
EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 1

EE382V:
Embedded System Design and Modeling

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 5 – Models of Computation

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 2

Lecture 5: Outline

• Models of Computation (MoCs)
• Concurrency & communication

• Process-based MoCs
• Process networks
• Dataflow
• Process calculi

• State-based MoCs
• Finite state machines
• Hierarchical, concurrent state machines
• Process state machines

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 2

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 3

Models of Computation (MoCs)

• Conceptual ways of describing system behavior

• Distinguish abstract classes of behavioral modeling
• Concurrency and time (order)

• Computation and communication

• Decomposition into objects and their relationship
• Composition rules

• Data and control flow

• Unambiguous, formal definition and semantics
• Formal analysis and reasoning for synthesis and verification

• Various degrees of complexity and expressiveness

 Analyzability and expressiveness of specification models

 Fundamental tradeoffs
 Turing complete models are proofably not analyzable

 Implementability & predictability
 Low overhead, early exploration

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 4

Models of Computation (MoCs)

• MoC examples
• Programming models: imperative, declarative

– Statements for algorithmic computation, operation-level granularity

• Simulation models: synchronous, discrete event
– Basic concurrency, general interaction between operations

• Process-based models: networks, dataflow, calculi
– Activity, data flow/dependencies

• State-based models: evolution from FSM to PSM
– State enumeration, control flow/dependencies

 Specification and algorithm modeling
 Ptolemy (UC Berkeley): heterogeneous mixture of MoCs
Matlab/Simulink (Mathworks), LabView (NI): dataflow
 Statemate (IBM Rational), UML: StateCharts, HCFSM

 Circuit and logic design
 Sequential circuit optimization: FSM

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 3

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 5

Models of Computation (MoCs)

• A MoC is a framework in which to express what actions
must be taken to complete a computation

• Objects and their relationships

• MoCs need to

• Be powerful/expressive enough for the application domain

• Have appropriate synthesis and validation semantics

• Why different models?

• Different models  different properties

• Turing complete models are too powerful!

• Imperative programming models are poor match
– Reactive instead of transformation systems

 Domain-specific models
Source: M. Jacome, UT Austin.

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 6

Properties

• A property is an assertion about the behavior, rather than
a description of the behavior

• It is an abstraction of the behavior along a particular axis

• Examples:

• Liveness property: when designing a network protocol, one
may require that the design never deadlocks

• Fairness property: when designing a network protocol, one
may require that any request will eventually be satisfied

• Can include other non-functional requirements

• Timeliness: guarantees about meeting deadlines in the
worst case (real-time)

The above properties do not completely specify the behavior of the
protocol, they are instead properties we require the protocol to have

Source: M. Jacome, UT Austin.

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 4

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 7

Properties & MoCs

• Properties can be classified in three groups:

1. Properties that are inherent to the model (i.e., that can be
shown formally to hold for all specifications described
using that model)

2. Properties that can be verified syntactically for a given
specification (i.e., that can be shown to hold with a simple,
usually polynomial-time analysis of the specification)

3. Properties that must be verified semantically for a given
specification (i.e., that can be shown to hold by executing,
at least implicitly, the specification for all inputs that can
occur)

Source: M. Jacome, UT Austin.

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 8

Model Validation

• By construction

• property is inherent

• By verification

• property is provable syntactically

• By simulation

• check behavior for all inputs

• By intuition

• property is true, I just know it is…

better be higher
in this list…

Source: M. Jacome, UT Austin.

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 5

(Engineering) Models vs. Reality

• “You can’t strike oil by drilling through a map” [Solomon’68]

• Yet, maps are incredibly useful

 We can make definitive statements about models from
which we can infer properties of system realizations
[Kopetz]

 Validity of inference depends on model fidelity

 Always approximate

 Assertions about (predicted) properties are always
assertions about a model of the system

 Never truly properties of the final implemented system

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 9

Source: E. Lee, CEDA Keynote, DAC’13.

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 10

Recap: Concurrency and Time

• Logical concurrency (time)

• Partial order (undefined)

• Synchronization (dependencies)

• Restrictions on order (causality)

 Fundamental issues

 Non-determinism

 Deadlocks

f()

f()

f()

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 6

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 11

Determinism

• Deterministic: same inputs always produce same results

• Random: probability of certain behavior

• Non-deterministic: undefined behavior (for some inputs)

• Undefined execution order
– Statement evaluation in imperative languages: f(a++, a++)

– Concurrent process race conditions:

 Can be desired or undesired

 How to ensure correctness?
 Tedious and error-prone manual untangling (synchronization)

 Simulator will typically pick only one behavior

 But: over-specification?
 Leave freedom of implementation choice (concurrency)

x = a;
y = b;

a = 1;
b = 2;

x = ?, y = ?

