
166

Programming and Execution Models for Parallel Bounded

Exhaustive Testing

NADER AL AWAR, The University of Texas at Austin, USA

KUSH JAIN, The University of Texas at Austin, USA

CHRISTOPHER J. ROSSBACH, The University of Texas at Austin and Katana Graph, USA

MILOS GLIGORIC, The University of Texas at Austin, USA

Bounded-exhaustive testing (BET), which exercises a program under test for all inputs up to some bounds, is

an effective method for detecting software bugs. Systematic property-based testing is a BET approach where

developers write test generation programs that describe properties of test inputs. Hybrid test generation

programs offer the most expressive way to write desired properties by freely combining declarative filters

and imperative generators. However, exploring hybrid test generation programs, to obtain test inputs, is both

computationally demanding and challenging to parallelize. We present the first programming and execution

models, dubbed Tempo, for parallel exploration of hybrid test generation programs. We describe two different

strategies for mapping the computation to parallel hardware and implement them both for GPUs and CPUs.

We evaluated Tempo by generating instances of various data structures commonly used for benchmarking in

the BET domain. Additionally, we generated CUDA programs to stress test CUDA compilers, finding four

bugs confirmed by the developers.

CCS Concepts: · Software and its engineering → Software testing and debugging; · Computing

methodologies→ Parallel programming languages.

Additional Key Words and Phrases: Bounded exhaustive testing, Test generation, Parallel programming

ACM Reference Format:

Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric. 2021. Programming and Execution Mod-

els for Parallel Bounded Exhaustive Testing. Proc. ACM Program. Lang. 5, OOPSLA, Article 166 (October 2021),

28 pages. https://doi.org/10.1145/3485543

1 INTRODUCTION

Automated test generation has been shown effective for discovering software bugs [Daniel et al.
2007; Gligoric et al. 2010; Selakovic et al. 2018; Yang et al. 2011; Zeller et al. 2019; Zhang et al. 2017].
Bounded exhaustive testing (BET), which is based on a small-scope hypothesis [Jackson and Damon
1996], systematically checks the correctness of a program under test for all possible test inputs up
to the user-specified bounds. In BET, a developer writes a test generation program and then explores

that program to obtain test inputs.

Authors’ addresses: Nader Al Awar, The University of Texas at Austin, Austin, TX, 78712, USA, nader.alawar@utexas.edu;

Kush Jain, The University of Texas at Austin, Austin, TX, 78712, USA, kjain14@utexas.edu; Christopher J. Rossbach, The

University of Texas at Austin and Katana Graph, Austin, TX, 78712, USA, rossbach@cs.utexas.edu; Milos Gligoric, The

University of Texas at Austin, Austin, TX, 78712, USA, gligoric@utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART166

https://doi.org/10.1145/3485543

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485543
https://doi.org/10.1145/3485543


166:2 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

co
m
p
u
ta
ti
o
n
al

co
st h
ig
h

.

generators, filters hybrid

lo
w

.

parallel filters Tempo

low high
expressiveness

In systematic property-based testing [Boyapati et al. 2002;
Gligoric et al. 2010; Kuraj et al. 2015; Rosner et al. 2014], a
widely studied BET approach, a developer writes test gener-
ation programs by specifying desired properties of test inputs.
Prior work has proposed several ways to write these proper-
ties. First, a developer can specify properties of test inputs by
writing declarative filters [Boyapati et al. 2002] (e.g., isAcyclic(bst) && areKeysOrdered(bst))
that encode properties that each test input has to satisfy. Second, a developer can write imperative

generators [Daniel et al. 2007; Kuraj et al. 2015] (e.g., bst = constructTree(); assignKeys(bst))
that describe how to construct each test input of interest. Third, a developer can mix declarative
filters and imperative generators, also known as the hybrid style [Gligoric et al. 2010; Rosner et al.
2014] (e.g., bst = constructTree(); areKeysOrdered(bst)). Among the three, the hybrid style
provides the programmer with the most expressive power, but is computationally costly due to the
large space that has to be explored to obtain the desired test inputs.
Several approaches were developed for parallel exploration of filtering [Celik et al. 2017; Mis-

ailovic et al. 2007] and generating [Kuraj et al. 2015] test generation programs. However, these
approaches are algorithm-specific and provide no generic mechanism that would support hybrid
test generation programs.
In this paper, we present a programming model and execution model for parallel exploration of

hybrid test generation programs called Tempo. In the Tempo programming model, all tests are
generated in parallel based on a simple API comprising three functions. The Tempo execution
model determines how parallel generation work is mapped to physical hardware. A key primitive
in Tempo, inspired by UDITA [Gligoric et al. 2010], is a non-deterministic choice. In contrast to
UDITA, Tempo leverages non-deterministic choice to automatically parallelize the exploration.
Furthermore, Tempo automatically balances the resource usage (threads and memory) to enable
efficient exploration for large bounds.

We implemented a runtime for Tempo that has two novel execution strategiesśre-execution based
and fork basedśeach supported on two backendsśGPUs (with CUDA) and CPUs (with OpenMP).
In the re-execution based strategy, each non-deterministic choice halts the execution of a task and
spawns a group of new tasks. Each new task will then re-execute the test generation program
from the beginning. Once a task arrives at the non-deterministic choice that spawned that task,
it will select a unique value and continue execution. In the fork based strategy, the total number
of tasks is estimated from the test generation program and remains constant during exploration;
each non-deterministic choice splits the tasks into multiple groups, which is equal to the number
of choices.

We used Tempo to write test generation programs for dozens of data structures, commonly used
for benchmarking in the BET domain [Boyapati et al. 2002; Celik et al. 2017; Kuraj et al. 2015;
Misailovic et al. 2007; Rosner et al. 2014; Visser et al. 2006]. We show the pros and cons of each
of our strategies and analyze their performance in detail both on GPUs and CPUs. Our results
show that on GPUs, the fork based strategy performs better for test generation programs that
follow simple patterns; otherwise the re-execution based strategy is preferred. We applied Tempo

to the Nvidia CUDA compiler (NVCC) by writing several test generation programs to generate
inputs for compilers; then, we fed the inputs to three compilersÐNVCC, GCC, and ClangÐand
used differential testing [McKeeman 1998] to compare their results. So far, the generated inputs
have revealed four bugs, with two bugs in NVCC being confirmed as new. The main contributions
of this paper include:

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:3

Table 1. List of Functions Provided by Tempo’s API.

Function Description

_explore(void (*k)(void*), void *args) Explores an entire test generation program that starts with

kernel k

_choice(int min, int max) Non-deterministically chooses a value between min and

max, inclusive; precondition: max is greater or equal to min

_ignoreIf(boolean condition) Stops the execution of the current thread if the given

condition holds

• Programming and execution models. We present the first programming and execution mod-
els for parallel exploration of hybrid test generation programs. Thus, Tempo enables efficient
exploration for the most expressive BET style. Tempo automatically manages memory and
controls parallelism by managing threads.

• Strategies and platforms. We provide a runtime with two strategies for Tempo: re-execution
based (that spawns tasks on demand) and fork based (that estimates the number of tasks prior to
an exploration and splits the tasks as necessary during the exploration). We implemented both
strategies for GPUs and CPUs, which enabled us to study their complementary strengths and
weaknesses. We also show a way in which they can be combined.

• Evaluation. We evaluated Tempo using a large set of data structures. Our results show that
the fork-based strategy is an excellent choice for test generation programs that follow simple
structure and run on GPUs, while in other cases the re-execution based strategy performs better.
Additionally, we perform a case study in which we designed several generators for testing the
NVCC compiler.

Artifacts related to Tempo are publicly available at https://github.com/EngineeringSoftware/tempo.

2 PROGRAMMING MODEL

In this section, we explain Tempo’s programming model and show how to use Tempo to write test
generation programs. Although our focus in this paper is on hybrid test generation programs [Glig-
oric et al. 2010; Rosner et al. 2014], Tempo subsumes several other styles (e.g., [Daniel et al. 2007]).
We also show an example written in the sequence-based style [Visser et al. 2006; Xie et al. 2005] to
demonstrate the generality of Tempo.

2.1 API

Table 1 lists functions available to developers in the API. The first column shows function signatures
and the second column provides a brief description of each function.

A call to _explore(tgp, args) starts the exploration of a test generation program (i.e., a kernel
function) that is given as the first argument; the second argument (args) is passed to each kernel
invocation by our runtime. _explore is the only function from our API that always executes on a
CPU. The function finishes execution when all possible paths in the test generation program are
fully executed. We will see a use of this function in Figure 1c (line 3).
A call to _choice(min, max) creates a non-deterministic choice that requires that the pro-

gram is executed (from the invocation point) for each value between min and max (inclusive). A
straightforward way to implement this is to execute programs sequentially from the beginning
(i.e., re-execute) and choose a different value for one of the _choice invocations each time. Our
execution strategiesśfork based (ForkStrategy) and re-execution based (ReexeStrategy)śdiffer in
the way they implement _choice.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.

https://github.com/EngineeringSoftware/tempo


166:4 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

1 void nodeUpdate(Node ∗node) {

2 node−>value = _choice(0, MAX_VALUE); }

3

4 void initSubTree(Node ∗node, int size) {

5 int left_size = _choice(0, size);

6 int right_size = size − left_size;

7 if (left_size != 0) {

8 node−>left = nodeAlloc();

9 nodeUpdate(node−>left);

10 initSubTree(node−>left, left_size − 1); }

11 if (right_size != 0) {

12 node−>right = nodeAlloc();

13 nodeUpdate(node−>right);

14 initSubTree(node−>right, right_size − 1); }}

15 void generate(BT ∗bt, int size) {

16 bt−>size = size;

17 bt−>root = nodeAlloc();

18 nodeUpdate(bt−>root);

19 initSubTree(bt−>root, bt−>size − 1);

20 bool is_ordered = orderProperty(bt);

21 _ignoreIf(!is_ordered); }

22

23 __global__ void tgp(void ∗arg) {

24 int size = (int) arg;

25 // ... MAX_VALUE = size − 1

26 BT bt;

27 generate(&bt, size); }

(a) Hybrid style

1 __global__ void tgp(void ∗arg) {

2 int seq_len = (int) arg;

3 BT bt;

4 for (int i = 0; i < seq_len; i++) {

5 int p = _choice(0, 1);

6 int v = _choice(0, seq_len−1);

7 switch (p) {

8 case 0: bt.add(v); break;

9 case 1: bt.remove(v); break; }}}

(b) Sequence-based style

1 int main(int argc, char ∗argv[]) {

2 // N = parse from argv

3 _explore(&tgp, (void∗) N); }

(c) Main program to start a test

generation program

Fig. 1. Examples of test generation programs for a Binary Search Tree (BT) data type.

A call to _ignoreIf(condition) stops the execution if the given condition evaluates to true;
otherwise this function call has no effect. This function can be used for an early stop of any path
that has generated a test input that violates a property of the structure being generated while
executing a test generation program.

