agents. Let G[i] be the number
of proposals made by the agent i. We will assume that in the initial state every agent has made his first proposal.
Thus, the initial global state G = [1, 1, .., 1]. We extend the notation of indexing to subsets J △ [n] such that G[J]
corresponds to the subvector given by indices in J .

We now model the possibility of reallocation of houses based on any global state. Recall that pref [i][k] specifies
the kth preference of the agent ai. Let wish(G, i) denote the house that is proposed by ai in the global state G, i.e.,

wish(G, i) = pref [i][G[i]]

A global state G satisfies matching if every agent proposes a di"erent house, i.e.,

matching(G) ↔ ∝i, j : i ↑= j : wish(G, i) ↑= wish(G, j).

We generalize matching to refer to a subset of agents rather than the entire set.

Definition 14.1 (submatching) Let J △ [n]. Then, submatching(G, J) i! wish(G, J) is a permutation of indices
in J .

Intuitively, if submatching(G, J) holds, then all agents in J can exchange houses within the subset J .
For any G, it is easy to show that

14.3. APPLYING LLP ALGORITHM TO THE HOUSING MARKET PROBLEM 135

Lemma 14.2 For all G, there always exists a nonempty J such that submatching(G, J).

Proof: Given any G, we can create a directed graph as follows. The set of vertices is agents and there is an edge
from i to j if wish(G, i) = j. There is exactly one outgoing edge from any vertex in [n] to [n] in this graph. This
implies that there is at least one cycle in this graph (possibly, a self-loop). The indices of agents in the cycle gives
us such a subset J .

We now show that

Lemma 14.3 submatching(G, J1) and submatching(G, J2) implies that submatching(G, J1 ∃ J2).

Proof: Any index i ′ J1 ∃ J2 is mapped to J1 if i ′ J1 and J2, otherwise.

Hence, there exists the biggest submatching in G. Note that matching(G) is equivalent to submatching(G, [n]).

Definition 14.4 (Feasible Global State) A global state G is feasible for the housing market problem i! it is a
matching and for all global states F < G, there does not exist any submatching which is better in F than in G. Note
that if there exists a submatching J which is better in F than G, then the agents in J can improve their allocation
by just exchanging houses within the subset J . Formally, let

Bhousing(G) ↔ matching(G) ≃ (∝F < G : ∝J △ [n] : submatching(F, J) ↘ F [J] = G[J]).

We show that Bhousing(G) is a lattice-linear predicate. This result will let us use the lattice-linear predicate
detection algorithm for the housing market problem.

Theorem 14.5 The predicate Bhousing(G) is lattice-linear.

Proof: Suppose that ¬Bhousing(G). This implies that either G is not a matching or it is a matching but there exists
a smaller global state F that has a submatching better than G.

First, consider the case when G is not a matching. Let J be the largest set such that submatching(G, J). Con-
sider any index i ↑′ J such that wish(G, i) ′ J . We claim that forbidden(G, i, Bhousing). Let H be any global state
greater than G such that G[i] = H[i]. We consider two cases.

Case 1: H[J] > G[J].
Then, from the second conjunct of Bhousing, we know that ¬Bhousing(H) because submatching(G, J) and H[J] ↑=
G[J].

Case 2: H[J] = G[J].
Since wish(H, i) = wish(G, i), wish(G, i) ′ J , and G[J] = H[J], we get that H is not a matching because the house
given by wish(G, i) is also in the wish list of some agent in J .

Now consider the case when G is a matching but ¬Bhousing(G). This implies

⇓F < G : ⇓J △ [n] : submatching(F, J) ≃ F [J] < G[J]).

However, the same F will also result in guaranteeing ¬Bhousing(H) for any H ↗ G.

136 CHAPTER 14. THE HOUSING ALLOCATION PROBLEM

Algorithm LLP-Housing-Market-Algorithm: A high-level parallel algorithm to find the op-
timal house market
1 var
2 G: array[1..n] of int initially 1;// every agent starts with the top choice
3 always
4 S(G) = largest J such that submatching(G, J)
5 forbidden(G, j, B) ↔ (j ↑′ S(G)) ≃ (wish(G, j) ′ S(G))
6 advance: G[j] := G[j] + 1;

It is also easy to see from the proof that if an index is part of a submatching, then it will never become forbidden.
This theorem gives us the algorithm shown in Fig. LLP-Housing-Market-Algorithm. Let G be the initial global

state. Let S(G) be the biggest submatching in G. All agents such that they are not in S(G) and wish a house
which are part of S(G) are forbidden and can move to their next proposal. The algorithm terminates when no agent
is forbidden. This algorithm is a parallel version of the top trading cycle (TTC) mechanism attributed to Gale in
[SS74].

We now show that

Theorem 14.6 There exists at least one feasible global state G such that Bhousing(G).

Proof: Every agent has his own house in the list of preferences. If he ever makes a proposal to his own house,
he forms a submatching. That particular event is never forbidden because it is a part of a submatching. Hence,
lattice-linear predicate detection algorithm will never mark that event as forbidden. Since such an event exists for
all processes, we are guaranteed to never go beyond this global state.

The above proof also shows that agents can never be worse-o" by participating in the algorithm. Each agent will
either get his own house back or get a house that he prefers to his own house.

14.4 Problems
1. Give an NC algorithm to determine if the given matching is the core of the housing market.

14.5 Bibliographic Remarks
The housing market problem has been studied by many researchers [SS74, HZ79, Zho90, AS98, AS99, RP77, Rot82,
Dav13]. Possible applications of the housing market problem include: assigning virtual machines to servers in cloud
computers, allocating graduates to trainee positions, professors to o!ces, and students to roommates. This problem
has also recently been studied by Zheng and Garg [ZG19] where it is shown that the problem of verifying that a
matching is a core is in NC, but the problem of computing the core is CC-hard1 The paper [ZG19] also gives a
distributed message-passing algorithm to find the core with O(n2) messages. The parallel algorithm is taken from
[Gar21].

1The class CC (Comparator Circuits) is the complexity class containing decision problems which can be solved by com-
parator circuits of polynomial size.

Chapter 15

The Assignment Problem

15.1 Introduction
In this chapter we consider the assignment problem in which we seek an assignment of items to bidders such that
the total payo" is maximized. By viewing items and bidders as nodes of a bipartite graph, and the weight vb,i of an
edge between bidder b and item i as the utility of assigning the item i to the bidder b, the problem corresponds to
finding the maximum weight bipartite matching.

The assignment problem has a rich history. The most famous algorithm for this problem is due to an American
scientist Kuhn who called it the Hungarian algorithm because it is inspired by the earlier works of two Hungarian
mathematicians — Konig and Egervary. Another American mathematician, Munkres, observed that the algorithm
is strongly polynomial and the algorithm is also known as Kuhn-Munkres algorithm. It was later discovered that the
problem had earlier been solved by Jacobi in 19th century and was published in Latin in year 1890.

15.2 Problem Formulation
Let I be a set of indivisible n items, and U , a set of n bidders. Every item i ′ I is given a valuation vb,i by each
bidder b ′ U . The valuation of any item i is an integer between 0 and T [i]. Each item i is given a price G[i] which
is also an integer between 0 and T [i].

We will assume that the number of items is equal to the number of bidders. If one of the set is smaller, say there
are fewer items than bidders, then we can add virtual items such that all bidders give valuation of zero to those
items. We also note that we are considering the maximum weight bipartite matching. By subtracting the valuation
from the maximum valuation for each edge, and calling it the cost of that edge, we can transform this problem to
the minimum cost bipartite matching.

It is important to note that it is the relative valuation of the items that is important not the absolute values.
Suppose that there are three items and a bidder provides valuation of (10, 8, 4) for these items, then the assigned
matching will not change if his valuation is (6, 4, 0) instead. The weight of the matching found for the valuation
(6, 4, 0) would be exactly less by 4 because in each assignment, a bidder is assigned exactly one item. Hence, one
can assume that there is at least one item for each bidder that is valued as 0. Similarly and dually, suppose that an
item is valued by three bidders as (10, 8, 4). Then, the assignment will not change if this item is valued as (6, 4, 0)
instead. If we view V as the square matrix such that V [b, i] equals vb,i, then we can assume that there is a zero in
every row by subtracting the minimum value in each row from every entry in the row. Similarly, we can assume that
there is at least one zero in every column.

Let xb,i be defined as a boolean variable which is 1 i" the item i is assigned to the bidder b, and 0 otherwise.
We consider the relaxation of the above problem in which xb,i are relaxed from being boolean variables to just being

137

138 CHAPTER 15. THE ASSIGNMENT PROBLEM

nonnegative reals, giving us the following primal linear program.

maximize
∑

(b,i)↗[n]≃[n]
vb,ixb,i

subject to
∑

b

xb,i = 1 ∝i ′ [n],

∑

i

xb,i = 1 ∝b ′ [n],

xb,i ↗ 0 ∝i ′ [n], b ′ [n]

(15.1)

We consider the dual of the above linear program. For each constraint on the item, we define the dual variable
pi and for each constraint on the bidder, we define the dual variable qb. The dual program is:

minimize
∑

i↗[n]
pi + qi

subject to pi + qb ↗ vb,i ∝i ′ [n], b ′ [n],
pi ↗ 0 ∝i ′ [n],
qb ↗ 0 ∝b ′ [n]

(15.2)

The constraint pi + qb ↗ vb,i can be seen as the no blocking pair constraint if the assignment problem is used to
match the sellers and the buyers of the items. If pi + qb < vb,i, then the assignment is not stable from the perspective
of the seller of item i and the bidder b. Together, they can be viewed as a blocking pair analogous to the blocking
pair in the stable matching problem. They have the motivation to leave the existing assignment and get matched so
that together they improve their total payo".

One way to solve a linear program is to find feasible solutions to primal and dual programs that satisfy comple-
mentary slackness conditions. The primary complementary slackness conditions are ∝i, b: (xb,i = 0)⇐ (pi +qb = vb,i).
The secondary complementary slackness conditions are trivially true for this formulation because we have only tight
constraints in the primal program.

15.3 Market Clearing Price
In this section, we apply LLP technique to the problem of finding a market clearing price. The set of feasible price
vectors is given by

{G | 0 ⇒ G[i] ⇒ T, 1 ⇒ i ⇒ n}

This set of price vectors forms a distributive lattice under the component-wise comparison of vectors. The
minimum is given by the zero vector and the maximum is given by the vector T .

Given a price vector G, we define the bipartite graph (I, U, E(G)) as follows. One side of the bipartite graph is
the set of items I. The other side of the graph is the set of bidders U . We now add edges between items and the
bidders as follows.

(j, b) ′ E(G) ↔ ∝i : (vb,j → G[j]) ↗ (vb,i → G[i]).

Informally, an edge exists between item i and bidder b if the payo" for the bidder (the bid minus the price) is
maximized with that item. Given any set U ↑

△ U , let N(U ↑, G) denote all the items that are adjacent to the vertices
in U ↑ in the graph (I, U, E(G)). A price vector G is a market clearing price if the bipartite graph (I, U, E(G)) has a
perfect matching.

We construct a computation graph (E, ∞) for this problem as follows (see Fig. 15.1). There are n processes
corresponding to n items in the computation such that each process has C events. In Fig. 15.1, we have three items
and three bidders such that both prices and valuations are integers between 0 and 4. If the process i has executed k
events then, then Gi = k. The global state G can be viewed as the price vector p where G[i] = p[i]. A price vector

15.3. MARKET CLEARING PRICE 139

G is a market clearing price, denoted by BclearingP rice(G) if the bipartite graph (I, U, E(G)) has a perfect matching.
We now claim that

p[3] := 3

P1

P2

P3

P1

P2

P3

p[1] := 4p[1] := 4

p[2] := 4

p[3] := 4

p[1] := 3p[1] := 2p[1] := 1

p[3] := 2

p[2] := 1 p[2] := 2 p[2] := 3

p[3] := 1

Figure 15.1: The computation graph for a market with three items and three bidders. The valuation of
and price for any item is a number between 0 and 4.

Lemma 15.1 The predicate BclearingP rice(G) is a lattice-linear predicate on the lattice of price vectors.

Proof: Suppose that the price vectors G and H satisfy BclearingP rice. Let K = min(G, H). We show that K
also satisfies BclearingP rice. Suppose that (I, U, E(K)) does not have a perfect matching. This implies that there
exists a minimal overdemanded set of items in K. Let an item i be one of the minimal overdemanded items in K.
Without loss of generality assume that K[i] equals G[i] (the argument for the case when K[i] equals H[i] is identical).
The item i is not an overdemanded item in G. But this is a contradiction because for all other items i↑, the price of
the item i↑ has either stayed the same or has increased in going from K to G.

In Fig. 15.2, we have used ω(G, j) as simply one unit of price. For any item j that is part of a minimal over-
demanded set of items, we can increase its price by the minimum amount to ensure that some bidder b can switch
to her second most preferred item. We now give an implementation LLP-Assignment based on this idea.

Suppose that your friend gives you an assignment and claims that the assignment is optimal. It is easy to check
that the assignment is proper, i.e., every item is assigned to exactly one bidder. But, how can she quickly convince
you of the optimality? Of course, one could compute the optimal assignment and check that the value of the optimal
assignment is same as that given by your friend. However, our goal is to perform strictly less work than solving the
problem.

Your friend only needs to provide the price vector G along with the assignment. Suppose that the item i is
assigned to the bidder b, then we can set pi to G, and qb to vb,i →pi. Now, it is su!cient to check that these variables
satisfy the constraints that

∝i, j : pi + qj ↗ vi,j

Note that this check can be performed in O(1) time in parallel. In essence, we have verified that both primal
and dual variables are feasible and satisfy complementary slackness conditions.

Now suppose that the assignment is not optimal. Without computing the optimal assignment, how can you
convince your friend that her assignment is not optimal. The answer is given by the following theorem.

Theorem 15.2 An assignment is optimal i! there is no positive weight cycle with respect to the assignment.

140 CHAPTER 15. THE ASSIGNMENT PROBLEM

Pj : Code for thread j
shared var G: array[1..n] of 0..maxint;
Market Clearing Prices: Demange-Gale-Sotomayor algorithm
input: v[b, i]: int for all b, i
init: G[j] := 0;
always:

E = {(k, b) | ∝i : (v[b, k] → G[k]) ↗ (v[b, i] → G[i]);
demand(U ↑) = {k | ⇓b ′ U ↑ : (k, b) ′ E};
overDemanded(J) ↔ ⇓U ↑

△ U : (demand(U ↑) = J) ≃ (|J | < |U ↑
|)

forbidden(j): (⇓minimal J : OverDemanded(J) ≃ (j ′ J)
advance: G[j] := G[j] + 1;

Figure 15.2: Algorithm ConstrainedMarketClearingPrice to find the minimum cost assignment vec-
tor

Algorithm LLP-Assignment: Finding the minimum clearing price vector
1 var
2 G: real initially ∝i : G[i] = 0;
3 while(true)
4 E := {(i, b) | ∝j : (vb,i → G[i]) ↗ (vb,j → G[j])};
5 if there exists a perfect matching M in E
6 then return M
7 else
8 J := minimal OverDemanded set in the bipartite graph with edges E(G);
9 forall j ′ J in parallel do

10 ϱj = min{(vb,j → G[j]) → maxi↘=j(vb,i → G[i]) | (j, b) ′ E(G)}
11 G[j] := G[j] + ϱj ;
12 end

15.4. CONSTRAINED MARKET CLEARING PRICE 141

Proof: A positive weight cycle is a cycle of even length of alternating matched and unmatched edges such that the
weight of unmatched edges is larger than the weight of matched edges. If such a cycle exists, then by switching
matched and unmatched edges we get a matching with higher weight.