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 12

Deadlocks

• Circular chain of 2 or more processes which each hold a
shared resource that the next one is waiting for

• Circular dependency through shared resources

 Prevent chain by using the same precedence

 Use timeouts (and retry), but: livelock

 Dependency can be created when resources are shared

 Side effects, e.g. when blocking on filled queues/buffers

m2.lock();
m1.lock();
…
m1.unlock();
m2.unlock();

m1.lock();
m2.lock();
…
m2.unlock();
m1.unlock();

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 7

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 13

Consider a Simple Example

“The Observer pattern defines a one-to-many dependency
between a subject object and any number of observer
objects so that when the subject object changes state, all
its observer objects are notified and updated
automatically.”

Eric Gamman Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addision-
Wesley, 1995

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 14

Example: Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Will this work in a multithreaded context?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 8

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 15

Observer Pattern with Mutexes

public synchronized void addListener(listener)
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

Javasoft recommends against this.
What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 16

Mutexes using Monitors are Minefields

public synchronized void addListener(listener)
{…}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)
}

}

• valueChanged() may attempt to acquire
a lock on some other object and stall.

• If the holder of that lock calls
addListener(): deadlock!

x calls addListener

lock

mutex

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 9

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 17

Observer Pattern Gets Complicated

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

while holding lock, make a copy of
listeners to avoid race conditions

notify each listener outside of the
synchronized block to avoid deadlock

This still isn’t right. What’s wrong with it?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 18

How to Make it Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {

synchronized (this) {

myValue=newValue;

listeners=myListeners.clone();

}

for (int i=0; i<listeners.length; i++) {

listeners[i].valueChanged(newValue)
}

}

Suppose two threads call setValue(). One of them will set the value last,
leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value-changes in the wrong order!

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 10

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 19

Problems with Thread-Based Concurrency

• Nontrivial software written with threads, semaphores, and
mutexes is incomprehensible to humans

• Nondeterministic, best effort
– Explicitly prune away nondeterminism

• Poor match for embedded systems
– Lack of timing abstraction

• Termination in reactive systems
– Composability?

 Search for non-thread-based models: which are the
requirements for appropriate specification techniques?

Source: Ed Lee, UC Berkeley, Artemis Conference, Graz, 2007

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 20

Lecture 5: Outline

 Models of Computation (MoCs)

• Process-based MoCs

• Process networks

• Dataflow

• Process calculi

• State-based MoCs

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 11

Types of Parallelism

• Task parallelism (MIMD)

• Multiple independent processes
– Separate code and data

• Asynchronous operation
– Explicit data communication & synchronization

• Data parallelism (SIMD/SIMT)

• Multiple instances of same thread
– Operating on independent pieces of data

• Bulk synchronous operation
– Implicit barrier type of synchronization (fork-join)

 Ideally independent of implementation model

• Shared vs. distributed memory

 Some combinations better implementable than others

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 21

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 22

Process-Based Models

 Activity and causality (data flow)
 Asynchronous, coarse-grain concurrency

• Set of processes
• Processes execute in parallel

– Concurrent composition

• Each process is internally sequential
– Imperative program

• Inter-process communication
• Shared memory [OpenMP]

– Synchronization: critical section/mutex, monitor, …

• Message passing [MPI]
– Synchronous, rendezvous (blocking send)
– Asynchronous, queues (non-blocking send)

 Implementation: OS processes or threads
 Single or multiple processors/cores

Producer

Consumer

Process1 Process2

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 12

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 23

Kahn Process Network (KPN) [Kahn74]

• C-like processes communicating via FIFO channels
• Unbounded, uni-directional, point-to-point queues

– Sender (send()) never blocks
– Receiver (wait()) blocks until data available

 Deterministic
• Behavior does not depend on scheduling strategy
• Focus on causality, not order (implementation

independent)

P1 P3

P2 P4

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 24

Kahn Process Network (KPN) (2)

• Determinism

• Process can’t peek into channels and can only wait on one
channel at a time

• Output data produced by a process does not depend on
the order of its inputs

 Terminates on global deadlock
 All process blocked on receive() (or have otherwise ended)

• Formal mathematical representation

• Process = continuous function mapping input to output
streams

• Turing-complete, undecidable (in finite time)

• Terminates?