2.2 Hybrid Test Generation Programs

Test generation programs that mix filters and imperative generators encode both the set of properties
that each generated test input has to satisfy (with filters) and how to create a part of each instance of
interest (with generators). Figure 1a shows an example of a test generation program that generates
valid binary search trees up to the given size; the program looks very much the same as in the
original work on hybrid test generation programs [Gligoric et al. 2010]. The key difference is that
Tempo automatically parallelizes the exploration of this test generation program and manages
resource usage for large sizes.
The generate() function (lines 15-21) calls initSubTree() (line 19) which recursively con-

structs both left and right subtrees of the binary tree being generated. The call to _choice in
initSubTree() (line 5) selects the size of both left and right subtrees of the binary tree. We use
_choice to non-deterministically choose a value. Tempo guarantees that every possible combination

of values returned by all calls to _choice will be executed. nodeUpdate() assigns a value to a node
by also calling _choice. Finally (line 20), generate() checks whether the instance generated by
initSubtree() is a valid binary tree by calling the orderProperty() filter. The orderProperty()
filter checks if a key in a node is larger than all the keys in the left subtree and smaller than the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:5

keys in the right subtree; we do not show this function because it does not contain features relevant
for this paper. _ignoreIf() is used to conditionally terminate threads.

2.3 Sequence-Based Test Generation Programs

Sequence-based testing [Visser et al. 2006] systematically explores all combinations of function
calls for the system under test up to a given bound. Figure 1b shows an example of a test generation
program for the Binary Search Tree class (BT).

In each iteration of the loop (lines 4-9), the program non-deterministically chooses a function to
invoke (line 5) and the argument for the function (line 6), and then invokes the selected function
with the selected argument. Figure 1c shows the main function (executed on the CPU) that invokes
_explore from Tempo’s API, which triggers the exploration of the given test generation program for
the maximum sequence length (N). For example, if we execute the program for N = 2, Tempo would
explore the following sequences: (1) t.add(0), t.add(0); (2) t.add(0), t.add(1); (3) t.add(0),
t.remove(0); (4) t.add(0); t.remove(1); ... (16) t.remove(1), t.remove(1).

3 EXECUTION MODEL

This section describes the details of our execution model. First, we provide a brief background
on CUDA (Section 3.1) and introduce terminology used in later sections. We also articulate the
motivation for using GPUs as one of the target platforms for exploration of hybrid test generation
programs. Second, we provide a high-level overview of the framework (Section 3.2), then give
semantics for functions in the Tempo API (Section 3.3). We describe two strategies that implement
the execution model (Section 3.4) in a runtime, as well as an in-built mechanism for supporting
exploration of test generation programs for large bounds (Section 3.5). We discuss strengths and
weaknesses of the two algorithms (Section 3.6) and the way to combine them (Section 3.7).

3.1 Background on CUDA

The figure on the right illustrates a GPU-enabled
system in which a discrete GPU is connected to a
CPU via a PCIe link. An Nvidia GPU comprises a
number of streaming multiprocessors (SMs) each
with dozens of arithmetic pipelines. SMs are capa-
ble of concurrent execution of thousands of GPU
threads (threads for short). Each discrete GPU has
its own memory that is directly addressable by the SMs, and which is attached with high bandwidth
interconnect enabling transfer rates of 100ś1000s of GB per second [CUDADocs 2020].

A program written in CUDA [CUDAWebPage 2020] combines code that is executed on a CPU and
a GPU. A function that can be executed on a GPU and invoked from the CPU has to be annotated
with __global__; these functions are called kernels. We showed one example of a kernel in Figure 1b.
Usually, a GPU application would (1) prepare data on the CPU, (2) transfer the data to the GPU
memory, (3) execute one ormore kernels, and (4) transfer the resulting output data back to the main
memory for further processing. An invocation of a kernel (kernel_name«<num_blk,num_th»>-
(arguments)) looks like a normal function invocation, but it also configures the number of blocks
(num_blk) and the number of threads (num_th) in each block; the total number of threads is
num_blk × num_th. Each thread has a unique identifier (tid). Blocks are assigned to SMs that can
run multiple blocks concurrently using hardware-supported multi-threading. Ideally, the spawned
threads oversubscribe the SMs, which have an efficient mechanism for context switching to hide
memory latency. On NVIDIA hardware, threads are grouped into warps that have 32 threads each.
All threads within a warp execute the same instruction at any given time. Thus, any conditional

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:6 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

x = _choice(0,1);

y = _choice(0,1);
Legend

x=0 x=1 x=0,y=0 x=0,y=1 x=1,y=0 x=1,y=1

(a) Sample Program

DeviceHost

(b) ForkStrategy

Host Device

(c) ReexeStrategy

Fig. 2. High-level idea behind Tempo’s algorithms. Each column corresponds to a thread and each row shows

the way an invocation of _choice impacts program state for each thread. Cells with same colors and patterns

indicate that threads are in the same program state.

branch (e.g., an if statement) in code can have a substantial negative impact on performance, as it
requires executing both branches in sequence, by effectively suppressing the effects of threads that
enter one branch while the other branch is being executed.
We find that CUDA and GPUs are a promising target for exploring test generation programs

for (at least) the following several reasons. One, test generation programs can require execution
of hundreds of thousands of program paths which can be handled in parallel, making massively
parallel GPUs an appropriate platform. Two, an exploration of a single test generation program
executes many paths that share common prefixes, which reduces branch divergence and increases
the likelihood that all threads in a warp execute the same control flow. Three, test generation
programs based on property-based testing are primarily used for generating test inputs. Although
test generation programs may be complex, they do not require that the program under test be
executed in the same environment. Specifically, we can use GPUs for test input generation, but we
do not need to use them for running the program under test. One potential concern is that test
execution time will dwarf generation time, thereby minimizing the impact of Tempo. However,
test execution itself can be optimized (e.g., using parallelism) to the point where generation is the
bottleneck. We illustrate this in Section 6. However, a full exploration of speeding up test execution
is beyond the scope of this paper.
In this work we implemented our strategies on both GPUs and CPUs. Although we use both

platforms, our goal is not to establish which is better, only to show that our technique can be
implemented on both.

3.2 Overview of the Execution Model

Figure 2 shows an overview of Tempo’s strategies: ForkStrategy and ReexeStrategy; the subfigures
illustrate the strategies for an example program (Figure 2a). The input to Tempo, regardless of the
chosen strategy, is a test generation program similar in style to the examples described in Section 2.
We use device to refer to the processor that runs the kernel in parallel, i.e. a GPU using CUDA or a
CPU using OpenMP, and host to refer to the processor that calls the kernel. Both strategies execute
partially on the host and partially on the device.

Once started, ForkStrategy (Figure 2b) spawns a large number of threads that start executing the
same code. When threads encounter _choice, they split into groups (the number of groups depends
on arguments given to _choice); threads in the same group have the same (albeit independent)
program state. In ReexeStrategy (Figure 2c), the exploration starts with a single thread. Once the
thread encounters _choice it terminates and new threads are scheduled. The number of new
threads is equal to the number of choices in the latest _choice invocations.

3.3 Semantics

In figures 3 and 4, we show the semantics for the functions defined in the API for ForkStrategy and
ReexeStrategy, respectively. (We assume standard semantics for common language constructs, e.g.,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:7

1. _explore(K, A) → for (i in 0..#items) spaw(K, A, ⟨K, A, i, #items⟩)

2. _choice(min, max) ⟨ws, · · · ⟩ → if (ws < #choices) abort() else split(min, max) ⟨ws, · · · ⟩

3. split(min, max) ⟨ix, ws, · · · ⟩ → val = min + ⌊ix/⌊ws/#choices⌋⌋;

if (val > max) exit(0) else val ⟨ix%⌊ws/#choices⌋, ⌊ws/#choices⌋⟩

4. _ignoreIf(condition) ⟨· · · ⟩ → if (condition) exit(0) ⟨· · · ⟩

Fig. 3. Rewrite rules for the API functions from Table 1 for ForkStrategy. #choices is equal to max-min+1.

1. _explore(K, A) → spaw(K, A, ⟨K, A, 0, 0, {}⟩)

2. _choice(min, max) ⟨t, · · · ⟩ → if (ix < t) _spawrange(min, max) else _advance() ⟨t, · · · ⟩

3. _advance() ⟨ ix, · · · ⟩ → M[ix] ⟨ix+1, · · · ⟩

4. _spawrange(min, max) ⟨· · · ⟩ → for (i in min..max) _spawone(i); exit(0) ⟨· · · ⟩

5. _spawone(i) ⟨ K, A, t, ix, M⟩ → spaw(K, A, ⟨K, A, t+1, 0, M[ix/i]⟩) ⟨· · · ⟩

6. _ignoreIf(condition) ⟨· · · ⟩ → if (condition) exit(0) ⟨· · · ⟩

Fig. 4. Rewrite rules for the API functions from Table 1 for ReexeStrategy.

if statements.) We use rewrite rules in a style similar to the one used by Maude and K rewriting
engines [Ellison and Roşu 2012; Meseguer and Roşu 2013]. In each rule, we show only the relevant
components of the configuration and we use · · · to denote the unchanged parts; components are
always listed in the same order on the left and right sides for each rule.

Our rewrite rules for both strategies (ForkStrategy and ReexeStrategy) use a function primitive
spaw. This primitive schedules a new task for execution. In this section, we refer to a task as a
unit of work that needs to be executed, and we show how we map tasks to (CUDA and OpenMP)
threads in Section 3.4. Our rewrite rules are generic and can be implemented in (m)any parallel
frameworks, e.g., CUDA [CUDAWebPage 2020], OpenMP [OpenMPWebPage 2020], Legion [Bauer
et al. 2012], and MPI [OpenMPIWebPage 2020]. We also note that the order in which tasks are
executed does not matter for successful exploration, although the way in which they are scheduled
for execution is critical to achieving good performance, e.g., when running on a GPU.

3.3.1 ForkStrategy. We define the configuration for ForkStrategy as ⟨K,A,ix,ws⟩, where K is the
test generation program being explored, A are the arguments given to the test generation program,
ix is the index of a task within a task group, and ws is the size of the task group.

Rule 1 (Figure 3) spawns #items tasks, such that each task has a unique index and they all belong
to one task group (whose size is #items). Initially, all tasks start executing the kernel from the
beginning and follow the same program path. Rule 2 shows how an invocation of _choice impacts
the configuration of each task. If the number of tasks in the group executing _choice is not sufficient
to cover all values in the choice (i.e. max-min+1), the execution terminates unsuccessfully; otherwise,
we use a function split (Rule 3) to divide all the tasks within a task group into max-min+1 different
new task groups. Each task group is assigned a unique value in the range [min,max] inclusive, i.e.,
tasks in the same task group will continue executing the same program path. Additionally, split
updates the ix of each task to reflect its index within the new group, such that the first task in the
group always has ix==0. Rule 4 is self-explanatory.

3.3.2 ReexeStrategy. We define the configuration for ReexeStrategy as ⟨K,A,t,ix,M⟩, where K is
the test generation program being explored, A are the arguments given to the program, t is the total
number of known choices, ix is the index of the next choice, and M is memory that maintains a map
from indices to values. We define the memory update M[ix/val] to change the value associated
with the index ix to val without changing any other memory location.

Rule 1 (Figure 4) runs a single task and initializes all entries to zero values (i.e., no _choice

invocations have been seen). Rule 2 shows what happens at each _choice invocation. When a
_choice is executed for the first time (Rule 4), we create max-min+1 new tasks, e.g., when the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:8 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

Require: 𝑡𝑔𝑝 - test generation program

Require: 𝑎𝑟𝑔𝑠 - user provided arguments for the test generation program

1: function exploreFork(𝑡𝑔𝑝, 𝑎𝑟𝑔𝑠)

2: 𝑒𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← 𝑔𝑙𝑜𝑏𝑎𝑙 .should_estimate ?

