
The Effect of Test Suite Type

on Regression Test Selection

Nima Dini1, Allison Sullivan1, Milos Gligoric1, and Gregg Rothermel2

The University of Texas at Austin1, University of Nebraska - Lincoln2

Email: {nima.dini, allisonksullivan, gligoric}@utexas.edu, grother@cse.unl.edu

Abstract—Regression test selection (RTS) techniques reduce
the cost of regression testing by running only test cases related
to code modifications. RTS techniques have been extensively re-
searched, and the effects of several context factors on techniques
have been empirically studied, but no prior work has explored the
effects that might arise due to differences in types of test suites.
We believe such differences may matter, and thus, we designed an
empirical study to investigate them. Specifically, we consider two
types of test suites obtained with automated test case generation
techniques—feedback-directed random techniques and search-
based techniques—along with manually written test suites. We
assess the effects of these test suite types on two RTS tech-
niques: a “fine-grained” technique that selects test cases based
on dependencies tracked at the method level and a “coarse-
grained” technique that selects test cases based on dependencies
tracked at the file level. We performed our study on eight open-
source projects across 800 commits. Our results show that on
average, fine-grained RTS was more effective for test suites
created by search-based test case generation techniques whereas
coarse-grained RTS was more effective for test suites created by
feedback-directed random techniques, and that commits affect
RTS techniques differently for different types of test suites.

I. INTRODUCTION

Regression testing is performed with the goal of assessing

whether code modifications have harmed previously working

functionality. Although important, regression testing is costly,

and the cost is reportedly increasing. For example, Microsoft

reports that the annual cost of regression testing exceeds tens

of millions of dollars [35], [36], and Google reports a quadratic

increase in regression testing time due to a linear increase

in the number of commits per day and a linear increase in

the number of test cases added per commit [21], [63], [65].

This cost will arguably increase further as companies adopt

automated test case generation techniques (e.g., [6], [17], [27],

[31], [49], [58], [59]) to augment manually written test suites.

Regression test selection (RTS) techniques (e.g., [3], [5],

[14], [22]–[24], [44], [46], [47], [53], [55], [61]–[63], [69],

[72], [74], [75]) reduce the cost of regression testing by

omitting test cases that are thought to be unnecessary to

test a given modified version of a program. Coverage-based

RTS techniques track test case dependencies (i.e., statements,

methods, or files covered by test cases) and select only test

cases for which dependencies are potentially affected by code

modifications, reducing test execution time.

RTS techniques have been extensively researched and em-

pirically studied. Several empirical studies have considered

the effects of various context factors on the relative cost-

effectiveness of techniques. These include the effects of test

case granularity (e.g., a measure of test suite size and com-

plexity) [3], the effects of RTS technique granularity (the

level of coverage at which techniques operate) [9], and the

effects of types of modifications on test selection [20]. These

studies have shown that context factors can affect the relative

cost-effectiveness of techniques, with implications for which

techniques practitioners should apply in certain situations. To

date, however, no work has attempted to examine the effects

that types of test suites may have on RTS techniques.

We believe that the use of different types of test suites can

affect the relative performance of RTS techniques. Further,

with the increased adoption of automated test case generation

techniques, such differences are likely to become increasingly

important. We thus designed an empirical study to evaluate

the effect of types of test suites on the effectiveness of RTS

techniques. We consider two types of test suites obtained by

automated test case generation techniques: feedback-directed

random test case generation techniques [49], and search-based

test case generation techniques [25], [64]. For brevity, we refer

to test suites created by the former as RGTs, and test suites

created by the latter as SGTs (we sometimes refer to RGTs and

SGTs collectively as GTs). We also use manually written test

suites (MWTs). We evaluate the impact of these three types

of test suites on two RTS techniques: a “fine-grained” RTS

technique that tracks test case dependencies on methods [9]

and a “coarse-grained” RTS technique that tracks test case

dependencies on files [30]. To measure technique effectiveness

we compute the test selection ratio (i.e., the number of selected

test cases divided by the total number of test cases) for each

combination of RTS and type of test suite.

Our study addresses three research questions:

RQ1: How effective are RTS techniques when applied to

various types of test suites?

RQ2: Does the effectiveness of RTS techniques vary across

types of test suites?

RQ3: Do differences in RTS technique performance across

types of test suites vary across commits?

RQ1 is not itself the primary focus of this work, but we

do need to investigate it, because if RTS techniques are not

effective in the context of our study setting, then there is no

point in comparing them further. RQ2 is the primary focus of

this work. RQ3 becomes important if differences are observed

in relation to RQ2, because in that case it could be useful to

determine the extent to which differences observed in relation

to RQ2 vary across individual commits.



To address our research questions we study the application

of our two RTS techniques across the three different types of

test suites for eight open-source projects, and we study these

across sequences of 100 commits for each of these projects.

Our empirical results show that in the cases considered, RTS

techniques achieved (on average) test selection ratios between

13% and 32%. Further, on average, for all types of test suites

considered, the fine-grained RTS technique was about twice

as effective as the coarse-grained technique in terms of test

selection ratio. Comparing results across the types of test

suites, we find that types of test suites do affect RTS technique

effectiveness, and they affect the two types of RTS techniques

that we study differently. For example, on average, the fine-

grained RTS technique was more effective than the coarse-

grained technique for SGTs, whereas the coarse-grained RTS

technique was more effective than the fine-grained technique

for MWTs and RGTs. Finally, we find that commits also affect

the performance of RTS techniques, and do so differently for

different types of test suites. For example, there were a large

number of commits for which only MWTs were selected, and

several commits for which only GTs were selected.

There are several implications of our results. First, if our

results generalize, they suggest that developers can be confi-

dent that the cost of regression testing will not substantially

increase as developers add automatically generated test cases.

Second, our study shows that a developer may not want to

choose just one RTS technique for their entire code base, but

rather, may do better by using different RTS techniques for

different types of test suites. Third, our results may be useful

for developers who wish to make decisions about which types

of test cases to include in a regression test suite. Finally, our

results have implications for test case design and the grouping

of test cases into clusters, suggesting approaches for both that

can promote more effective regression test selection.