Conversely, if the matching is not optimal, we consider XOR of this matching with an optimal matching. It can
be shown that these edges must have a positive weight cycle.

15.4 Constrained Market Clearing Price
We now generalize the problem of finding a market clearing price to that of finding a constrained market clearing
price. For example, constraints on the clearing prices of the form (G[j] ↗ k) ↘ (G[i] ↗ k↑) for 1 ⇒ k, k↑

⇒ C are
lattice-linear. The constraint says that if item j is priced at least k, then item i must be priced at least k↑. The
constraint G[i] ↗ G[j] is also lattice-linear. Observe that the constraint G[i] ↗ G[j] is equivalent to

(G[j] ↗ 1 ↘ G[i] ↗ 1) ≃ (G[j] ↗ 2 ↘ G[i] ↗ 2) . . . (G[j] ↗ C ↘ G[i] ↗ C)

Similarly, the constraint (G[i] = G[j]) can be modeled as (G[i] ↗ G[j]) ≃ (G[j] ↗ G[i]). Also, constraint of the
form G[j] ↗ f(G) for monotone f is lattice-linear. Given any set of valuations, and a boolean predicate B that
is a conjunction of lattice-linear constraints, a price vector G is a constrained market clearing price, denoted by
constrainedClearing(G) i" clearing(G) ≃ B(G). Since B(G) is lattice-linear, it is su!cient to give an algorithm for
clearing(G). It follows that the set of constrained market clearing price vectors is closed under meets. By applying
the lattice-linear predicate detection, we get an algorithm to compute the least constrained market clearing price
shown in Fig. 15.2. We get a generalization of Demange, Gale and Sotomayor’s exact auction mechanism [DGS86]
to incorporate lattice-linear constraints on the market clearing price.

We construct a computation graph (E, ∞) for this problem as follows (see Fig. 15.3). For any constraint,
(G[j] ↗ k) ↘ (G[i] ↗ k↑), we put an edge from the event k↑ in Pi to the event k in Pj . By putting such edges, we
get a computation graph and any price vector that does not satisfy constraints is not a consistent global state.

p[3] := 3

P1

P2

P3

P1

P2

P3

p[1] := 4p[1] := 4

p[2] := 4

p[3] := 4

p[1] := 3p[1] := 2p[1] := 1

p[3] := 2

p[2] := 1 p[2] := 2 p[2] := 3

p[3] := 1

Figure 15.3: The computation graph for a market with three items and three bidders. The valuation
of and price for any item is a number between 0 and 4. The computation graph models the constraint
B ↔ (p[2] ↗ 2 ↘ p[1] ↗ 3) ≃ (p[1] ↗ 2 ↘ p[3] ↗ 1)

For example, suppose that the valuation for three items in Fig. 15.3 is as follows. The bidder 1 values them as
[4, 1, 0], the bidder 2 values them as [4, 1, 2] and the bidder 3 values them as [4, 2, 0]. In the initial global state (with no

142 CHAPTER 15. THE ASSIGNMENT PROBLEM

events on any process), the price vector is [0, 0, 0]. This is not a market clearing price since item 1 is overdemanded.
Hence, we advance on P1 and the new price vector is [1, 0, 0]. The item 1 continues to be overdemanded and we
advance on P1 again to get the price vector [2, 0, 0]. This is a market clearing price; however, it does not satisfy the
constraint that (p[1] ↗ 2 ↘ p[3] ↗ 1). Hence, we must advance on P3 to get the price vector [2, 0, 1]. This price
vector satisfies the constraints but is not a clearing price. We must advance on the overdemanded item 1, to get the
price vector [3, 0, 1] which is both clearing and satisfies constraints. The price vector [3, 0, 1] is the least price vector
that is clearing and satisfies constraints. At this price vector, item 1 can be assigned to bidder 1, item 2 to bidder 3
and item 3 to bidder 2.

15.5 Problems
1. Show that the set of market clearing price vectors are also closed under the join operation.

15.6 Bibliographic Remarks
Kuhn’s Hungarian method to solve the assignment problem is from [Mun57]. Demange-Gale-Sotomayor present the
auction-based algorithm [DGS86] for market clearing prices.

Chapter 16

Horn and 2-SAT Satisfiability

16.1 Introduction
It is well-known than checking satisfiability of a boolean expression is a NP-complete problem. In this chapter we
consider two important classes of boolean expressions for which satisfiability can be solved e!ciently: Horn formulas
and 2-SAT formulas.

Throughout this chapter, we assume that the predicate is given in the conjunctive normal form (CNF) . A boolean
formula B in a conjunctive normal form is simply a conjunction of clauses, where each clause is a pure disjunction
of literals. A literal is a variable in its simple form or in a complemented form. For example, suppose that we have
n boolean variables {x1, x2, . . . xn}. Then, the formula (¬x1 ⇐ ¬x2 ⇐ x3) ≃ (x1 ⇐ x2) is in CNF with two clauses. The
first clause has three literals {¬x1, ¬x2, x3}, and the second clause has two literals {x1, x2}.

16.2 Horn Satisfiability
A clause is a Horn clause if it has at most one positive literal. An example of a Horn clause is (¬x1 ⇐ ¬x2 ⇐ x3).
Note that this formula is also equivalent to (x1 ≃ x2) ↘ x3. A Horn clause written in this form is also called a Horn
implication or a definite clause. Notice that it has only positive literals on the left hand side and a single positive
literal on the right hand side. The left hand side may be empty. Thus, x3 is also a Horn implication equivalent to
true ↘ x3.

Another example of a Horn clause is (¬x1 ⇐ ¬x2 ⇐ ¬x3). This clause does not have any positive literal. It is a
pure negative clause.

A Horn formula is just a conjunction of Horn clauses. The problem of HornSat is to determine if the given Horn
formula is satisfiable.

Consider the following Horn formula B with three variables x1, x2, and x3:

(¬x1 ⇐ ¬x2 ⇐ x3) ≃ (¬x3 ⇐ x1) ≃ (¬x2 ⇐ ¬x3) ≃ (¬x1 ⇐ x2)

This Horn formula B is satisfiable. Consider the assignment: x1 = false, x2 = true, and x3 = false. The first
and the fourth clauses are trues because x1 is false, and the second and the third clauses are true because x3 is false.
Another assignment that satisfies B is x1 = false, x2 = false, and x3 = false. In fact, this is the least satisfying
assignment in the Boolean lattice of three variables.

Consider the following set of Horn clauses with two variables x1 and x2:

143

144 CHAPTER 16. HORN AND 2-SAT SATISFIABILITY

(¬x1 ⇐ x2) ≃ (¬x2 ⇐ x1) ≃ (¬x1 ⇐ ¬x2) ≃ x1

This set of Horn clauses is unsatisfiable because there is no assignment of truth values to x1 and x2 that can
satisfy all the clauses simultaneously.

16.3 LLP Algorithm for HornSat
We assume that the Horn formula uses n variables x1, . . . xn. These n boolean variables define a boolean lattice L
of size 2n that consists of boolean vectors of size n. We first show that a Horn Formula is a lattice linear predicate
with respect to L.

Lemma 16.1 Any Horn Formula is a lattice linear predicate.

Proof: Let B = B1 ≃ B2 ≃ Bm be the Horn formula where each Bi is a Horn clause. Since lattice linear predicates
are closed under conjunction, it is su!cient to show that every Horn clause Bi is lattice linear. We consider two
types of Horn clauses.

First suppose that Bi is a Horn implication, i.e., Bi ↔ (xi1 ≃ xi2 ≃ xik↑1 ↘ xik). Consider any boolean vector
G in which Bi is false. This implies that xi1 , xi2 , . . . xik↑1 are true in G but xik is false. Consider any H such that
H ↗ G and H[ik] = G[ik]. Since H ↗ G, we have that (xi1 ≃ xi2 ≃ xik↑1) holds in H. Furthermore, since H[ik] is
equal to G[ik], xik is false in H. Hence, Bi is also false in H.

Now suppose that Bi is a pure negative clause, i.e., Bi ↔ (¬xi1 ⇐ ¬xi2 ⇐ ¬xik). Suppose that Bi is false in G.
This implies that all the literals are true. Consider any boolean vector H ↗ G. H must also have all these literals
true and therefore Bi is false in H (and any index is trivially forbidden).

The proof of Lemma 16.1 also shows us the appropriate advancement function. For Horn implications, we must
advance on the right hand side literal. For pure negative clauses, all boolean vectors greater than G do not satisfy
B. Hence, the algorithm can simply return that “no satisfying vector exists.”

We can now apply LLP algorithm to find a satisfying assignment for a Horn formula.

Algorithm HornSAT-LLP: An Algorithm to find the least assignment that satisfies B

1 var G: vector of boolean initially ∝i : G[i] = false;
2 Pj : code for thread j

3 forbidden: ⇓h : all antecedents of Bh are true, they imply xj , and xj is false in G
4 advance: G[j] := true;
5 forbidden: ⇓h : a negative clause Bh is false, and xj is a part of Bh

6 return null; // “no satisfying assignment exists”
7 return G; // the least assignment that satisfies B

We leave an e!cient implementation of the algorithm HornSAT-LLP as an exercise.
Observe that we also get the following consequence of Lemma 16.1 from its lattice-linearity.

Corollary 16.2 If G and H satisfy Horn formula, then G ∈ H also satisfies that formula.

A direct proof of this fact is left as an exercise. Although the set of assignments satisfying a Horn formula are closed
under meets, they are not closed under joins. For example, consider the Horn formula B ↔ (¬x1 ⇐ ¬x2). The bit
vectors G = [1, 0] and H = [0, 1] satisfy B but their join [1, 1] does not satisfy B.

16.4. ARITHMETIZATION OF HORN CLAUSES 145

x1 x2 x3

¬x1 ¬x2 ¬x3

Figure 16.1: Implication Graph of the predicate B ↔ (¬x1 ⇐ x2) ≃ (x1 ⇐ ¬x3) ≃ (¬x2 ⇐ x3)

16.4 Arithmetization of Horn Clauses
In this section, we give another proof that Horn Clauses are lattice linear by considering arithmetic expressions
instead of boolean expressions. We use the natural assignment of boolean variables xi to integer binary variables
yi. If xi is false then yi is assigned value 0, otherwise it is assigned 1. Given any clause, we translate it into an
arithmetic predicate as follows. Every positive literal xi in any clause is changed to yi and every negative literal ¬xi

is changed to (1 → yi). The clause is true i" the sum of all values so replaced in any clause is at least 1. For example,
the clause (¬x1 ⇐ ¬x2 ⇐ x3) is equivalent to (1 → y1) + (1 → y2) + y3 ↗ 1. If all yi take values in the set {0, 1}, then
it is easy to verify that the clause is true for x↑s i" the corresponding arithmetic predicate is true for y↑s. Let us see
how implication Horn clauses get translated. An implication Horn clause (xi1 ≃ xi2 ≃ xik↑1 ↘ xik) gets translated to
(1→yi1)+(1→yi2)+ . . . (1→yik↑1)+yik ↗ 1 which is equivalent to yik ↗ yi1 +yi2 + . . .+yik↑1 →(k→1). The right hand
side is a monotone function of y; hence the predicate is lattice-linear. A pure negative clause (¬xi1 ⇐ ¬xi2 . . . ⇐ ¬xik)
gets translated to (1 → yi1) + (1 → yi2) . . . + (1 → yik) ↗ 1. This predicate is equivalent to k → 1 ↗ yi1 + yi2 + . . . + yik

which once it becomes false it stays false. Hence, predicates for negative clauses are also lattice-linear.

16.5 2-SAT
A conjunctive normal form formula is a 2-SAT formula i" every clause has at most two literals. For example, the
formula B1 ↔ x1 ≃ (x2 ⇐¬x3)≃ (¬x1 ⇐¬x3) is a 2-SAT formula. If we consider the lattice of boolean vectors, a 2-SAT
formula may not be closed under meet. For example, consider the 2-SAT formula (x1 ⇐ x2). The boolean vectors
10 and 01 satisfy the formula, but their meet 00 does not. Hence, there is no minimum satisfying assignment and
simple LLP algorithm is not applicable.

We now outline an approach to detect if there is any element in the lattice that satisfies B is a 2-SAT formula.
The key idea for 2SAT algorithm is to convert the predicate to an implication graph. We assume that every clause
has two literals. A unit clause xi or ¬xi forces the value of the variable. It can be replaced in B resulting in a
2SAT formula with fewer variables. Now, we construct an implication graph I(B) for B as follows. The graph has
2n vertices, one for each literal. Every clause (li ⇐ lj) in B is true i" (¬li ↘ lj) ≃ (¬lj ↘ li). Therefore, we add two
directed edges in the the graph — from ¬li to lj and from ¬lj to li.

Consider the following 2-SAT formula with three variables x1, x2, and x3:

(¬x1 ⇐ x2) ≃ (x1 ⇐ ¬x3) ≃ (¬x2 ⇐ x3)
The implication graph on B is shown in Fig. 16.1.
We leave the following as an exercise.

Exercise 16.1 1. There exists a satisfying assignment to 2-SAT i! there is no variable xi such that ¬xi is
reachable from xi and xi is reachable from ¬xi in the graph I.

146 CHAPTER 16. HORN AND 2-SAT SATISFIABILITY

2. Suppose B is satisfiable. Then, all satisfying assignments set xj to true i! there exists a path from ¬xj to xj

in the implication graph.

3. Suppose B is satisfiable. Then, all satisfying assignments set xj to false i! there exists a path from xj to ¬xj

in the implication graph.

Algorithm 2SAT: An Algorithm to find a feasible assignment that satisfies B

1 vector function getFeasible(B: predicate)
2 var G: array[1 . . . n] of boolean initially ∝i : G[i] = false;
3 fixed: array[1 . . . n] of boolean initially ∝i : fixed[i] = false;
4 I(B) := implication graph of B;
5 if there exists a path from ¬xj to xj and from xj to ¬xj in I(B) then
6 return null; //“no satisfying solution”
7 while (⇓j : ¬fixed[j])
8 if there exists a path from ¬xj to xj then G[j] := true;
9 fixed[j] := true;

10 unitPropagation(B, j);
11 endwhile;
12 return G; // a feasible solution

Algorithm 2SAT works as follows. The array G keeps the assignment of all the binary variables. The array
fixed maintains for each i, whether the bit xi has been set to true or false. The while loop in the figure sets these
variables as follows. It picks any variable xj that is not fixed. If there is a path from ¬xj to xj , then we set xj to
true; otherwise it keeps the value of xj as false. We also set the bit fixed[j] to true. Once xj is set, other variables
may also be forced. We call the method unitPropagation that sets the other variables that are set because xj is set.
We continue the while loop until all variables are set.

