
Regression Test Selection for TizenRT
Ahmet Celik

University of Texas at Austin (USA)
ahmetcelik@utexas.edu

Young Chul Lee
Samsung (South Korea)
yc207.lee@samsung.com

Milos Gligoric
University of Texas at Austin (USA)

gligoric@utexas.edu

ABSTRACT

Regression testing – running tests after code modifications – is
widely practiced in industry, including at Samsung. Regression Test
Selection (RTS) optimizes regression testing by skipping tests that
are not affected by recent code changes. Recent work has developed
robust RTS tools, which mostly target managed languages, e.g., Java
and C#, and thus are not applicable to large C projects, e.g., TizenRT,
a lightweight RTOS-based platform.

We present Selfection, an RTS tool for projects written in
C; we discuss the key challenges to develop Selfection and our
design decisions. Selfection uses the objdump and readelf tools
to statically build a dependency graph of functions from binaries
and detect modified code elements. We integrated Selfection in
TizenRT and evaluated its benefits if tests are run in an emulator
and on a supported hardware platform (ARTIK 053). We used the
latest 150 revisions of TizenRT available on GitHub. We measured
the benefits of Selfection as the reduction in the number of tests
and reduction in test execution time over running all tests at each
revision (i.e., RetestAll). Our results show that Selfection can
reduce, on average, the number of tests to 4.95% and end-to-end
execution time to 7.04% when tests are executed in the emulator,
and to 5.74% and 26.82% when tests are executed on the actual
hardware. Our results also show that the time taken to maintain
the dependency graph and detect modified functions is negligible.

CCS CONCEPTS

• Software and its engineering→ Software evolution;

KEYWORDS

Regression test selection, TizenRT, static dependency analysis
ACM Reference Format:

Ahmet Celik, Young Chul Lee, and Milos Gligoric. 2018. Regression Test
Selection for TizenRT. In Proceedings of the 26th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3236024.3275527

1 INTRODUCTION

Regression testing – running available tests to check correctness of
recent code changes – is widely practiced in industry, including at
Samsung. Despite the widespread use, regression testing is costly
due to a large number of tests and large number of changes [1, 2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275527

The high cost of regression testing impacts developers’ productivity,
and developers may miss bugs if they manually select to run only
a subset of available tests [7, 15].

Regression test selection (RTS) techniques optimize regression
testing by automatically detecting and skipping to rerun a subset of
tests whose behavior is not affected by recent code changes [10, 21,
22, 31]. Traditionally, RTS techniques track dependencies, for each
test, on code elements (e.g., statements, basic blocks, functions, or
files) and skip from the run (in a new project revision) those tests
that do not depend on any of the modified code elements.

RTS has been studied for over three decades, and researchers and
practitioners have developed RTS techniques for various program-
ming languages, including C/C++ [9, 22], Java [14, 19, 32], C# [30],
etc. However, there are only a few RTS tools available that imple-
ment these techniques. Most of the available tools target managed
code, i.e., languages that compile to Java bytecode [14, 19] or .NET
CLR [30]. Our work is mainly motivated by the lack of an RTS tool
for the C programming language and numerous questions about
potential benefits that such tools could provide.

We present the design, implementation, and evaluation of Sel-
fection, a novel RTS tool for projects written in C, which are
compiled to ARM ELF. Selfection uses static analysis to collect de-
pendencies for each test by utilizing the call graph, i.e., each test de-
pends on functions that might be transitively invoked from the test.
In a new project revision, Selfection detects modified functions,
by comparing the current checksum with the old checksum for
each function, and propagates the information about non-modified
functions to identify tests to skip. Selfection performs the analysis
on an executable image by extending objdump and readelf tools.

To evaluate the benefits of Selfection, we integrated the tool
in TizenRT [27], a lightweight runtime operating system developed
by Samsung. We used the latest 150 revisions and replayed the code
changes. We measured the benefits of Selfection as the reduction
in the number of executed tests, as well as the reduction in end-
to-end execution time compared to RetestAll (i.e., running all tests
at each revision). To execute the tests we used two environments:
Qemu emulator and an actual hardware board; these environments
are used by TizenRT developers, and the set of tests that can run in
each environment differs, e.g., network tests only run on the board.

