
A System-Level Synthesis Approach from Formal
Application Models to Generic Bus-Based MPSoCs

Jens Gladigau1, Andreas Gerstlauer2, Christian Haubelt1, Martin Streubühr1, and Jürgen Teich1

1Department of Computer Science, University of Erlangen-Nuremberg, Erlangen, Germany
2Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, USA

Abstract—System-level synthesis is the task of automatically
implementing application models as hardware/software systems.
It encompasses four basic sub tasks, namely decision making
and refinement for both computation and communication. In
the past, several system-level synthesis approaches have been
proposed. However, it was shown that each of these approaches
has drawbacks in at least one of the four sub tasks. In this paper,
we present our efforts towards a comprehensive system-level
synthesis by combining two academic system-level solutions into
a seamless approach that automatically generates pin-accurate
implementation-level models starting from a formal application
model and generic MPSoC architecture templates. We analyze
the system-level synthesis flow and define intermediate represen-
tations in terms of transaction level models that serve as link
between existing tools. Furthermore, we present the automated
transformation between models for combining two design flows.
We demonstrate the combined flow on an industrial-strength
example and show the benefits of fully automatic exploration
and synthesis for rapid and early system-level design.

I. INTRODUCTION

System-level design has long been touted as the holy
grail for increasing designer productivity, raising the level
of abstraction while providing associated design automation
techniques. Several approaches provide at least partial solu-
tions for synthesis at the system-level. However, the landscape
remains fragmented. There are various attempts that focus on
certain aspects of the problem, but a complete system synthesis
solution is lacking [1].

In this paper, we identify and define different abstraction
levels in typical system-level design flows, and we show how
existing approaches can be combined to a seamless system-
level synthesis. First, actual needs and elements of synthesis
have to be clarified. At any abstraction level, synthesis can
be defined as the process of transforming a specification into
an implementation (Fig. 1). Concentrating on the system-
level, where synthesis is performed across hardware/software
boundaries, this is represented by the X-chart as follows:
A specification is composed of an application behavior and
constraints. Constraints often include a platform that describes
available resources [2]. A set of these resources supple-
mented by possible interconnections form the platform tem-
plate. Given a specification, synthesis generates an (optimal)
implementation of the application model under the given
constraints through decision making and refinement. Decision
making is understood as the task of computing an allocation
of resources available in the platform template, a spatial
binding of the application onto allocated resources, and a

Constraints Behavior

Making
Decision Refinement

Quality
Numbers

Synthesis

Specification

Implementation

Structure

Fig. 1. X-chart showing the synthesis process [1]

temporal scheduling to resolve resource contention of objects
bound to the same resource. Refinement then incorporates
these decisions into the application model to automatically
generate an implementation in the form of a structural model
and quality numbers. The structural model represents the
resulting architecture and mapping decisions. Quality numbers
are estimated values for different implementation properties,
e.g., timing, area, or power consumption.

There are several options to represent specifications. For the
application behavior, a well defined Model of Computation
(MoC) that allows for analysis and utilization of formal
methods is preferred. At the system-level, MoCs used for ap-
plication modeling include process, data flow, or state-machine
models [3]. Beyond a formal nature, executable application
models help to avoid ambiguous behavior. Therefore, in our
proposed approach, we advocate an executable application
model based on a well defined MoC. To specify architectural
constraints, platforms are in most cases targeted towards Multi-
Processor System-on-Chip (MPSoC) architectures [4]. For
structural representation of such implementations, Transaction
Level Modeling (TLM) is almost exclusively used today [5].

In general, the goal at any abstraction level is to automate
both tasks, decision making and refinement. However, com-
pared to lower levels, synthesis at the system-level has to
deal with huge design spaces and increased complexities that
can only be managed by orthogonalization of concerns [6]. In
addition to a separation of decision making and refinement,
both steps are typically performed separately for computation



TABLE I
CLASSIFICATION OF DIFFERENT ESL SYNTHESIS APPROACHES [1].

Decision Making Refinement

Approach DSE Comp. Comm. Comp. Comm.

Daedalus • • ◦ • ◦
Koski • • ◦ • ◦

Metropolis – ◦ – ◦ –
PeaCE/HoPES ◦ ◦ – • ◦

SCE – – – • •
SystemCoDesigner • • • • –

– no support ◦ partial support • full support

and communication. A previous analysis of the system-level
synthesis landscape [1] has shown that various approaches
exist that perform decision making and/or refinement for
either computation or communication (see Table I). However,
none of the investigated approaches can handle comprehensive
system-level synthesis with automated decision making and
refinement for both computation and communication.