3: estimate(𝑡𝑔𝑝, 𝑎𝑟𝑔𝑠, 𝑔𝑙𝑜𝑏𝑎𝑙 .num_threads_during_estimate) :𝑔𝑙𝑜𝑏𝑎𝑙 .LARGE_NUMBER

4: initMetadataOnGPU(𝑒𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

5: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 ← 0

6: while 𝑒𝑡ℎ𝑟𝑒𝑎𝑑𝑠 > 0 do

7: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 + 1

8: 𝑔𝑙𝑜𝑏𝑎𝑙 .offset← 𝑔𝑙𝑜𝑏𝑎𝑙 .chunk_size ∗ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡

9: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠 ← min (𝑒𝑡ℎ𝑟𝑒𝑎𝑑𝑠, 𝑔𝑙𝑜𝑏𝑎𝑙 .chunk_size )

10: 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← getNumThreads(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠)

11: 𝑏𝑙𝑜𝑐𝑘𝑠 ← getNumBlocks(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠)

12: 𝑡𝑔𝑝 ⟨⟨⟨𝑏𝑙𝑜𝑐𝑘𝑠, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠⟩⟩⟩(𝑎𝑟𝑔𝑠)

13: 𝑒𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← 𝑒𝑡ℎ𝑟𝑒𝑎𝑑𝑠 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠

14: end while

15: end function

Fig. 5. Algorithm behind the _explore function as implemented in ForkStrategy. This function is executed

on the host. The highlighted code is needed for scaling the algorithm.

original task encounters the first choice. Each newly created task (Rule 5) inherits everything from
the current task and additionally gets assigned one unique value in [min,max] inclusive for the
current _choice invocation. Note that new tasks start executing the test generation program from

the beginning and the current task terminates. In the second case (Rule 3), the current task already
knows the value for the _choice invocation, so it reads the value from the memory (Rule 3) and
continues. Similar to ForkStrategy, Rule 6 is self-explanatory.

3.4 Algorithms for Execution Strategies

Next, we describe algorithmic details of our execution strategies that follow semantics from the
previous section. As mentioned before, each strategy executes partially on the host and partially
on the device. Host execution involves memory allocation and initialization and configuring
and launching kernels. Device execution includes parallel execution of kernels and assigning
return values of _choice to different threads. We characterize the algorithms for GPUs, as the
implementation for CPUs is much simpler.

3.4.1 ForkStrategy. Our key insight is to enable forking by spawning a very large number of
threads initially (that execute in a lockstep) and then diverging their execution when forking is
needed. When a new _choice invocation is encountered, ForkStrategy splits the threads that called
_choice into a number of new task groups, with each new task group being assigned a unique
value (in the [min,max] range) that is returned to all threads in that task group. In this algorithm,
each task is mapped to a thread, and the number of tasks is equal to the number of threads.

Host. The ExploreFork function in Figure 5 is always executed on the host; highlighted lines are
explained in Section 3.5.1. The algorithm accepts a test generation program and user-provided
arguments to that program. Line 4 allocates and initializes memory on the device to hold each
thread’s metadata (tid and group size); each thread has a unique index and they all belong to the
same group. The rest of the function calculates how many blocks and threads are needed (lines 10
and 11) and launches the kernel (line 12).

Device. The _choiceForkfunction in Figure 6 is executed on the device. First, a thread gets the
group size of the task group it belongs to (line 4) and its index in that group (line 5). These two

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:9

Require: 𝑚𝑖𝑛 - the min value to choose

Require: 𝑚𝑎𝑥 - the max value to choose

1: function _choiceFork(𝑚𝑖𝑛,𝑚𝑎𝑥 )

2: 𝑡𝑖𝑑 ← getTid()

3: 𝑡𝑖𝑑 ← 𝑡𝑖𝑑 + 𝑔𝑙𝑜𝑏𝑎𝑙 .offset

4: 𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒 ← getGroupSize(𝑡𝑖𝑑)

5: 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 ← getThreadIndex(𝑡𝑖𝑑)

6: 𝑛𝑢𝑚𝐶ℎ𝑜𝑖𝑐𝑒𝑠 ←𝑚𝑎𝑥 −𝑚𝑖𝑛 + 1

7: if 𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒 < 𝑛𝑢𝑚𝐶ℎ𝑜𝑖𝑐𝑒𝑠 then

8: exit

9: end if

10: 𝑛𝑒𝑤𝐺𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒 ← 𝑔𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒/𝑛𝑢𝑚𝐶ℎ𝑜𝑖𝑐𝑒𝑠

11: 𝑛𝑒𝑤𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥%𝑛𝑒𝑤𝐺𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒

12: setGroupSize(𝑡𝑖𝑑, 𝑛𝑒𝑤𝐺𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒)

13: setThreadIndex(𝑡𝑖𝑑, 𝑛𝑒𝑤𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥)

14: choiceValue←𝑚𝑖𝑛 + (𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥/𝑛𝑒𝑤𝐺𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒)

15: if choiceValue > 𝑚𝑎𝑥 then

16: exit

17: end if

18: return choiceValue

19: end function

Fig. 6. Algorithm behind the _choice function as implemented in ForkStrategy. This function is executed on

the device. The highlighted code is needed for scaling the algorithm.

Require: min - the min value to choose

Require: max - the max value to choose

1: function _choiceEstimate(𝑚𝑖𝑛,𝑚𝑎𝑥 )

2: 𝑡𝑖𝑑 ← getTid()

3: 𝑛𝑢𝑚𝐶ℎ𝑜𝑖𝑐𝑒𝑠 ←𝑚𝑎𝑥 −𝑚𝑖𝑛 + 1

4: setEstimate(𝑡𝑖𝑑, getEstimate(𝑡𝑖𝑑) ∗ 𝑛𝑢𝑚𝐶ℎ𝑜𝑖𝑐𝑒𝑠)

5: if 𝑡𝑖𝑑 == 0 then

6: return𝑚𝑖𝑛

7: else if 𝑡𝑖𝑑 == 𝑡𝑜𝑡𝑎𝑙𝑇ℎ𝑟𝑒𝑎𝑑𝑠 − 1 then

8: return𝑚𝑎𝑥

9: end if

10: return𝑚𝑖𝑛 + rand()%(𝑚𝑎𝑥 −𝑚𝑖𝑛 + 1)

11: end function

Fig. 7. Algorithm behind the _choice function during estimation as implemented in ForkStrategy.

values are obtained from the metadata initialized in ExploreFork. Then, it calculates the number of
integer values in [min,max] (line 6). This value determines how many new task groups are needed.
In order for each new task group to have at least one thread, there needs to be at least numChoices
different threads in the current task group; otherwise, execution halts (line 8). If there are enough
threads available, the thread calculates the size of the new task groups and its index in its new task
group and updates those values (lines 10-13). It then determines the return value by dividing its
index in the initial task group with the number of threads per each new task group, and adding
min to that (line 14). This maps the value of each new task group to a unique value in [min,max].
Some threads might not be placed in a new task group due to truncation resulting from the

integer division. These threads are simply terminated (line 16).

Estimating number of threads. A key aspect is how many threads to start with (ethreads,
short for estimated threads); we used a global parameter (line 3 in Figure 5) to decide if we run

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:10 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

a fixed number of threads (LARGE_NUMBER) or estimate the number of threads needed. Running a
larger number of threads than necessary has a negative performance impact on ForkStrategy. The
overhead introduced by these additional, redundant, threads is significant as they will still execute
the test generation program without contributing to the exploration. The impact of this overhead
is evident when generating structures of a relatively small size. Selecting the right value for the
total number of threads is therefore important. A small constant could result in better performance,
but will not work when exploring a relatively large number of paths. A large constant works for
many paths, but redundant threads will negatively impact performance.

Since the actual number of paths can only be determined after the test generation program has
been fully explored, we try to estimate the number of paths by running a partial exploration first. We
execute (Figure 5, line 3) the test generation program by launching a single kernel with a relatively
small number of threads (set to 10k in our experiments, although this value is configurable).
Figure 7 shows how we implement _choice during partial exploration. First, a thread obtains

its tid and calculates the number of choices that can be returned (lines 2 and 3). Then it updates
its estimate by multiplying it with numChoices (line 4); initially all estimates are set to 1 (not
shown in the algorithm). Finally, a value needs to be returned. Lines 5-10 show how that value
is calculated. If the calling thread’s tid is 0, the minimum value is returned. If its tid is equal to
num_threads_during_estimate-1 (the maximum possible tid), the maximum value is returned.
Otherwise, a value between min and max is selected. This ensures that we explore both the minimum
and maximum bounds.

3.4.2 ReexeStrategy. This strategy is based on the idea of re-executing the kernel as many times as
necessary in order to fully explore a test generation program (recall Figure 2c). This strategy uses
the exact number of threads needed to cover all values for all encountered _choice invocations.
The configuration in the semantics rules (Section 3.3) describes a task on an abstract level, and

here we focus on the actual representation. A task describes one path in the exploration of a test
generation program; thus, each task is assigned to a single thread and has a unique combination of
values returned by _choice. A task is represented in memory as a fixed-length array. The total
number of _choice invocations (on the current path) is stored at index 0, and the index of the
current _choice is stored at index 1. The rest of the array stores the values of calls to _choice.

Host. Figure 8 shows the part of ReexeStrategy executed on the host; we describe highlighted lines
in Section 3.5.2. This code accepts as input a test generation program and user-provided arguments
to be passed to each program invocation. The algorithm first initializes the worklists (lines 2-3),
and then creates a single task and includes it into the input worklist (line 5). The input worklist,
which is in device memory, is an array that stores tasks; we use an array representation to optimize
memory accesses. The initial task is łemptyž, i.e., the number of _choice invocations on the path
to be executed is 0 (and the execution of this task will end upon the first call to _choice).

Next, the algorithm enters a loop (lines 6-14) that terminates when no more tasks are available
in the input worklist. In each iteration, the algorithm determines the number of threads and
blocks based on the number of tasks in the input worklist (lines 7-9), invokes the kernel with the
determined number of threads (line 10), and waits for all the threads to finish their execution. If a
thread encounters an invocation of _choice, it creates new tasks in the output worklist and ends
its execution; the details are shown later when we talk about the part of the algorithm that runs on
the device. Once all the threads finish their execution, either because they reached the end of the
path or because a new _choice was encountered, the algorithm moves the tasks from the output
worklist to the input worklist (line 11) and goes into the next iteration of the loop.

Device. Figure 9 provides the algorithmic view of the _choice function. Initially (lines 2-3) a thread
invoking _choice obtains pointers to the input worklist and the output worklist; these pointers are

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:11

Require: 𝑡𝑔𝑝 - test generation program

Require: 𝑎𝑟𝑔𝑠 - user provided arguments for the test generation program

1: function exploreReexe(𝑡𝑔𝑝, 𝑎𝑟𝑔𝑠)

2: 𝑖𝑛𝑊𝐿 ← ∅

3: 𝑜𝑢𝑡𝑊𝐿 ← ∅

4: 𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐵𝑢𝑓 ← ∅

5: append(𝑖𝑛𝑊𝐿, (0, 0, []))

6: do

7: 𝑖𝑛𝑊𝐿𝑆𝑖𝑧𝑒 ← getWLSize(𝑖𝑛𝑊𝐿)

8: 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← getNumThreads(𝑖𝑛𝑊𝐿𝑆𝑖𝑧𝑒)

9: 𝑏𝑙𝑜𝑐𝑘𝑠 ← getNumBlocks(𝑖𝑛𝑊𝐿𝑆𝑖𝑧𝑒)

10: 𝑡𝑔𝑝 ⟨⟨⟨blocks, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠⟩⟩⟩(𝑎𝑟𝑔𝑠)

11: moveFromTo(outWL, inWL)

12: moveFromTo(𝑜𝑢𝑡𝑊𝐿, 𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐵𝑢𝑓 )

13: moveFromTo(𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝐵𝑢𝑓 , 𝑖𝑛𝑊𝐿)

14: while getWLSize(𝑖𝑛𝑊𝐿) > 0

15: end function

Fig. 8. Algorithm behind the _explore function as implemented in ReexeStrategy. This function is executed

on the host. The highlighted code is needed for scaling the algorithm.