Our results for runs with the Qemu emulator show that Sel-
fection reduces, on average, the number of executed tests and
test execution time to 4.95% and 7.04%, respectively. Our results
for runs on the board show that Selfection reduces, on average,
the number of executed tests and test execution time to 5.74% and
26.82%, respectively. Finally, our results show that time taken to
maintain the dependency graph and select tests is negligible.

2 SELFECTION

Selfection follows traditional RTS tools, most notably TestTube [9],
and includes three phases: analysis, execution, and collection. We

845

https://doi.org/10.1145/3236024.3275527
https://doi.org/10.1145/3236024.3275527

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Ahmet Celik, Young Chul Lee, and Milos Gligoric

describe the task of each phase, the way we implement these phases,
and the reasoning behind our implementation decisions.

2.1 Phases

Analysis phase (A-Phase). The goal of the analysis phase is to
select tests to be run in a new project revision. In other words, the
goal is to detect tests that are affected by recent code changes. To
detect affected tests, Selfection analyzes the executable image,
extracts functions, and computes the checksum of each function;
our current implementation uses Adler32 algorithm to compute
the checksum, but any other algorithm can be used. Once modified
functions are detected, Selfection computes the transitive closure
using a dependency graph collected in prior C-Phase (see below)
to find affected tests. Selfection uses symbols instead of absolute
addresses for function calls and global variables referenced in a
function body, and relative addresses for branches inside a function.
If these absolute addresses were not ignored, even a simple change,
e.g., adding a line of code could change checksum of every function.
Execution phase (E-Phase). The goal of the execution phase is
simply to run selected tests. Although this step is rather trivial for
projects that use testing frameworks, such as JUnit, xUnit, or similar,
because those frameworks support test filtering (i.e., excluding a
subset of tests), there is no straightforward way to exclude some
tests in C projects, as those tests are frequently explicitly invoked
from themain function. To enable selection of some tests we pass, as
arguments to main, the list of test functions that should be skipped.
This approach ensures that newly added tests are always run. Any
project that would like to utilize Selfection would have to adjust
its test code to invoke our filtering library instead of invoking tests
directly. We automatically modified TizenRT test code to include
necessary invocations for the sake of evaluation; we describe the
details of our experiment setup in Section 3.
Collection phase (C-Phase). The goal of the C-Phase is to collect
dependencies for each test, which will be used in the next test run
(and next A-Phase). To collect dependencies, Selfection statically
analyzes the executable image and builds a function call graph,
which is then used to find transitive dependencies for each test.
Selfection uses objdump and readelf tools to build the call graph.
The dependency data is maintained in the root directory of the
project. If Selfection is integrated in a continuous integration
service, e.g., TravisCI, the dependency data could be kept either in
the cache or as an external repository on GitHub. In the dependency
data, we associate checksum with each function. The persisted data
is used in the A-Phase for the next revision.

2.2 Design/Implementation Decisions

Source vs. binary analysis. Selfection, as mentioned earlier, an-
alyzes an executable image in A-Phase and C-Phase. An alternative
approach would be to analyze source code of the project, e.g., via a
compiler plugin, to build the call graph and dependencies for tests.
Both approaches have advantages and disadvantages. Binary analy-
sis may be seen as more generic, because any language (e.g., OCaml)
that compiles to the same executable format would be supported.
However, depending on the architecture and compiler used, the
binaries frequently differ. On the other hand, analyzing source code
would require dependencies on a specific compiler platform. Al-
though our preference would be a compiler plugin, because it would

Table 1: Test Suites Available in TizenRT, Execution Time

of each Test Suite on ARTIK 053, and Number of Tests in

each Test Suite; Note That the Execution Time Depends on

Platform/Environment and can be Much Longer

Test Suite Time [s] #Test

Arastorage I-Tests 2.02 54
Arastorage U-Tests 1.01 46
Drivers Tests 3.02 26
Filesystem Tests 23.21 76
Sys IO U-Tests 4.04 90
Network Tests 2.02 180
Kernel Tests 136.26 405∑