In the algorithm, we need to check if there exists a path from xj to ¬xj and vice-versa. One way to accomplish
this is to find strongly connected components (SCCs) in the graph. An SCC is a subgraph where every vertex is
reachable from every other vertex in the same SCC. (One can use Tarjan’s algorithm or Kosaraju’s algorithm to find
SCCs.) The expression is satisfiable if and only if for every variable xj and ¬xj are not in the same SCC. If the
expression is satisfiable, an assignment can be constructed by considering the SCCs in reverse topological order. The
sequential time complexity of 2SAT problem is linear in the number of clauses.

Let us now check the time complexity for a parallel algorithm to determine if the given 2SAT expression is
satisfiable. The problem reduces to checking if there exists a path from xj to ¬xj and vice-versa using reachability.
Since reachability problem is in NC, we conclude that checking satisfiability of a 2SAT formula is in NC.

16.6 Problems
1. Is the following Horn SAT formula satisfiable?

(¬x1 ⇐ ¬x2 ⇐ x3) ≃ (¬x3 ⇐ x1) ≃ (¬x3 ⇐ ¬x1) ≃ (¬x2 ⇐ ¬x3) ≃ (¬x1 ⇐ x2)

2. (E"cient Satisfiability of Horn formulas) Give an e!cient implementation of the algorithm in Fig.
HornSAT-LLP. In particular give e!cient data structures to represent Horn implications and pure negative
clauses. Your algorithm should be linear in the length of the Horn formula.

3. (Renamable Horn formulas) A formula is a Renamable Horn formula if by flipping the polarity of certain
variables the formula can be transformed to a Horn formula. For example, (¬x1 ⇐ ¬x2 ⇐ ¬x4) ≃ (x3 ⇐ x4) ≃

(x1 ⇐ x2 ⇐ ¬x4) ≃ (x1 ⇐ ¬x3) is not a Horn formula. However, by renaming x1 as ¬x1 and x3 as ¬x3, we get

16.6. PROBLEMS 147

a Horn formula. Give an algorithm to determine whether the given formula is a Renamable Horn formula.
(Hint: Can you come up with a 2SAT formula that is true i" the given formula is renamable Horn formula).

4. (Meet Closure of Horn Formulas) Prove Corollary 16.2 without invoking lattice linearity of Horn Clauses.

5. (Dual Horn formulas) A dual Horn formula is one in which all clauses have at most one negative literal.
Give an algorithm to check satisfiability of dual Horn formulas.

6. Consider a directed graph with n nodes including two distinguished nodes s and t. Show that there exists a
2-SAT formula B on n variables such that the formula is satisfiable i" t is reachable from s.

7. (Satisfying Assignments of 2-SAT formulas) Suppose a 2-SAT formula B is satisfiable. Then, all satis-
fying assignments of B must have xj as true i" there exists a path from ¬xj to xj in the implication graph.

8. (Implication Graph of a 2-SAT formula) (a) Show that there exists a satisfying assignment to a 2-SAT
formula B i" there is no variable xi such that ¬xi is reachable from xi and xi is reachable from ¬xi in the
implication graph I constructed from B. (b) Show that every literal in any strongly connected component of
the implication graph must be assigned the same value, true or false.

148 CHAPTER 16. HORN AND 2-SAT SATISFIABILITY

Chapter 17

Stable Marriage Problem with Ties

17.1 Introduction
In this chapter we consider the stable matching problem when the list of preferences may have ties. We will assume
that the number of men is equal to the number of women in this chapter. The problem of stable marriage with ties
is clearly more general than the standard stable matching problem discussed in Chapter 2.

We consider three versions of matching with ties. In the first version, called weakly stable matching M , there is
no blocking pair of man and woman (m, w) who are not married in M but strictly prefer each other to their partners
in M . In the second version, called superstable matching M , we require that there is no blocking pair of man and
woman (m, w) who are not married in M but either (1) both of them prefer each other to their partners in M , or
(2) one of them prefers the other over his/her partner in M and the other one is indi"erent, or (3) both of them are
indi"erent to their spouses. The third version, called strongly stable matching, we require that if there is no blocking
pair (m, w) such that they are not married in M but either (1) both of them prefer each other to their partners in
M , or (2) one of them prefers the other over his/her partner in M and the other one is indi"erent.

For the weakly stable matching, ties can be broken arbitrarily and any matching that is stable in the resulting
instance is also weakly stable for the original problem. Therefore, Gale-Shapley algorithm is applicable for the weakly
stable matching. We now derive LLP algorithms for the superstable and strongly stable matchings.

17.2 Superstable Matching
In many applications, agents (men and women for the stable marriage problem) may not totally order all their
choices. Instead, they may be indi"erent to some choices [Irv94, Man02]. We generalize mpref [i][k] to a set of
women instead of a single woman. Therefore, mrank function is not 1-1 anymore. Multiple women may have the
same rank. Similarly, wrank function is not 1-1 anymore. Multiple men may have the same rank. We now define
the notion of blocking pairs for a matching M with ties [Irv94]. We let M(m) denote the woman matched with the
man m and M(w) denote the man matched with the woman w. In the version, called weakly stable matching M ,
there is no blocking pair of man and woman (m, w) who are not married in M but strictly prefer each other to their
partners in M . Formally, a pair of man and woman (m, w) is blocking for a weakly stable matching M if they are
not matched in M and
(mrank[m][w] < mrank[m][M(m)])≃
(wrank[w][m] < wrank[w][M(w)].

For the weakly stable matching, ties can be broken arbitrarily and any matching that is stable in the resulting
instance is also weakly stable for the original problem. Therefore, Gale-Shapley algorithm is applicable for the weakly
stable matching [Irv94]. We focus on other forms of stable matching — superstable and strongly stable matchings.

149

150 CHAPTER 17. STABLE MARRIAGE PROBLEM WITH TIES

A matching M of men and women is superstable if there is no blocking pair (m, w) such that they are not married
in M but they either prefer each other to their partners in M or are indi"erent with their partners in M . Formally,
a pair of man and woman (m, w) is blocking for a super stable matching M if they are not matched in M and
(mrank[m][w] ⇒ mrank[m][M(m)])≃
(wrank[w][m] ⇒ wrank[w][M(w)].

The algorithms for superstable marriage have been proposed in [Irv94, Man02]. Our goal is to show that LLP
algorithm is applicable to this problem as well. As before, we will use G[i] to denote the mrank that the man i is
currently considering. Initially, G[i] is 1 for all i, i.e., each man proposes to all his top choices. We say that G has a
superstable matching if there exist n women w1, w2, . . . wn such that ∝i : wi ′ mpref [i][G[i]]] and the set (mi, wi) is
a superstable matching.

We define a bipartite graph Y (G) on the set of men and women with respect to any G as follows. If a woman
does not get any proposal in G, then she is unmatched. If she receives multiple proposals then there is an edge from
that woman to all men in the most preferred rank. We say that Y (G) is a perfect matching if every man and woman
has exactly one adjacent edge in Y (G),

We claim

Lemma 17.1 If Y (G) is not a perfect matching, then there is no superstable matching with G as the proposal vector.

Proof: If there is a man with no adjacent edge in Y (G) then it is clear that G cannot have a superstable matching.
Now consider the case when a man has at least two adjacent edges. If all the adjacent women for this man have degree
one, then exactly one of them can be matched with this man and other women will remain unmatched. Therefore,
there is at least one woman w who is also adjacent to another man m↑. If w is matched with m, then (m↑, w) is a
blocking pair. If w is matched with m↑, then (m, w) is a blocking pair.

We now claim that the predicate B(G) ↔ “Y (G) is a perfect matching↑↑ is a lattice-linear predicate.

Lemma 17.2 If Y (G) is not a perfect matching, then at least one index in G is forbidden.

Proof: Consider any man i such that there is no edge adjacent to i in Y (G). This happens when all women that
man i has proposed in state G have rejected him. Consider any H such that H[i] equals G[i]. All the women had
rejected man i in G. As H is greater than G, these women can only have more choices and will reject man i in H
as well.

Now suppose that every man has at least one adjacent edge. Let Z(G) be the set of women with degree exactly
one. If every woman is in Z(G), then we have that Y (G) is a perfect matching because every man has at least one
adjacent edge. If not, consider any man i who is not matched to a woman in Z(G). This means that all the women
he is adjacent to have degrees strictly greater than one. In H all these women would have either better ranked
proposals or equally ranked proposals. In either case, man i would not be matched with any of these women. Hence,
i is forbidden.

We are now ready to present LLP-ManOptimalSuperStableMarriage. In LLP-ManOptimalSuperStableMarriage,
we start with the proposal vector G with all components G[j] as 1. Whenever a woman receives multiple proposals,
she rejects proposals by men who are ranked lower than anyone who has proposed to her. We say that a man j is
forbidden in G, if every woman z that man j proposes in G is either engaged to or proposed by someone who she
prefers to j or is indi"erent with respect to j. LLP-ManOptimalSuperStableMarriage is a parallel algorithm because
all processes j such that forbidden(j) is true can advance in parallel. In LLP-ManOptimalSuperStableMarriage, we
use Y (j) to denote all women than man j has proposed in the state G, i.e., Y (j) equals mpref [j][G[j]].

Let us consider an example on three men and three women. The preference lists for men are:
m1 : (w1 = w2), w3
m2 : w2, (w1 = w3)

17.2. SUPERSTABLE MATCHING 151

m3 : w3, w1, w2

The preference lists for women are:
w1 : (m2 = m3), m1
w2 : m1, m3, m2
w3 : (m1 = m3), m2

The algorithm starts with G = (1, 1, 1). The man m1 sends proposals to both w1 and w2. The man m2 sends
proposal to w2 and m3 sends proposal to w3. Since w3 receives only proposal from m3, she accepts it. Since w2
receives proposals from m1 as well as m2, she sends a reject to m2 because she prefers m1. Since w1 receives proposal
from only m1, she also accepts the proposal. The man m2 is forbidden because all his proposals are rejected and he
move to the next level in his preferences. The man 2 now proposes to both w1 and w3. The woman w1 prefers m2
to m1 so she rejects m1 and accepts m2. The woman w3 prefers m3 to m2, so she rejects m2. At this point, we have
m1 with accepted proposal from w2, m2 with accepted proposal from w1 and m3 with accepted proposal from w3.
The marriage (m1, w2), (m2, w1), (m3, w3) is the optimal super stable marriage.

Algorithm LLP-ManOptimalSuperStableMarriage: A Parallel Algorithm for Man-Optimal
Super Stable Matching
1 Pj : Code for thread j
2 input: mpref [i, k]: set of int for all i, k; wrank[k][i]: int for all k, i;
3 init: G[j] := 1;
4 always: Y (j) = mpref [j][G[j]];
5 forbidden(j):
6 ∝z ′ Y (j) : ⇓i ↑= j : ⇓k ⇒ G[i] : (z ′ mpref [i][k]) ≃ (wrank[z][i] ⇒ wrank[z][j]))
7 // all women z in the current proposals from j have been proposed by someone who either they

prefer or are indi"erent over j.
8 advance: G[j] := G[j] + 1;

Let us verify that this algorithm indeed generalizes the standard stable marriage algorithm. For the standard
stable marriage problem, mpref [i, k] is singleton for all i and k. Hence, Y (j) is also singleton. Using z for the
singleton value in Y (j), we get the expression ⇓i ↑= j : ⇓k ⇒ G[i] : (z = mpref [i][k]) ≃ (wrank[z][i] < wrank[z][j]))
which is identical to the stable marriage problem once we substitute < for ⇒ for comparing the wrank of man i and
man j.

When the preference list has a singleton element for each rank as in the classical stable marriage problem, we
know that there always exists at least one stable marriage. However, in presence of ties there is no guarantee of
existence of a superstable marriage. Consider the case with two men and women where each one of them does not
have any strict preference. Clearly, for this case there is no superstable marriage.

By symmetry of the problem, one can also get woman-optimal superstable marriage by switching the roles of
men and women. Let mpref [i].length() denote the number of equivalence classes of women for man i. When all
women are tied for the man i, the number of equivalence classes is equal to 1, and when there are no ties then it is
equal to n. Consider the distributive lattice L defined as the cross product of mpref [i] for each i. We now have the
following result.

Theorem 17.3 The set of superstable marriages, Lsuperstable, is a sublattice of the lattice L.

Proof: From Lemma 17.2, the set of superstable marriages is closed under meet. By symmetry of men and women,
the set is also closed under join.

152 CHAPTER 17. STABLE MARRIAGE PROBLEM WITH TIES

It is already known that the set of superstable marriages forms a distributive lattice [Spi95]. The set of join-
irreducible elements of the lattice Lsuperstable forms a partial order (analogous to the rotation poset [GI89]) that can
be used to generate all superstable marriages. Various posets to generate all superstable marriages are discussed in
[Sco05, HG21].

We note that the algorithm LLP-ManOptimalSuperStableMarriage can also be used to find the constrained
superstable marriage. In particular, the following predicates are lattice-linear:

1. Regret of man i is at most regret of man j.
2. The proposal vector is at least I.

17.3 Strongly Stable Matching
A matching M of men and women is strongly stable if there is no blocking pair (m, w) such that they are not married
in M but either (1) both of them prefer each other to their partners in M , or (2) one of them prefers the other to
his/her partner in M and the other one is indi"erent. Formally, a pair of man and woman (m, w) is blocking for a
strongly stable matching M if they are not matched in M and

((mrank[m][w] ⇒ mrank[m][M(m)])≃
(wrank[w][m] < wrank[w][M(w)]))

⇐((mrank[m][w] < mrank[m][M(m)])≃
(wrank[w][m] ⇒ wrank[w][M(w)])).

As in superstable matching algorithm, we let mpref [i][k] denote the set of women ranked k by man i. As before,
we will use G[i] to denote the mrank that the man i is currently considering. Initially, G[i] is 1 for all i, i.e., each
man proposes to all his top choices. We define a bipartite graph Y (G) on the set of men and women with respect
to any G as follows. If a woman does not get any proposal in G, then she is unmatched. If she receives multiple
proposals then there is an edge from that woman to all men in the most preferred rank. For superstable matching,
we required Y (G) to be a perfect matching. For strongly stable matching, we only require Y (G) to contain a perfect
matching.