More specifically, synthesis approaches can be divided into
two classes: (1) approaches starting with formal, domain
specific models (e.g., based on data flow), and (2) approaches
starting with implementation oriented models (typically based
on programing language extensions). Approaches from (1)
usually consider and support very limited, restricted target
architectures that often directly match the semantic of the
domain specific model. Approaches from (2) are closer to
traditional implementation flows and support more general
target architectures, but lack advantages gained from well
defined MoCs, such as automated exploration, mapping, and
formal analysis.

The key contribution of this paper is the definition of
an automatic system-level synthesis flow that allows us to
bridge the synthesis gap between formal model based and
implementation centric synthesis approaches. For this pur-
pose, we introduce well defined intermediate transaction level
models as the canonical interface between various formal
models and generic implementations. As a proof of concept,
we couple representatives from both classes, namely the
SystemCoDesigner [7] and the System-On-Chip Environment
(SCE) [8] solutions. We concentrate on bus-based MPSoCs,
as these architectures are most common, and memory-mapped
bus modeling is the focus of the TLM 2.0 standard [9].
The combined design flow allows for fully automatic design
space exploration for both computation and communication
refinement in a seamless flow from a formal application model
down to pin-accurate models of arbitrary, bus-based MPSoCs.

A. Organization

The remainder of the paper is organized as follows: Sec-
tion II describes related work, followed by an overview of
our methodology in Section III. The refinement procedure
from a formal application model down to pin-accurate models
is explained, and intermediate transaction level models are
introduced in Section IV. The coupling of design flows is
presented in Section V. Results of applying the proposed

methodology to a typical streaming application case study, a
JPEG decoder design, are presented in Section VI. Finally, the
paper concludes with summary and outlook in Section VII.

II. RELATED WORK

Many approaches exist today that tackle a subset of what
we expect from comprehensive system-level synthesis. In [10],
Densmore et al. define a classification framework for such
design tasks by reviewing more than 90 different point
tools. Many of these tools are devoted to modeling purposes
(functional or platform) only. Other tools provide back-end
synthesis functionality through either software code generation
or C-to-RTL high-level synthesis.

Targeting streaming applications mapped to network on chip
architectures, in [11] stochastic automata networks are used
for performance analysis. According to analysis results, the
application is then mapped to a target architecture. Similarly,
the DeepCompass framework [12] is able to perform analysis
and design space exploration for software systems deployed on
multiprocessor platforms, based on manual developed resource
models of system components. For both, the selected model
then provides design decisions for engineers to develop the
final implementation. However, an ideal system-level synthesis
tool has the ability to generate systems across hardware and
software boundaries from an application model automatically.

Several academic approaches to system-level synthesis exist
today, yet none of them fully automates decision making and
refinement (see Table I). Metropolis [13] is a modeling and
simulation environment based on the platform-based design
paradigm. It supports many application domains and target
architectures. However, it does not provide a high degree
of automation, neither in decision making nor in model
refinement. PeaCE [14], on the other hand, supports automatic
computation refinement while decision making mostly has
to be performed manually. Daedalus [15], Koski [16], and
SystemCoDesigner (SCD) [7] are system-level synthesis tools
that automatically map applications to MPSoC targets. These
tools support decision making and refinement for application
computation, but decision making and refinement for commu-
nication is only supported for limited types of communication
architectures. Since communication plays an important role at
the system-level, however, true system synthesis must support
both computation and communication.

An approach that automates design space exploration at
system-level for MPSoCs based on shared memory communi-
cation architectures has been proposed in [17]. It uses a special
decoding based on SAT solving during design space explo-
ration (DSE). Thereby, it determines and optimizes resource
allocation, process binding, channel mapping, and transaction
routing. However, refinement was not considered in this paper.

Automatic refinement for both computation and communi-
cation is implemented in the System-On-Chip Environment
(SCE) [8]. There, however, no support for automatic decision
making is integrated and the refinement process starts from
a generic, relatively low-level C-based system model. In this



paper, we will close the gap between higher-level formal mod-
els feeding into such implementation-driven synthesis flows
by combining an automatic decision making with refinement
steps from SCD and SCE.