171.58 877

simplify the implementation, we chose to analyze binaries simply
because the compiler used to compile TizenRT (gcc-arm-none-eabi-
4_9-2015q3) does not support compiler plugins. Additionally, GCC
compiler plugin infrastructure, in general, is poorly documented.
Static vs. dynamic analysis. Selfection statically analyzes bina-
ries in A-Phase and C-Phase; static analysis overapproximates the
set of dependencies [19]. An alternative would be to dynamically
collect dependencies for each test. In other words, while a test is
running, we could collect dependencies on functions that are ex-
ecuted, which would improve precision of the technique, i.e., test
would depend only on functions that are actually used. There are
several (technical) reasons why we chose static analysis. First, dy-
namic approach would require code instrumentation. Considering
that our target project – TizenRT – is run in restricted environment,
using standard instrumentation frameworks, e.g., Dyninst, would
not be feasible. Second, dynamic instrumentation would require
extra memory to maintain dependencies and store those dependen-
cies to disk. Extra memory for keeping dependencies could be too
large for the environment used to run TizenRT tests (e.g., ARTIK
053). Finally, transferring collected dependencies from a board (and
even from an emulator) at the end of each test run would introduce
additional technical challenges and cost.

3 CASE STUDY

To assess the benefits of Selfection, we answer the following
research questions:
RQ1: How many tests does Selfection skip on average across a
large number of revisions?
RQ2:What is the reduction, on average, in end-to-end test execu-
tion time across a large number of revisions?
RQ3: How does time for A-Phase, E-Phase, and C-Phase compare
to other build steps?

We first describe the subject used in our case study, the experi-
ment setup, and then answer the research questions.

3.1 Subject

We use TizenRT [27] developed by Samsung as the main case study.
At the latest revision (0a3d2deb), available at the time of our study,
TizenRT has 5049 functions and 877 test functions/cases. Table 1
shows, for each test suite, the number of test cases and execution
time. Note that a set of test suites differs for various platforms, and

846

Regression Test Selection for TizenRT ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

WORKSTATION

USB

ARTIK 053

USB

(1) BUILD

(3) ANALYZE & COLLECT

(2) TRANSFER IMAGE

(4) SELECT TESTS &
TRIGGER EXECUTION

(6) FETCH RESULTS

(5) EXECUTE

Figure 1: Experiment setup with ARTIK 053

the numbers reported in Table 1 are obtained by running tests on
ARTIK 053; execution time may be substantially different on other
hardware platforms used at Samsung.

3.2 Experiment Setup

We briefly describe our experiment setup. Specifically, we describe
the way we prepare TizenRT for evaluation, data collected during
experiments (i.e., independent variables), metrics used to evaluate
the benefits (i.e., dependent variables), and environments used to
execute the experiments.
Annotated repository. Recall (Section 2) that Selfection skips
non-selected tests by passing the list of test cases to skip to the main
function. We expect that these changes would be performed by de-
velopers when they integrate Selfection into their projects. As we
performed the evaluation retroactively on the TizenRT repository,
those changes are not available, so our first step was to rewrite
the repository and insert the appropriate filtering code. The re-
sult of rewriting is a new repository that contains the same files
and changes as the original repository, but also includes code that
guards/skips tests. Specifically, we perform the following steps:
a) Clone the latest revision of the repository from GitHub; we will

call this repository OriginalRepo;
b) Go 150 revisions back into history; we consider, as in recent

work on RTS, only revisions that are on the master branch (i.e.,
git log --first-parent);

c) Create a new repository, named AnnotatedRepo, that will be
used to host annotated code;

d) Copy all the files from OriginalRepo to AnnotatedRepo;
e) Annotate all the tests by surrounding each test with code that

will guard the test execution; we automate this step with several
bash scripts;

f) Commit all files in AnnotatedRepo;
g) If the current revision in OriginalRepo is the latest revision,

finish the process, otherwise checkout the next revision and go
to step d).

Data collection. To answer aforementioned questions, we per-
formed the steps below on AnnotatedRepo. We follow, as closely
as possible, recent work on RTS [14, 19, 30].
a) Checkout the oldest revision (from the used set of revisions);
b) Execute tests (using RetestAll) and collect number of executed

tests (NRetestAll), as well as test execution time (TRetestAll);
c) Run Selfection to select tests, execute selected tests, and col-

lect new dependencies; we collect number of executed tests
(NSelfection), as well as execution time for all phases:TA−Phase ,
TE−Phase , and TC−Phase ;

d) If there are no more revisions, then finish the process; otherwise
checkout the next revision and go to step b).

We will use TSelfection to denote the end-to-end execution time,
i.e., TA−Phase+ TE−Phase+ TC−Phase+ Tetc . ; Tetc .denotes execu-
tion time for other build steps, e.g., compilation.
Dependent variables. Using the collected data we compute two
variables. First, we compute test selection ratio (Sel[%]), as the ratio
of the number of selected tests and the total number of tests, i.e.,
Sel[%] = NSelfection / NRetestAll * 100.