• Can run in bounded buffers (memory)?

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 13

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 25

KPN Scheduling

• Scheduling determines memory requirements

• Data-driven scheduling

• Run processes whenever they are ready:

Always emit tokens

Only consumes
tokens from P1

Tokens will
accumulate

here

P1

P2

P3

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 26

Demand-Driven Scheduling

• Only run a process whose outputs are being solicited

• Synchronous, unbuffered message-passing

• However...

Always
consume

tokens

Always
produce
tokens

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 14

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 27

KPN Scheduling

• Inherent tradeoffs
• Completeness

• Run processes as long as they are ready
 Might require unbounded memory

• Boundedness
• Block senders when reaching buffer limits
 Potentially incomplete, artificial deadlocks and early termination

 Data driven: completeness over boundedness
 Demand driven: boundedness over completeness and

even non-termination

 Hybrid approach [Parks95]
• Start with smallest bounded buffers
• Schedule with blocking send() until artificial deadlock

– At least one process blocked on send()

• Increase size of smallest blocked buffer and continue

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 28

Parks’ Algorithm

• Start with buffer size 1

• Run P1

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

• Start with buffer size 1

• Run P1, P2

• Start with buffer size 1

• Run P1, P2, P3

• Start with buffer size 1

• Run P1, P2, P3, P4

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 15

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 29

Parks’ Algorithm

• P2 blocked

• Run P1, P3, P1, … indefinitely

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 30

Kahn Process Networks (KPN)

• Difficult to implement

• Size of infinite FIFOs in limited physical memory?

• Dynamic memory allocation, dependent on schedule

• Boundedness vs. completeness vs. non-termination
(deadlocks)

• Dynamic context switching

• Parks’ algorithm

• Non-terminating over bounded over complete execution

 Does not find every complete, bounded schedule

 Does not guarantee minimum memory usage

 Deadlock detection?

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 16

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 31

Dataflow [Dennis’74]

• Breaking processes down into network of actors
• Atomic blocks of computation, executed when firing
• Fire when required number of input tokens are available

– Consume required number of tokens on input(s)
– Produce number of tokens on output(s)

 Separate computation & communication/synchronization
 Actors (indivisible units of computation) may fire simultaneously, any order
 Tokens (units of communication) can carry arbitrary pieces of data

• Directed graph of infinite FIFO arcs between actors
• Boundedness, completeness, non-termination?

 Signal-processing applications

f1() f3()f2()

f4()

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 32

Synchronous Dataflow (SDF) [Lee86]

• Fixed number of tokens per firing
• Consume fixed number of inputs
• Produce fixed number of outputs

 Can be scheduled statically
 Flow of data through system does not depend on values

 Find a repeated sequence of firings
 Run actors in proportion to their rates
 Fixed buffer sizes, no under- or over-flow

a cb

d

1 2 1
2

2

2 1 8

1

2
Initialization
 Delay
 Prevent deadlock

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 17

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 33

SDF Scheduling (1)

• Solve system of linear rate equations
• Balance equations per arc

– 2a = b
– 2b = c
– b = d
– 2d = c

 4a = 2b = c = 2d

• Inconsistent systems
– Only solvable by setting rates to zero
– Would otherwise (if scheduled dynamically) accumulate tokens

• Underconstrained systems
– Disjoint, independent parts of a design

 Compute repetitions vector
 Linear-time depth-first graph traversal algorithm

a cb

d

1 2 1
2

2

2 1 8

1

2

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 34

SDF Scheduling (2)

• Periodically schedule actors in proportion to their rates
• Smallest integer solution

– 4a = 2b = c = 2d
 a = 1, b = 2, c = 4, d = 2

• Symbolically simulate one iteration
of graph until back to initial state

– Insert initialization tokens to avoid deadlock
 adbccdbcc = a(2db(2c))
 a(2db)(4c)

 Single-processor/sequential scheduling (PASS)
 Memory requirements vs. code size

• a(2db(2c)): 2 token slots on each arc for total of 8 token buffers
• a(2db)(4c): 12 token buffers
 Single appearance schedule & looped code generation

Multi-processor/parallel scheduling (PAPS)
 Latency/throughput vs. buffer sizes

a cb

d

1 2 1
2

2

2 1 8

1

2

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 18

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 35

Cyclo-Static Dataflow (CSDF)

• Periodic firings (cyclic pattern of token numbers)

• 8:1 Downsampler
– Traditional SDF: store and consume 8 input tokens for one output

 First firing: consume 1, produce 1

 Second through eighth firing: consume 1, produce 0

 Static scheduling in similar manner as SDF

{1,1,1,1,1,1,1,1} {1,0,0,0,0,0,0,0}

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 36

Boolean Dataflow (BDF)

• Allow actors with boolean control inputs

• Select actor

• Switch actor

 Touring complete

 Loops, branches

 Quasi-static scheduling

S
E

L
E

C
T

T

S
E

L
E

C
T

T

F

Control

S
W

IT
C

H

T

F
Control

S
W

IT
C

H

T

F

T

Source: M. Jacome, UT Austin.