III. METHODOLOGY OVERVIEW

An overview of the proposed design flow is shown in Fig. 2.
As described using the X-chart, system-level synthesis starts
from an application model of the system and a platform tem-
plate. Synthesis results in an implementation as Pin-Accurate
Model (PAM), which describes the system as a netlist of task-
accurate, bus-functional component models that are ready for
further software and high-level synthesis.

During system-level synthesis three abstraction levels are
defined through the following intermediate models: (1) Ap-
plication Models, (2) Scheduled Models, and (3) Architecture
Models. In these models communication is abstracted to trans-
actions. Hence, we define them in terms of TLM concepts.
Detailed definitions will follow in the next section.

System behavior is given as a formal application model
based on the data flow oriented FunState MoC [18]. Because
using only data channels for communication, this MoC is best
suited for streaming applications, as found in the multimedia
or networking domains. Note that support for other formal
MoCs, e.g., synchronous data flow (SDF), Kahn process net-
works (KPN), or communicating sequential processes (CSP),
could be integrated, but is not further discussed.1 Constraints,
on the other hand, are given in the form of a platform,
which defines a set of available resources (such as processors,
busses, and gateways). Supplemented by allowed connectivity
and associated parameters, a platform template describes all
possible architectures. Note that only a subset of elements in
the template may be chosen for the final architecture during
design space exploration. Given a complete system specifica-
tion, a design space exploration (DSE) engine performs multi-
objective optimization to obtain optimized design points, each
representing design decisions such as resource allocation and
binding information. Decisions of a chosen design point are
then fed into a refinement flow that refines the application
model down to an Architecture TLM and finally a PAM.
Refinement is performed in four phases:

1) In a first phase, the application model is refined into a
transaction level model, where queues using the FIFO
semantics are implemented in shared memory. Hence, in
the Application TLM, queues are refined into memory
access and synchronization transactions. Each actor is
implemented as a process.

2) In a second phase, the Scheduled TLM is refined from
the Application TLM. Thereby, computation refinement
uses computation decisions from DSE, namely processor
allocation, process binding, and scheduling, to generate

1In this paper, we use restricted FunState. In this MoC, application behavior
is described as a set of actors that communicate via queues with FIFO
semantics. Each actor’s behavior is given as finite state machine. Basically,
this MoC extends KPN by non-deterministic behavior and allows for non-
blocking reads. For simplicity, we further refer to this MoC as FunState.

Computation
RefinementComputation

Decisions

Application
TLM

Scheduled
TLM

Communication
Refinement

Architecture
TLM

Protocol
Refinement

Pin-Accurate
Model

High-level
Synthesis

Software
Synthesis

Model
Refinement

KPNFunStatePlatform
Template

System-Level
Synthesis

Space
Exploration

Design

(DSE)

Protocol
Decisions

Communication
Decisions

Fig. 2. System-level synthesis overview

an intermediate Scheduled TLM. In the Scheduled TLM,
processes are bound and scheduled on selected proces-
sors, while inter-processor communication is equal to the
Application TLM.

3) In phase three, communication refinement realizes design
decisions about the topology of the communication ar-
chitecture, routing of memory and synchronization trans-
actions, and bus address and interrupt mapping. During
refinement, memory and synchronization transactions are
implemented down to the level of arbitrary bus protocol
transactions, resulting in the Architecture TLM. In the
process, refinement generates bus drivers and bus inter-
faces in the processors to implement all memory and
event communication as bus read, write, and interrupt
transactions.

4) Finally, through protocol refinement, communication can
be refined all the way down to cycle-accurate signals
and events over a set of wires. In the resulting PAM,
bus-functional models of processors, memories, hardware
accelerators, busses, and gateways communicate at a level
down to the sampling and driving of individual wires.

The final PAM serves as input to further back-end high-
level and software synthesis tools. Focusing on system-level
synthesis aspects, the required model refinement steps from an
application model to a PAM will be discussed in more detail
in the following sections.