We first note that a strongly stable matching may not exist. The following example is taken from [Irv94].

m1 : w1, w2
m2 : w1 = w2 (both choices are ties)

w1 : m2, m1
w2 : m2, m1

The matching {(m1, w1), (m2, w2)} is blocked by the pair (m2, w1): w1 strictly prefers m2 and m2 is indi"erent
between w1 and w2. The only other matching is {(m1, w2), (m2, w1)}. This matching is blocked by (m2, w2): w2
strictly prefers m2 and m2 is indi"erent between w1 and w2.

Consider any bipartite graph with an equal number of men and women. If there is no perfect matching in the
graph, then by Hall’s theorem there exists a set of men of size r who collectively are adjacent to fewer than r women.
We define deficiency of a subset Z of men as |Z| → N(Z) where N(Z) is the neighborhood of Z (the set of vertices
that are adjacent to at least one vertex in Z). The deficiency ϱ(G) is the maximum deficiency taken over all subsets
of men. We call a subset of men Z critical if it is maximally deficient and does not contain any maximally deficient
proper subset. Our algorithm to find a strongly stable matching is simple. We start with G as the global state
vector with top choices for all men. If Y (G) has a perfect matching, we are done. The perfect matching in Y (G) is
a strongly stable matching. Otherwise, there must be a critical subset of men with the maximum deficiency. These
set of men must then advance on their proposal number, if possible. If these men cannot advance, then there does
not exist a strongly stable marriage and the algorithm terminates.

LLP-ManOptimalStronglyStableMarriage is the LLP version of the algorithm proposed by Irving and the inter-
ested reader is referred to [Irv94] for the details and the proof of correctness. Similar to superstable marriages, we
also get the following result.

17.4. PROBLEMS 153

Algorithm LLP-ManOptimalStronglyStableMarriage: A Parallel Algorithm for Man-
Optimal Strongly Stable Matching
1 Pj : Code for thread j
2 input: mpref [i, k]: set of int for all i, k; wrank[k][i]: int for all k, i;
3 init: G[j] := 1;
4 always: Y (j) = mpref [j][G[j]];
5 forbidden(j):
6 j is a member of the critical subset of men in the graph Y (G)
7 advance: G[j] := G[j] + 1;

Theorem 17.4 The set of strongly stable marriages, Lstronglystable, is a sublattice of the lattice L.

Observe that each element in Lstronglystable is not a single marriage but a set of marriages. This is in contrast to
Lsuperstable, where each element corresponds to a single marriage.

17.4 Problems
1. Give all the super stable marriages for the preference lists given below. The preference lists for men are:

m1 : (w1 = w2), w3
m2 : w2, (w1 = w3)
m3 : w3, w1, w2

The preference lists for women are:
w1 : (m2 = m3), m1
w2 : m1, m3, m2
w3 : (m1 = m3), m2

2. Show the correctness of the LLP-ManOptimalStronglyStableMarriage.

17.5 Bibliographic Remarks
The notion of superstable matching and strongly stable matching and the associated algorithms are from [Irv94].
The LLP versions of these algorithms are from [Gar23].

154 CHAPTER 17. STABLE MARRIAGE PROBLEM WITH TIES

Chapter 18

The GCD Problem

18.1 Introduction
In this chapter we cover some basic algorithms in number theory. The set of all natural numbers form a distributive
lattice under the usual divides relation, i.e., we define x ⇒ y for two natural numbers x and y if x divides y. In this
(infinite) lattice, the bottom element is 1 since it divides all numbers. The join of any two elements is given by their
least common multiple and the meet of any two elements is given by their greatest common divisor.

In this chapter, we first give two algorithms for the greatest common divisor.

18.2 Parallel Greatest Common Divisor (GCD) Algorithm: First Al-
gorithm

Let A be an array of n natural numbers. All the common divisors of A form a distributive lattice. This lattice
is never empty because 1 divides all numbers. Our goal is to find the greatest common divisor of these numbers.
Instead of finding just one number, we find an array of numbers G such that each number in G divides all number
in A. When G is the greatest such vector then we have the required GCD.

We start with G[i] equal to A[i] for all i. We assume that all of them are numbers greater than or equal to 1.
The algorithm terminates with all numbers identical and equal to the gcd.

The predicate
B ↔ (∝i : gcd(A) divides G[i]) ≃ (∝i, j : G[i] ↗ G[j])

We first need to show that B is lattice-linear.

Lemma 18.1 B is lattice-linear.

Proof: Suppose that B is false. Since the first part is invariant of the program, we get that there exists i and j such
that G[j] is strictly bigger than G[i]. Since G can only decrease, the predicate can never become true unless G[j] is
advanced, i.e., decreased. This decrease must be such that the invariant is maintained.

Suppose that G[i] is greater than G[j] for some j and G[j] does not divide G[i], then we claim that it is safe
to reduce G[i] to G[i]mod G[j]. This step gives us an algorithm. If all numbers are same, we stop. Otherwise, if
G[i] > G[j], we replace G[i] by G[j] if G[i] is a multiple of G[j] and G[i]mod G[j] otherwise.

The invariant is that every common divisors of A is also a common divisor of G. The invariant holds initially
because G is set to A. After every advance, we only need to consider two cases. If G[j] is greater than G[i] and G[i]

155

156 CHAPTER 18. THE GCD PROBLEM

var
G: array[1..n] of int initially ∝i : G[i] = A[i];

forbidden(j): ⇓i : G[j] > G[i]
advance(j): if G[i] divides G[j] then G[j] := G[i];

else G[j] := G[j] mod G[i];

Figure 18.1: Algorithm GCD to find the greatest common divisor of a set of numbers

divides G[j], then it is su!cient to set G[j] to G[i] because just the divisors of G[i] are common divisors to both G[i]
and G[j]. If G[i] does not divide G[j], then the only common divisors are those that divide G[i] and G[j]mod G[i]
(prove it!).

It is easy to see that the algorithm terminates. All values are initially non-zero positive integers. They stay
non-zero and integral and always decrease; therefore, the algorithm must terminate. Initially G is same as the given
vector A. It decreases as the algorithm executes, and the least possible value is the vector with all 1’s.

18.3 Parallel Greatest Common Divisor (GCD) Algorithm: Second Al-
gorithm

Let A be an array of n natural numbers. Our goal is to find the GCD of these numbers. When all elements of A
are divided by the GCD, we get a quotient vector which is also a vector of natural numbers. Finding GCD of A is
equivalent to finding the minimum vector G such that there exists a number d such that for all i, A[i] = d ∋ G[i].
The problem can be formulated as finding minimum G such that ∝i : G[i] = A[i]/d. Equivalently, our goal is to
find minimum G such that Bgcd(G) ↔ ∝i, j : A[i]/G[i] = A[j]/G[j], This feasibility predicate, Bgcd, is equivalent to
∝j : G[j] ↗ maxi{A[j]/A[i] ∋ G[i]}. Since the right hand side is a monotone function, we know that the predicate is
lattice-linear. We can apply LLP algorithm with forbidden(G, j) as G[j] < maxi{A[j]/A[i] ∋ G[i]} and ω(G, j) =
▽maxi{A[j]/A[i] ∋ G[i]̸.

We now give a parallel algorithm to compute gcd of an array of numbers based on this idea.

var
G: array[1..n] of int initially ∝i : G[i] = 1;

for all j such that G[j] < maxi{A[j]/A[i] ∋ G[i]};
G[j] := ▽maxi{A[j]/A[i] ∋ G[i]̸;

endfor;
return A[1]/G[1];

Figure 18.2: Algorithm GCD to find the greatest common divisor of a set of numbers

The above algorithm was mechanically derived from LLP algorithm. Let us see how it relates to Euclid’s algorithm
to compute gcd of two numbers: A[1] and A[2].

Suppose that A[1] and A[2] are 10 and 15 respectively. We get the following steps. Initially, G[1] = 1 and
G[2] = 1. Since G[2] ∋ A[1] < G[1] ∋ A[2], we update G[2] to 2, getting G = [1, 2]. Now G[1] ∋ A[2] < G[2] ∋ A[1], we
get G = [2, 2]. Now G[2] ∋ A[1] < G[1] ∋ A[2], we update G[2] to ▽A[2]/(A[1] ∋ G[1]̸ = 15/10 ∋ 2 = 3. We now have
G = [2, 3] and the algorithm terminates. It returns A[1]/G[1] which equals 5.

18.4. CHINESE REMAINDER THEOREM 157

var
G: int initially ∝i : G[i] = 1;

while(A[1]/G[2] ↑= A[2]/G[1]) do
if G[1] ∋ A[2] < G[2] ∋ A[1] then

G[1] := ▽A[1]/A[2] ∋ G[2]̸;
else

G[2] := ▽A[2]/A[1] ∋ G[1]̸;
endwhile;

return A[1]/G[1];

Figure 18.3: Algorithm GCD to find the greatest common divisor of a set of numbers

18.4 Chinese Remainder Theorem
We have r coprime numbers m1, m2, . . . mr and r integers bi such that 0 ⇒ bi < mi. Our goal is to find the least
number x such that x ↔ bi(mod mi). There are r equations. We think of this as r processes such that process i is
solving equation i. Furthermore, we want each process to get the same value of x. Initially, we start with G[i] equal
to b[i] for all i. We are searching for the least G such that

B ↔ (∝i, j : G[i] ⇒ G[j]) ≃ (∝i : G[i] ↔ bi(mod mi))

Since each process Pi can only increase the value of G[i], the predicate (G[i] ⇒ G[j]) is lattice-linear. Furthermore,
(Gi ↔ bi(mod mi)) is a local predicate and therefore also lattice-linear. Thus, B is a lattice-linear predicate and we
can use LLP algorithm to solve the problem. The simplest algorithm will advance on the process Pi by 1 if either
G[i] < G[j] for some j or if ¬(G[i] ↔ bi(mod mi). Furthermore, the only way the second part would become true is if
G[i] is advanced to a state in which G[i]mod mi equals bi. To simplify matters further, we initialize G[i] to bi since
that is the smallest state in Pi satisfying the local predicate. We maintain the invariant that ∝i : G[i] = b[i]mod m[i].
With this observation, we get the Figure Par-CRT.

Algorithm Par-CRT: A Parallel Algorithm for Chinese Remainder Problem
1 input: m : array[1..n] of int;
2 b : array[1..n] of int;
3 var: G: array[1..n] of int ;
4 init: ∝j : G[j] := b[i];
5 forbidden(j): (⇓i : G[j] < G[i]) ⇐ (G[j]mod m[j] ↑= b[j])
6 advance(j):
7 G[j] := G[j] + mink{G[j] + k ∋ m[j] ↗ G[i]};

Observe that process Pi does not need access to any b[j] or m[j] for j ↑= i. It does need access to G[j]. Hence,
this algorithm can be applied in a distributed fashion if G is available publicly even though b and m are private.
Applying the Chinese Remainder Theorem to solve this problem requires public access of m.

So far we have not shown that the algorithm terminates but we know that if the algorithm terminates it gives
us the smallest number that satisfies B. For this particular example, we do know that the program terminates due
to Chinese Remainder Theorem. However, if instead of linear equations we had arbitrary equations, then one could
still apply this program except that the program may not terminate.

Instead of searching for the solution in increasing order, one can also search it in the decreasing order provided we
know where to start the search from. In the above example, let M be the product of all m[i], i.e., M = m[1]m[2]...m[n].

158 CHAPTER 18. THE GCD PROBLEM

Then, from Chinese Remainder Theorem we know that the solution exists between 0..M → 1. It is easy to see that B
is also dual lattice-linear. Hence, one can use the following algorithm to find the largest solution that is at most M .

Algorithm Par-CRT2: A Parallel Algorithm for Chinese Remainder Problem
1 input: m : array[1..n] of int;
2 b : array[1..n] of int;
3 var: G: array[1..n] of int ;
4 init: ∝j : G[j] := greatest number at most M → 1 that is congruent to b[j] mod m[j];
5 forbidden(j): (⇓i : G[j] > G[i]) ⇐ (G[j]mod m[j] ↑= b[j])
6 advance(j):
7 G[j] := G[j] → mink{G[j] → k ∋ m[j] ⇒ G[i]};

18.5 Viewing Numbers as Distributive Lattice
The set of all natural numbers forms a distributive lattice under the divides relation. This distributive lattice
(infinite) has the following representation. For every prime p, we have a chain of elements p0, p1, p2, This infinite
poset has as many chains as the number of distinct primes. There is a 1-1 correspondence between the lattice of
natural numbers and the cross product of all chains in the poset (by the unique factorization of numbers) We can
go from any element n in the number lattice to an element in the croos-product by choosing k + 1 elements from the
chain for the prime p if k is the largest integer such that pk divides n.

Let us define some arithmetical functions on the set of natural numbers. We are interested in functions that can
be defined on the poset representation of natural numbers, i.e., the function is defined only for the prime powers.
The value of the function on any number is simply the product of its value on each of the prime powers.

Definition 18.2 (Multiplicative Functions) We call an arithmetical function f multiplicative if it is not a zero
function and f(mn) equals f(m)f(n) whenever gcd(m, n) equals 1.

Note that we require f(mn) equals f(m)f(n) only when gcd(m, n) equals 1. If we drop the requirement of gcd to be
1, then the function is called completely multiplicative.

We now introduce some multiplicative functions.

Definition 18.3 (Mobius function) The Mobius function µ is defined on any prime power pk as 1 if k = 0, →1
if k = →1 and 0, otherwise.

Since µ is defined to be multiplicative it follows that if n = pa1
1 pa2

2 , . . . pak
m

. Then, µ(n) equals (→1)k if ∝i ′ [k] :
ai = 1 and µ(n) equals 0, otherwise.

We now show a simple formula for the divisor sum of µ(n).

Theorem 18.4 For any n > 1,
∑

d|n µ(d) = 0.

Proof: Let n = pa1
1 pa2

2 , . . . pak
k

. It is easy to see that d divides n i" d = pb1
1 pb2

2 , . . . pbk
m

, where for all i ′ [m] : bi ⇒ ai.
Consider the poset P (n). It is easy to verify that

∑
d|n µ(d) is the sum of all cross-products of chains in P (n). This

sum is also equal to the product of sum of µ(d) where d is a prime power. However,
∑

di|n,d is a prime power of pi
µ(d)

is zero because for any prime p that divides n, µ(p0) = 1, µ(p1) = →1, and µ(pk) = 0 for k ↗ 2. Hence,
∑

d|n µ(d) = 0.

We now show another multiplicative arithmetical function defined on the set of natural numbers.

18.5. VIEWING NUMBERS AS DISTRIBUTIVE LATTICE 159

7 1 -1 0 0

5 1 -1 0 0

3 1 -1 0 0

2 1 -1 0 0

7 1 6 42 294

5 1 4 20 100

3 1 2 6 18

2 1 1 2 4

Figure 18.4: Poset representations for µ and ε. The value for ε(pk) is pk
→ pk→1. Thus, the third entry for

prime 3 is 32
→ 31 = 6.