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 19

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 37

Process-Based MoCs

HSDF

SDF

CSDF

BDF

DDF

KPN

RPN

RPN Reactive Process Network

KPN Kahn Process Network

DDF Dynamic Dataflow

BDF Boolean Dataflow

CSDF Cyclo-Static Dataflow

SDF Synchronous Dataflow

HSDF Homogeneous SDF

Yellow: Turing complete

Source: T. Basten, MoCC 2008.

Dataflow Variants

• Dynamic dataflow models

• Structured dataflow [LabView’s G language]
– If-then-else, switch-case with analyzable semantics

• Modal models
– Parameterized dataflow (PDF) [Bhattacharya’01]

– Heterochronous dataflow (HDF) [Lee’05]

– Scenario-aware dataflow (SADF) [Theelen’06]

 Parameter changes between iterations driven by state machine model

• Timed dataflow extensions

• Time synchronous dataflow (TSDF) [Agilent ADS]
– Fixed sampling/execution rates on arcs and actors

• Hybrid continuous-discrete time models
– Discrete models as piecewise constant continuous signals [Simulink]

– Sampling at discrete/continuous interfaces [SystemC-AMS]

 Cyber-physical systems (CPS)

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 38

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 20

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 39

Process Calculi

• Rendezvous-style, synchronous communication
• Communicating Sequential Processes (CSP) [Hoare78]
• Calculus of Communicating Systems (CCS) [Milner80]
 Restricted interactions

 Formal, mathematical framework: process algebra
• Algebra = <objects, operations, axioms>

– Objects: processes {P, Q, …}, channels {a, b, …}
– Composition operators: parallel (P║Q), prefix/sequential (a→P),

choice (P+Q)
– Axioms: indemnity (Ø║P = P), commutativity (P+Q=Q+P, P║Q = Q║P)

Manipulate processes by manipulating expressions

 Parallel programming languages
 CSP-based [Occam/Transputer, Handle-C]

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 40

Lecture 5: Outline

 System specification

 Process-based MoCs

• State-based MoCs

• Finite state machines

• Hierarchical, concurrent state machines

• Process state machines

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 21

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 41

State-Based Models

 Status and reactivity (control flow)

• Explicit enumeration of computational states
• State represents captured history

• Explicit flow of control
• Transitions in reaction to events

 Stepwise operation of a machine
 Cycle-by-cycle hardware behavior
 Finite number of states

 Not Turing complete

 State-oriented imperative representation
 State only implicit in control/data flow (CDFG)

 Formal analysis
 Reachability, equivalence, …

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 42

Finite State Machines

• Finite State Machine (FSM)
• Basic model for describing control and automata

– Sequential circuits

• States S, inputs/outputs I/O, and state transitions
– FSM: <S, I, O, f, h>
– Next state function f: S  I → S
– Non-deterministic: f is multi-valued

• Output function h
– Mealy-type (input-based), h: S  I → O
– Moore-type (state-based), h: S → O
 Convert Mealy to Moore by splitting states per output

• Finite State Machine with Data (FSMD)
• Computation as control and expressions

– Controller and datapath of RTL processors

• FSM plus variables V
– FSMD: <S, I, O, V, f, h>
– Next state function f: S  V  I → S  V
– Output function h: S  V  I → O

v := v + 1

v := 0

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 22

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 43

Reducing Complexity

• FSM with Data (FSMD) / Extended FSM (EFSM)

Mealy counter
 Implicit self-loops on ē (absence), f: SV2I → SV, h: SV2I → 2O

• Non-Deterministic FSM (NFSM)

 Choice in control
 Implicit self-loops for unspecified

conditions? Usually!

 Wait: belt & t ?

 Multiple arcs for same condition?