A3

A2

A1

C2

C1

A1

A2

A3
C2

C1(a)

(b)

Fig. 3. (a) FunState model and (b) Application TLM

IV. SYSTEM-LEVEL REFINEMENTS

After the overview of the methodology, we now explain the
refinement steps in more detail and thereby define intermediate
canonical abstraction levels necessary for a seamless synthesis
flow. The basic idea is to synthesize MPSoC implementations
from application models by defining intermediate models in
terms of transaction level concepts. These models are the basis
for performing computation and communication refinement
across tool borders. In the following, we will present the
necessary model transformations starting with the refinement
process from FunState application models.

A. Model Refinement

In support of further synthesis down to general bus-based
MPSoC target architectures, a canonical Application TLM is
represented in a C-based system-level design language, such as
SystemC/TLM [9]. Hence, translation of arbitrary MoCs into
synthesizable Application TLMs needs to support correspond-
ing implementation-oriented communication assumptions. In
the following, we will exemplary show the translation of
FunState models using a fixed decision for implementing
communication as shared memory.2 Due to this refinement,
the same formal model used in an approach supporting limited
target architectures is now appropriable for implementation
oriented approaches—the key for synthesizing general bus-
based MPSoC target architectures.

In FunState models, actors communicate via point-to-point
queues with FIFO semantics. These queues support blocking
and non-blocking read operations as well as write operations.
In the transaction level model, these operations are imple-
mented using shared memory to store data and control infor-
mation (e.g., read/write pointers) combined with transactions
for data access and synchronization.

2Of course, alternative implementations for this intermediate model in the
design flow are possible. However, for simplicity, we will only consider
models as described. Note that this refinement perfectly fits as input to the
subsequent DSE.

A1

A2

C2

MEM1

MEM2

C1

A3

CPU2
(a)

CPU1

A3A1,2

C1

MEM1

C2

MEM2

CPU2CPU1

(b)

Fig. 4. (a) FunState model with resource mapping and (b) Scheduled TLM

The corresponding model transformation is shown in Fig. 3.
Fig. 3(a) represents a FunState model consisting of three actors
A1, A2, and A3 and two queues C1 and C2. In order to
generate an equivalent transaction level model using shared
memory communication, each queue is replaced by a shared
memory module and sockets for synchronization, as shown
in Fig. 3(b). The behavior of an actor is encapsulated into a
SystemC module and process with special TLM adapters [19]
(indicated as dark gray layer in the figure). These adapters
provide an abstract interface to the process for communication
and therewith implement the FIFO semantics of the queue
in the formal model. An adapter consisting of two initiator
sockets and one target socket is generated for each queue
connection in the FunState model. One initiator socket is used
for memory access whereas the second initiator socket is used
to notify the peer actor module about queue updates.

An additional note on parallelization: While we later can
map several actors to a single resource, we, for now, do not
further parallelize a single actor. So, the initial decomposition
of the system in the formal model also defines the maximum
parallelism in the final implementation.

B. Computation Refinement

The purpose of system-level computation refinement, from
Application TLM to Scheduled TLM, is to partition processes
in the application model towards their implementation as
hardware accelerator or on software programmable processors.
As such, groups of processes are partitioned according to the
architecture mapping. End-to-end communication over sockets
is implemented the same way as in the Application TLM.

For partition blocks that result in a hardware implementa-
tion, system-level computation refinement simply adds another
hierarchy level, encapsulating hardware blocks while retaining
the inherent parallelism in the model. The result is a single
SystemC module for each hardware accelerator. After refining
the communication (see Section IV-C), high-level synthesis



3) Network

6) Presentation

4) Transport

2b) Data Link
2a) Media Access

5) Session

7) Application

1) Physical

A FunState Model

Application TLM
Scheduled TLM

Architecture TLM

Pin-Accurate
Model

Fig. 5. Communication refinements related to the ISO/OSI model

tools, such as Forte’s Cynthesizer, Cadence’s C-to-Silicon,
Mentor’s Catapult, or NEC’s CyberWorkBench, can be used
to generate RTL implementations for each module.

For software implementations, computation refinement
mainly deals with scheduling, taking processor allocation
and process binding into account. See Fig. 4(a) for such a
mapping. Scheduling serializes execution of processes mapped
to a single processor. Several scheduling approaches can be
considered: (1) static scheduling, (2) quasi-static scheduling,
or (3) dynamic scheduling (e.g., round-robin or priority based).
The first two scheduling techniques are optimizations that
may be applied to subsystems with static communication
rates. Applying static scheduling results in a single process
representing the software partition block. Dynamic scheduling
is the most general solution and always applicable. It may
result in a single process implementing a custom schedule, or
in multiple threads later executed on an operating system. In
the example in Fig. 4(b) a dynamic scheduler implemented
in a single process was chosen for CPU1, and process A1,2

is the result. Further software synthesis in the back-end then
generates C/C++ code for each process, which is compiled
and possibly linked with an operating system to run on the
corresponding target processor.