Definition 18.5 (Euler’s Totient function) The Euler’s totient function ε is defined on any prime power pk for
k > 0 as pk

→ pk→1. Also, ε(1) is defined as 1.

For example, ε(32) = 32
→ 31 = 9 → 3 = 6. The function ε can be extended to any natural number n by using

the multiplicative property. We now show that

Lemma 18.6 For any n > 1, ε(n) equals the number of positive integers less than or equal to n which are relatively
prime to n.

Proof: Let n = pa1
1 pa2

2 , . . . pak
k

for some k ↗ 1. When k equals 1, n = pa1
1 . There are pa1

1 positive integers less than or
equal to n. Out of these, pa1→1

1 are less than n and divide n. Therefore, ε(n) equals the number of positive integers
less than or equal to n which are relatively prime to n. Let Ai denote the numbers that are relatively prime to pai

i
.

Now, suppose that k > 1. From the multiplicative property, ε(n) = ε(pa1
1)ε(pa2

2), . . . ε(pak
k

). It can be easily verified
that ε(n) consists of numbers relatively prime to n.

We now show that

Theorem 18.7 For any n > 1,
∑

d|n ε(d) = n.

Proof: Let n = pa1
1 pa2

2 , . . . pak
k

for some k ↗ 1. The poset representation of ε(n) is shown in Figure. Clearly,∑
d|n ε(d) = #k

i=1
∑

j=k

j=0 ε(pj

i
). Since, ε(pj

i
) = pj

→ pj→1, by the telescoping argument, we get
∑

j=k

j=0 ε(pj

i
) = pk

i
.

Hence,
∑

d|n ε(d) = #k

i=1pk

i
= n.

Some additional multiplicative functions are defined below.

1. The arithmetical function N is defined as N(pk) = pk.

2. The arithmetical function Identity, I is defined as I(pk) = 1 if k = 0 and 0 otherwise.

3. The arithmetical function Unit, u is defined as u(pk) = 1 for all p, k.

160 CHAPTER 18. THE GCD PROBLEM

4. The arithmetical function ⇀ is defined as ⇀(pk) = (→1)k for all k.

The following Lemma gives the summation results for these functions.

Lemma 18.8 For any n > 1,
(a)

∑
d|n N(d) = #pk|n(pk+1

→ 1)/(p → 1).
(b)

∑
d|n I(d) = 1.

(c)
∑

d|n u(d) = the number of divisors of n.
(d)

∑
d|n ⇀(d) = 1 if n is a square and 0, otherwise.

Proof: Since all these functions are multiplicative, we will simply compute them for n = pk.
(a)

∑
d|pk N(d) = (pk+1

→ 1)/(p → 1) since we have a geometric series. From multiplicative property, the results
follows.
(b)

∑
d|pk I(d) = 1 since only I(1) = 1. It is 0 for all k > 1. By multiplicative property, we get that

∑
d|n I(n) = 1.

(c)
∑

d|pk u(d) = k + 1. By invoking the multiplicative property, we get that
∑

d|n u(d) = the number of divisors of
n.
(d)

∑
d|pk ⇀(d) = 1 if k is even and 0 otherwise. Therefore,

∑
d|n ⇀(d) = 1 if for each prime the corresponding

exponent is even and 0 otherwise. Thus,
∑

d|n ⇀(d) = 1 if n is a square and 0, otherwise.

Chapter 19

Linear Programming

19.1 Introduction
In this chapter, we consider linear programming that is a general technique to solve many problems.

We note here that linear programming has also served as a unifying tool for many combinatorial optimization
problems. In particular, the man-optimal stable marriage problem, the shortest path problem, and the least market
clearing price can all be modeled as integer linear programs with total unimodularity. However, it is not known
whether linear programming is strongly polynomial. In contrast, our method results in algorithms that are close
to best-known strongly polynomial algorithms for all these problems. There are other di"erences in these two
approaches. Algorithms for linear programming typically stay inside the feasible space and improve the objective
function with every iteration. Our approach keeps the objective function as extremal as possible while making
progress towards a feasible solution. Linear programming method uses real variables with linear objective function
and linear constraints. Our method assumes that the search is for the infimum element of a feasible space in a
distributive lattice such that the feasible space satisfies a lattice-linear predicate.

Linear constraints for linear programming are defined using conjunction of half-spaces. Lattice-Linear predicates
are incomparable to half-spaces. There are half-spaces that are not lattice-linear and there are lattice-linear predicates
that are not half-spaces.

Linear programming is a every general technique to solve combinatorial optimization problems. Many optimiza-
tion problems can be modeled using linear or integer linear programs.

Suppose that there is an objective function which we are trying to minimize,
7x1 + x2 + 5x3

subject to constraints,
x1 - x2 + 3x3 ↗ 10
5x1 + 2x2 - x3 ↗ 6

where x1, x2, x3 are the decision variables and assumption is that,
x1, x2, x3 ↗ 0

Suppose we have solution, x = (2, 1, 3). On substituting in the objective function, we get the objective calue to
be 14 + 1 + 15 = 30. The reader can verify that this solution is also feasible as it satisfies the constraints,

2 - 1 + 3(3) = 10
5(2) + 2(1) - 3 = 9

Trying to find a bound on primal:
7x1 + x2 + 5x3 ↗ x1 - x2 + 3x3 ↗ 10 by comparing coe!cients point-wise and xi ↗ 0

solution has to be ↗ 10 but we are trying to get a better or greater lower bound
Add up the constraints equations,

161

162 CHAPTER 19. LINEAR PROGRAMMING

6x1 + x2 + 2x3 ↗ 16
The objective function is still greater than the above equation. Hence new lower bound is 16.
The goal of primal was to minimize and so now the goal of dual will be to maximize. We have to figure out what

combination of each constraint should we add such that it gives the tightest bound on the objective function.
We have n decision variables and m constraints in our primal. So dual will have m variables (one variable for

each constraint in primal) and n constraints (since n decision variables in primal).
Objective function is 10y1 + 6y2 subject to constraints,

y1 + 5y2 ⇒ 7
-y1 + 2y2 ⇒ 1
3y1 - y2 ⇒ 5

In a generalized representation of the primal, objective function can be written as
n∑

i=1
cixi

constraints can be written as ∑

j

Aijxj ↗ bj

where A is a matrix of dimension m*n, c and b are vectors of size n and m respectively.
For dual, b is translated to c, c is translated to b and matrix A becomes AT .

19.2 Strong Duality
Theorem 19.1 The primal program has finite optimum if and only if its dual has finite optimum. Moreover, if x∋

and y∋ are optimal solutions for (P) and (D) then,

n∑

j=1
cjx↘

j
=

m∑

i=1
biy

↘
i

This theorem translates into all many min-max theorems such as max flow = min cut, max matching = min vertex
cover and min number of chains to cover a poset = max sized anti-chain.

19.3 Weak Duality
Theorem 19.2 If x and y are feasible solutions for (P) and (D) then,

n∑

j=1
cjxj ↗

m∑

i=1
biyi

Proof:

n∑

j=1
cjxj ↗

n∑

j=1
(

m∑

i=1
aijyi)xj

This claim is true because y is feasible and x ↗ 0
m∑

i=1
(

n∑

j=1
aijxj)yi ↗

m∑

i=1
biyi

19.4. COMPLEMENTARY SLACKNESS CONDITIONS 163

This claim is true because x is feasible and y ↗ 0
Hence proved,

n∑

j=1
cjxj ↗

m∑

i=1
biyi

19.4 Complementary Slackness Conditions
Theorem 19.3 Given that x,y are (P) and (D) feasible solutions. Then x and y are both optimal if and only if the
following complementary slackness conditions are satisfied:

∝j either(xj = 0) or
m∑

i=1
aijyi = cj

∝i either(yi = 0) or
n∑

j=1
aijxj = bi

19.5 Maximum Matching Problem As Linear Program
Primal:

max
∑

i,j

Wijxij

subject to:
∑

j

xij ⇒ 1

and ∑

i

xij ⇒ 1

where xij is an edge between A and B, i is an index from A and j is an index from B. For each edge, there is a weight
Wij . We need to pick the edges such that the sum of their weights is maximum.

Replacing integral constraint by linear constraint,

xij ′

0, 1

↘ xij ↗ 0

The above transformation is called LP-Relaxation. This can be used only when we can prove that the optimal
solution is always going to be integral.

When |A| = |B| = n
Number of decision variables = n2

Number of constraints = 2n
Dual:
Number of decision variables = 2n
Number of constraints = n2

Objective function (minimizing vertex labels):

min
∑

ui +
∑

vj

subject to: ui + vj ↗ wij

ui ↗ 0 and vj ↗ 0
where ui is constraints for side A and vj is constraints for side B

164 CHAPTER 19. LINEAR PROGRAMMING

19.6 The Transportation Problem
We have n supply nodes and n demand nodes. The supply at node i is given by ai and the demand at node j is given
be bj . We assume that the total supply is equal to the total demand. If the supply and demand does not match, we
can create fake nodes to ensure the equality.

Let wij be the cost function when an item is shipped from i to node j. Let the variable xij be the number
of items i shipped from the source node i to the demand node j. Our goal is to choose xij such that the cost of
transportation is minimized.

∑
i,j

wijxij is maximized subject to:∑
j

xij = ai for all i∑
i
xij = bj for all j

and xij ↗ 0.
The dual of the relaxed linear program is:

maximize
∑

i
aiui +

∑
j

bjvj subject to
ui + vj ⇒ wij for all i, j,
ui ↗ 0 for all i,
wj ↗ 0 for all j.

19.7 The Stable Marriage Problem
Let xi,j denote that man i is matched to woman j. We require that xij ′ {0, 1}. The constraint that every man and
every woman is matched to a single partner is given as follows. For each man i,

∑

j

xij = 1.

Similarly, for each woman j, ∑

i

xij = 1.

Furthermore, we would like this assignment to not have any blocking pair. For any man i and woman j, they do
not form a blocking pair

This condition can be expressed as follows. For any man i and woman j, if j is matched to a man who is less
preferred than i, then man i must be matched to a woman who he prefers to i. Otherwise, (i, j) will form a blocking
pair for the matching. Let Q(j, i) be the set of men who are less preferable than i to woman j, i.e.,

Q(j, i) = {i↑
| wrank[j][i↑] > rank[j][i]}

Then, the expression
∑

i→↗Q(j,i) xi→,j is one i" j is matched to someone who is less preferable than i. Similarly, let
R(i, j) be the set of women who are more preferable than woman j to man i. Then, the expression

∑
j→↗R(i,j) xi,j→

is one i" i is matched to someone who is more preferable than woman j. Given these two expressions, we can write
the condition that (i, j) is not a blocking pair as

∑

i→↗Q(j,i)
xi→,j →

∑

j→↗R(i,j)
xi,j→ ⇒ 0.

This we have O(n2) constraints.
This constraint can be modeled as follows.

19.8 The Shortest Path Problem
Let xi denote the distance from the source vertex x0 to xi. Let t be the destination vertex. We assume that there
are no incoming edges to x0 or outgoing edges from xt.

19.8. THE SHORTEST PATH PROBLEM 165

We would like to maximize xt → x0 such that for all edge (i, j) ′ E: xj ⇒ xi + w[i, j]. Hence, the LP formulation
is as follows.

maximize xt → xs

subject to xj ⇒ xi + w[i, j] ∝(i, j) ′ E,

xi ↗ 0 ∝i

(19.1)

This formulation is identical to that we used in designing an LLP based algorithm (or equivalently, Bellman-Ford
algorithm). We assume that there is no incoming edge to x0. In this linear program, there are n variables, one for
each node, and there are m constraints, one for each edge. The variables xi are nonnegative.

The dual of this linear program is as follows.
We have m variables, yi,j for each edge (vi, vj) ′ E. The variable yi,j can be viewed as the flow on the edge

(vi, vj).
We would like to minimize

∑
(i,j)↗E

w[i, j] ∋ y[i, j] as follows.

minimize
∑

(i,j)↗E
w[i, j] ∋ y[i, j]

subject to
for each node vi other than v0 and vt:

∑
j

yj,i →
∑

k
yi,k = 0.

for vt,
∑

j
yj,t = 1.

for v0, -
∑

j
y0,j = →1.

for all i, j: y[i, j] ↗ 0.

Linear Programming Formulation of the Shortest Path Problem
Given a directed graph G = (V, E) with vertices V and edges E, and a cost cij associated with each edge (i, j) ′ E.
The goal is to find the shortest path from a source vertex s to a destination vertex t.

Primal Problem
Variables:

• Let xij be a binary variable for each edge (i, j) ′ E, indicating whether the edge is part of the shortest path.
Objective Function:

Minimize
∑

(i,j)↗E

cijxij

Constraints:
• For each vertex v ′ V \ {s, t}: ∑

(i,v)↗E

xiv →

∑

(v,j)↗E

xvj = 0

• For the source vertex s: ∑

(s,j)↗E

xsj = 1

• For the destination vertex t: ∑

(i,t)↗E

xit = 1

• For all xij :
xij ↗ 0

166 CHAPTER 19. LINEAR PROGRAMMING

Dual Problem

Variables:

• Let yv be a dual variable for each vertex v ′ V .

Objective Function:
Maximize yt → ys

Constraints:

• For each edge (i, j) ′ E:
yi → yj ⇒ cij

• The dual variables yv are unrestricted in sign.

The primal problem minimizes the total cost of the path from the source to the destination. The dual problem
can be seen as assigning potentials to the vertices such that the potential di"erence across each edge does not exceed
its cost. The objective is to maximize the potential di"erence between the destination and the source.

x1

x2

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

y1

y2

c11y1 + c12y2 ↗ d1
c21y1 + c22y2 ↗ d2

19.9. COMPARISON OF LINEAR PROGRAMMING WITH LATTICE-LINEAR PREDICATES 167

19.9 Comparison of Linear Programming with Lattice-Linear Predi-
cates

Linear programming can also be viewed as a search for an optimal feasible solution. However, there are many
important di"erences.

• Vector Space vs Distributive Lattice: First, the underlying space in linear programming is the set of real
valued vectors whereas the underlying space in the lattice-linear predicate detection method is a distributive
lattice.
In the domain of distributive lattices, we do not have addition or the scalar multiplication as in vector spaces.
All of lattice-linear predicate algorithms use the following two operations: meet of the underlying lattice and
the “advance” operation. The advance operation maps an element of the lattice to a bigger element in the
lattice.

• Polyhedron vs Meet-Closed Predicates: In linear programming, the feasible space is characterized by a
polyhedron (or the set of vectors x such that Ax ⇒ 0 for some matrix A). There is no lattice structure required
on the feasible space. It is not guaranteed that if two vectors are feasible, then their component-wise minimum
vector is also feasible. Lattice-linear predicate detection requires the feasible space to be closed under meets.
Linear programming has its optimization objective as minimization or maximization of a linear cost function.
Lattice linear predicate detection simply uses the underlying order operation to define optimization. Since
feasible space is closed under meets, the infimum of the feasible space is well-defined.