 Incomplete specification (undecided),
unknown behavior (don’t care)

S0 S1

s e & c<4

e & c==4 / t

c:=0 c:=c+1

states  values

S0 S1 S2 S3 S4
es e

e / t

e

Off Wait

Alarm

key

s
key | belt

tkey | belt

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 44

Communicating FSMs
• FSM composition

• SeatBelt: <S’,I’,O’,f’,h’>
– S’ = S1S2 = {…,(Wait,S1),…}
– I’  I1  I2 = {e, key, belt}
– O’  O1  O2

– f’: S1S2  I’ → S1S2, s.t. f’  f1f2
– h’: S1S2  I’ → O’, s.t. h’  h1h2

• Connectivity constraints
– Mapping of outputs to inputs: fi(si, …, hj(sj ,ij), …), hi(si, …, hj(sj ,ij), …)

 Synchronous concurrency
 Simultaneous, lock step, zero delay hypothesis

 Composability
Moore

 Delayed
 Well-defined

Mealy
 Instantaneous
 Cycles, consistency

SeatBelt

Counter Controle

key
belt

s
t

Source: M. Jacome, UT Austin.

FSM1 FSM2
o1

i1

i3

i2 o2

S0’ S1’

a

a b

b

S0’ S1’

b / b

a / a

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 23

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 45

Hierarchical & Concurrent State Machines

• Superstate FSM with Data (SFSMD)

• Hierarchy to organize and reduce complexity
– Superstates that contain complete state machines each

– Enter into one and exit from any substate

• Hierarchical Concurrent FSM (HCFSM)

• Hierarchical and parallel state composition
– Lock-step concurrent composition and execution

• Communication through global
variables, signals and events

 Graphical notation
[StateCharts]

r

d / es1

s2

s3

d / e

s
v:=0

r

d / es1

s2

s3

s4d / e

s

c / v:=v+1

v:=0

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 46

Managing Complexity and State Explosion

• Hierarchy (OR state)

• Concurrency (AND state)

A

B

C

X

Y

a

b

x

m

n

A

B

C

a

b

X

Y

x

m

m

m

n

A

B

C

X

Y

a

b

x

AX AY

BX BY

CX CY

a

b

x

x

x

a

b

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 24

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 47

HCFSM Semantics

• Reaction time upon external event?
• Synchronous, reactive: zero time, event broadcast (Mealy)

 N micro-steps (int.) per macro-step (ext.) [Statemate]
• Events posted in next and only in next micro step

• “Synchronous”
• One micro/macro step at regular times: delayed reaction, not synchronous (Moore)

• “Asynchronous”
• Zero-delay micro steps: causal chain reaction (Mealy, but: state updates in cycles)

 Deterministic
 Together with other rules, e.g. priority of conflicting transitions

a / b

A1

A2

B1

b / a

B2

• Event propagation?
• Grandfather paradox

• Inconsistent cycles, non-determinism

 Synchronous reactive (SR) model
 Reject cycles [Argos, Lustre]
 Require fixed-point [SyncCharts/Esterel]

Source: “Statemate Course,” K. Baukus

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 48

Process and State Based Models

• From synchronous to asynchronous compositions…
• Asynchronous concurrency in HCFSMs [UML]

– Explicit event queues, deadlock analysis [PetriNet]

• Processes are state machines
– Globally asynchronous, locally synchronous (GALS) systems
– Co-design Finite State Machines (CFSM) [Polis]

• States are processes
– Imperative leaf states, transition-immediately (TI) and on completion (TOC):

Program State Machine (PSM) [SpecCharts]
– States with continuous process networks [*Charts],

hybrid continuous/discrete time models

 Arbitrary hierarchy
 Process State

Machine (PSM)
[SpecC]

 Heterogeneous
MoCs [Ptolemy] S

PP
P4

P5

P3

P2

P1

…
c1.receive(d,e);
a = 42;
while (a<100)
{ b = b + a;

if (b > 50)
c = c + d;

else
c = c + e;

a = c;
}

c2.send(a);
…

d

d
c2

c1

EE382V: Embedded Sys Dsgn and
Modeling

Lecture 5

© 2014 A. Gerstlauer 25

EE382V: Embedded Sys Dsgn and Modeling, Lecture 5 © 2014 A. Gerstlauer 49

Lecture 5: Summary

• Models of Computation (MoCs)

• Formally express behavior

• Process-based models: KPN, Dataflow, SDF

 Data dominated, block diagram level

• State-based models: FSM(D), HCFSM

 Control dominated, machine level

 Hybrid models

 Combination of process and state (data and control)

 Behavior from specification down to implementation