Require: 𝑚𝑖𝑛 - the min value to choose

Require: 𝑚𝑎𝑥 - the max value to choose

1: function _choiceReexe(𝑚𝑖𝑛,𝑚𝑎𝑥 )

2: 𝑖𝑛𝑊𝐿 ← getInputWorklist()

3: 𝑜𝑢𝑡𝑊𝐿 ← getOutputWorklist()

4: 𝑡𝑖𝑑 ← getTid()

5: 𝑡𝑜𝑡𝑎𝑙 ← getNumOfKnownChoices(𝑖𝑛𝑊𝐿, 𝑡𝑖𝑑)

6: 𝑖𝑛𝑑𝑒𝑥 ← getCurrentChoiceIndex(𝑖𝑛𝑊𝐿, 𝑡𝑖𝑑)

7: if 𝑖𝑛𝑑𝑒𝑥 >= 𝑡𝑜𝑡𝑎𝑙 + 2 then

8: 𝑜𝑢𝑡𝐼𝑛𝑑𝑒𝑥 ← atomicAdd(𝑜𝑢𝑡𝑊𝐿𝑆𝑖𝑧𝑒,𝑚𝑎𝑥 −𝑚𝑖𝑛 + 1)

9: for 𝑖 = min; 𝑖 <=𝑚𝑎𝑥 ; 𝑖 + + do

10: setNumOfKnownChoices(𝑜𝑢𝑡𝑊𝐿, 𝑜𝑢𝑡𝐼𝑛𝑑𝑒𝑥, 𝑡𝑜𝑡𝑎𝑙 + 1)

11: setNextChoiceIndex(𝑜𝑢𝑡𝑊𝐿, 𝑜𝑢𝑡𝐼𝑛𝑑𝑒𝑥, 2)

12: copyFromTo(𝑖𝑛𝑊𝐿, 𝑜𝑢𝑡𝑊𝐿, 𝑜𝑢𝑡𝐼𝑛𝑑𝑒𝑥)

13: setLastChoiceValue(𝑜𝑢𝑡𝑊𝐿, 𝑜𝑢𝑡𝐼𝑛𝑑𝑒𝑥, 𝑖)

14: 𝑜𝑢𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑜𝑢𝑡𝐼𝑛𝑑𝑒𝑥 + 1

15: end for

16: Exit

17: else

18: setNextChoiceIndex(𝑖𝑛𝑊𝐿, 𝑡𝑖𝑑, 𝑖𝑛𝑑𝑒𝑥 + 1)

19: return getChoiceValue(𝑖𝑛𝑊𝐿, 𝑡𝑖𝑑, 𝑖𝑛𝑑𝑒𝑥 + 1)

20: end if

21: end function

Fig. 9. Algorithm behind the _choice function as implemented in ReexeStrategy. This function is executed

on the device.

saved in the global space and thus are accessible by all threads. Next (line 5), the thread obtains the
total number of choice values contained in the task assigned to it, and the number of _choice calls
that it has seen so far on the current path (line 6). These two values, which are assigned to total

and index respectively, are needed to determine whether the value of the current _choice call
already exists in the current task. The algorithm checks index >= total + 2 to determine if the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:12 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

total=0 index=0

_choice(x,x+1)

total=1 index=0 x . . . total=1 index=0 x + 1 . . .

-
In
v
o
ca
ti
o
n
1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
total=1 index=0 x . . . total=1 index=0 x + 1 . . .

_choice(x,x+1)_choice(x,x+1)

total=1 index=1 x . . . total=1 index=1 x + 1 . . .

. . .

In
v
o
ca
ti
o
n
2

Fig. 10. Illustration of encoding tasks and updating worklists.

value for the current choice is known (line 7). Since the first two elements of a task are index and
total, index is initially 2, so we add 2 to total. Based on that, there are two possible outcomes.
One, if the value is not known (true branch), the thread enters a loop (lines 9-15) to create a

number of new tasks. First (line 8), it atomically obtains a location for the new tasks in the output
worklist. Then, the thread increments the number of known choices (line 10), sets the choice index
to its initial value (line 11), copies all choices from the current task (line 12), and sets the last choice
in the new task based on the current iteration of the loop (line 13). Once the loop is done, the
current thread terminates; if this was the only thread running, then Tempo takes over and schedules
the next kernel call as already described in Figure 8. We visualize an example execution and the
encoding in Figure 10. The upper part of the figure shows an execution that initially had no choices
and then executed a single choice, creating 2 new tasks in the output worklist. The kernel then
terminates, and the new tasks in the output worklist are eventually moved to the input worklist.

Two, if the value of the current choice is known (!(index >= total+2)), the thread increments
index and returns the known value (lines 17-19). Execution then resumes normally. We illustrate
this execution, i.e., when some choices are known, in the bottom part of Figure 10.

3.5 Scaling The Strategies

Ultimately both ForkStrategy and ReexeStrategy will hit a resource limit on GPUs when the number
of paths grows large, either because of a lack of available threads (e.g., for ForkStrategy) or because
of memory limitations (e.g., GPU memory capacities are typically limited). In this section, we
describe extensions of the basic algorithms to enable exploration of programs with many paths.

3.5.1 ForkStrategy. While ForkStrategy stores only lightweight metadata and thus consumes
significantly less memory than ReexeStrategy, ForkStrategy has to be run with a sufficient number
of threads to ensure that the entire space is covered (Section 3.4.1). If the estimated number of
threads is less than what the GPU supports, then we can simply use the estimated number. However,
if the number exceeds the limit of the GPU, the runs would fail. In order to scale ForkStrategy, we
extend the original algorithm to invoke the kernel multiple times, such that each launch explores a
part of the test generation program. We highlighted this extension in figures 5 and 6.
In order to determine how many times to invoke the kernel, we specify how many threads to

run per invocation: chunk_size. Dividing ethreads by chunk_size yields the number of kernel
invocations needed, which we also call chunks. Two other modifications to ForkStrategy are needed.
The goal is to make it seem that the GPU has ethreads threads running, when in reality that
number is equal to chunk_size. First, the size of the initial, single task group is set to ethreads,
instead of chunk_size. Thus, it appears like the GPU is running ethreads threads at the same
time. Second, when a thread calls _choice, an offset is added to its tid. This offset is equal to
iteration_count × chunk_size. iteration_count is the current chunk running on the GPU.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:13

Since there are no dependencies between invocations of different chunks, they can potentially be
executed on multiple GPUs concurrently, increasing the potential of parallelization in ForkStrategy.

3.5.2 ReexeStrategy. This strategy heavily uses memory to store tasks, limiting the maximum size
of the input worklist. To enable exploration of larger spaces, we extend ReexeStrategy to offload
tasks that cannot fit into the input worklist to main memory; this is similar to the approach used
by Celik et al. [2017], but we integrate the offloading into the runtime so the user is unaware of its
existence. In Figure 8, we highlight this extension (lines 12-13). Specifically, once a kernel launch
finishes execution, we first move as many tasks as can fit from the output into the input worklist.
Any additional tasks left in the output worklist are moved to the overflow buffer, which resides in
the main memory. Next, if the input worklist is not full, we check if there are any outstanding items
in the overflow buffer and move as many as we can from the overflow buffer to input worklist. This
allows us to support arbitrarily large number of execution paths assuming sufficient main memory,
at the cost of having to transfer the items between GPU and main memories.

3.6 A Brief Comparison

ForkStrategy and ReexeStrategy have different strengths andweaknesses. In this sectionwe compare
and contrast the two on an abstract level and we compare them empirically in Section 4.
ReexeStrategy runs exactly as many threads as it needs, meaning that it utilizes the GPU’s

resources more efficiently than ForkStrategy, which could potentially run redundant threads,
even with an estimate for the number of threads. There is also the possibility that the estimate is
inaccurate, resulting in performance penalties if it is an overestimate, and execution failure if it
is an underestimate. (Solving a failure due to underestimation is not hard, as we can simply start
a new run and double the number of estimated threads until the run is successful, although we
would have to pay the cost for non-successful runs.)

ForkStrategy only maintains two variables per thread, index and task group size. ReexeStrategy
needs to store the value of every possible call to _choice. This means that ReexeStrategy runs
fewer threads concurrently due to the limited memory available on a GPU. Additionally, at every
kernel invocation, these tasks need to be transferred between different worklists and potentially
even main memory. Moreover, ForkStrategy immediately chooses a value when _choice is called,
unlike ReexeStrategy which has to stop execution when a new _choice is called and invoke the
kernel again. This means that ReexeStrategy has to keep re-executing the same code over and over
again. ForkStrategy, on the other hand, only re-executes the same code if the size of the search
space is large enough to require multiple kernel launches. Finally, ReexeStrategy has to move tasks
to and from the overflow buffer when running on a GPU, resulting in extra overhead.

Intuitively, we expect ForkStrategy to outperform ReexeStrategy, seeing as it immediately returns
a value for _choice, instead of writing new tasks to memory, copying them back to the input
worklist, moving to and from the overflow buffer, and then re-launching the kernel. In practice,
however, ForkStrategy frequently overestimates the number of threads required, resulting in large
numbers of redundant threads that do not contribute to exploration, especially for hybrid test
generation programs which have irregular search spaces (Figure 1a).

3.7 MixedStrategy

MixedStrategy combines ForkStrategy and ReexeStrategy to get the best of both. At a high level,
MixedStrategy first uses ReexeStrategy to build a skeleton of the search space, and then uses the
skeleton to explore the search space with ForkStrategy. This skeleton contains information for
every unique path in the test generation program. Each path contains all the choices on that path,
as well as the number of threads that execute that path.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:14 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

.

x=1 x=2

x=2

z=3

x=1

z=1

x=1

z=0

... ... ...

(a)

1 // control−flow _choice

2 x = _choiceCF(1, 2);

3 // regular _choice

4 z = (x == 1) ? _choice(0, 1) : 3;

5

6 _countIf(x <= 3 && z == 3);

(b)
Fig. 11. An example of a control flow choice.

The key insight behind the skeleton is that only
some calls to _choice contribute to the irregu-
larity of the search space. We call these control

flow choices. Recognizing these calls is important
during the skeleton building phase, so MixedStrat-
egy extends the Tempo API to include a function
for control flow choices: _choiceCF. The user is
responsible for manually adding this function in-
vocation where necessary. During skeleton building, only calls to _choiceCF will spawn new tasks.
Figure 11b illustrates a control flow choice using a simple example. Figure 11a shows the search
space during exploration.

ReexeStrategy. MixedStrategy uses ReexeStrategy to build the skeleton. It modifies the tasks
(introduced in Section 3.4.2) to also include the number of threads needed for the current path,
as well as a boolean value to indicate whether the task represents a complete path. Initially, the
number of threads needed is one and all tasks in the input worklist are marked as complete. At
a call to a new control flow _choiceCF (line 2 in Figure 11b), MixedStrategy creates new tasks,
marks the current task in the input worklist as incomplete (since it spawns longer paths), and
re-executes the kernel. At regular _choice calls (line 4 in Figure 11b), it updates the number of
threads in tasks by multiplying it by the number of choices, and returns any value in the range. In
Figure 11a, this means that only one of the colored nodes exists during skeleton building. Each
complete task represents a unique path and is transferred to the host. Any tasks remaining in the
output worklist are copied to the input worklist and the kernel is then re-executed.