• E"ciency of the General Algorithm: Even though many problems studied in this book can also be solved
via linear programming, the algorithms derived in that manner are not as e!cient as the LLP algorithm. The
following list gives the algorithms that are used for Linear Programming.

1. Simplex Method: Developed by George Dantzig, it is widely used for solving linear programming
problems by moving from one vertex of the feasible region to an adjacent one with a higher objective
value until the optimum is reached. The dual Simplex method is a variant of the simplex method, used
when the initial solution is not feasible. It modifies the constraints to move towards feasibility and
optimality simultaneously. The worst-case time complexity is exponential, but in practice, it is often
e!cient.

2. Interior Point Methods: These methods, including Karmarkar’s algorithm, approach the optimal
solution from within the feasible region. They can be faster than the simplex method for large-scale
problems.

3. Ellipsoid Method: Introduced by Shor and later improved by Khachiyan, this was the first polynomial-
time algorithm for linear programming. It’s more of theoretical interest as it’s outperformed by other
methods in practice.

4. Cutting Plane Method: Adds additional linear constraints (cuts) to the problem to exclude regions
that do not contain the optimal solution, gradually cutting closer to the optimal point.

5. Branch and Bound Method: Often used for mixed-integer linear programming, this method explores
branches of possible solutions and bounds them to identify the optimal solution.

• Parallelism of the General Algorithm: The LLP algorithm determines which component in G are forbid-
den and advances on all of those components in parallel. The worst case complexity is given be the height of
the lattice.

19.10 Modeling Linear Programming Using Lattices
Suppose that we have m linear constraints. Our goal is to find a point that satisfies all linear constraints and
minimizes a linear objective function. We assume that the constraints are in n dimensional space.

We model it as a lattice linear program.

168 CHAPTER 19. LINEAR PROGRAMMING

Chapter 20

The Predicate Detection Problem

20.1 Introduction
Debugging and testing multithreaded software is widely acknowledged to be a hard task. Sometimes it takes a
programmer days to locate a single bug, especially when the bug appears in one thread schedule but not in others.
The current debugging and testing method for multithreaded programs is as follows. The programmer tries the
program with multiple inputs in the hope of finding a faulty execution. However, the behavior of a multithreaded
program depends not only on the external user input, but also the thread schedule and the order in which locks are
obtained by the program. It is easy for the testing process to miss a bug that arises with an alternate schedule.
One of the fundamental problems in debugging these systems is to check if the user-specified condition exists in any
global state of the system that can be reached by an alternative thread schedule. This problem, called predicate
detection, takes a concurrent computation (in an online or o#ine fashion) and a condition that denotes a bug
(for example, violation of a safety constraint), and outputs a schedule of threads that exhibits the bug if possible.
Predicate detection is predictive because it generates inferred reachable global states from the computation; an
inferred reachable global state might not be observed during the execution of the program, but is possible if the
program is executed in a di"erent thread interleaving.

20.2 Detecting Conjunctive Predicates
In this section we describe two parallel algorithms to detect a conjunctive predicate B = l1 ≃ l2 ≃ · · · ≃ ln. To
detect B, we need to determine if there exists a consistent global state G such that B is true in G. Note that given
a computation on n processes each with m states, there can be as many as mn possible consistent global states.
Therefore, enumerating and checking the condition B for all consistent global states is not feasible. Since B is
conjunctive, it is easy to show [GW92] that B is true i" there exists a set of states s1, s2, ..., sn such that (1) for all i,
si is a state on Pi, (2) for all i, li is true on si and (3) for all i, j: si⊤sj . Our detection algorithm will either output
such local states or guarantee that it is not possible to find them in the computation. When the global predicate B
is true, there may be multiple G such that B holds in G. We are interested in algorithms that return the minimum
G that satisfies B. The minimum G corresponds to the smallest counter-example to a programmer’s understanding
becuase B typically represents the violation of a safety constraint.

Our parallel algorithm is based on the setting where the execution traces for all processes have been collected
at one process. For example, in the centralized algorithm for conjunctive predicate detection, one process serves as
a checker and collects the traces. All other processes involved in detecting the conjunctive predicate, referred to as
application processes, check for local predicates during the computation. Each process Pi also maintains the vector
clock algorithm. Whenever the local predicate of a process becomes true for the first time since the most recently

169

170 CHAPTER 20. THE PREDICATE DETECTION PROBLEM

sent message (or the beginning of the trace), it generates a debug message containing its local timestamp vector and
sends it to the checker process [GW92].

The checker process uses queues of incoming messages to hold incoming local snapshots from application processes.
We require that messages from an individual process be received in FIFO order. If the underlying system is non-FIFO,
then sequence numbers can be attached with messages to ensure FIFO delivery. At the end of the computation, the
checker process has a sequence of local states from each process where its local predicate is true. We now describe
a sequential and a parallel algorithm to detect B on these traces. The sequential algorithm is an adaptation of
the algorithm from [GW92]. We include it here because it is instrumental in understanding the parallel algorithm.
Moreover, the correctness of the parallel algorithm is shown by assuming the correctness of the sequential algorithm.

20.3 A Work-E!cient Parallel Algorithm
The algorithm in Fig. 20.2 takes as input n traces each of size m as shown in Fig. 20.1. Since conjunctive predicates
are lattice-linear, we simply use LLP algorithm to detect them. We use G for the consistent global state. A local
state G[j] is forbidden if it is less than G[i] for some i. Since we are interested only in global states where the local
predicate is true for all G[i], we assume that for any i, we only consider G[i] such that the local predicate is true in
G[i].

<1,1,4>

P1

P2

P3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>P1

P2

P3

<1,0,0>

<1,1,0>

<3,0,1>

<3,4,1><3,3,1>

State (1,4)

State (3,1)

<0,0,1>

<3,2,1>

State (2,2)

<2,0,1>

<1,1,2>

<4,0,1>

<1,1,3>

Figure 20.1: State-Based Model of a Distributed Computation

20.4 An NC Algorithm for Conjunctive Predicate Detection
We now give another parallel algorithm that has lower time complexity but higher work complexity. Our approach
is based on computing a state rejection graph for the trace. The state rejection graph is a directed graph with all
local states as vertices of the graph. Let state j on process i be denoted as (i, j). The state rejection graph puts a
rejection edge from the state (i, j) to (i↑, j↑) if the rejection of state (i, j) as a possible component of the consistent
cut implies that the state (i↑, j↑) will also be rejected.

In Fig. 20.4 we show the state rejection graph of the computation in Fig. 20.1. The first state in P1 given by the
vector clock ⊥1, 0, 0ℵ will be rejected by the sequential algorithm because it happened before ⊥1, 1, 0ℵ. The sequential
algorithm will then move P1 to the second state ⊥2, 0, 1ℵ (successor of the first state in P1). However, this would

20.4. AN NC ALGORITHM FOR CONJUNCTIVE PREDICATE DETECTION 171

function ConjunctiveAlgorithm()
var

G: array[1..n] of int initially 1;
T = (m1, m2, ..., mn); //maximum number of proposals at Pi

always
forbidden(G, j, B) ↔ ⇓i : G[j] ∞ G[i]

while ⇓j : forbidden(G, j, B) do
for all j such that forbidden(G, j, B) in parallel:

if (G[j] = T [j]) then return null;
else G[j] := G[j] + 1;

endwhile;
return G; // satisfying global state

Figure 20.2: Conjunctive Predicate Detection Algorithm.

imply that the state ⊥0, 0, 1ℵ will be rejected because ⊥0, 0, 1ℵ happened before ⊥2, 0, 1ℵ. Hence, there is a rejection
edge from ⊥1, 0, 0ℵ to ⊥0, 0, 1ℵ. Similarly, the rejection of ⊥0, 0, 1ℵ implies that P3 will move to ⊥1, 1, 2ℵ. However, that
move will result in rejection of the state ⊥1, 1, 0ℵ. Therefore, we put a rejection edge from ⊥0, 0, 1ℵ to ⊥1, 1, 0ℵ. Finally,
the rejection of ⊥1, 1, 0ℵ will result in P2 moving to ⊥3, 2, 1ℵ which will result in the rejection of ⊥2, 0, 1ℵ and ⊥3, 0, 1ℵ.
All the rejection edges are shown in dashed arrows in Fig. 20.4. We show how such a graph can be constructed
e!ciently in parallel. The next step in the algorithm is to compute the transitive closure of this graph. Finally, the
algorithm determines the least local state at each process which has not been rejected. In this example, it is the
fourth state on P1, the second state on P2 and the third state on P3.

Our parallel algorithm is presented in Fig. 20.3. The input to the algorithm is the same as that of the LLP
algorithm: a two-dimensional array of vector clocks so that we can determine the happened-before order between
states.

We now explain the steps of the algorithm.
Step 1: We first create F , the set of all initially rejected states. Let I be the global state consisting of each processor’s
first local state, i.e., I = {(i, 1) | i ′ 1..n}. If there are no dependencies between any of these states, we have already
reached the first consistent global state. Else, if there is a dependency from one of these states to another, we reject
whichever state happened-before the other and add it to F . We represent the set F by a boolean bit array of size n
that is indexed by processor. F is initially empty. Then, we set F [i] to 1 whenever there exists a state (j, 1) such
that (j, 1) ∞ (i, 1).

This step can be done in O(1) time in parallel with O(n2) work by using a separate processor for each value of i
and j.
Step 2: In step two, we create the state rejection graph represented as an adjacency matrix. We define a new two-
dimensional array called R, which is of size mn × mn, where each row and each column represents a di"erent state.
In this directed graph, there is an edge from state (i, j) to another state (i↑, j↑) only if we know that once state (i, j)
is rejected, state (i↑, j↑) will also be rejected. In the adjacency matrix R, this is represented as R[(i, j), (i↑, j↑)] = 1.
Additionally, we make the diagonal of the matrix all 1’s. We show that creating this boolean matrix can be done
in constant time. First, setting the diagonal to all 1’s in R takes constant time. We now discuss how o"-diagonal
entries are set. This is a crucial step in our algorithm. Suppose that a state (i, j) is rejected. We know that the
processor will advance to the next state. Then, the next choice for that processor is (i, j + 1). Thus, the rejection of
(i, j) would lead to the rejection of all states (i↑, j↑) where (i↑, j↑) ∞ (i, j + 1). Formally,

R[(i, j), (i↑, j↑)] = 1 ↔ (i↑, j↑) ∞ (i, j + 1)

By using a separate processor for each tuple (i, j, i↑, j↑), we can set R in O(1) time and O(m2n2) work. We

172 CHAPTER 20. THE PREDICATE DETECTION PROBLEM

function ParallelCut()
Input: states : array[1 . . . n][1 . . . m] of vectorClock // Sequence of local states at each process
Output: Consistent Global State as array cut[1 . . . n]

Step 1: Create F : set of states rejected in the first round
var F : array[1 . . . n] of 0 . . . 1 initially 0;
for all (i ′ 1 . . . n, j ′ 1 . . . n) in parallel do

if ((i, 1) ∞ (j, 1)) then
F [i] := 1;

Step 2: Create R: State Rejection Graph // Represented as an Adjacency Matrix
var R : [(1 . . . n, 1 . . . m), (1 . . . n, 1 . . . m)] of 0 . . . 1;
for all (i ′ 1 . . . n, j ′ 1 . . . m) in parallel do

R[(i, j), (i, j)] := 1;
for all (i ′ 1 . . . n, j ′ 1 . . . m → 1, i↑

′ 1 . . . n, j↑
′ 1 . . . m)

such that i ↑= i↑ in parallel do
if ((i↑, j↑) ∞ (i, j + 1)) then

R[(i, j), (i↑, j↑)] := 1;
else

R[(i, j), (i↑, j↑)] := 0;

Step 3: Create RT : transitive closure of R
var RT : array[(1 . . . n, 1 . . . m), (1 . . . n, 1 . . . m)] of 0 . . . 1;
RT := TransitiveClosure(R);

Step 4: Create valid: replace invalid states by 0
var valid : array[[1 . . . n][1 . . . m] of 0 . . . 1;
for all (i ′ 1 . . . n, j ′ 1 . . . m) in parallel do

valid[i][j] := 1;
for all (i ′ 1 . . . n, i↑

′ 1 . . . n, j↑
′ 1 . . . m) in parallel do

if (F [i] = 1) ≃ (RT [(i, 1), (i↑, j↑)] = 1) then
valid[i↑][j↑] := 0;

Step 5: Create cut: First Consistent Global State
var cut : array[1 . . . n] of 0 . . . m initially 0;
for all (i ′ 1 . . . n, j ′ 1 . . . m) in parallel do

if (valid[i][j] ↑= 0) then
if (j = 1) ⇐ ((j > 1) ≃ (valid[i][j → 1] = 0) then

cut[i] := j;
for all (i ′ 1 . . . n) in parallel do

if (cut[i] = 0) then
output("No satisfying Consistent Cut");

return ConsistentCut := cut;

Figure 20.3: The ParallelCut algorithm to find the first consistent cut.

20.5. CONJUNCTIVE PREDICATE AT THE GIVEN LEVEL 173

P4 w3 w1

w3

w4 w2

P3 w2 w4 w1

w3P2 w2 w1

w3

w4

P1 w4 w1 w2

Figure 20.4: State Rejection Graph of a computation shown in dashed arrows

represent the state rejection graph as a boolean matrix so that we can compute the transitive closure of this graph
by doing matrix multiplications.
Step 3: In step three, we take the transitive closure of R. The transitive closure of R is also represented as an
adjacency matrix RT . It is well known that the transitive closure for any directed graph with |V | vertices can be
computed in O(log |V |) time using O(|V |

3 log |V |) work on the common CRCW PRAM [JáJ92]. Since our graph has
O(mn) vertices, this step takes O(log mn) time using O(n3m3 log mn) operations on the CRCW PRAM. This is the
only step in our algorithm that takes more than O(1) time.
Step 4: In step four, we use both F and RT to determine which states will not be part of the first consistent global
state. To do this, we create a new two-dimensional array called valid[1 . . . n][1 . . . m] where each entry is a value of
0 . . . 1. We initialize every entry in valid to 1 in O(1) time with O(mn) work. The algorithm sets rejected states in
valid with a 0. We use F and RT for this purpose. For all possible values of i, j, i↑, and j↑, in parallel, we check to
see if a state (i, j) is an element of F and if there is an edge from (i, j) to another state (i↑, j↑). If the two states
(i, j) and (i↑, j↑) fit this criteria, then we set valid[i↑][j↑] to 0. In other words, if a state (i, j) is initially rejected, and
there is an edge from (i, j) to (i↑, j↑) in RT , then we know the state (i↑, j↑) will also be rejected.