C. Communication Refinement

Abstract communication in the FunState model is refined all
the way down to communication over wires in the pin-accurate
model in three phases. For all models shown in Section III, the
abstraction level of communication is visualized and related to
ISO/OSI layers in Fig. 5. The refinement phases are indicated
by dashed lines. Communication refinement from FunState
model to Application TLM was explained earlier: queue-based
communication is refined to shared memory based communi-
cation. In terms of the ISO/OSI model, communication in the
Scheduled TLM is described at the transport level.

Communication refinement from Scheduled TLM to Ar-
chitecture TLM is performed in two steps. First, adapters
are aggregated for each hardware or software partition block.
Aggregation includes insertion of code performing the tasks

A3

C1

MEM1

C2

CPU1

Bus

CPU2

A1,2

MEM2

Fig. 6. Architecture TLM

A3

C2
MEM2

C1

MEM1

CPU1

Bus

CPU2

A1,2

Fig. 7. Pin-Accurate Model (PAM)

of transport and network layers, i.e., code that encapsulates
all queue adapters of a partition block and performs end-to-
end packeting, addressing, and routing, according to design
decisions. The results are SystemC modules for processors
and hardware accelerators with a pair of sockets for commu-
nication each.

In a second step, sockets are further aggregated and refined
down to read or write transactions over shared busses or
other communication media. Link and media access layers are
inserted to implement addressing, data transfers (using various
protocol modes, such as burst or DMA), and synchronization
(such as polling or interrupts). The result is an Architecture
TLM realizing communication at the media access level,
which is indicated by the dark gray bars in Fig. 6.

In a final communication refinement phase, called protocol
refinement, the Architecture TLM is synthesized down to a
PAM (illustrated in Fig. 7) as follows: Modules are refined
into bus-functional models by inserting protocol and physical
layers that implement bus protocol state machines for each
bus transaction, driving and sampling ports and wires in
accordance with the selected protocol timing. Consequently,
communication in the PAM is pin- and cycle-accurate. The
PAM is described as a signal-level netlist of processors,
memories, bus wires, and interconnect components, such
as multiplexers, arbiters, bridges, and gateways. The PAM
represents the final system netlist, which is the basis for
further high-level, logic and physical synthesis, e.g., for ASIC
manufacturing or FPGA-based prototyping.



FunState Platform
Model

SystemCoDesigner (SCD)

Communication
Decisions

Scheduled
TLM

System-On-Chip Environment (SCE)

Pin-Accurate
Model

XMLSysteMoC

XMLSpecC

SpecC

Fig. 8. Tool flow

V. DESIGN FLOW COUPLING

After analyzing refinements and intermediate models in
system-level synthesis, we present our experimental setup for
transformation of formal FunState models to implementation
oriented models in more detail. We implemented the pro-
posed system-level synthesis approach by combining the Sys-
temCoDesigner (SCD) and the System-on-Chip Environment
(SCE) design flow. To benefit the most from the strengths of
both tools, we identified the Scheduled TLM as link between
SCD and SCE. As such, automatic decision making and
computation refinement is performed using SCD while the
more elaborated communication refinement from SCE is used.
We concentrate on the hand-over, as the other refinement steps
are explained in the cited literature.

Neglecting intermediate steps, Fig. 8 sketches the resulting
tool flow and input/output models. The input model for SCD is
a FunState model, given as executable representation using the
SysteMoC library [20]. SCE’s input model is in SpecC [21]
format. Constraints are fed into the tools using XML-files.