ForkStrategy. Given the skeleton, MixedStrategy calculates the total number of threads needed
for ForkStrategy by summing the number of threads in each unique path. It then initializes the
thread metadata by creating one task group per unique path (in contrast to ForkStrategy which
initially places all threads in one task group). MixedStrategy also needs extra metadata to retrieve
control flow choices from the skeleton: the index of the path a thread belongs to, and the index
of the next control flow choice in that path. During exploration, control flow _choice values are
selected by indexing into the path’s control flow choices (first level in Figure 11a), and task groups
are divided in the same way as in ForkStrategy at regular _choice calls (second level in Figure 11a).

4 EVALUATION

In this section, we assess the performance of Tempo. We answer the following research questions:

RQ1. How does the performance of ForkStrategy compare to ReexeStrategy for hybrid test genera-
tion programs?

RQ2. How well does MixedStrategy improve on ForkStrategy and ReexeStrategy for hybrid test
generation programs?

RQ3. How does Tempo compare to prior work on hybrid test generation programs?

RQ4. How does the performance of ForkStrategy compare to ReexeStrategy for sequence-based
test generation programs?

RQ5.What are the values for thread divergence, achieved occupancy, and memory efficiency for
Tempo’s GPU backends?

Hardware and software configuration. We ran all experiments on a machine with 6-core Intel
Core i7-8700 3.20GHz, and 64GB RAM. The same machine comes with an Nvidia GeForce RTX
2080 GPU with 8GB RAM. We used CUDA 11.0 and NVCC 11.0 for the GPU backend, and OpenMP
4.5 for the CPU backend.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:15

2 3 4

Size

101

102

103

104

105
T
im

e
 [

m
s
]

ForkStrategy (CUDA)

ReexeStrategy (CUDA)

ForkStrategy (OpenMP)

ReexeStrategy (OpenMP)

(a) DAG(CSTVA).

2 3 4 5 6 7 8 9 10 11

Size

100

101

102

103

104

105

106

T
im

e
 [

m
s
]

ForkStrategy (CUDA)

ReexeStrategy (CUDA)

ForkStrategy (OpenMP)

ReexeStrategy (OpenMP)

(b) HeapArray(CSTVA).

2 3 4 5 6 7 8 9 10 11 12

Size

100

101

102

103

104

105

106

T
im

e
 [

m
s
]

ForkStrategy (CUDA)

ReexeStrategy (CUDA)

ForkStrategy (OpenMP)

ReexeStrategy (OpenMP)

(c) IntRBT(CSTVA).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Size

100

101

102

103

104

105

106

T
im

e
 [

m
s
]

ForkStrategy (CUDA)

ReexeStrategy (CUDA)

ForkStrategy (OpenMP)

ReexeStrategy (OpenMP)

(d) NQueens(CSTVA).

2 3 4 5 6 7 8 9 10 11

Size

100

101

102

103

104

105

106

T
im

e
 [

m
s
]

ForkStrategy (CUDA)

ReexeStrategy (CUDA)

ForkStrategy (OpenMP)

ReexeStrategy (OpenMP)

(e) SDLL(CSTVA).

2 3 4 5 6 7

Size

100

101

102

103

104

105

106

T
im

e
 [

m
s
]

ForkStrategy (CUDA)

ReexeStrategy (CUDA)

ForkStrategy (OpenMP)

ReexeStrategy (OpenMP)

(f) SearchTree(CSTVA).

Fig. 12. Size (x-axis) vs. Generation Time (y-axis) for Hybrid Test Generation Programs.

Note that our goal is not to compare CPU and GPU runs to establish which is better overall, but

rather to characterize the tradeoffs for strategies and platforms to enable a system to dynamically

choose among them.

We first introduce the subjects used in our study (Section 4.1). Then, we answer each research
question (Sections 4.2-4.6). We include some additional results in the appendices.

4.1 Subjects

We evaluated Tempo by using 20 hybrid and sequence-based test generation programs (generators
for short) for data structures which have been used in previous test generation studies [Celik et al.
2019, 2017; Galeotti et al. 2010; Gligoric et al. 2010; Kuraj et al. 2015; Sharma et al. 2011, 2010; Visser
et al. 2006]. The names of all subjects used in our evaluation can be seen in the captions of the plots
in Figure 12 and in the first column of Table 6; for each subject we indicate the original source (if
applicable): CSTVA [Sharma et al. 2010], ISSTA [Visser et al. 2006], TACO [Galeotti et al. 2010].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:16 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

Table 2. Results for Hybrid Test Generation Programs with MixedStrategy, ForkStrategy, and ReexeStrategy

using CUDA.

Subject Size Time [ms]

MixedStrategy ForkStrategy ReexeStrategy

Skeleton Explore Total Total Total

HeapArray(CSTVA)
10 24 891 915 T/O 1208

11 61 13936 13997 T/O 17314

IntRBT(CSTVA)
11 23 1487 1510 1232926 3187

12 60 12313 12373 T/O 23073

SearchTree(CSTVA)
6 9 68 77 323 96

7 10 3772 3782 48790 4690

4.2 ForkStrategy vs. ReexeStrategy Performance

In this section we compare ForkStrategy with ReexeStrategy for hybrid generation. For GPU
exploration, we set the maximum number of threads (i.e., chunk size) per kernel invocation in
ForkStrategy to 500 million. During thread estimation, the number of threads was 10k. The input
worklist size chosen for ReexeStrategy was 40,960. For CPU exploration, we used 12 for threads per
invocation and worklist size as preliminary experiments showed that this leads to the best results.
The largest size/length that we used for each subject was set such that the run does not exceed
one hour (and does not run out of memory). The generation times shown are the averages of three
runs. All execution times were within 6% of the average for all generators.
Figure 12 shows the results for hybrid test generation programs. Each plot shows generation

time (y-axis) for various sizes of the structures (x-axis), e.g., number of nodes in a red-black-tree.

RQ1. How does the performance of ForkStrategy compare to ReexeStrategy for hybrid test generation

programs?

We can see in Figure 12 that ForkStrategy outperforms ReexeStrategy for smaller sizes but not for
larger sizes for CUDA. For OpenMP, ReexeStrategy outperforms ForkStrategy across most sizes,
except for some of the smaller sizes in IntRBT(CSTVA), SDLL(CSTVA), and SearchTree(CSTVA).
Comparing the total number of structures generated to the number of estimated threads in

ForkStrategy (Table 9 in Appendix B), we find that the actual number of threads needed was much
less than the estimated number. The difference between the two values increases as structure size
increases, meaning that larger sizes are disproportionately affected by overestimation in comparison
to smaller sizes. Thus, ForkStrategy is slower for hybrid generators as size increases. ReexeStrategy,
meanwhile, performs better for larger sizes as it only ever runs exactly as many threads as it needs,
meaning that it scales better than ForkStrategy as the number of paths grows.
In summary, we recommend ReexeStrategy for complex generators that have hard-to-estimate

number of paths. In the future, we plan to encapsulate the choice of strategy into our runtime based
on characteristics of a given test generation program, e.g., cyclomatic complexity.

4.3 MixedStrategy

RQ2. How well does MixedStrategy improve on ForkStrategy and ReexeStrategy for hybrid test genera-

tion programs?

Table 2 compares the CUDA implementations of MixedStrategy, ForkStrategy, and ReexeStrategy.
Column 1 shows the name of the subject. We show the three subjects where MixedStrategy is
applicable: HeapArray(CSTVA), IntRBT(CSTVA), and SearchTree(CSTVA). Column 2 shows the size. For
MixedStrategy, we show skeleton building time, exploration time, and total time. For ForkStrategy
and ReexeStrategy, we show total time.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:17

MixedStrategy works best when a generator has fewer control flow choices than regular choices,
as this leads to a smaller skeleton which can be built and explored quickly.
The data shows that MixedStrategy outperforms both ForkStrategy and ReexeStrategy. Mixed-

Strategy is faster than ForkStrategy as the latter greatly overestimates the number of threads
required, while the former produces an exact number. While MixedStrategy executes the same
number of threads as ReexeStrategy, it does so over fewer kernel launches with fewer transfers to
and from the overflow buffer, thereby improving performance.

Table 3. Test Generation Programs LOC and Character Count Comparison between Tempo and BET Tools.

Subject Tempo UDITA Korat𝑜 Korat𝑗 Korat𝑐 Korat𝑔

LOC Chars LOC Chars LOC Chars LOC Chars LOC Chars LOC Chars

HeapArray(CSTVA) 19 568 19 454 34 893 47 1399 55 1520 243 7884

IntRBT(CSTVA) 71 2277 62 1482 124 3266 222 5898 239 6247 661 18211

4.4 Comparison with Prior Work

RQ3. How does Tempo compare to prior work on hybrid test generation programs?

UDITA [Gligoric et al. 2010; UDITAWebPage [n. d.]] is the only available tool for exploring hybrid
test generation programs. It explores the search space by backtracking to _choice calls and
picking different values each time, in contrast to Tempo which uses parallelism and re-execution.
Furthermore, UDITA implements lazy evaluation of _choice calls by delaying execution until the
first use of the returned value. Korat𝑜 [Boyapati et al. 2002] explores test generation programs
written in a purely declarative style. Korat𝑗 [Celik et al. 2017] is a variant of Korat𝑜 with different
encoding of the search space. Korat𝑐 is an implementation of Korat𝑗 for C, and Korat𝑔 is a variant
of Korat𝑐 running on a GPU. We report numbers for two subjects that prior work has in common.
Table 3 shows lines of code (LOC) and number of characters (Chars) for each test generation
program. Table 4 shows generation time. Table 5 shows the number of valid structures found, as
well as the total number of candidate structures explored using the hybrid generator (i.e. Tempo or
UDITA) and the purely declarative generator (i.e., Korat).

Looking at LOC and Chars, we can see that generators written for Tempo and UDITA are more
concise than declarative generators for other tools. Korat requires that the user explicitly specifies
the bounds for each field of a subject. Additionally, Korat𝑗 , Korat𝑐 , and Korat𝑔 encode objects as
integer arrays to achieve better performance, i.e., they use no classes for data structures and field
accesses are replaced with array accesses. This significantly increases LOC and code complexity.

As for generation time, we used MixedStrategy and ReexeStrategy with CUDA as they proved to
be the fastest configuration for hybrid generators on our machine. Tempo is substantially faster
than UDITA and scales better. Additionally, for HeapArray(CSTVA), Tempo is faster than all Korat
implementations, and for IntRBT(CSTVA), Tempo is faster than all Korat implementations up to size 10,
after which Korat𝑔 scales better. By looking at Table 5, we can see that the total number of candidate
structures explored, which depends on the style of the generator, correlates heavily with scalability.
The hybrid HeapArray(CSTVA) generator explores less candidate structures than its pure declarative
counterpart, so Tempo finishes exploration faster while still arriving at the same number of valid
structures. This is in contrast to the hybrid IntRBT(CSTVA) generator, which explores more candidate
structures than the declarative version. However, we still observe significant improvement over the
sequential Korat implementations, Korat𝑜 , Korat𝑗 , and Korat𝑐 . Other differences in performance
between Tempo and Korat𝑔 can be attributed to the latter benefiting fromGPU specific optimizations
used in their test subjects [Celik et al. 2017], such as encoding objects as integer arrays and using

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:18 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

Table 4. Test Generation Time Comparison between Tempo and BET Tools.