This step can also be done in O(1) time and O(m2n2) work. In our example, we compute the states reachable
by ⊥1, 0, 0ℵ. In our example, states {⊥0, 0, 1ℵ, ⊥1, 1, 0ℵ, ⊥2, 0, 1ℵ, ⊥3, 0, 1ℵ} are all reachable by ⊥1, 0, 0ℵ by following one
or more rejection edges. Thus, we mark the states (1, 1), (2, 1), (3, 1), (1, 2), (1, 3) with 0↑s in valid.
Step 5: In step five, we traverse valid and construct the set of states that form the consistent global state in a new
array called cut where cut[i] = j signifies that the tuple (i, j) is a part of the consistent global state. To do this, for
every process, in parallel, we simply search for the first entry which is nonzero and either it is the first entry or the
entry prior to it is zero.

In our example, we can easily see that the first consistent global state is the set cut = {(1, 4), (2, 2), (3, 2)}. This
step can be done in O(1) time and O(nm) work.

Thus, the entire algorithm takes O(log mn) time and O(m3n3 log mn) work on a common CRCW PRAM.
Remark: Note that the algorithm to detect a conjunctive predicate can be used to detect a global predicate in

Disjunctive Normal Form. A predicate is in Disjunctive Normal Form (DNF) if it is expressed as a disjunction of k
pure conjunctions. To detect a predicate in this form it is su!cient to detect each conjunction in parallel.

20.5 Conjunctive Predicate at the Given Level
We now show that, in general, asking for a conjunctive predicate on a particular level is NP-complete.

174 CHAPTER 20. THE PREDICATE DETECTION PROBLEM

Theorem 20.1 Given a distributed computation, deciding whether there exists a global state with k events satisfying
a given conjunctive predicate is NP-complete.

Proof: We first show that the problem is in NP. The global state itself provides a succinct certificate. We can
check that all local predicates are true in that global state and that the global state is at level k.

For hardness, we use the subset sum problem. Given a subset problem on n positive integers, x1, x2, . . . , xn with
the requirement to choose a subset that adds up to k, we create a computation on n processes as follows. Each
process Pi has xi events. The local predicate on Pi is true initially and also after it has executed xi events. Thus,
the local predicate is true at each process exactly twice. The problem asks us if there is a global state with k events
in which all local predicates are true. Such a global state, if it exists, would choose for every process either the initial
local state or the final local state. All the final states that are chosen correspond to the numbers that have been
chosen.

To avoid the expansion of the numbers in binary to unary construction, we encode the representation of events
on a process as follows: Since the conjunctive predicates can only be true when the local predicates are true, we keep
only local states which satisfy their corresponding local predicate and store the number of local events executed so far
with them. This leaves two local states at each process: The initial state with zero events executed until that point,
and the final state of the process with the number of events equal to xi for the ith process. Now, the construction of
the computation from the subset sum problem is polynomial in the size of the input.

20.6 Predicate Detection Problem
In this section, we explore the complexity-theoretic results for predicate detection. It is not surprising that given
a parallel program computation and a boolean predicate, it is computationally hard to determine if the execution
went through a global state in which the predicate became true. We also show that given a boolean predicate b and
an execution, determining whether b is lattice-linear for that execution is co-NP-complete.

Since there are N processes, the total number of global states possible is mN , where m is the number of state
intervals at any process. Consider a boolean predicate B. Even when B is a boolean expression, and processes do
not communicate, the problem of detecting possibly: B is NP-complete.

We show in this section that the problem of global predicate detection is NP-complete. In fact, we show that it
is NP-complete even in the absence of messages between processes.

The global predicate detection problem is a decision problem. It can be written as:
Input instance: a poset S of N sequences, a set of variables X partitioned into N subsets X1, . . . , XN ,
and a predicate B defined on X.
Problem: Determine whether there exists a consistent cut G ′ S such that B(G) has the value true.

We now show:

Theorem 20.2 The global predicate detection problem is NP-complete.

Proof: First note that the problem is in NP. The verification that the cut is consistent can easily be done in
polynomial time (for example, using vector clocks and examining all pairs of states from the cut). Therefore, if the
predicate itself can be evaluated in polynomial time, then the detection of that predicate belongs to the set NP.

We show NP-completeness of the simplified predicate detection problem where all program variables are restricted
to taking the values “true” or “false”, and at most one variable from each Xi can appear in B. We reduce the
satisfiability problem of a boolean expression (SAT) to the global predicate detection problem by constructing an
appropriate poset.

The poset is constructed as shown in Figure 20.5. For each variable ui ′ U , we define a process Pi that hosts
variable xi (i.e., Xi = {xi}). Let the sequence Si consist of exactly two states. In the first state, xi has the value
false. In the second state, xi has the value true.

It is easily verified that the predicate B is true for some cut in S if and only if the expression is satisfiable.

20.7. RECOGNIZING LATTICE-LINEAR AND REGULAR PREDICATES 175

x
1

x
2

x
3

P

P

P
1

2

3

false true

false

false

true

true

Figure 20.5: Transformation from SAT to global predicate detection

The above result shows that detection of a general global predicate is intractable even for simple distributed
computations.

20.7 Recognizing Lattice-Linear and Regular Predicates
As discussed earlier, e!cient detection algorithms exist for various classes of predicates. Thus, given a boolean
expression B, one would like to determine if it belongs to a tractable subclass, in which case detection of the
predicate may be performed e!ciently. We first consider the classes of Lattice-Linear and regular predicates. In
this section, we show that determining whether a given boolean expression is Lattice-Linear with respect to a given
distributed computation is a co-NP-complete problem. We also show that this problem is co-NP-complete for regular
predicates, as well as post-Lattice-Linear predicates.

We define the decision problems of predicate recognition for Lattice-Linear and regular predicates as follows.

0

1

0

1 true

false

true

false

x1 x2

1

0

false

true

xm+2

1

0

true

false

xm+1

1

0

true

false

xm

G

G1

G2

Figure 20.6: Transformation for Theorems 20.3 and 20.4.

Lattice-Linearity: Given a boolean expression b and a program computation, is b a Lattice-Linear predicate?
Regularity: Given a boolean expression b and a program computation, is b a regular predicate?

Theorem 20.3 Lattice-Linearity is co-NP-complete.

Proof: Lattice-Linearity is in co-NP: Given a pair of candidate global states G and H in which the predicate is true,
it can be easily verified in polynomial time that the predicate is false in the global state G↓H. Thus, Lattice-Linearity
is in co-NP.

Lattice-Linearity is co-NP-hard: To show co-NP-hardness, we transform an arbitrary instance of TAUTOLOGY
to an instance of Lattice-Linearity.

176 CHAPTER 20. THE PREDICATE DETECTION PROBLEM

Let b be a boolean expression involving variables x1, x2, ..., xm.∝i = 1..m, we place each xi on a separate process,
Pi. Each of these m processes has two local states, a true state and a false state, which corresponds to the value
taken by the variable xi in that local state. We also define two new variables, xm+1 and xm+2, and place them on
processes Pm+1 and Pm+2 respectively. Process Pm+1 has two local states: an initial false state and a final true
state, and process Pm+2 has two local states: an initial true state and a final false state. Figure 20.6 shows this
transformation. It is evident that this transformation can be achieved in polynomial time.

We define
B = b ⇐ xm+1xm+2 ⇐ xm+1xm+2

We claim that B is Lattice-Linear i" b is a tautology. If b is a tautology, then B is trivially Lattice-Linear, since
B will be true for all global states. Conversely, if b is not a tautology, then there exists a subcut involving processes
P1...Pm in which b evaluates to false. Let us call this subcut G. We can now extend the subcut G to form two cuts,
G1 and G2, in which the predicate B is true, as shown in Figure 20.6.

G1 = (G, 0, 1)

and
G2 = (G, 1, 0)

However,
G1 ↓ G2 = (G, 0, 0)

in which the predicate B is false. Thus, B is not Lattice-Linear.

Theorem 20.4 Regularity is co-NP-complete.

Proof: Regularity is in co-NP: Given two candidate global states in which the predicate is true, and their union and
intersection such that the predicate is false in either the union or intersection, it can be easily verified in polynomial
time that the predicate is not regular. Thus, Regularity is in co-NP.

Regularity is co-NP-hard: The transformation in Theorem 20.3 holds for Regularity as well. That is, b is a
tautology i" B = b ⇐ xm+1xm+2 ⇐ xm+1xm+2 is regular. If b is a tautology, then B is trivially regular since B is true
for all global states. Conversely, if b is not a tautology, then B is not regular since both the intersection and union
of G1 and G2 result in a global state in which B is false. Thus, Regularity is co-NP-complete.

Note that the above transformation can also be used to show that the problem of deciding whether a given
boolean predicate is dual-Lattice-Linear is co-NP-complete.

20.8 E!cient Advancement Property
We stated earlier that e!cient detection of Lattice-Linear predicates relies on the assumption that the given predicate
satisfies the e!cient advancement property, that is, the forbidden state can be identified in polynomial time. The
question that arises is, do all Lattice-Linear predicates satisfy the e!cient advancement property? If not, then is it
possible to e!ciently detect Lattice-Linear predicates that do not satisfy this property? We show here that, unless
RP=NP, polynomial-time detection cannot be performed for all Lattice-Linear predicates.

We use a result by Valiant and Vazirani [VV85], which states that satisfiability is NP-hard under randomized
reductions even for instances that have at most one satisfying assignment (USAT). Valiant and Vazirani’s proof uses
a randomized polynomial-time algorithm that reduces a given instance of SAT to an instance of USAT.

Theorem 20.5 (Valiant-Vazirani) If there exists a randomized polynomial-time algorithm for solving instances
of SAT having at most one satisfying assignment, then NP=RP.

20.9. PROBLEMS 177

We know that a predicate having at most one satisfying assignment is Lattice-Linear, so every instance of USAT
is a Lattice-Linear predicate. Given any instance B of USAT, involving variables x1, x2, ..., xm, one can create a
distributed computation as depicted in Figure 20.5, such that detecting possibly : B is equivalent to solving USAT
for B. Since we know that Lattice-Linear predicates that satisfy e!cient advancement can be detected in polynomial-
time, this indicates that Lattice-Linear predicates that do not exhibit e!cient advancement may not be detected
in polynomial-time, even by a randomized algorithm. Furthermore, since every instance of USAT is also a regular
predicate, detection of regular predicates is also NP-hard under randomized reductions.

20.9 Problems

20.10 Bibliographic Remarks
The detection of conjunctive predicates was discussed by Garg and Waldecker in [GW92]. Distributed on-line
algorithms for detecting conjunctive predicates were presented in Garg and Chase [GC95]. Observer-independent
predicates were introduced by Charron-Bost, Delporte-Gallet, and Fauconnier [CBDGF95]. Hurfin, Mizuno, Raynal
and Singhal [HMRS95] gave a distributed algorithm that does not use any additional messages for predicate detection.
Distributed algorithms for o#ine evaluation of global predicates are also discussed in Venkatesan and Dathan [VD92].
Stoller and Schneider [SS95] have shown how Cooper and Marzullo’s algorithm can be integrated with that of Garg
and Waldecker’s to detect a conjunction of global predicates.

The second algorithm for detecting conjunctive predicates is from [GG19]. The NP-completeness of detecting a
conjunctive predicate at the level k is shown in [GS24].

The complexity of detecting a boolean predicate is taken from [CG98]. The complexity of checking whether a
predicate is lattice-linear (or regular) is from [KG05].

178 CHAPTER 20. THE PREDICATE DETECTION PROBLEM

Chapter 21

Enumeration Algorithms

21.1 Introduction
So far, we have been concerned with finding the least feasible elements of the set satisfying the feasibility predicate.
What if we wanted to enumerate all feasible elements. For example, we may want to enumerate all satisfying
assignments for Horn formulas, all stable marriages, all integral market clearing prices etc. In general the feasible set
may be large. For most applications, we consider the set of feasible elements is exponentially larger than the input
size. Our goal would be to reduce the complexity of enumeration per element.

21.2 Birkho"’s Theorem
We first define join-irreducible elements as follows.

Definition 21.1 (Join-Irreducible Elements) An element x ′ L is join-irreducible if

1. x ↑= 0, and
2. ∝a, b ′ L : x = a A b ↘ (x = a) ⇐ (x = b).

Pictorially, in a finite lattice, an element is join-irreducible i" it has exactly one lower cover, that is, there
is exactly one edge coming into the element. Figure 21.1(a) shows a distributive lattice with its join-irreducible
elements. Intuitively, the set of join-irreducible elements of a distributive lattice are analogous to basis elements of a
linear vector space in the sense that the lattice can be generated using join-irreducible elements in the same way as
the vector space can be generated by linear combination of basis elements. We denote the set of consistent cuts of
any distributed computation (E, ∞) by C(E) (∞ is implicit). We exploit the property that the lattice is distributive
to derive the notion of a computation slice. Let J(L) denote the set of join-irreducible elements in L. Now we can
state Birkho"’s theorem for finite distributive lattices.

Theorem 21.2 (Birkho!’s Representation Theorem) Let L be a finite distributive lattice. Then the map f :
L ∞ C(J(L)) defined by

f(a) = {x ′ J(L) | x ⇒ a}

is an isomorphism of L onto C(J(L)). Dually, let P be a finite poset. Then the map g : P ∞ J(C(P)) defined by

g(a) = {x ′ P | x ⇒ a}

is an isomorphism of P onto J(C(P)).

179

180 CHAPTER 21. ENUMERATION ALGORITHMS

(b)(a)

a b

d

c

b d

ca

: join−irreducible element

Figure 21.1: (a) An example of a distributive lattice (b) its partial order representation.

The above theorem implies one-to-one correspondence between a finite poset and a finite distributive lattice.
Given a finite poset, we get the finite distributive lattice by considering its set of down-sets. Given a finite distributive
lattice, we can recover the poset by focusing on its join-irreducible elements. Informally, any element of a lattice
can be written as a join of a subset of join-irreducible elements of the lattice. For example, Figure 21.1(b) gives the
poset corresponding to the lattice in Figure 21.1(a).

From the above discussion it is clear that given any finite distributed computation, the structure finite distributive
lattice completely characterizes its execution graph.

21.3 Slicing
The notion of consistent global states or ideals of a poset can be extended to graphs in a straightforward manner. A
subset of vertices, H, of a directed graph, P , is an ideal if it satisfies the following condition: if H contains a vertex
v and (u, v) is an edge in the graph, then H also contains u. Observe that an ideal of P either contains all vertices
in a strongly connected component or none of them. Let L denote the set of ideals of a directed graph P . Observe
that the empty set and the set of all vertices trivially belong to L. We call them trivial ideals. It is easy to show
that given a directed graph P , (L; △) forms a distributive lattice.

Since trivial ideals are always part of L, it is more convenient to deal only with nontrivial ideals of a graph. It is
easy to convert a graph P to P ↑ such that there is one-to-one correspondence between all ideals of P and all nontrivial
ideals of P ↑. We construct P ↑ from P by adding two additional vertices B and C such that B is the smallest vertex
and C is the largest vertex (i.e., there is a path from B to every vertex and a path from every vertex to C). It is
easy to see that any nontrivial ideal will contain B and not contain C. As a result, every ideal of P is a nontrivial
ideal of the graph P ↑ and vice versa. We will deal with only nontrivial ideals from now on and an ideal would mean
nontrivial ideal unless specified otherwise.