One feature of SysteMoC is the capability to automati-
cally extract finite state machines, describing the behavior
of the actors, and the overall structure of the model. Ad-
ditionally, functions and other information (such as variable
names) are extracted using the Karlsruhe SystemC Parser
Suite (KaSCPar) [22]. Following the methodology and model
definitions described in Section IV together with computation
decisions, this information is used to automatically generate
the Scheduled TLM in SpecC format. After generating an
implementation oriented model based on the formal FunState
model, design decisions made by the exploration framework
from SCD are encoded as XML-file. Taking the Scheduled
TLM and decisions, SCE refines abstract memory access
and synchronization transactions in the model down to bus
transactions and interrupts. As a result, SCE generates both
an Architecture TLM and a PAM. After briefly describing
modeling concepts for SysteMoC in the following subsection,
we explain how the SpecC model is generated from the
SysteMoC model, incorporating design decisions.

void b();
uint i;

uint k;

0 1

o1 i1

i2

0

o2

C2

0

o2(1)/c()

o1(1)/a()

o1(2)/b()
void a();

C1

A1

A2
void d();

i1(1)&i2(1)/d()

A3

void c();

Fig. 9. SysteMoC model

uint i;
void b();

uint k;

struct mem_C1; struct mem_C2;

in 1out 1

in 2out 2

CPU1 CPU2

fsm A1A2
void a();
void c();

fsm A3
void d();

Top

Fig. 10. SpecC model

A. SysteMoC

SysteMoC is a C++-library for implementing formal, exe-
cutable FunState based representations of embedded systems.
An illustrating SysteMoC model for the running example
introduced in Fig. 3 is shown in Fig. 9 in more detail. Every
actor contains a finite state machine (FSM) with one or more
states, shown above the dashed line. Below the dashed line,
actor methods (actions) and internal variables are shown.
Actors access channels via named ports (black rectangles in
the figure). Every transition in the FSM is annotated with an
activation pattern and an action, separated by a slash. If all
conditions in an activation pattern are fulfilled, the transition
can be taken and the corresponding action is atomically
executed. For example, the transition i1(1)&i2(1)/d() in actor
A3 is activated if there is at least one token available in channel
C1 and at least one in channel C2. If the transition is taken,
action d() is executed. Afterwards, tokens are consumed
(taken from the channel) according to the activation pattern.

B. SpecC Generation

In this section, we explain how to generate SpecC programs
from SysteMoC descriptions and computation decisions, using
the running example. That is, the transformation from the
model shown in Fig. 4(a) to the model in Fig. 4(b). We first
give a basic overview, before emphasizing details:

• For each partition block, a module (called behavior in
SpecC) representing one or more finite state machines is
generated.



• Each SysteMoC port is implemented as an additional
interface process and behavior.

• For each SysteMoC channel, memory structures for data,
read pointer, and write pointer are instantiated.

• Actions are transformed so that port accesses in the
SysteMoC model are mapped to interface functions of
the corresponding SpecC port behavior.

• Internal variables of actors are instantiated in the behavior
corresponding to the partition block.

• Signals are connected according to the structure of the
model.

An important observation is that queues in the formal model
imply synchronization: Actors block, if for no transition in
the current state the activation pattern is fulfilled; Changes
on a connected channel provoke reevaluation. As described
in Section IV-A, asynchronous communication using abstract
queues is implemented with shared memory. To avoid polling,
we implement asynchronous communication of a single queue
using a pair of behaviors (e.g., behavior out_1 and in_1
for channel C1). These behaviors are called adapters and
serve three purposes: (1) they provide interfaces, for actions to
access data and for FSM code to access meta information, such
as fill size; (2) using handshake signals, they awake blocked
FSM behaviors on data change by the peer; (3) using hand-
shake signals, they inform the peer adapter about data change
by the FSM behavior. To fulfill these three tasks, signals are
interconnected as depicted by arrows in Fig. 10. Note that
this pattern is one out of many possible solutions and meant
for generic hand over between tools. Later communication
refinement may alter the implementation drastically.

For hardware partition blocks, concurrent execution is re-
tained by implementing each FSM as behavior. For software
partition blocks, result depends on scheduling decisions. In
case of dynamic scheduling of software partition blocks,
refinement retains concurrent execution, and a general-purpose
operating system is inserted as part of the SCE flow. Alterna-
tively, a custom schedule can be used and a single behavior
is the result.

For the SysteMoC example in Fig. 9, actors A1 and A2 are
mapped onto a CPU1 whereas actor A3 is partitioned onto
CPU2. As a result, a Scheduled SpecC TLM as shown in
Fig. 10 is generated. Here, the FSMs of actors A1 and A2

are implemented within a single behavior, internally using a
round-robin scheduling scheme.