Second, we compute savings in end-to-end execution time. Ar-
guably, the most important metric for developers used to evaluate
an RTS technique is the reduction in end-to-end execution time. We
compute reduction in time as the ratio of end-to-end time taken by
Selfection and end-to-end time taken by RetestAll, i.e., time[%] =
TSelfection / TRetestAll * 100.
Execution environments. We use two execution environments
(QemuEnv and ArtikEnv) to run the experiments; both environ-
ments, and several other platforms, are used by TizenRT developers.

QemuEnv uses Qemu [20] to emulate necessary hardware and
run the tests. Only a subset of tests – Kernel Tests (in Table 1) – is
enabled on Qemu. We installed Qemu on a machine with an Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz with 16GB of RAM, running
Ubuntu 17.10. We set up our experiment to automatically build
TizenRT, transfer the image to a Qemu instance, execute tests, and
log the execution time and test results; this setup was not automated
prior to our work. Note that A-Phase and C-Phase are run on the
host machine, as already discussed in Section 2.

ArtikEnv uses the actual hardware – an ARTIK 053 board [3] –
to execute tests. Therefore, all tests in Table 1 are enabled. Figure 1
illustrates ArtikEnv. We connected the board, via serial port, to
the machine described in the previous paragraph. Our scripts auto-
matically build the project, transfer the image to the board, select
tests, initiate the test runs, and collect logs and test results. As in
QemuEnv, A-Phase and C-Phase are run on the host machine.

For each test case run in either QemuEnv or ArtikEnv, we com-
pute percentage of functions on which the test case depends. Fig-
ures 2a and 2b show distribution of the percentage of test depen-
dencies. We can see that tests frequently depend on a small number
of functions, which is an ideal scenario for using an RTS tool.

3.3 Results

3.3.1 Average Savings in the Number of Tests. Plots in figures 3a
and 4a show the number of executed tests, using RetestAll and Sel-
fection, at each revision for QemuEnv and ArtikEnv, respectively.
Note that the set of tests run in QemuEnv is not necessarily a subset
of tests run on ArtikEnv, because the configuration in Makefiles
differ. Also, we were unable to run builds for ArtikEnv for first 25 re-
visions. We can observe that for most revisions, Selfection selects
very small number of tests (if any). For each revision, we compute
Sel[%]. Our results show that Sel[%], on average across all revisions,
is 4.95% and 5.74% for QemuEnv and ArtikEnv, respectively.

3.3.2 Savings in the Execution Time. Plots in figures 3b and 4b show
end-to-end execution time, using RetestAll and Selfection, at each
revision for QemuEnv and ArtikEnv, respectively. Clearly, execu-
tion with Selfection is substantially faster than using RetestAll1.
As expected, at the first revision, Selfection takes equal or more

1Time for Selfection increases initially due to the lack of cleanup in filesystem_tc,
which was added by developers in revision 07b740ae.

847

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Ahmet Celik, Young Chul Lee, and Milos Gligoric

10 20 30 40 50

(a) QemuEnv

5 10 15 20

(b) ArtikEnv

Figure 2: Distribution of the percentage of dependencies per test case

0

100

200

300

400

Revision

#T
es

ts

Selfection RetestAll

(a) Number of tests

0

200

400

Revision

Ti
m

e
[s

]

Selfection RetestAll

(b) End-to-end execution time

Figure 3: Number of executed tests (left) and end-to-end execution time (right) using RetestAll and Selfection when tests

are run using QemuEnv

0

250

500

750

Revision

#T
es

ts

Selfection RetestAll

(a) Number of tests

50

100

150

200

Revision

Ti
m

e
[s

]

Selfection RetestAll

(b) End-to-end execution time

Figure 4: Number of executed tests (left) and end-to-end execution time (right) using RetestAll and Selfection when tests

are run using ArtikEnv

time than RetestAll due to the analysis cost. For each revision we
compute time[%]. Our results show that time[%], on average across
all used revisions, is 7.04% and 26.82% of the RetestAll time for
QemuEnv and ArtikEnv, respectively. The reduction in test time
for ArtikEnv is lower than for QemuEnv because testing is not the
only phase that dominates the build, as we discuss below.