We will deal with only nontrivial ideals from now on and an ideal would mean nontrivial ideal unless specified
otherwise. The directed graph representation of Fig. 21.2(a) is shown in Fig. 21.2(c).

The slice of a directed graph P with respect to a predicate B (denoted by slice(P, B)) is a graph derived from

21.4. COMPUTING ALL STABLE MATCHINGS 181

b d

ca

(a)

b d

ca

(c)

{a}

{b}

{a,b}
{b,d}

{a,b,c}
{a,b,d}

{a,b,c,d}

(b)

: join−irreducible element
{}

Figure 21.2: (a) P : A partial order (b) the lattice of ideals. (c) the directed graph P ↑

P such that all the ideals in L that satisfy B are included in the ideals of the slice with respect to B. The slice may
include some additional ideals which do not satisfy the predicate. Formally,

Definition 21.3 (Slice) A slice of a graph P with respect to a predicate B is the directed graph obtained from P
by adding edges such that:
(1) it contains all the ideals of P that satisfy B and
(2) of all the graphs that satisfy (1), it has the least number of ideals.

Let L be a finite distributive lattice generated by the graph P . Let L↑ be any sublattice of L. Then, there exists
a graph P ↑ that can be obtained by adding edges to P that generates L↑.

21.4 Computing All Stable Matchings
We now consider the problem of computing all stable matchings. Since the number of stable matchings may be
exponential in n, instead of keeping all matchings in explicit form, we would like a concise representation of polynomial
size that can be used to enumerate all stable matchings. In SMP literature, rotation posets are used to capture all
stable matchings. We will use the notion of computation slicing introduced in [MG01b] for this purpose. In particular,
we give an e!cient algorithm to compute the slice for the SMP computation. A rotation poset [GI89] is a special
case of the slice when the set of external constraints is empty.

We first show that the set of stable matchings is a sublattice of the lattice of all men assignments. We have
already shown that the predicate "the assignment is a stable matching" is a lattice-linear predicate and therefore
closed under meets. We now show that the predicate is also closed under joins. To that end, we use the dual of a
lattice-linear predicate called dual-linear predicate. Given any predicate B, we define

reverse-forbidden(G, i) ↔ ∝H ′ L : H △ G : (G[i] ↑= H[i]) ⇐ ¬B(H)

We define a predicate B to be dual-linear with respect to poset S if for any global state G in the poset, B is false in
G implies that G contains a reverse-forbidden state. Formally, A boolean predicate B is dual-linear with respect to
a poset S i":

∝G ′ L : ¬B(G) ↘ ⇓i : reverse-forbidden(G, i)
Note that although the concepts of lattice-linear predicate and dual-linear predicates are dual, the proof of dual-

linearity is di"erent from that of lattice-linearity. This is because we are computing assignments with respect to men
and not women thereby bringing in asymmetry.

182 CHAPTER 21. ENUMERATION ALGORITHMS

Lemma 21.4 Let G be any assignment such that it is not a stable matching. Then, there exists i such that G[i] is
reverse-forbidden.

Proof: First assume that G is not a matching. We know that there is at least one woman q who is missing in this
assignment. Let i be the most preferred man for that woman in the pre-frontier events that correspond to proposal
to q. If there is no man in pre-frontier events for that woman who proposes to q, then there is no matching possible
because q is not proposed in either a frontier or a pre-frontier event. So, we can assume that i exists. We claim that
G[i] is reverse-forbidden. Consider any H such that H △ G and H[i] = G[i]. We need to show that H cannot be a
stable matching. For H to be a matching, for some k di"erent from i, H[k].w equals q. However, by our choice of i,
q prefers man i and man i prefers q to H[i].w.

Now, assume that G is a matching, but not stable. Suppose that (j, k) is a blocking pair. Let q be the woman
corresponding to G[j].w. Of all the men who propose to that woman in pre-frontier events, choose the one who is
most preferred for that woman. We know that there exists at least one because (j, k) is a blocking pair. Let that
man be i. We claim that G[i] is reverse-forbidden. Consider any H such that H △ G and H[i] = G[i]. We need to
show that H cannot be a stable matching. Since G is a matching, G[i].w is di"erent from q = G[j].w. For H to be a
matching, for some l, H[l].w equals G[j].w. However, by our choice of i, we know that H[l].w prefers man i to l and
man i prefers H[l].w to G[i].w.

The above lemma allows us to find the man-pessimal stable matching. We start with G such that G[i] equals
the last choice proposal for Pi. If G is a stable matching, we are done. Otherwise, from the proof of Lemma 21.4, we
can find i such that unless G[i] goes backward, there cannot be any stable matching. By repeating this procedure,
we get the men-pessimal stable matching.

Since stable matching is dual-linear, it follows that the set of assignments is closed under joins. Predicates that
are both meet-closed and join-closed are called regular predicates [GM01b]. The set of ideals that satisfy a regular
predicate forms a sublattice of the lattice of all ideals. Since a sublattice of a distributive lattice is also distributive,
the set of ideals that satisfy a regular predicate forms a finite distributive lattice. From Birkho"’s theorem [Bir67] we
know that a finite distributive lattice can be equivalently represented using the poset of its join-irreducible elements.

For any regular predicate B, let LB be the sublattice of consistent global states that satisfy B. Since LB can
have a number of elements that is exponential in n, we would like to have a compact representation of LB . A slice
of a poset P with respect to a predicate B is a graph such that the consistent global states of the graph includes all
consistent global states that satisfy B and when B is regular it includes only those. The computation of a slice is
shown in Fig. 21.3. The algorithm requires computation of J(B, e) for all e ′ E where J(B, e) be the least consistent
global state that satisfies B and includes e.

(1) graph function computeSlice(B:regular_predicate, P : graph)
(2) var R: graph initialized to P ;
(3) begin
(4) for every element e in P do
(5) let J(B, e) be the least global state of P that satisfies B and includes e;
(6) for every f ′ J(B, e) do;
(7) add edge (f, e) to R;
(8) return R;
(9) end;

Figure 21.3: An e!cient algorithm to compute the slice for a regular predicate B

Hence, to compute a slice it is su!cient to give a procedure to compute J(B, e). To determine J(B, e) it is
su!cient to use the algorithm for detecting lattice-linear predicate by using the following predicate for every e:

21.5. AN ALGORITHM TO DETERMINE JOIN-IRREDUCIBLE MIN CUTS 183

Be(G) ↔ B(G) ≃ (e ′ G). Since B is a lattice-linear predicate, and the predicate e ′ G is also lattice-linear, Be(G)
is also lattice-linear.

21.5 An Algorithm to Determine Join-Irreducible Min Cuts
To identify join-irreducible min cuts:

1. Construct the lattice of all min cuts, ordered by inclusion of S-sets.

2. For each min cut C = (S, T), find its immediate predecessors: min cuts C ↑ = (S↑, T ↑) where S↑
D S and no S↑↑

exists such that S↑
D S↑↑

D S.

3. A min cut is join-irreducible if it has exactly one immediate predecessor.

Consider the directed graph in Fig. 21.4 with 4 vertices.

s 1

2

t
2

2

2

2

Figure 21.4: Directed graph with capacities (acyclic).

The graph has a minimum cut capacity of 4. The min cuts are: {s}|{1, 2, t}, {s, 1}|{2, t}, {s, 2}|{1, t}, and
{s, 1, 2}|{t}. These mincuts form a distributive lattice shown in Fig. 21.5

{s, 1, 2}|{t}

{s, 1}|{2, t} {s, 2}|{1, t}

{s}|{1, 2, t}

Figure 21.5: Lattice of minimum cuts for the acyclic directed graph.

As mentioned earlier, in the worst case, the lattice may be exponential in the size of the graph. We construct
the poset of join-irreducible mincuts which generates the lattice of mincurs. This poset has at most n → 2 elements.

• {s}|{1, 2, t}: No predecessors (bottom element), so join-irreducible.

• {s, 1}|{2, t}: One predecessor ({s}), so join-irreducible.

• {s, 2}|{1, t}: One predecessor ({s}), so join-irreducible.

• {s, 1, 2}|{t}: Two predecessors ({s, 1}, {s, 2}), so not join-irreducible.

184 CHAPTER 21. ENUMERATION ALGORITHMS

Thus, the join-irreducible min cuts are {s}|{1, 2, t}, {s, 1}|{2, t}, and {s, 2}|{1, t}.

We now give an e!cient algorithm to generate all the join-irreducible elements of the mincut lattice. For all
vertices v ′ V , we let J(v) be the least mincut that includes the vertex v, if it exists. We first show that J(v) is a
join-irreducible mincut for all v ′ V → {t}.

Lemma 21.5 Let v ′ V →{t} and J(v) be the least mincut that includes the vertex v. Then, J(v) is a join-irreducible
mincut.

Proof: Let J(v) be join of two mincuts X and Y such that J(v) is di"erent from both X and Y . Since the join
corresponds to union, and v ′ J(v), either v ′ X or v ′ Y . Without loss of generality, suppose that v ′ X. Since
J(v) is the least minimal that includes v, we get J(v) △ X. But, J(v) = X ∃ Y implies that X △ J(v).

We can compute J(v) with two max-flow computations as shown in Fig. LeastJoinIrreducible. We first find the
max-flow in the graph (line 1). Let µ be the max-flow. Now, we construct another max-flow graph G↑ as follows.
We add an edge from the source vertex s to v with capacity equal to infinity (line 4). We again find the max-flow µ↑

(line 5). If µ↑ equals µ, then the mincut obtained is the least mincut that includes the vertex v (lines 7-9). If there
is no mincut that includes v, then we return null.

Algorithm LeastJoinIrreducible: Generate Least Join-Irreducible Min Cut including v
Data: Directed graph G = (V, E), capacities c(e), source s, sink t
Result: Join-irreducible min cut J(v)

1 µ ⇑ min cut capacity of G ; // One max-flow
2 J(v) ⇑ null ; //
3 G↑

⇑ G ; // Copy graph
4 Add edge s ∞ v with capacity ↙ in G↑ ; // Force v with s
5 (Sv, Tv) ⇑ min cut in G↑ (via max-flow)
6 µ↑

⇑ capacity of cut (Sv, Tv) in original G
7 if µ↑ = µ then
8 J(v) ⇑ (Sv, Tv)}
9 end

10 return J(v)

We now extend this algorithm to generate J , the list of all join-irreducible mincuts. We observe here that the
algorithm is polynomial in the input size.

21.5. AN ALGORITHM TO DETERMINE JOIN-IRREDUCIBLE MIN CUTS 185

Algorithm AllJoinIrreducible1: Generate Join-Irreducible Min Cuts
Data: Directed graph G = (V, E), capacities c(e), source s, sink t
Result: Set J of join-irreducible min cuts

1 J ⇑ ∅

2 Covered ⇑ ∅ ; // Vertices in some S-set
3 µ ⇑ min cut capacity of G (via max-flow) S0 ⇑ {s}, T0 ⇑ V \ {s}

4 C0 ⇑ capacity of cut (S0, T0)
5 if C0 = µ then J ⇑ J ∃ {(S0, T0)} Covered ⇑ Covered ∃ S0 ;
6 for v ′ V \ {s, t} do
7 if v ′ Covered then continue;
8 G↑

⇑ G ; // Copy graph
9 Add edge s ∞ v with capacity ↙ in G↑ ; // Force v with s

10 (Sv, Tv) ⇑ min cut in G↑ (via max-flow)
11 Cv ⇑ capacity of cut (Sv, Tv) in original G
12 if Cv = µ then
13 J ⇑ J ∃ {(Sv, Tv)}
14 Covered ⇑ Covered ∃ Sv

15 end
16 end
17 return J

The algorithm works as follows.

• Compute µ once with a max-flow algorithm.

• Check the minimal cut {s}|V \ {s}; add it to J if it is a min cut and mark its vertices as covered.

• For each v ′ V \ {s, t}, skip if already covered. Otherwise, compute the least min cut containing v using
max-flow.

• Add the cut to J if its capacity is µ, updating Covered.

• The number of max-flow computations is O(k), where k is the number of join-irreducible min cuts (k ⇒ |V |→2).

• Total time complexity: O(kMF (n, m), where MF (n, m) is the time complexity of computing maxflow in a
graph with n vertices and m edges. The worst case for k is O(n).

We now show how the computation complexity of the above algorithm can be improved. We show an algorithm
that avoids the second computation of max-flow. We assume that we have access to the reduced graph from the first
computation of max-flow. Based on the first max-flow, the algorithm computes a reduced graph of super-vertices.
Each super-vertex corresponds to a subset of vertices such that if u is in the super-vertex and (u, v) is not a staurated
edge, then v is also in the supervertex. The reduced graph can be computed in time proportional to the number of
edges. The algorithm is inspired from [PQ80]. A di"erence is that they do not explicitly generate join-irreducible
mincuts. Furthermore, we later extend this algorithm to find a mincut that satisfies the given predicate B.

186 CHAPTER 21. ENUMERATION ALGORITHMS

Algorithm AllJoinIrreducible2: Generate Join-Irreducible Min Cuts (Directed Graphs)
Data: Directed graph G = (V, E), capacities c(e), source s, sink t
Result: Set J of join-irreducible min cuts

1 J ⇑ ∅

2 Covered ⇑ ∅ ; // Vertices in some S-set
3 µ ⇑ min cut capacity of G (via max-flow) ; // max-flow
4 S0 ⇑ {s}, T0 ⇑ V \ {s}

5 C0 ⇑ capacity of cut (S0, T0)
6 if C0 = µ then J ⇑ J ∃ {(S0, T0)} Covered ⇑ Covered ∃ S0 ;
7 for v ′ V \ {s, t} do
8 if v ′ Covered then continue;
9 find strongly connected component W that includes v with all edges in the residual graph;

10 if t /′ W then
11 Sv ⇑ S0 union with all vertices reachable from W using edges in the residual graph
12 Tv ⇑ V \ Sv

13 J ⇑ J ∃ {(Sv, Tv)}
14 Covered ⇑ Covered ∃ Sv

15 end
16 end
17 return J

21.6 Problems
21.1. Show that x ′ L is join-irreducible i"

(i) x ↑= 0
(ii) ∝a, b : (a < x) ≃ (b < x) ↘ ((a A b) < x)

21.2. The dual notion of join-irreducible elements is meet-irreducible elements. Let M(L) denote the ordered set of
meet-irreducible elements of L. Show that the ordered set J(L) is isomorphic to the set M(L).

21.7 Bibliographic Remarks
The notion of a slice of a computation was proposed in Garg and Mittal [GM01a] and later generalized in Mittal and
Garg [MG01a].