VI. RESULTS

To demonstrate the seamless applicability of the described
methodology using the tool flow as shown in Fig. 8, we
automatically synthesized a SysteMoC model of a JPEG
decoder application into various different bus-based MPSoC
implementations. We chose the JPEG decoder as this is a
widely used and well known example. The original model
consists of 14 actors and 22 channels.

System-level synthesis was performed for different map-
pings of the JPEG application onto an ARM-based multi-
processor platform. These implementations result from an

IDCT
ARMARM ARM ARM

MEM
IDCT

MEM

SW SW+HW MP+HW

AHB AHB

Bridge

AHBAHB

Fig. 11. Implementation architectures

TABLE II
SYNTHESIS AND SIMULATION RESULTS

TLM

Design App. Sch. Arch. PAM

Simulation time SW 0:02 0:07 0:14 0:21
(Hr:Min:Sec) SW+HW 0:02 0:09 3:28 21:23

MP+HW 0:02 0:09 36:01 4:57:00

Code lines SW 10945 14882 20835 20165
SW+HW 10945 15304 21991 21381
MP+HW 10945 17104 28899 27780

automatic design space exploration, ranging from a software-
only implementation on a single processor to an MPSoC archi-
tecture using additional hardware accelerators. These design
points represent fundamental design decisions for cheap or
fast implementations. Exemplary, three resulting architectures
are sketched in Fig. 11. The design decisions for the three
design points are as follows:

1) SW: All actors are mapped to a single ARM processor
and implemented in software using dynamic scheduling
with a round-robin strategy. All communication and
synchronization is mapped to the local ARM memory
and internal semaphores.

2) SW+HW: The Inverse Discrete Cosine Transformation
(IDCT) actor is implemented as a custom hardware
accelerator. Communication queues between the IDCT
accelerator and the ARM are implemented in shared
memory using interrupt-based synchronization.

3) MP+HW: Reset and JPEG picture source is imple-
mented on a master ARM processor. Main decoding
functionality resides on a second ARM assisted by
an IDCT hardware accelerator. All queue buffers are
mapped to a dual-ported shared memory and synchro-
nization is implemented via an interrupt bridge between
the two ARM processors.

All designs were automatically synthesized down to Architec-
ture TLMs and PAMs from a single, initial SysteMoC model
and platform template. The total time needed for refinement
and generation of all models was in the order of minutes.
Functional correctness of all synthesized models was verified
by simulation using a testbench that decodes several color
JPEG pictures in QCIF format.

Table II shows synthesis and simulation results. We can
observe a typical exponential growth of simulation time with



increasing level of detail and accuracy. Runtimes are thereby
proportional to the amount of simulated inter-module commu-
nication. In a pure software implementation, all communica-
tion is local to the ARM. By contrast, the MP+HW design
maps all queues to a shared memory and every queue access
results in several read or write transactions over the system
busses. Compared to the initial model, significant amounts
of code and implementation detail, such as middleware, bus
drivers, and interrupt handlers, are automatically synthesized
within each refinement step. The code size of the synthesized
PAM is doubled compared to the Application TLM (App.
TLM). Note that Architecture TLMs (Arch. TLM) are larger
than PAMs since they include code for approximately-timed
simulation models of AMBA AHB busses. All in all, results
demonstrate the feasibility and benefits of fast and expressive
formal streaming application models for high-level algorithmic
design coupled with automatic synthesis for rapid exploration
and correct-by-construction generation of detailed and opti-
mized MPSoC implementations.

We omitted comparison of synthesis results with hand
crafted models gained in a more traditional design flow,
but these models may perform better. Manual fine-tuning
of models comes at the expense of time-consuming expert
work—including the risk of adding errors in every manual
refinement step. The proposed combined design flow provides
insight, confidence, and good understanding of a design almost
for free developing the application and platform template only,
which becomes more and more common practice in industrial
design flows (e.g., using executable specifications).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach towards a com-
prehensive system-level synthesis solution—to automatically
and seamlessly integrate the four basic sub tasks of decision
making and refinement for both computation and commu-
nication. We identified and classified different intermediate
models in system-level synthesis, and we showed how to
transform a high-level, formal model into an intermediate
model for generic synthesis. Using these standardized model
for interfacing and design exchange, we combined two ad-
vanced design flows into a seamless system-level synthesis
solution from formal streaming application models all the way
down to heterogeneous MPSoC implementations. We are able
to synthesize pin-accurate models for complex applications
in a matter of minutes. In contrast, applying similar manual
refinement steps would likely have required several man-
months of effort.