We also observed, in Figure 4b, an interesting case (between
f1f53f6f and d99f5451) when execution time drops sharply. This
happens due to a code change that removes several sleep statements.

3.3.3 Execution Time for Various Build Steps. We were curious not
only about the end-to-end execution time, which was discussed
in the previous answer, but also about the portion of time taken
by various Selfection phases. Specifically we compare time for
A-Phase+C-Phase, E-Phase, build time (except time to run Selfec-
tion and tests), and transfer time (in case of the ArtikEnv). Stacked
plots in figures 5a and 5b show time for each step. We can observe
that A-Phase+C-Phase takes negligible time. Interestingly, as only

a few tests are selected on average, test execution time for TizenRT
becomes faster than building the project and transferring the bi-
nary to the board. Future work could optimize the transfer time by
incrementally patching previously transferred binaries [8].

4 DISCUSSION

Different sets of tests. We inspected several revisions used in our
experiments to confirm the correctness of selection. For example,
for the middle two revisions when Selfection selected many tests
for QemuEnv (c560cf79 and 93b205), but only a few for ArtikEnv,
we found that those changes mostly impact binaries that are run in
the emulator. Specifically the change is in up_assert.c file, which
is not included in the binary run in ArtikEnv. In other words, some
part of code (or some files) are included in the binary depending
on the target platform.
Test-order dependencies. The order in which tests are executed
may impact the results of test execution [5, 16]. Therefore, selecting

848

Regression Test Selection for TizenRT ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

0

200

400

0 50 100 150
Revision

Ti
m

e
[s

]
Build A-Phase+C-Phase E-Phase

(a) QemuEnv

0

100

200

300

0 40 80 120
Revision

Ti
m

e
[s

]

Build A-Phase+C-Phase Transfer E-Phase

(b) ArtikEnv

Figure 5: Execution time for various build phases, at each revision, when tests are run using Selfection

only some tests may expose an unexpected behavior. We have
encountered one of these cases in our experiments. Namely, we
observed kernel panic due to an illegal memory access occasionally
if only one test is selected in arastorage_itc. Interestingly, we found
that there is a bug in the test case as the test should deinitialize
the database after removing relations (rather than the other way
around). Our patch was accepted by Samsung developers [28].
Precision and safety. RTS is considered safe if it guarantees that
all affected tests are selected and precise if it selects only those
tests that are affected (but no other tests). We currently provide
no strong guarantees about safety of Selfection, because we are
aware that specific type of changes – a change to a global variable
of non-primitive type and a change to an array without symbolic
name – may not be detected by our tool. We leave it as future work
to improve and test safety of the tool; combining analysis of ELF
and source code would solve most of the problems. Selfection
could also be more precise if we were to track dependencies on
individual statements; however, considering the current positive
results, improving precision is not an immediate goal of our work.
Excluded tests and always executed tests. Ten test cases in the
sysio_itc test suite are excluded (i.e., commented out) from our
experiments as their block forever even without Selfection. We
believe that this has no impact on our conclusions, as the number
of these test cases are rather small compared to the total number of
tests.We are in touchwith Samsung developers about this issue, and
we hope to enable experiments with those tests in the near future.
On the other hand, we always run some tests in the network_tc

and arastorage_utc test suites. This was necessary as there are test-
order dependencies, e.g., a test that is querying a database depends
on another test that is initializing the database.
Future work. Although we made substantial progress towards
practical RTS tool for projects written in C, there are several di-
rections for future work. We plan to (1) improve safety of our tool
by collecting dependencies on global variables, detecting usage of
function pointers, etc.; (2) evaluate Selfection on other projects;
and (3) optimize transfer of binaries to the board.

5 THREATS TO VALIDITY

External. Our results may not generalize beyond TizenRT. We
claim no such generalization, and the evaluation to other C projects

remains as a future work. Our goal in this paper was to report on
our experience on building RTS to support TizenRT in the first
place and document design decisions and challenges.