II. STUDY SETUP AND METHODOLOGY

This section presents our objects of study, variables, exper-

iment procedure, and threats to validity.1

A. Objects of Study

As objects of study we used eight projects. These projects

had all been harvested for and utilized in earlier studies of

regression testing [30], [34], [60]. Originally, these objects of

study were chosen with the following requirements in mind:

(1) the project has at least 100 existing MWTs (JUnit test

methods), (2) the project’s most recent commit (at the time

it was harvested) builds without errors, (3) the project has

at least 100 commits, (4) the project uses Maven to build

code and run test cases, and (5) the project is available on

GitHub. The first two requirements were necessary to ensure

that projects were compilable and non-trivial and allowed us

to work with test cases created by actual developers, the third

allowed us to observe results across a sufficiently large project

history, and the last two were necessary to enable automation

1The tools used and data collected in this study can all be obtained by
contacting the first author.

TABLE I: Objects of Study

Project SHA LOC MWTs Time

method class [ms]

Codec 535bd812 17625 693 48 24594

Coll c87eeaa4 60251 15435 159 51390

DBCP e86d1c2e 19908 541 29 103363

Lang 17a6d163 69014 3685 134 47640

Math 471e6b07 174832 5825 431 160631

Net 4450add7 26928 265 42 79160

Pool 14eb6188 13352 270 20 302224

Vectorz 2d6d264f 50905 424 70 14606
∑

n/a 432815 27138 933 783608

of the empirical studies. In addition, we required that RGTs

and SGTs generated for what we considered an initial commit

(i.e., the commit that is 100 commits prior to the most recent

commit) compile without errors.

Table I provides basic data for each of our objects of

study, including a brief name, the identifier of the most recent

commit (i.e., Git SHA) available at the time we harvested

the project, the number of lines of code in the most recent

commit, the numbers of test methods and test classes available

in the most recent commit, and the time (in milliseconds)

required to execute the MWTs that came with the projects.

Codec [10] provides implementations of common encoders

and decoders; Coll [11] extends and augments the Java

Collections Framework; DBCP [15] supports interactions with

a relational database; Lang [39] extends the standard Java

library; Math [41] includes mathematics and statistics compo-

nents; Net [45] implements many internet protocols; Pool [50]

provides an object-pooling API and a number of object pool

implementations; and Vectorz [66] is a fast double-precision

vector and matrix library for Java.

B. Variables

1) Independent Variables: We manipulate two independent

variables: test suite type and RTS technique. As noted in

Section I, the test suites we utilize include test suites generated

by two automated test case generation techniques (a feedback-

directed random technique and a search-based technique), and

the manually written test suites that were provided with our ob-

jects of study. Our RTS techniques include one “fine-grained”

technique that tracks dependencies at the level of methods

and one “coarse-grained” technique that tracks dependencies

at the level of files. As particular instantiations of techniques

we relied on existing tools, as follows:

Feedback-Directed Random Test Case Generation: Ran-

doop [48], [49], [52], [54] implements a feedback-directed

random test case generation technique. Unlike traditional

random techniques, which naı̈vely create sequences of method

calls, Randoop uses the outcome of each sequence to guide

the test case generation process. Specifically, Randoop begins

the test case generation process with a set of default values

of each type and an empty set of sequences of method calls.

In each step, Randoop randomly chooses a next method to

invoke (from one of the classes under test) and randomly

chooses arguments to pass to the method; these arguments



are derived either from the set of default values or the results

of some prior sequence of method calls. Randoop executes

the new sequence and makes decisions based on the outcome.

First, sequences that throw exceptions are not further extended,

because the result of the extended sequence would be the same

regardless of the extension. Second, sequences that violate

user-defined contracts are not converted to test cases and not

used in further steps. Finally, sequences that are subsumed by

the new sequence are discarded. Randoop outputs the final set

of sequences of method calls as JUnit4 test cases.

Search-Based Test Case Generation: EvoSuite [25]–[27], [57]

implements a search-based test case generation technique [64].

EvoSuite randomly generates an initial population of test cases

and then iteratively generates test cases by evolving the initial

population using mutation, selection, and crossover operators.

A user can customize aspects of the tool including execution

time (the default is two minutes per class under test) and the

fitness function used to guide the search; the default fitness

function attempts to maximize branch coverage. The tool

outputs the test suite with the highest coverage. Similar to

Randoop, EvoSuite outputs test cases in JUnit4 format. Unlike

Randoop, EvoSuite minimizes the generated test suites with

respect to a coverage criterion.

Coarse-Grained Regression Test Selection: Ekstazi [19],

[28]–[30] is an RTS tool for Java that tracks dynamic de-

pendencies of test classes2 on files; the files can be either

executable code or external resources, such as a property file.

A test class need not be run for a new commit if none of

its dependent files has changed. Unlike prior RTS techniques

that track dependencies at finer-grained levels (e.g., statements,

basic blocks, or methods), Ekstazi tracks dependencies at a

more coarse-grained level. Prior work on Ekstazi showed that

it can reduce regression testing cost by more than 50% on non-

trivial projects using MWTs [28], [30]. Ekstazi further reduces

the number of selected test cases at each commit by using

smart checksums, which find two Java class files to be the

same if the code modifications they contain are only in parts

of the files that are not exercised by test cases. Ekstazi has

been used by several open-source projects, including Apache

Camel, Apache CXF, and Apache CommonsMath.

Fine-Grained Regression Test Selection: TestTube [9] is an

RTS tool that tracks dependencies at the level of functions

(which in our context maps to methods) rather than files.

TestTube was implemented for the C programming language;

in this work we implemented the algorithm within the same

framework for Java used to implement Ekstazi. The key

difference between the original implementation and ours is

that ours groups test cases with the same name; this approach

was taken to make the tool practical. In other words, if a test

case t executes a method m in class C, TestTube records that t

depends on all methods named m in class C (regardless of their

signature). If any method m changes, TestTube selects t for the

2We use “test case” and “test class” interchangeably; to refer to individual
test cases when needed, we use “test method”.

Input: project under study
1: function COLLECTDATA(project)
2: CLONE(project.url)
3: CHECKOUT(project.latest)
4: SETJAVA(project.jversion)
5: CHECKOUT(project.initial)
6: GTs← EVOSUITE/RANDOOP(project)
7: for all commit ∈ LAST100COMMITS(project)
8: CLEANANDCHECKOUT(project, commit)
9: if RUNBUILD(project) == FAIL

10: continue
11: end if
12: project.tests ← GTs
13: testCompileError← RUNBUILD(project)
14: GTs← GTs \ testCompileError
15: end for
16: project.tests ← GTs
17: for all commit ∈ LAST100COMMITS(project) do
18: CLEANANDCHECKOUT(project, commit)
19: if RUNBUILD(project) == FAIL then
20: continue
21: end if
22: REPLACEEXITWITHEXCEPTION(project)
23: RUNTEST(project) ⊲ Run available tests
24: INTEGRATEEKSTAZI(project)
25: RUNTEST(project) ⊲ Run selected tests
26: INTEGRATETESTTUBE(project)
27: RUNTEST(project) ⊲ Run selected tests
28: end for
29: end function

Fig. 1: CollectData procedure that obtains the data to be

analyzed in the study. Highlighted statements are executed

only for RGTs and SGTs

execution. Note that our implementation of TestTube may be

somewhat less precise than the original TestTube technique.