Subject Size Time [ms]

MixedStrategy ReexeStrategy UDITA Korat𝑜 Korat𝑗 Korat𝑐 Korat𝑔

HeapArray(CSTVA)
8 22 23 75180 755 463 322 49

9 102 117 752720 5979 4716 3360 311

10 915 1208 T/O 68135 54963 41218 3249

11 13997 17314 T/O 936175 710350 527978 39845

IntRBT(CSTVA)
9 42 79 18320 1595 947 649 62

10 221 461 86450 5728 4770 3539 257

11 1510 3187 409190 28217 26114 19941 1297

12 12373 23073 1950230 150191 146292 112717 7833

Table 5. Structures Explored using Hybrid and Declarative generators.

Subject Size Valid Structures Explored Structures

Hybrid Declarative

HeapArray(CSTVA)
8 1,005,075 1,005,075 5,231,385

9 10,391,382 10,391,382 51,460,480

10 111,511,015 111,511,015 583,317,405

11 1,533,143,860 1,533,143,860 6,913,561,920

IntRBT(CSTVA)
9 122 2,489,344 1,510,006

10 260 17,199,104 7,530,712

11 586 120,393,728 39,089,158

12 1,296 852,017,152 205,512,574

bitset operators. We refrained from doing so for Tempo as we prioritized ease-of-use over other
metrics.

Our findings are consistent with prior work [Gligoric et al. 2010]: hybrid test generation programs
are more concise, but their efficient exploration is challenging. Tempo outperforms UDITA and also
outperforms intKorat in most cases, bringing the performance of exploring hybrid test generation
programs close to exploring non-hybrid programs with tools that limit developers’ flexibility (long
test generation programs purely written in declarative style).

4.5 Sequence-Based Generators

RQ4. How does the performance of ForkStrategy compare to ReexeStrategy for sequence-based test

generation programs?

Table 6 shows the results for sequence-based test generation programs. Column 1 shows the name
of the generator. Column 2 shows the length of the structure (e.g., length of the sequence of method
calls). Column 3 shows the generation time for ForkStrategy (CUDA), ReexeStrategy (CUDA),
ForkStrategy (OpenMP), and ReexeStrategy (OpenMP) respectively. Column 4 shows the number
of times the kernel was invoked during GPU exploration.

The data shows that ForkStrategy outperforms ReexeStrategy for CUDA for almost all subjects.
On the other hand, ReexeStrategy with OpenMP is faster than ForkStrategy.

For both CUDA and OpenMP, ForkStrategy was able to accurately estimate the number of threads
required for every sequence-based subject (except for DisjSet(CSTVA)) and for all lengths. This means
that there were zero redundant threads run by ForkStrategy. This is expected as sequence-based
generators follow a very simple pattern (Section 2). We intentionally picked sequence-based testing
to observe the behavior of ForkStrategy in an (close to) ideal scenario with no redundant threads. We

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:19

Table 6. Results for Sequence-based Test Generation Programs with ForkStrategy and ReexeStrategy using

CUDA and OpenMP.

Subject Length Time [s] #Kernels

CUDA OpenMP

ForkStrategy ReexeStrategy ForkStrategy ReexeStrategy FS/RS

AVL(CSTVA)
7 1 2 21 20 1/3178

8 70 117 968 864 9/125842

AVL(TACO)
7 1 2 21 19 1/3178

8 65 111 950 844 9/125842

BinHeap(ISSTA)
7 1 2 21 20 1/3178

8 65 105 943 854 9/125842

BinTree(ISSTA)
7 0 2 21 20 1/3178

8 60 97 935 864 9/125842

CL(TACO)
7 1 2 21 19 1/3178

8 66 113 960 848 9/125842

DisjSet(CSTVA)
5 2 0 54 2 1/378

6 1705 34 T/O 529 279/75930

FibHeap(CSTVA)
7 14 16 22 21 1/3178

8 758 865 974 903 9/125842

FibHeap(ISSTA)
7 1 2 22 20 1/3178

8 63 103 962 876 9/125842

HeapArray(CSTVA)
7 0 1 21 19 1/3178

8 50 81 923 826 9/125842

IntRBT(CSTVA)
7 1 2 21 20 1/3178

8 62 104 955 863 9/125842

LL(TACO)
7 1 2 21 20 1/3178

8 62 109 930 843 9/125842

SLL(TACO)
7 0 2 20 19 1/3178

8 53 87 915 835 9/125842

TreeMap(ISSTA)
7 1 2 21 20 1/3178

8 64 103 951 850 9/125842

TreeSet(TACO)
7 1 2 21 20 1/3178

8 64 102 951 876 9/125842

checked DisjSet(CSTVA) in detail and found that, due to the code structure (an extra non-deterministic
call in one of the branches), the estimation phase ended up being imprecise.

ReexeStrategy with CUDA moves a significant amount of tasks to the overflow buffer at almost
every kernel launch, which causes the bulk of the observed overhead compared to ForkStrategy.
As sequence length increases, the number of tasks and kernel launches increases, resulting in
increased overhead. When running with OpenMP, threads write directly to an overflow buffer in
main memory, so the overhead is almost negligible in comparison.
In summary, ForkStrategy should be used for GPU exploration, while ReexeStrategy is better for

CPU exploration for sequence-based generators.

4.6 GPU Profiling Metrics

RQ5. What are the values for thread divergence, occupancy, and memory efficiency for Tempo’s GPU

backends?

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:20 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

Table 7. Average Values for CUDA Profiling Metrics Across all Test Generation Programs.

Strategy Generator Type WEE [%] AO [%] GST [GB/s] GLT [GB/s]

ForkStrategy Sequence 26 88 24 32

ForkStrategy Hybrid 23 92 14 22

ReexeStrategy Sequence 26 84 103 204

ReexeStrategy Hybrid 25 84 91 137

WeprofiledGPU explorationwith CUDAby running all subjects using nv-nsight-cu-cli [nsightWeb-
Page 2020] and obtained the following metrics:
• Warp Execution Efficiency (WEE) shows the effect of control flow divergence on Tempo.
Control flow divergence occurs when threads within the same warp diverge into different
execution paths. Larger values of WEE imply fewer control flow divergence.
• Achieved Occupancy (AO) shows the ratio of average active warps to maximum number of
warps possible across streaming multiprocessors. Larger values of AO imply fewer cases of a
warp stalling.
• Global Store Throughput (GST) shows the throughput for storing to GPU global memory.
• Global Load Throughput (GLT) shows the throughput for loading from GPU global memory.

Table 7 shows the results obtained by the profiler. Column 1 shows the runtime being profiled.
Column 2 shows the type of the test generation program, i.e., either sequence-based or hybrid.
Columns 3 to 6 show the averages of the profiling metrics we collected for WEE, AO, GST, and GLT.
The values shown represent the average value of all generators; profiling results for ForkStrategy
do not include the estimation phase. The length/size of each subject is the largest value for which
the profiler does not run out of memory.
For ForkStrategy, WEE is 26% and 23% for sequence-based and hybrid generators. For ReexeS-

trategy, these numbers are 26% and 25%. These values are similar across both strategies, with
sequence-based generators having slightly better WEE than hybrid generators. This indicates that
differences in performance between the two strategies cannot be attributed to warp divergence.

For ForkStrategy, AO is 88% and 92% for sequence-based and hybrid generators. For ReexeStrategy,
these numbers are 84% and 84%. Recall that achieved occupancy refers to the percentage of warps
active in a kernel launch. The amount of warps active on a streaming multiprocessor is limited
by the resources available, such as registers. GPUs rely on hardware multi-threading to exploit
memory-level parallelism (MLP), context switching between warps on cache misses. Consequently,
a warp can stall when it is waiting for the result of a memory access operation, and workloads with
lower MLP can have lower occupancy as a result. Therefore, AO being larger for ForkStrategy is
expected, as it is has a simpler program state compared to ReexeStrategy resulting in less register
usage, and accesses memory less frequently.

5 A CASE STUDY

The main goal of this study was to evaluate our approach by experimenting with writing generators
using Tempo. The purpose is to showcase the robustness of Tempo, although other test generation
approaches, including UDITA and Korat, could have also been used. We generated several types of
CUDA programs to be used as inputs to the Nvidia CUDA compiler [nvccWebPage 2019] (NVCC)
and Clang [clangWebPage 2020], which can also be used to compile CUDA programs [clangCUD-
AWebPage 2020]. We also generated the corresponding C/C++ programs to test GCC [gccWebPage
2020] and Clang.

5.1 Program Types

We briefly describe several types of programs we aimed to generate.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:21

Call graphs. We modified the DAG generator to generate cyclic graphs that represent call graphs.
Each node of the generated graphs is a function, and a directed edge indicates a function call.

Inheritance graphs. Since valid inheritance graphs are essentially DAGs, the inheritance graph
generator is almost identical to the DAG generator. The only difference between the two is that the
inheritance graph generator does not include a NULL node, while the DAG generator does. Each
node of the inheritance graph maps to a specific class. A directed edge indicates an inheritance
relationship. There is also a choice that selects either a method (pure virtual, virtual, or neither)
or a member variable (static or non-static) per class. Additionally, we built on top of the original
inheritance graph generator to generate more specialized graphs:

• Diamond inheritance graphs: C++ allows diamond-shaped inheritance hierarchies, where
a class inherits from two parent classes, and both parent classes inherit from the same parent
class. This generator expands inheritance graphs by filtering graphs that do not contain a
diamond.
• Templated inheritance graphs: Builds on top of the diamond generator by adding template
parameters to the classes.
• Complex inheritance graphs: Builds on top of the diamond generator by adding methods
with varying return types and arguments, as well as varying the inheritance access specifier
(e.g. private, protected, or public) and optionally using the virtual specifier. 1

Nested classes. A nested class is a class that has been defined inside the body of another class.
The generator for this case is simple: for structures of size 𝑛, 𝑛 classes are generated. Each class
includes a data member, and has a nested class defined in its body. Additionally, one of the classes
will include a member function which will attempt to access a data member of another class.

Function specifiers. Two functions are generated, with one calling the other. The function making
the call will have n specifiers. The possible specifiers are static, extern, constexpr, inline,
volatile, and noexcept. The CUDA programs can also contain __device__, __forceinline__,
and __noinline__. Additionally, for the generated CUDA programs, there is an option for the
calling function’s body to be wrapped by a macro guard that checks if the macro __CUDA_ARCH__ is
defined. A common use-case for this macro is when a function is defined as both __device__ and
__host__, and part of it is only meant to be executed when the function is called from the device.

5.2 Setup

We used differential testing [McKeeman 1998] as the test oracle, which has been commonly used in
the past when testing compilers [Yang et al. 2011] and other program analysis tools (e.g., [Kapus
and Cadar 2017]). We compile CUDA programs with NVCC and Clang, and C++ programs with
GCC and Clang, investigating any difference in compiler errors. So far, we have not used the output
of program executions as an additional oracle for successfully compiled programs; we leave this for
future work. We tested GCC 7.4.0, Clang 11.0.0, and NVCC 10.2 in their default configurations.

5.3 Issues Found

We detected and reported four issues, two of which were confirmed as new bugs in NVCC, and two
of which were known bugs in Clang. We show these issues in Figure 13. Note that the variable and
function names have been modified from what was originally generated for presentation purposes.