For each environment – QemuEnv and ArtikEnv – we use only
a single host machine. The savings could different on different
platforms. Additionally, although TizenRT tests could be run on
different hardware boards, Samsung developers confirmed that
ARTIK 053 is among the most relevant at the moment, as they are
heavily using this platform.
Internal. Selfection and the scripts we wrote to perform the ex-
periments may contain bugs. To mitigate this threat, we extensively
tested the tool and inspected the results of our experiments. Inter-
estingly, by inspecting one of the outliers, we discovered the bug
in TizenRT that was described in Section 4.
Construct. We evaluated Selfection on 150 revisions in QemuEnv
and 125 revisions in ArtikEnv. Using different number of revisions
or a different sequence of revisions could lead to different conclu-
sions. To mitigate this threat, we used the latest available revisions
(at the time of our experiments), and we went into history as far
as we could before the build would start failing or our scripts for
rewriting the repo would be invalidated with changes in the repo.
In the future, we plan to further expand the sequence of revisions,
although building old revision is known to be challenging [29].

In our experiments, we compare Selfection only to RetestAll,
although many RTS techniques have been proposed over the years.
To the best of our knowledge, no RTS tool is available for C/C++
projects. Even if there was a tool for C/C++ projects, it would
likely not be readily applicable to TizenRT. Our contribution is the
experience on bringing RTS into TizenRT.

6 RELATEDWORK

We briefly discuss the most related work on RTS, evaluation of
regression testing tools in industry, and work on build systems.
RTS techniques. Several recent survey papers extensively dis-
cuss work and progress on RTS [6, 11, 12, 31]. Rothermel and Har-
rold [23, 24] presented a test selection algorithm based on con-
trol dependency graph. TestTube [9] combines static and dynamic
analysis and builds dependencies of tests on functions. Although
Selfection is directly inspired by TestTube, Selfection does not
use code instrumentation for reasons described earlier. Recently,

849

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Ahmet Celik, Young Chul Lee, and Milos Gligoric

there has been substantial effort to enable RTS with coarse-grained
dependencies to work with managed languages and perform large
scale evaluations. Gligoric et al. [14] presented Ekstazi, an RTS
tool for projects that compile to Java bytecode. Ekstazi tracks dy-
namic dependencies on class level [25]. Several studies have shown
that Ekstazi can reduce end-to-end time by over 50%, and several
companies and open-source projects adopted the tool. Work by
Legunsen et al. [19] implemented and evaluated RTS with static
class dependencies. Their results showed similar savings to Ekstazi,
with small negative impact on safety of the technique. The idea
behind Ekstazi was reimplemented for .NET and evaluated together
with Microsoft developers [30]. Unlike most of the recent work on
RTS, our focus was on C projects and specifically on evaluating
RTS for TizenRT.
Regression testing tools in practice. Srivastava and Thiagara-
jan [26] implemented Echelon, a test case prioritization tool that
analyzes binaries and prioritizes tests based on the number of basic
blocks that they cover. Elbaum et al. [10] proposed an approach to
perform (unsafe) RTS in the pre-submit phase; this RTS selects a
set of tests that failed in the given time window. Herzig et al. [17]
introduce THEO, a tool for accelerating testing process based on
a cost model. Our work differs, as our goal was to make a step
towards an RTS technique for C.
Build systems and continuous integration systems. Manymod-
ern build systems, e.g., Bazel [4], Condor [13], etc., compute static
(file) dependencies for each target (or those dependencies are explic-
itly provided by developers). As these systems keep dependencies
for each target, they are commonly imprecise, i.e., they may run
more tests than necessary. Our work improves precision for C
projects, as we detect changes on function level. Hilton et al. [18]
studied usage, cost, and benefits for continuous integration (CI).
We plan to integrate Selfection in TizenRT to run as part of CI.

7 CONCLUSIONS

We presented Selfection, a novel regression test selection (RTS)
tool for projects written in C. Selfection implements static function-
level RTS and analyzes binaries to collect dependencies and find
affected tests. To evaluate Selfection, we integrated the tool in the
latest 150 revisions of TizenRT, an open-source project developed by
Samsung. We measured savings in terms of the number of executed
tests and test execution time compared to RetestAll (i.e., running
all tests from scratch for each revision). We used two environments
to execute tests: Qemu emulator and the actual hardware board
(ARTIK 053). Our results for Qemu emulator show that Selfection
reduces the number of tests and end-to-end execution time to 4.95%
and 7.04%, on average, compared to RetestAll. Our results for AR-
TIK 053 show that Selfection reduces the number of tests and
time to 5.74% and 26.82%, on average, compared to RetestAll. We
are currently working closely with Samsung developers to deploy
Selfection at the company. We believe that extending Selfection
with support for other binary formats, or creating a variant that
works as a compiler plugin, can result in a valuable tool for many
other C developers.