2) Dependent Variable: Our dependent variable measures

the effectiveness of RTS techniques at reducing the amount

of effort required to retest modified programs. To do this

we compute the test selection ratio for the technique when

applied to a given object program, version, and test suite: this

is calculated as the number of test cases selected divided by

the total number of test cases in the test suite. We denote this

variable by SX , where X denotes the type of test cases the

ratio corresponds to (MWT, RGT, or SGT).

C. Experiment Procedure

For each of our objects of study we wished to evaluate the

effectiveness of Ekstazi and TestTube for MWTs, RGTs, and

SGTs. Figure 1 provides the procedure we used to collect the

data for the analysis on a single object of study; we performed

this procedure for each object of study. In this section we

describe the approaches used to collect data for various test

suites. We then describe the approaches we used to configure

Ekstazi, TestTube, Randoop, and EvoSuite and provide data

on the test cases generated by Randoop and EvoSuite. Finally,

we describe the platform used for the study.

1) Collecting Data for Test Suites: We first describe the

steps taken to collect data for MWTs (Figure 1 without the

highlighted statements) and then describe modifications to



those steps needed to collect the data for RGTs and SGTs

(Figure 1 with the highlighted statements).

MWTs: In the first step of our procedure (Lines 2 and 3

in Figure 1), we clone the project from GitHub and check

out its most recent commit. Next, we obtain the appropriate

Java version for the project (Line 4); of the eight projects

only Coll and Lang require Java 7, while others work with

Java 8. Next (Lines 17-28), moving from older towards newer

commits, we iterate over the latest 100 commits. We use

only commits on the master branch (obtained by git log

--first-parent --no-merges), because most of the projects

run regression tests only on those commits. For each commit,

we revert the existing changes (introduced by prior iterations

of our procedure) and then attempt to build the project. If the

build fails, we move on to the next commit, otherwise we

execute the following actions: (a) run all available test cases,

(b) run test cases selected by Ekstazi, and (c) run tests cases

selected by TestTube. We collect the number of test cases

executed for (a), (b), and (c). Using the number of available

and selected test cases, we calculate the test selection ratios,

SMWT , for the techniques. Additionally, for each commit, we

save dependency information tracked by Ekstazi and TestTube;

this information is used by Ekstazi and TestTube in subsequent

commits and our subsequent data analysis.

RGTs and SGTs: Our steps for collecting data for GTs diverge

somewhat from the steps described above and include all

statements highlighted in Figure 1. The first steps (cloning and

setting up Java) remain the same. In the second step (Lines 5-

16), we use Randoop or EvoSuite to generate test cases for

the initial commit. Then, we compile the generated test cases

across all 100 commits and remove any test case that does not

compile in at least one commit. In other words, we require

test cases to compile for all commits used in our study. We

do this because test case generation can be expensive [32],

[43], [67] and therefore it is unlikely that newly generated

test cases will be added at every commit. In the third step

we begin from the initial commit and then move forward one

commit at a time to execute the following actions: (a) run all

GTs, (b) run GTs selected by Ekstazi, and (c) run GTs selected

by TestTube. We collect the same data as we do for MWTs

and compute the test selection ratios SRGT and SSGT . We

also replace “System.exit” in the code under test with “if

(true) throw new Error();” prior to executing any GT to

avoid interrupting the Java Virtual Machine.

2) Configuring Systems: Ekstazi and TestTube: We use

Ekstazi version 4.6.1, available on Maven Central, with its de-

fault configuration options. As noted earlier, we implemented

TestTube by extending the same version of Ekstazi.

Randoop and EvoSuite: We use a recent version of Randoop

(SHA ce2b25c6) available on GitHub. For the initial questions

(introduced in Section I), we used the default configuration

of Randoop. In Section IV, we discuss the impact of several

configuration options on our results. Note that Randoop, in the

default configuration, generates test cases for 100 seconds for

all classes under test.

TABLE II: Numbers of Compiled/Generated GTs

Project RGT SGT RGTb RGTc RGTd

Codec
2526

2527

1022

1094

2422

2423

9026

9028

7094

7095

Coll
733

794
-

1364

1553

3708

4371

3709

4233

DBCP
14276

14277

154

1513

13517

13518

21054

21055

14583

14584

Lang
2881

2881
-

3371

3371

6858

6859

4544

4545

Math
1284

1640

2644

4588

1268

1689

1004

1196

1951

2192

Net
1511

1511

2333

2635

5367

5367

2151

2151

1316

1316

Pool
8326

8326

164

460

9205

9205

16600

16600

11655

11655

Vectorz
1871

2135

8257

9331

2527

3465

2961

3192

2077

2269

∑ 33408

34091

14574

19621

39041

40591

63362

64452

46929

47889

We use EvoSuite version 1.0.2 in its default configuration.

By default, EvoSuite generates test cases for two minutes for

each class under test.

As inputs to Randoop and EvoSuite we provide a list of all

(non-test) classes available in each project. For each Randoop

configuration we generated one test method per test class

(--testsperfile=1); the default is 500 test methods per test

class. We also generated one test method per test class in

EvoSuite by post-processing the generated test cases. Using

one test method per test class was necessary to ensure that

we keep all test methods that compile across 100 commits;

otherwise we would discard a substantial number of test

methods. We discuss the impact of this decision in Section V.

3) Data on RGTs and SGTs: Table II shows the numbers of

test cases generated by Randoop and EvoSuite in Columns 2

and 3, respectively (we postpone discussion of Columns 4–6

to Section IV). The numbers below the lines are the numbers

of test cases generated for the initial commits and the numbers

above the lines are the numbers of test cases that successfully

compiled across all 100 commits. A substantial number of

test cases could be compiled, so we did not repair broken test

cases [13], [42]. We did not generate test cases with EvoSuite

for Coll and Lang because these projects do not build with

Java 8 and used version of EvoSuite required Java 8.

Randoop generated unusually large numbers of test cases for

DBCP and Pool. We found that these projects contain numerous

getter and setter methods. This resulted in the generation of

many short sequences of method calls, because invoking a

getter requires only a target object on which the method is

invoked and invoking a setter requires only a target object and

an argument (which can simply be the default value).