Constexpr. The program in Figure 13a was generated by the łFunction specifiersž generator. In
this case, NVCC successfully compiles the program, although it should report an error like Clang
does. The reason compilation is supposed to fail is because the constexpr function f1() might

1https://en.cppreference.com/w/cpp/language/derived_class

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:22 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

1 __device__ int x = 0;

2 __device__ int f2() {

3 x += 99999;

4 return x; }

5 __device__ constexpr int f1() {

6 #ifdef __CUDA_ARCH__

7 f2();

8 #endif

9 return 999999999; }

10 __global__ void kernel() {

11 f1(); }

(a) NVCC Constexpr bug

1 class c2 {

2 public:

3 __device__

4 virtual void n() = 0;

5 };

6 class c1 : public c2 {

7 public:

8 __device__ void n() {

9 printf("c1\n");}

10 };

11 __global__ void kernel() {

12 c1 o0;

13 o0.n();}

(b) Clang Virtual bug

1 class E {

2 public:

3 class I { public: int y; };

4 void m() { new I()−>y = 77; }

5 };

(c) NVCC Field access bug

1 class c2 {

2 public:

3 static int v0;};

4 class c1 : public c2 { }

5 int c2::v0 = 2;

6 __global__ void kernel {

7 printf("%d\n", c2::v0);}

(d) Clang Static bug

Fig. 13. Issues detected by Tempo in CUDA compilers.

be evaluated at compile time, and based on the C++ standard this function is not allowed to use
non-constant expressions or to invoke functions that are not constexpr [constexpr 2020]. However,
in this program, f1 calls a non-constexpr function f2().

Virtual. The program in Figure 13b was generated by the łInheritance graphsž generator. Clang fails
to compile the program, although it should succeed like NVCC does. The error message reported
by Clang is ptxas fatal : Cannot take address of function ’__cxa_pure_virtual’ from
ptxas (the Nvidia assembler). The reason for this error is that Clang does not provide the standard
runtime function __cxa_pure_virtual(), causing a linking error. Interestingly, at higher levels
of optimization, the function call is removed by the compiler and compilation succeeds.

Field access. The program in Figure 13c was generated by the łNested classesž generator. It
compiles successfully with NVCC, but not with Clang. The cause of this bug is line 4, specifically
new I()->f. The C++ standard states that the precedence of -> is higher than new [operator
precedence 2020], and thus the expression should be parsed as new (I()->f), which is an invalid
use of new. NVCC parses it as (new I())->f), and so compiles without errors.

Static. The program in Figure 13d was generated by the łInheritance graphsž generator. Clang
successfully compiles this program, while NVCC fails. Clang wrongly allows using a static variable
in device code (Line 7). Newer versions of Clang include a fix for this issue.

6 LIMITATIONS AND FUTURE WORK

As with other bounded-exhaustive techniques, Tempo suffers from the exponential explosion. We
envision Tempo being used to systematically test only a few features at a time; other techniques, e.g.,
fuzz testing [Zeller et al. 2019], can combine several systematically generated programs. We checked
correctness of our code by checking the number of structures across strategies, as well as comparing
the numbers of generated structures with the numbers reported in prior work. In our experiments,
the estimated number of threads for ForkStrategy was precise or an over-approximation; we plan
to develop a mechanism to dynamically rerun a test generation program with larger number of
threads if the estimate is incorrect. We did not use dynamic parallelism (i.e., launching kernels from
other kernels) as our initial experiment showed that it introduces substantial overhead.

One potential threat to our study is whether speeding up BET and hybrid test generation programs
is even necessary. Since exhaustive test generation could lead to a large number of generated tests,
the bottleneck might be test execution rather than generation. However, this is not necessarily the
case, and it depends on generators and filters in use.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:23

Table 8. Test Generation and Execution Time for GCC and NVCC Case Study.

Subject Size #Tests Generation [ms] Execution [ms]

GCC NVCC

InheritanceGraphComplex
3 432 15 209 897

4 22032 1694 1661 5378

InheritanceGraphDiamond
3 2 10 126 277

4 52 421 229 1232

InheritanceGraphTemplate
3 32 9 367 2187

4 1088 5306 691 3181

PointerGraph
2 5 7 118 275

3 171 9 181 880

Table 8 shows test generation and execution time for some of the generators from the previous
section. The generation time reported uses ReexeStrategy, while test execution was parallelized
by passing 32 programs to the compiler simultaneously and running 6 instances of the compiler
concurrently. It can be seen that the ratio of generation to execution time varies greatly by generator
and by test subject, i.e., NVCC is noticeably slower than GCC. For the InheritanceGraphTemplate
generator, test generation dominates execution with both compilers, as it was designed to explore
a larger number of candidate structures when compared to the other generators, due to allowing a
variable number of class template parameters as well as more parent classes per each class. In the
future, we plan to further study optimizing both generation and execution by reasoning about both
steps at once.
In our experiments, we used a CPU and GPU available on an off-the-shelf Dell machine. Our

results and conclusions might differ on different hardware. To address this, we obtained access to a
machine with 8-core Intel Core i9-9900K 3.60GHz, and 32GB RAM. Although the absolute numbers
somewhat differ, our high-level findings still hold.
There are several future directions. First, we plan to develop an approach that automatically

determines the worklist size for a given program and device for ReexeStrategy. Second, it would be
worth studying how to select the appropriate device for exploration [Chikin et al. 2019]. Third, we
plan on finding the optimal memory layout for our worklists [Franco et al. 2017; Majeti et al. 2016].

In our case study, we did not consider the effects of undefined behavior in our generated programs.
In the future, we plan on experimenting with the idea of using filtering to eliminate some classes
of undefined behavior (e.g., infinite recursion).

7 RELATED WORK

Automated test generation. Korat [Boyapati et al. 2002] uses formal specifications of inputs
(inside an imperative language) to exhaustively generate test inputs up to a given size, and relies
on backtracking and pruning to improve efficiency. ASTGen [Daniel et al. 2007] allows the user to
write abstract syntax tree generators for Java programs. UDITA [Gligoric et al. 2010] is a DSL that
allows the user to write hybrid test generation programs, and uses backtracking (as implemented
in a modified bytecode interpreter) to explore the search space. HyTeK [Rosner et al. 2014] uses a
set of invariants that are either declarative, imperative, or a hybrid. These invariants are passed to
a SAT solver that generates satisfying test inputs. Iorek [Ringer et al. 2017] allows the programmer
to express how inputs differ from each other and then uses an SMT solver to generate different
instances of those inputs. Jarvis [Peleg et al. 2018] creates property-based tests from a set of pre-
existing unit tests. SciFe [Kuraj et al. 2015] generates complex structures from Enumerator objects,
which are defined as functions that map from natural numbers to structures, and are implemented

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:24 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

in a domain specific language embedded within Scala. Constraint logic programming [Dewey et al.
2015a] can be used to specify complex data structures in a declarative style. This approach typically
results in better performance than the hybrid style at the cost of usability. Crux [Tomb et al. 2020]
uses symbolic execution to test a program exhaustively. Unlike prior work, we developed the first
parallel execution model that can execute hybrid test generation programs.

Utilizing GPUs for testing. Yaneva et al. [2017] presented a tool that compiles C programs and
(existing) test cases into code that runs on the GPU. This results in speedups compared to execution
of tests on a CPU. Our focus is on parallel test input generation (not on test execution).
intKorat [Celik et al. 2017] is an approach for bounded exhaustive test case generation on the

GPU that implements the Korat algorithm [Boyapati et al. 2002]. It introduced a new abstract
representation of the generated test cases which is necessary for implementing Korat on the GPU,
and has the added benefit of faster execution of the invariant checking even on CPU.
GVM [Celik et al. 2019] is a Java bytecode interpreter that runs on the GPU. It was used to

speed up sequence-based test case generation and execution of randomly generated test cases;
there were substantial changes to GVM necessary to enable parallel runs of sequence-based testing.
TornadoVM [Clarkson et al. 2018] is a Java framework for writing applications for heterogeneous
systems that include GPUs and CPUs. It uses JIT compilation to dynamically configure applications
at run-time depending on the target device. Tempo is an execution model for hybrid test generation
programs, which requires no user knowledge of the underlying hardware architecture.

Testing compilers. Using Tempo, we wrote bounded exhaustive test generation programs for
CUDA compilers and found a couple of new bugs. Automated test generation for compilers is a
widely studied research area [Chen et al. 2020]. Csmith [Yang et al. 2011] is a random test generation
tool for C compilers. CLsmith [Lidbury et al. 2015] applies fuzz testing to OpenCL compilers.
Constraint logic programming [Dewey et al. 2015b] has been applied to the Rust typechecker in
combination with fuzzing to find bugs. Skeletal program enumeration [Zhang et al. 2017] involves
enumerating a set of programs from a syntactic skeleton structure (with holes for variables) to
exhaustively explore all possible variable usage patterns.

8 CONCLUSIONS

We presented novel programming and execution models for exploring hybrid test generation
programs. We provide a runtime and two exploration strategies, both supported on GPUs and CPUs;
this support comes without any extra burden on the users. Furthermore, the runtime automatically
balances resource usage to enable exploration of test generation programs for large bounds. We used
Tempo to generate instances of various data structures, which have been established as a standard
benchmark in this domain and showed advantages over an existing framework for exploring
hybrid test generation programs. Tempo requires no knowledge of the execution environment or
parallelism and enables developers to efficiently explore their hybrid test generation programs
without sacrificing expressiveness.

A IMPACT OF GLOBAL PARAMETERS ON ALGORITHMS

This section shows the impact of varying chunk size and input worklist size for ForkStrategy and
ReexeStrategy respectively.

A.1 ForkStrategy

Figure 14a shows a plot of execution time vs. chunk size for the HeapArray(CSTVA) hybrid generator.
The number next to each point indicates the number of kernel invocations for that size. In addition
to showing the size, the legend shows the number of task groups for that size. As chunk size
increases, execution time decreases until we reach size 500 million, after which there is a significant

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:25

0
6
2

1
2
5

2
5
0

5
0
0

1
0
0
0

2
0
0
0

Chunk Size (in millions of threads)

900

950

1000

1050

1100

T
im

e
 [

s
]

1600

800
400 200

100

50
Size

9-10391382

(a) HeapArray(CSTVA) Hybrid Generator -

Chunk size experiment.

0 5000 10000 15000 20000 25000 30000 35000 40000

Worklist Size

101

102

103

104

T
im

e
 [

m
s
]

Size

7-147291

8-1259887

9-12749406

10-135491175

(b) HeapArray(CSTVA) Hybrid Generator - In-

put worklist size experiment.

Fig. 14. Generation Time vs. Length/Size of Two Generators.

increase for sizes 1 billion and 2 billion, despite the decrease in the number of kernel invocations.
The optimal value for chunk size seems to be 500 million for most hybrid generators, but the
number varies for sequence-based generators. A larger chunk size means more threads running per
kernel, all of which need to be scheduled to run on an SM. For extremely large numbers of threads,
an SM might not always be available, so some threads would have to wait.

A.2 ReexeStrategy

For every generator, we measured the execution time for different structure sizes starting with an
initial value of 1,024 for the input worklist size, and repeatedly doubled that value until we reached
32,768. We also include the value we used in our experiments from prior sections, which is 40,960.

The findings were consistent across all generators, both hybrid and sequence-based. For illustra-
tion purposes we only show the results of with the HeapArray(CSTVA) hybrid generator.
Figure 14b shows the plots of input worklist size vs. execution time for the HeapArray(CSTVA)

hybrid generator for various structure sizes. In addition to showing the size, the legend shows the
number of tasks created while generating the structure of that size. For most sizes shown, execution
time is lowest when the size is 40,960. This is expected, as a larger input worklist means more
tasks can be executed during a single kernel invocation, and therefore fewer kernel invocations are
required, which leads to faster generation.