Acknowledgments. We thank Owolabi Legunsen, Pengyu Nie,
Karl Palmskog, and Chenguang Zhu for their feedback on this
work. This work was partially supported by the US National Science

Foundation under Grants Nos. CCF-1566363, CCF-1652517, CCF-
1704790, and by a Samsung Global Research Outreach Award.

REFERENCES

[1] Testing at the speed and scale of Google. http://google-engtools.blogspot.com/
2011/06/testing-at-speed-and-scale-of-google.html.

[2] Tools for Continuous Integration at Google Scale. http://www.youtube.com/
watch?v=b52aXZ2yi08.

[3] Artik Home Page. Samsung ARTIK IoT Platform. https://www.artik.io/modules/
artik-05x.

[4] Bazel Home Page. Build and test software of any size, quickly and reliably.
https://bazel.build.

[5] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient
Dependency Detection for Safe Java Test Acceleration. In FSE. 770–781.

[6] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.
2011. Regression Test Selection Techniques: A Survey. Informatica (Slovenia) 35,
3 (2011), 289–321.

[7] Vincent Blondeau, Anne Etien, Nicolas Anquetil, Sylvain Cresson, Pascal Croisy,
and Stéphane Ducasse. 2017. What are the Testing Habits of Developers? A Case
Study in a Large IT Company. In ICSME.

[8] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build
System with Lazy Retrieval for Java Projects. In FSE. 643–654.

[9] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. 1994. TestTube: A
System for Selective Regression Testing. In ICSE. 211–220.

[10] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In FSE. 235–245.

[11] Emelie Engström and Per Runeson. 2010. A Qualitative Survey of Regression
Testing Practices. In PROFES. 3–16.

[12] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. IST 52, 1 (2010), 14–30.

[13] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s Distributed and Caching Build Service. In ICSE, SEIP. 11–20.

[14] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In ISSTA. 211–222.

[15] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An
Empirical Evaluation and Comparison of Manual and Automated Test Selection.
In ASE. 361–372.

[16] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:
detecting state-polluting tests to prevent test dependency. In ISSTA. 223–233.

[17] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The
Art of Testing Less without Sacrificing Quality. In ICSE. 483–493.

[18] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in Continuous Integration: Assurance, Security, and Flexi-
bility. In FSE. 197–207.

[19] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In FSE. 583–594.

[20] QemuHome Page. QEMU - the FAST! processor emulator. https://www.qemu.org.
[21] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004.

Chianti: A tool for change impact analysis of Java programs. InOOPSLA. 432–448.
[22] Gregg Rothermel and Mary Jean Harrold. 1993. A safe, efficient algorithm for

regression test selection. In ICSM. 358–367.
[23] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test

Selection Techniques. TSE 22, 8 (1996), 529–551.
[24] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test

selection technique. TOSEM 6, 2 (1997), 173–210.
[25] Mats Skoglund and Per Runeson. 2007. Improving Class Firewall Regression Test

Selection by Removing the Class Firewall. IJSEKE 17, 3 (2007), 359–378.
[26] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively Prioritizing Tests in

Development Environment. In ISSTA. 97–106.
[27] TizenRT Home Page. TizenRT - Lightweight RTOS-based platform for low-end

IoT devices. https://github.com/Samsung/TizenRT.
[28] TizenRT Pull1368. Should deinitialize database after removing relations. https:

//github.com/Samsung/TizenRT/pull/1368.
[29] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and Back Again:
Can you Compile that Snapshot? JSEP (2017).

[30] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017. File-
Level vs. Module-Level Regression Test Selection for .NET. In FSE, industry track.
848–853.

[31] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. STVR 22, 2 (2012), 67–120.

[32] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In ICSM. 23–32.

850

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.youtube.com/watch?v=b52aXZ2yi08
https://www.artik.io/modules/artik-05x
https://www.artik.io/modules/artik-05x
https://bazel.build
https://www.qemu.org
https://github.com/Samsung/TizenRT
https://github.com/Samsung/TizenRT/pull/1368
https://github.com/Samsung/TizenRT/pull/1368

	Abstract
	1 Introduction
	2 Selfection
	2.1 Phases
	2.2 Design/Implementation Decisions

	3 Case Study
	3.1 Subject
	3.2 Experiment Setup
	3.3 Results

	4 Discussion
	5 Threats To Validity
	6 Related Work
	7 Conclusions
	References