Table III shows the branch and class coverage obtained on

the objects of study using MWTs, RGTs, and SGTs as reported

by JaCoCo [37]. In most cases, MWTs achieved higher branch

coverage than RGTs and SGTs (Net is an exception as it



TABLE III: Code Coverage [%] for MWTs, RGTs, and SGTs

Project MWT RGT SGT

bc cc bc cc bc cc

Codec 91.83 95.18 66.06 85.54 84.60 98.73

Coll 76.88 95.91 17.22 66.59 - -

DBCP 55.42 94.64 15.88 39.29 9.02 52.73

Lang 89.08 100.00 42.64 85.78 - -

Math 86.00 97.50 13.19 59.39 18.03 37.64

Net 25.88 38.19 13.08 78.39 44.84 97.98

Pool 80.31 100.00 3.50 22.22 13.74 44.00

Vectorz 63.24 95.32 30.06 92.45 64.95 97.78

Average 71.08 89.59 25.20 66.21 39.20 71.48

has a very small number of MWTs). Additionally, in most

cases, SGTs achieved higher coverage than RGTs, which is

consistent with the results of a recent study [57]. The goal

of our study, however, is not to compare test case generation

techniques, but rather to evaluate the effect of the test suites

they generate on RTS techniques. We discuss the low coverage

of RGTs for Pool in Section V.

4) Execution Platform: We obtained all data on a (time-

shared) cluster in which each node has 32-core 2.3 GHz AMD

Opteron Processor 6376 with 32GB of RAM, running Ubuntu

12.04 LTS. We used two versions of Oracle Java: 1.7.0 76 and

1.8.0 31. For each project we used the latest version of Java

that could compile it and ran MWTs across all 100 commits

we utilized; no project required two versions of Java in the

chosen sequence of commits.

D. Threats to Validity

External: The projects used in our study may not be repre-

sentative. To reduce this threat, we considered projects that

vary in size, number of commits, and application domain. We

considered a window of 100 commits for each project to limit

the machine time and resources required for the experiments,

and our results might vary based on the size and location of

the window used on the software history.

Our results could also depend on the Randoop and EvoSuite

configurations we chose (e.g., test case generation time, maxi-

mum numbers of statements per test method, etc.). The version

of Randoop we used, however, has more than 50 command

line options, and exploring all of its configurations is infeasi-

ble. We evaluated Randoop and EvoSuite using their default

configurations, which are likely to be used by any novice user

and likely reflect what the authors of the tools consider to be

appropriate (and generally applicable) configurations.

Internal: Ekstazi, TestTube, Randoop, EvoSuite, and our au-

tomation scripts may contain faults, and this could impact our

conclusions. We are relatively confident in the correctness of

Ekstazi, Randoop, and EvoSuite, because they are robust tools

that have been used independently in several prior studies and

they have been well maintained. To increase our confidence

in our scripts and TestTube (which we implemented for this

study), we reviewed the code, tested it on many examples, and

manually inspected several results for all projects.

Construct: RTS techniques attempt to reduce the time required

to retest a modified program. In practice, such reductions

TABLE IV: Test Selection Ratios for Ekstazi and TestTube

Project SX [%]

Ekstazi TestTube

MWT RGT SGT MWT RGT SGT

Codec 8.11 29.20 18.95 6.92 22.96 11.95

Coll 13.31 26.18 - 6.39 11.58 -

DBCP 45.63 33.16 33.60 45.44 39.87 26.44

Lang 10.99 19.20 - 5.33 6.64 -

Math 21.84 14.41 33.35 11.83 7.09 11.79

Net 16.29 7.35 9.81 14.26 5.58 4.32

Pool 40.25 42.72 11.22 40.56 49.36 19.51

Vectorz 55.99 52.61 84.37 13.88 9.21 4.08

Average 26.55 28.10 31.89 18.08 19.04 13.01

can be measured in terms of the percentages of test cases

selected, or in the savings in test execution time (after factoring

in the costs of analysis). While the latter metric can more

accurately account for savings in cases in which test execution

times vary substantially across test cases, in this work we

use the former metric, because test execution times can vary

unpredictably on the shared cluster that we used in our

study. Note, however, that under controlled circumstances, the

variance in test execution times on our systems is small, and

thus, the former metric is sufficiently accurate.

III. RESULTS

We now present our study results, addressing each of our

research questions in turn.

A. RQ1: How Effective are RTS Techniques When Applied to

Various Types of Test Suites?

Using our evaluation procedure (Figure 1) we determined,

for each commit of each object program, for each RTS

technique and type of test suites considered, the number of

available test cases and the number of selected test cases. We

then computed the selection ratios for each commit. Commits

with zero selected tests were not included in this computation.

This process yielded the data shown in Table IV.

Table IV (left) displays average selection ratios obtained

using Ekstazi for all projects, for test cases obtained from

MWTs (Column 2), RGTs (Column 3), and SGTs (Column 4).

Overall, the selection ratio varies from 8.11% to 55.99%

for MWTs, from 7.35% to 52.61% for RGTs, and from

9.81% to 84.37% for SGTs. The highlighted row shows

arithmetic means across all projects: avg(SMWT ) is 26.55%,

avg(SRGT ) is 28.10%, and avg(SSGT ) is 31.89%.

Columns 5–7 of Table IV show the same selection ratio

data for TestTube. TestTube also achieved high selectivity

for MWTs and GTs. Specifically, avg(SMWT ) is 18.08%,

avg(SRGT ) is 19.04%, and avg(SSGT ) is 13.01%.

On average, TestTube was 46% more effective than Ekstazi

(26.55% versus 18.08%) for MWTs, 47% more effective than

Ekstazi (28.10% versus 19.04%) for RGTs, and 145% more ef-

fective than Ekstazi (31.89% versus 13.01%) for SGTs. (Note,

however that Ekstazi can be more efficient than TestTube in

terms of execution time [30] and Ekstazi is a safer technique.)