B HYBRID GENERATOR DATA

Tables 9 and 10 show more data collected from our Hybrid generators using ForkStrategy and
ReexeStrategy with the CUDA backend, respectively. In both tables, Column 1 shows the name of
the subject, Column 2 shows the size, Column 3 shows the number of valid structures generated,
and Column 4 shows the number of kernel launches. In Table 9, Column 6 shows the number of
estimated threads and Column 7 shows the total number of candidate structures explored.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. We thank Ahmet Celik, Darko Marinov,
Pengyu Nie, Zhiqiang Zang, Yuki Liu, Jiyang Zhang, Steven Zhu, Joseph Ryan, and Aleksandar
Milicevic for their feedback on this work. This work was partially supported by a Google Research
Scholar Award and the US National Science Foundation under Grant Nos. CCF-1652517, CCF-
1704790, CCF-2107291, CNS-1846169, and CNS-2006943.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



166:26 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

Table 9. Exploration Metrics for Hybrid Test Generation Programs with ForkStrategy using CUDA.

Subject Size #Structs Time [ms] #Kernels #EstimatedThreads #TotalStructs

DAG(CSTVA)
2 2 3 1 36 16

3 34 4 1 82944 4802

4 2352 517751 60 30000000000 100003691

HeapArray(CSTVA)
7 117562 918 1 134217728 117562

8 1005075 30505 7 3486784401 1005075

9 10391382 913576 200 100000000000 10391382

IntRBT(CSTVA)
9 122 1837 1 185794560 2489344

10 260 53371 8 3715891200 17199104

11 586 1232926 164 81749606400 120393728

NQueens(CSTVA)
8 92 115 1 16777216 13756

9 352 2641 1 387420489 64337

10 724 89203 20 10000000000 313336

SDLL(CSTVA)
8 12870 1249 1 150994944 12870

9 48620 39622 8 3874204890 48620

10 184756 1164363 220 110000000000 184756

SearchTree(CSTVA)
5 5292 5 1 375000 131250

6 60984 323 1 33592320 6158592

7 736164 48790 9 4150656720 353299947

Table 10. Exploration Metrics for Hybrid Test Generation Programs with ReexeStrategy using CUDA.

Subject Size #Structs Time [ms] #Kernels

DAG(CSTVA)
2 2 6 5

3 34 8 10

4 2352 2251 3075

HeapArray(CSTVA)
9 10391382 117 319

10 111511015 1208 3314

11 1533143860 17314 44095

IntRBT(CSTVA)
10 260 461 844

11 586 3187 5838

12 1296 23073 41247

NQueens(CSTVA)
14 365596 1879 9235

15 2279184 12756 61845

16 14772512 93434 440015

SDLL(CSTVA)
9 48620 6 11

10 184756 10 16

11 705432 22 35

SearchTree(CSTVA)
5 5292 8 13

6 60984 96 196

7 736164 4690 10417

REFERENCES

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion: Expressing locality and independence with

logical regions. International Conference on High Performance Computing, Networking, Storage and Analysis, 1ś11.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat: automated testing based on Java predicates. In

International Symposium on Software Testing and Analysis. 123ś133.

Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric. 2019. Design, Implementation, and Application

of GPU-based Java Bytecode Interpreters. In Conference on Object-Oriented Programming, Systems, Languages, and

Applications. 177:1ś177:28.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.



Programming and Execution Models for Parallel Bounded Exhaustive Testing 166:27

Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric. 2017. Bounded Exhaustive Test-Input Generation on

GPUs. In Conference on Object-Oriented Programming, Systems, Languages, and Applications. 94:1ś94:25.

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of

Compiler Testing. ACM Computing Survey 53, 1 (2020).

Artem Chikin, Jose Nelson Amaral, Karim Ali, and Ettore Tiotto. 2019. Toward an Analytical Performance Model to Select

between GPU and CPU Execution. In International Parallel and Distributed Processing Symposium Workshops. 353ś362.

clangCUDAWebPage 2020. NVCC. https://llvm.org/docs/CompileCudaWithLLVM.html.

clangWebPage 2020. Clang: a C language family frontend for LLVM. https://clang.llvm.org/.

James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki, Christos Kotselidis, and Mikel

Luján. 2018. Exploiting High-performance Heterogeneous Hardware for Java Programs Using Graal. In International

Conference on Managed Languages & Runtimes. 4:1ś4:13.

constexpr 2020. constexpr specifier. https://en.cppreference.com/w/cpp/language/constexpr.

CUDADocs 2020. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

CUDAWebPage 2020. CUDA Zone. https://developer.nvidia.com/cuda-zone.

Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated Testing of Refactoring Engines. In International

Symposium on Foundations of Software Engineering. 185ś194.

Kyle Dewey, Lawton Nichols, and Ben Hardekopf. 2015a. Automated Data Structure Generation: Refuting CommonWisdom.

In International Conference on Software Engineering. 32ś43.

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015b. Fuzzing the Rust Typechecker Using CLP. In Automated Software

Engineering. 482ś493.

Chucky Ellison and Grigore Roşu. 2012. An Executable Formal Semantics of C with Applications. In Symposium on Principles

of Programming Languages. 533ś544.

Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drossopoulou, and Susan Eisenbach. 2017. You Can Have It All:

Abstraction and Good Cache Performance. In International Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software. 148ś167.

Juan Pablo Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and Marcelo Fabian Frias. 2010. Analysis of Invariants

for Efficient Bounded Verification. In International Symposium on Software Testing and Analysis. 25ś36.

gccWebPage 2020. GCC, the GNU Compiler Collection. https://gcc.gnu.org/.

Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and Darko Marinov. 2010. Test generation

through programming in UDITA. In International Conference on Software Engineering. 225ś234.

Daniel Jackson and Craig A. Damon. 1996. Elements of Style: Analyzing a Software Design Feature with a Counterexample

Detector. In International Symposium on Software Testing and Analysis. 239ś249.

Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Execution Engines via Program Generation and

Differential Testing. In Automated Software Engineering. 590ś600.

Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. 2015. Programming with enumerable sets of structures. In Conference on

Object-Oriented Programming, Systems, Languages, and Applications. 37ś56.

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. 2015. Many-Core Compiler Fuzzing. In

Conference on Programming Language Design and Implementation. 65ś76.

Deepak Majeti, Kuldeep S. Meel, Rajkishore Barik, and Vivek Sarkar. 2016. Automatic Data Layout Generation and Kernel

Mapping for CPU+GPU Architectures. In Proceedings of the 25th International Conference on Compiler Construction.

240ś250.

William M. McKeeman. 1998. Differential Testing for Software. Digital Technical Journal 10, 1 (1998), 100ś107.

José Meseguer and Grigore Roşu. 2013. The Rewriting Logic Semantics Project: A Progress Report. Information and

Computation 231 (2013), 38ś69.

Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khurshid, and Darko Marinov. 2007. Parallel Test

Generation and Execution with Korat. In International Symposium on Foundations of Software Engineering. 135ś144.

nsightWebPage 2020. Nsight Compute CLI. https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html.

nvccWebPage 2019. NVCC. https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html.

OpenMPIWebPage 2020. OpenMPI - A High Performance Message Passing Library. https://www.open-mpi.org.

OpenMPWebPage 2020. OpenMP. https://www.openmp.org.

operator precedence 2020. C++ Operator Precedence. https://en.cppreference.com/w/cpp/language/operator_precedence.

Hila Peleg, Dan Rasin, and Eran Yahav. 2018. Generating Tests by Example. In Verification, Model Checking, and Abstract

Interpretation. 406ś429.

Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran. 2017. A Solver-Aided Language for Test

Input Generation. Proc. ACM Program. Lang. 1, Conference on Object-Oriented Programming, Systems, Languages, and

Applications.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.

https://llvm.org/docs/CompileCudaWithLLVM.html
https://clang.llvm.org/
https://en.cppreference.com/w/cpp/language/constexpr
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/cuda-zone
https://gcc.gnu.org/
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://www.open-mpi.org
https://www.openmp.org
https://en.cppreference.com/w/cpp/language/operator_precedence


166:28 Nader Al Awar, Kush Jain, Christopher J. Rossbach, and Milos Gligoric

Nicolás Rosner, Valeria Bengolea, Pablo Ponzio, Shadi Abdul Khalek, Nazareno Aguirre, Marcelo F. Frias, and Sarfraz

Khurshid. 2014. Bounded Exhaustive Test Input Generation from Hybrid Invariants. In Conference on Object-Oriented

Programming, Systems, Languages, and Applications. 655ś674.

Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip. 2018. Test Generation for Higher-Order Functions in

Dynamic Languages. Proc. ACM Program. Lang. 2, Conference on Object-Oriented Programming, Systems, Languages,

and Applications (2018).

Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and Darko Marinov. 2011. Testing container classes: Random

or Systematic?. In Fundamental Approaches to Software Engineering. 262ś277.

Rohan Sharma, Milos Gligoric, Vilas Jagannath, and Darko Marinov. 2010. A comparison of constraint-based and sequence-

based generation of complex input data structures. In Workshop on Constraints in Software Testing, Verification and

Analysis. 337ś342.

Aaron Tomb, Stuart Pernsteiner, and Mike Dodds. 2020. Symbolic Testing for C and Rust. In 2020 IEEE Secure Development

(SecDev). 33ś33.

UDITAWebPage [n. d.]. UDITA Home Page. http://mir.cs.illinois.edu/udita.

Willem Visser, Corina S. Pǎsǎreanu, and Radek Pelánek. 2006. Test Input Generation for Java Containers Using State

Matching. In International Symposium on Software Testing and Analysis. 37ś48.

Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. 2005. Symstra: A Framework for Generating Object-Oriented

Unit Tests Using Symbolic Execution. In Tools and Algorithms for the Construction and Analysis of Systems. Springer

Berlin Heidelberg, 365ś381.

Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. 2017. Compiler-assisted Test Acceleration on GPUs for Embedded

Software. In International Symposium on Software Testing and Analysis. 35ś45.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Conference

on Programming Language Design and Implementation. 283ś294.

Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. 2019. The Fuzzing Book. Saarland

University.

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enumeration for Rigorous Compiler Testing. In

Conference on Programming Language Design and Implementation. 347ś361.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 166. Publication date: October 2021.

http://mir.cs.illinois.edu/udita

	Abstract
	1 Introduction
	2 Programming Model
	2.1 API
	2.2 Hybrid Test Generation Programs
	2.3 Sequence-Based Test Generation Programs

	3 Execution Model
	3.1 Background on CUDA
	3.2 Overview of the Execution Model
	3.3 Semantics
	3.4 Algorithms for Execution Strategies
	3.5 Scaling The Strategies
	3.6 A Brief Comparison
	3.7 MixedStrategy

	4 Evaluation
	4.1 Subjects
	4.2 ForkStrategy vs. ReexeStrategy Performance
	4.3 MixedStrategy
	4.4 Comparison with Prior Work
	4.5 Sequence-Based Generators
	4.6 GPU Profiling Metrics

	5 A Case Study
	5.1 Program Types
	5.2 Setup
	5.3 Issues Found

	6 Limitations and Future Work
	7 Related Work
	8 Conclusions
	A Impact of Global Parameters on Algorithms
	A.1 ForkStrategy
	A.2 ReexeStrategy

	B Hybrid Generator Data
	Acknowledgments
	References