With the present work, we proved that comprehensive
system-level synthesis of general, optimized MPSoC imple-
mentations from abstract, formal application models is possi-
ble. In the future, we will extend the DSE engine to better suit
the communication refinement capabilities of the SCE design
flow, further improving synthesis results. In addition, we plan
to investigate tighter coupling of tools, which will enable
exploiting pin-accurate models in design space exploration.

REFERENCES

[1] A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski, and
J. Teich, “Electronic system-level synthesis methodologies,” IEEE Trans.
Computer-Aided Design Integr. Circuits Syst., vol. 28, no. 10, pp. 1517–
1530, Oct. 2009.

[2] A. Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning About the
Trends and Challenges of System Level Design,” Proc. IEEE, vol. 95,
no. 3, pp. 467–506, 2007.

[3] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 17, no. 12, pp. 1217–1229, Dec. 1998.

[4] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip
(MPSoC) Technology,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 27, no. 10, pp. 1701–1713, 2008.

[5] F. Ghenassia, Transaction-Level Modeling with Systemc: TLM Concepts
and Applications for Embedded Systems. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006.

[6] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli,
“System-level design: Orthogonalization of concerns and platform-based
design,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst.,
vol. 19, no. 12, pp. 1523–1543, 2000.

[7] J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,
J. Teich, and M. Meredith, “SystemCoDesigner - An Automatic ESL
Synthesis Approach by Design Space Exploration and Behavioral Syn-
thesis for Streaming Applications,” ACM TODAES, vol. 14, no. 1, pp.
1–23, 2009.

[8] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. Gajski, “System-on-Chip Environment: A SpecC-based Framework
for Heterogeneous MPSoC Design,” EURASIP JES, vol. 2008, no.
647953, p. 13, 2008.

[9] Open SystemC Initiative (OSCI), “Transaction Level Modeling (TLM)
Library, Release 2.0,” http://www.systemc.org.

[10] D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli, “A
platform-based taxonomy for ESL design,” IEEE Des. Test. Comput.,
vol. 23, no. 5, pp. 359–374, 2006.

[11] R. Marculescu, U. Y. Ogras, and N. H. Zamora, “Computation and
communication refinement for multiprocessor SoC design: A system-
level perspective,” ACM Trans. Des. Autom. Electron. Syst., vol. 11,
no. 3, pp. 564–592, 2006.

[12] E. Bondarev, M. R. V. Chaudron, and E. A. de Kock, “Exploring
performance trade-offs of a JPEG decoder using the DeepCompass
framework,” in Proc. of the 6th International Workshop on Software
and Performance. New York, NY, USA: ACM, 2007, pp. 153–163.

[13] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic sys-
tem design environment,” IEEE Computer, vol. 36, no. 4, pp. 45–52,
April 2003.

[14] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “PeaCE:
A hardware-software codesign environment of multimedia embedded
systems,” ACM TODAES, vol. 12, no. 3, pp. 1–25, 2007.

[15] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C. Erbas,
S. Polstra, and E. F. Deprettere, “A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs,” in
Proc. of the International Conference on Hardware-Software Codesign
and System Synthesis, 2007, pp. 9–14.

[16] T. Kangas et al., “UML-based multi-processor SoC design framework,”
ACM TECS, vol. 5, no. 2, pp. 281–320, May 2006.

[17] M. Lukasiewycz, M. Streubühr, M. Glaß, C. Haubelt, and J. Teich,
“Combined system synthesis and communication architecture explo-
ration for MPSoCs,” in Proc. of the Conference on Design, Automation
and Test in Europe, Nice, France, Apr. 2009, pp. 472–477.

[18] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich,
“Funstate—an internal design representation for codesign,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 4, pp. 524–544, 2001.

[19] J. Gladigau, C. Haubelt, B. Niemann, and J. Teich, “Mapping actor-
oriented models to TLM architectures,” in Proc. of Forum on Specifica-
tion and Design Languages, Sep. 2007, pp. 128–133.

[20] http://www12.cs.fau.de/research/scd/systemoc.php.
[21] http://www.cecs.uci.edu/˜specc/.
[22] http://www.greensocs.com/projects/KaSCPar.