While these results for MWTs were not unexpected given our



TABLE V: Correlations (R2, Spearman’s ρ, and Kendall’s τ )

Between Test Selection Ratios

Project SMWT , SRGT SMWT , SSGT

R2 ρ τ R2 ρ τ

E
k
st

az
i

Codec 0.83 0.67 0.64 0.93 0.70 0.65

Coll 0.78 0.93 0.84 - - -

DBCP 0.44 0.70 0.65 0.56 0.88 0.81

Lang 0.88 0.89 0.79 - - -

Math 0.90 0.90 0.79 0.89 0.75 0.64

Net 0.60 0.54 0.49 0.77 0.56 0.50

Pool 0.33 0.47 0.43 0.36 0.90 0.82

Vectorz 0.97 0.97 0.87 0.71 0.97 0.90

Average 0.71 0.75 0.68 0.70 0.79 0.72

T
es

tT
u
b
e

Codec 0.81 0.60 0.57 0.97 0.65 0.62

Coll 0.80 0.72 0.64 - - -

DBCP 0.42 0.54 0.51 0.41 0.65 0.63

Lang 0.88 0.79 0.68 - - -

Math 0.73 0.81 0.71 0.25 0.64 0.56

Net 0.72 0.39 0.37 0.77 0.37 0.33

Pool 0.33 0.47 0.44 0.31 0.62 0.59

Vectorz 0.77 0.84 0.71 0.63 0.87 0.75

Average 0.68 0.64 0.57 0.55 0.63 0.58

prior work [19], [28]–[30], we were not sure what to expect for

GTs generated by Randoop and EvoSuite prior to this study,

because the effectiveness of Ekstazi and TestTube on the given

objects of study depends on the numbers of files and methods

that test cases use during execution. More important for the

purpose of this work, the results do suggest that we can viably

proceed to examine RQ2 and RQ3 relative to this study’s data.

B. RQ2: Does the Effectiveness of RTS Techniques Vary

Across Types of Test Suites?

Overall, based on the data shown in Table IV, Ekstazi

appears to be more effective for MWTs (26.55%) and RGTs

(28.10%) than for SGTs (31.89%). On the other hand, Test-

Tube appears to be more effective for SGTs (13.01%) than

for MWTs (18.08%) and RGTs (19.04%). This suggests that

indeed, RTS techniques are affected differently by the use of

different types of test suites.

To further assess the foregoing observations we performed a

statistical analysis comparing test selection ratios across types

of test suites. For each project and each pair of test suite

types, we computed the coefficient of determination (R2),

Spearman’s rank correlation coefficient (ρ), and Kendall’s cor-

relation coefficient (τ ) [38]. Table V shows correlation values

between SMWT and SRGT (Columns 2–4), and between

SMWT and SSGT (Columns 5–7). Based on the standard

Guilford scale [33], we can assert that the correlation coef-

ficients range from low (< 0.4) to very high (> 0.9). For

example, considering the Kendall τ coefficients for Ekstazi

comparing SMWT and SRGT (top-left portion of the table),

two values are moderate (> 0.4) (0.43 for Pool and 0.49

for Net), two are nearly high (> 0.6) (0.64 for Codec and

0.65 for DBCP) and four are high (> 0.7); no value is very

high (> 0.9). A similar distribution occurs for Ekstazi when

comparing SMWT and SSGT (top-right portion of the table).

Correlation values for TestTube (bottom half of the table) are

in most cases lower than values for Ekstazi. This analysis

confirms that differences among test suites types can often

affect different RTS techniques in different ways.

We conjecture that the differences in the performance of

RTS techniques across test suite types may relate to differences

in the dependencies per test suite type. To investigate this,

we extracted the dependencies for each test case from the

data tracked by Ekstazi and TestTube. Table VI provides basic

statistics for the numbers of dependencies for MWTs, RGTs,

and SGTs. For each project the table shows the maximum

numbers of dependencies among all test cases, the mean

numbers across all test cases, and the standard deviation.

As the data shows, on most projects MWTs have higher

mean numbers of file dependencies (tracked by Ekstazi) per

test case than RGTs, 24.92 versus 11.18. The mean number

of dependencies is also higher for SGTs than MWTs in many

instances, 42.78 versus 24.92 on average. Considering the

maximum number of dependencies per test case, the order

is the same as for the mean values: SGTs (125.67), MWTs

(90.12), and RGTs (47.62). We observe very different results

for the method dependencies tracked by TestTube. MWTs have

higher mean numbers of method dependencies (132.99 on

average) than RGTs (28.49) and SGTs (27.24). This difference

between numbers of class and method dependencies may

account for the fact that Ekstazi is more effective for MWTs

and RGTs than for SGTs, and TestTube is more effective for

SGTs than for MWTs and RGTs.

Table VI also lists the numbers of libraries, i.e., jar files,

that each project uses (Column “libs”); these are not compile-

time dependencies (defined in pom.xml), but rather run-time

dependencies tracked by Ekstazi and TestTube. RGTs use

smaller numbers of libraries than MWTs (e.g., 2 versus 7

libraries for DBCP) and SGTs (e.g., 2 versus 9 for DBCP). This

finding suggests that an additional metric should be adopted

when evaluating tools for automated test case generation:

instead of comparing only code coverage (e.g., [57]), future

evaluations should also report on coverage of libraries and

coverage of code that interacts with libraries.

Finally, from the numbers in Table VI, we can also explain

Ekstazi’s high S value for Vectorz (84.37%) in the case

of SGTs (Table IV). The values in Table VI clearly show

(Column “mean”) that SGTs depend on many more files

(146.47) than MWTs (38.59) and RGTs (23.06). We expect

test cases with larger numbers of dependencies to be more

frequently selected. This suggests that it might be beneficial

to develop a new multi-objective fitness function for EvoSuite

that favors test cases with smaller numbers of dependencies

and higher overall code coverage.

C. RQ3: Do Differences in RTS Technique Performance

Across Types of Test Suites Vary Across Commits?

To answer this question, we analyzed commits when test

selection ratios had zero values, i.e., SX = 0. These cases

indicate one of the following scenarios: (1) project changes

occurred in files unrelated to the code (such as README

files), (2) changes in dependencies did not affect the behavior



TABLE VI: Statistics for Test Case Dependencies

Project MWT RGT SGT

max mean sd libs max mean sd libs max mean sd libs

E
k
st

az
i

Codec 31 8.54 5.17 1 35 9.20 5.67 0 36 13.05 6.54 0

Coll 95 23.03 18.18 1 76 25.36 17.72 0 - - - -

DBCP 85 44.07 25.41 7 18 2.64 1.17 2 228 32.84 53.42 9

Lang 51 11.60 10.79 2 45 7.19 5.76 0 - - - -

Math 102 30.91 21.36 0 97 10.38 10.96 0 154 40.07 31.51 0

Net 34 10.26 7.64 0 22 5.56 4.25 0 97 16.58 16.94 0

Pool 139 32.40 36.94 2 12 6.03 2.28 0 23 7.65 3.15 0

Vectorz 184 38.59 35.05 3 76 23.06 13.48 2 216 146.47 34.32 4

Average 90.12 24.92 29.31 2.00 47.62 11.18 7.66 0.50 125.67 42.78 24.31 2.17

T
es

tT
u
b
e

Codec 115 39.75 28.86 1 122 26.30 19.75 0 97 21.78 12.54 0

Coll 541 161.78 142.78 1 172 49.17 35.82 0 - - - -

DBCP 553 266.93 181.33 7 72 13.63 9.66 2 176 25.07 25.73 9

Lang 370 61.10 56.04 2 170 22.76 22.81 0 - - - -

Math 438 104.29 87.63 0 207 21.16 24.01 0 263 32.78 23.29 0

Net 126 42.60 28.92 0 58 12.38 9.39 0 68 20.79 10.16 0

Pool 601 160.65 173.51 2 44 17.97 6.10 0 35 17.94 4.89 0

Vectorz 2474 226.84 418.31 3 267 64.57 45.84 2 221 45.10 27.06 4

Average 652.25 132.99 185.28 2.00 139.00 28.49 21.67 0.50 143.33 27.24 17.28 2.17

TABLE VII: Frequencies at Which No Test Cases are Selected

Project SX
= 0 [%]

Ekstazi TestTube

MWT RGT SGT MWT RGT SGT

Codec 64.00 87.00 86.00 72.00 90.00 89.00

Coll 45.00 52.00 - 58.00 75.00 -

DBCP 80.00 89.00 84.00 83.00 95.00 93.00

Lang 43.00 58.00 - 52.00 68.00 -

Math 40.00 50.00 62.00 52.00 65.00 71.00

Net 61.00 62.00 62.00 73.00 77.00 63.00

Pool 62.00 90.00 70.00 73.00 94.00 90.00

Vectorz 21.00 30.00 28.00 39.00 52.00 51.00

Average 50.93 64.16 64.19 61.84 76.73 75.67

of test cases (such as changes in source files that affect only

debug information in executable files, which Ekstazi ignores),

or (3) no test case depended on the changed files. While SX =
0 is desirable in the first two cases, the third case suggests

that test suite quality is sub-optimal, given that no test cases

exercise the modified files. Therefore, the results of RTS can

be used as a first approximation of test suite quality, and this

approximation provides a view on RQ3.

Table VII shows the percentage of commits with SX = 0
across all projects, for both RTS techniques and all three types

of test suites. As the data shows, the percentages are relatively

high in most cases. On average, MWTs, RGTs, and SGTs

were not selected with the following frequencies: 50.93%,

64.16%, and 64.19% for Ekstazi, and 61.84%, 76.73%, and

75.67% for TestTube. More important in the context of RQ3,

the percentage of commits with SX = 0 is always higher for

RGTs and SGTs than for MWTs, which means that GTs were

less frequently affected by the set of changes present in the

projects we study. In other words, project changes affected

MWTs more frequently than they affected RGTs and SGTs.

To obtain additional information on this issue we further

inspected our data to determine whether modified files should

be covered by test cases. It would be non-trivial to manually

inspect 800 commits, so we compared the commits for which

TABLE VIII: Percentage of Commits When Two Types of Test

Cases are Mutually Exclusive, i.e., When Ekstazi Selects Test

Cases From Only One of the Two Types

Project SX
= 0⊕SY

= 0 [%]

MWT, RGT MWT, SGT RGT, SGT

Codec 0.00 23.00 0.00 22.00 1.00 0.00

Coll 0.00 7.00 - - - -

DBCP 0.00 12.86 0.00 5.71 7.14 0.00

Lang 0.00 15.00 - - - -

Math 0.00 10.00 1.00 23.00 3.00 15.00

Net 14.00 15.00 14.00 15.00 0.00 0.00

Pool 0.00 28.00 0.00 8.00 21.00 1.00

Vectorz 0.00 9.00 0.00 7.00 5.00 3.00

Average 1.75 14.98 2.50 13.45 6.19 3.17

the condition SX = 0⊕SY 6= 0 holds. These are commits for

which we know that some test cases of one type are selected

and no test cases of another type are selected. Table VIII shows

the percentage of commits for which test cases of only one

type are selected. (We show only the results for Ekstazi due

to space constraints.)

For several projects, MWTs and GTs complement each

other with respect to the results of this analysis, i.e., RTS

techniques selected test cases from only one type of test suites

for several commits. In all but two cases (Net and Math),

Ekstazi selected at least one MWT whenever it selected one of

the GTs. On the other hand, there were many cases in which

only MWTs were selected. Net is an extreme instance in which

Ekstazi selected one or more test cases from only one type

of test suite in about 30% of commits (14.00% + 15.00%). In

conclusion, we can say that in the cases we considered, MWTs

commonly subsumed GTs with respect to test selection. We

also observed differences between RTS techniques for RGTs

and SGTs. Developers may benefit from including both types

of test cases in their regression test suites, and researchers

may wish to explore closer integration of the two test case

generation techniques.



TABLE IX: Code Coverage [%] for RGTs

Project RGTb RGTc RGTd

bc cc bc cc bc cc

Codec 64.06 85.54 68.41 85.54 61.32 85.54

Coll 22.71 72.84 30.61 80.60 32.16 80.17

DBCP 15.31 35.71 15.75 39.29 16.52 39.29

Lang 44.06 84.86 49.33 88.07 47.74 85.78

Math 11.76 59.04 13.68 51.42 22.96 66.21

Net 16.88 83.92 13.00 79.40 10.67 77.89

Pool 3.50 22.22 3.50 22.22 3.38 22.22

Vectorz 32.51 93.17 35.94 94.96 29.39 90.65

Average 26.35 67.16 28.78 67.69 28.02 68.47

TABLE X: Test Selection Ratios for Ekstazi and TestTube

Project SX [%]

Ekstazi TestTube

RGTb RGTc RGTd RGTb RGTc RGTd

Codec 32.85 26.97 28.13 27.55 21.14 21.47

Coll 29.06 19.70 18.48 9.37 7.75 8.61

DBCP 33.51 31.54 32.63 40.43 37.47 39.76

Lang 19.58 15.01 16.24 6.15 4.91 6.42

Math 13.91 14.09 14.14 6.39 6.80 5.91

Net 9.84 7.91 7.65 6.00 5.52 5.78

Pool 37.41 34.79 41.07 43.08 37.35 47.60

Vectorz 52.68 48.97 54.62 8.22 5.57 7.48

Average 28.60 24.87 26.62 18.40 15.81 17.88

IV. IMPLICATIONS

Inspired by our confirmation that the effectiveness of RTS

techniques can differ for various types of test suites, we wished

to explore whether it may be possible to tune a test case

generation technique to create test suites with higher code

coverage that also yield lower test selection ratios and what

is the impact of combining MWTs and GTs. Our exploration

involved three steps. First, we explored the impact of Randoop

configurations on coverage and test selection ratios. Second,

we explored a method for grouping generated test cases that

can be integrated with test case generation processes, with the

goal of speeding up RTS techniques. Third, we explored the

effect of combining test suites of different types.

A. The Impact of Randoop Configurations on RTS Techniques

Option

C
o
n

fi
g
.

ra
n

d
o
m

se
ed

sm
a
ll

-t
es

ts

a
li

a
s-

ra
ti

o

RGT ✗ ✗ ✗

RGTb
✓ ✗ ✗

RGTc
✗ ✓ ✗

RGTd
✗ ✗ ✓

We repeated our study with test

cases generated by feedback-directed

techniques using three additional tool

configurations supported by Ran-

doop, as shown in the table to

the right. We chose to modify tool

options that we believe are more

likely to lead to test cases of differ-

ent natures. (Note that both “small-

tests” and “alias-ratio” are options for

“varying the nature of generated test

cases”, based on the Randoop documentation [52].) Table II

(three rightmost columns), provides statistics on the numbers

of generated test cases; code coverage and results for test

selection ratios are shown in Tables IX and X.

0

25

50

75

100

Codec Coll DBCP Lang Math Net Pool Vectorz

Projects

T
e
s
t 
s
u
it
e
 c

o
m

p
re

s
s
io

n
 [
%

]

MWT RGT RGT^b RGT^c RGT^d SGT

Fig. 2: Test reduction that can be achieved by grouping test

cases based on Ekstazi dependencies

Our results show that a configuration that favors shorter test

cases (RGTc) generated test cases that achieved competitive

coverage, yet these test cases were less frequently selected by

RTS techniques than test cases generated for other configura-

tions. For example, the last rows in Tables III and IX show

that the average class coverage for RGTc was 67.69%, which

is almost identical to the class coverage for RGT (66.21%),

RGTb (67.16%), and RGTd (68.47%). At the same time, the

last rows in Tables IV and X show that Ekstazi’s test selection

ratio for RGTc was 24.87% as opposed to 28.10% (RGT),

28.60% (RGTb), and 26.62% (RGTd).

B. Test Grouping

We observed that many generated test cases (in each test

suite) had the same sets of dependencies, regardless of the

test case generation tool configuration used. We computed the

numbers of test clusters in test suites based on the Ekstazi

dependencies; all test cases in the same cluster have exactly the

same set of dependencies. (Note that each test case depends on

itself and we exclude such dependencies during comparison.)

If we merge all test cases with the same dependencies into

a single test class, we can reduce the overhead that Ekstazi

imposes on the test selection process. This test grouping could

be performed as a post-generation phase when the tests are run

for the first time (and the grouping can be updated after every

n project versions, which can be specified by the user) or even

integrated within the test case generation tool.

Figure 2 shows the ratio of the number of clusters to the total

number of test cases; smaller values indicate higher reductions

in the numbers of test classes and larger savings in selection

time for Ekstazi. DBCP and Pool are extremes for RGTs;

this was expected as we know that these projects have test

suites that achieve low coverage (Table III). While we do not

expect that developers would want to group their MWTs based

on Ekstazi dependencies, we show the results for MWTs to

facilitate comparison. It is clear from these results that MWTs

are much more diverse in terms of Ekstazi dependencies, as

the reduction is very low.

C. Combining MWTs and GTs

Prior work has suggested that different types of test suites

differ in terms of the types of faults they can detect [57],



TABLE XI: Code Coverage for Combinations of MWTs and GTs

Project MWT RGT SGT MWT+RGT MWT+SGT RGTall MWT+RGTall

bc cc bc cc bc cc bc cc bc cc bc cc bc cc

Codec 91.83 95.18 66.06 85.54 84.60 98.73 93.35 97.59 95.21 98.73 71.74 85.54 94.33 97.59

Coll 76.88 95.91 17.22 66.59 - - 78.58 96.55 - - 38.33 83.41 80.72 96.98

DBCP 55.42 94.64 15.88 39.29 9.02 52.73 61.67 98.21 55.25 98.18 17.09 39.29 62.24 98.21

Lang 89.08 100.00 42.64 85.78 - - 90.56 100.00 - - 58.70 89.91 91.54 100.00

Math 86.00 97.50 13.19 59.39 18.03 37.64 86.57 97.84 86.00 97.50 31.57 79.75 87.60 98.86

Net 25.88 38.19 13.08 78.39 44.84 97.98 32.87 84.92 55.35 97.98 17.83 83.92 35.88 87.44

Pool 80.31 100.00 3.50 22.22 13.74 44.00 80.31 100.00 81.19 100.00 3.74 22.22 80.56 100.00

Vectorz 63.24 95.32 30.06 92.45 64.95 97.78 67.81 97.12 76.76 98.89 54.80 97.12 75.05 97.48

Average 71.08 89.59 25.20 66.21 39.20 71.48 73.96 96.53 74.96 98.55 36.72 72.64 75.99 97.07

TABLE XII: Test Selection Ratios Obtained by Ekstazi for Combinations of MWTs and GTs

Project SX [%]

MWT RGT SGT MWT+RGT MWT+SGT RGTall MWT+RGTall

Codec 8.11 29.20 18.95 10.50 7.40 28.31 10.22

Coll 13.31 26.18 - 21.17 - 20.98 18.23

DBCP 45.63 33.16 33.60 18.29 29.83 32.58 17.93

Lang 10.99 19.20 - 14.01 - 16.88 12.43

Math 21.84 14.41 33.35 14.53 20.88 12.87 12.35

Net 16.29 7.35 9.81 5.45 7.12 8.73 6.28

Pool 40.25 42.72 11.22 11.31 12.15 38.36 10.11

Vectorz 55.99 52.61 84.37 46.95 76.73 49.59 44.03

Average 26.55 28.10 31.89 17.78 25.68 26.04 16.45

rendering combinations of test types potentially useful. For

this reason, we also investigated what might happen if GTs

were included in regression test suites along with MWTs, as

well as if multiple GTs were combined. Table XI shows the

coverage achieved for several such combinations; we omitted

others due to space limitations. Note that RGTall denotes a

test suite that is a union of RGT, RGTb, RGTc, and RGTd.

The first three columns in Table XI are the same as those

in Table III; we repeat these here to facilitate comparison.

Similarly, the first three columns in Table XII are the same as

those in Table IV.

The data shows that GTs improve coverage over MWTs

by only a few percentage points (e.g., compare the “MWT”

column with the “MWT+RGT” and “MWT+SGT” columns).

The largest increase in coverage is for Net and DBCP, which

have the lowest (branch) coverage for MWTs. Table XII

shows Ekstazi’s S for various combinations of test suites. A

large decrease in S for the combination of MWTs and GTs

(compared to selection ratio for GTs) occurs because GTs

dominate MWTs (in terms of the number of test cases) and

there are many commits for which only MWTs are selected

(Table VII). The values of S for the combination of GTs

are similar to the values of S for individual GTs because

these test suites are of similar size and have similar average

S values. In summary, given our current data, we cannot

conclude that combinations of types of test suites provide

substantial improvements for RTS techniques.

V. ADDITIONAL DISCUSSION

We now discuss two additional aspects of our results.

One Test Method per Test Class: As noted in Section II,

we modified the Randoop configuration to generate one test

method per test class, and we post-processed test cases gen-

erated by EvoSuite to obtain one test method per test class.

By default, Randoop includes up to 500 test methods in each

test class and EvoSuite includes all test methods related to

one class under test in a single test class. Using one test

method per test class was necessary for two reasons. First,

we wished to avoid removing excessive numbers of test cases

due to compilation errors. Recall from Section II-C that we

compile all RGTs across 100 commits and use only test cases

that compile at all commits. Therefore, if we had 500 test

methods in a single test class, we would remove that test

class even if a single test method does not compile for a single

commit. Second, Ekstazi and TestTube track dependencies per

test class (known as selection granularity [30]) rather than

per test method.3 Although developers often group manually

written test methods with similar dependencies into a single

test class [30], we have no such expectation from automati-

cally generated test cases, so we split them in separate test

classes. This is probably the first change that any developer

should make when using Randoop or EvoSuite with Ekstazi.

Without this change, considering the number of automatically

generated test cases, we would end up with just a few test

classes, most of which would be selected at most commits.

Low Coverage: Despite the large number of generated test

cases, the coverage achieved for Pool and DBCP was rather

low. In Section II, we noted that these objects have a large

number of getter and setter methods, which is the reason for

3Selection granularity is different from dependency granularity: Ekstazi
uses file dependency granularity (i.e., tracks accessed files) and TestTube uses
method dependency granularity (i.e., tracks used methods), but Ekstazi and
our implementation of TestTube use test class selection granularity (i.e., track
dependencies for each test class separate).



0

25

50

75

100

Codec Coll DBCP Lang Math Net Pool Vectorz

Projects

a
rg

u
m

e
n

t−
n

o
t−

fo
u

n
d

 [
%

]
RGT RGT^b RGT^c RGT^d

Fig. 3: Percentage of randomly chosen methods for which

Randoop could not find the required arguments

the large number of test cases. We investigated the reason

behind the low coverage achieved for these two objects of

study (Table III). We used Randoop’s logs to count the number

of randomly chosen methods for which Randoop could not

find appropriate arguments. Figure 3 shows, for each object

and Randoop configuration, the ratio of unsuccessfully chosen

methods to the total number of chosen methods. The ratios

for Pool and DBCP are among the highest. For these objects,

Randoop frequently rejected a method invocation because

it could not find arguments of appropriate types. Having a

test case generation tool monitor and report this ratio could

indicate, to a developer, cases in which to expect low coverage

and a low test selection ratio. In such cases, the developer may

want to explore other test case generation techniques.

VI. RELATED WORK

There has been a lot of work on automated test case

generation (e.g., [2], [6]–[8], [17], [27], [31], [40], [49],

[51], [54], [58], [59]) and RTS. We have already described

Randoop, EvoSuite, Ekstazi, and TestTube, which we used

in our study due to the availability of implementations. This

section briefly describes other related studies, techniques, and

tools. Specifically, we describe (1) several automated test

case generation techniques, (2) several RTS techniques, and

(3) other work on regression testing related to automated test

case generation.

Automated Test Case Generation Techniques: Various tech-

niques and tools have been developed for automated test case

generation. Random testing [1], [4], [17] is a naı̈ve approach

for generating random sequences of methods. Systematic

approaches [6], [12], [31], [58], [59], [67], which exhaustively

explore sequences of methods up to a given bound or generate

test inputs based on test abstractions, have been used primarily

to generate complex data structures. Techniques based on

evolutionary algorithms have been shown to be effective [25]–

[27], [57], [64]. Other work has explored automatic generation

of system test cases from use case specifications [16], [68] and

models [18]. We used Randoop and EvoSuite because they are

robust tools that are applicable to a wide range of projects and

comparable to other approaches [49], [57], [58].

RTS Techniques: Many RTS techniques and tools have

been developed over the past three decades. Two recent

surveys [22], [72] summarize work on regression testing in

general, including RTS. Two other recent surveys [5], [23]

focus on contributions related only to RTS. Prior work has

proposed techniques that track dependencies for test cases at

fine-grained levels (e.g., statements, basic blocks, methods).

For example, Chianti [53] tracks dependencies on methods

and discovers modified methods by analyzing source code.

We used Ekstazi and TestTube in our study to evaluate the

effect of test case generation techniques on RTS techniques

with coarse-grained and fine-grained dependencies. Ekstazi is

the only publicly available RTS tool, and has been shown to

be effective in many cases [30]. We implemented TestTube for

the purpose of this study by modifying the Ekstazi framework.

Regression Testing with Automated Test Case Generation:

There has been relatively little work combining regression

testing with automated test case generation. Groce et al. [32]

present a test suite reduction technique for use on automati-

cally generated test cases. Their technique is guided by cov-

erage and uses delta debugging [73]. Several researchers [51],

[56], [70], [71] have considered the use of automated test

case generation in test suite augmentation – the process of

improving test suites after code has evolved. None of this

work, however, considers RTS techniques.

VII. CONCLUSIONS

We have designed and presented the results of the first

empirical study to evaluate the effects that different types of

test suites have on RTS techniques. Specifically, we considered

two types of automatically generated test suites—test suites

generated by feedback-directed random techniques and search-

based techniques—along with manually written test suites. We

assessed the effects of these types of test suites on two RTS

techniques: a “fine-grained” technique that tracks dependen-

cies on methods (TestTube) and a “coarse-grained” technique

that tracks dependencies on files (Ekstazi). We performed

our study on eight open-source projects across 800 commits.

(To the best of our knowledge, this is the largest number of

commits used in any RTS study.) Our results showed that on

average the fine-grained RTS technique was more effective

for test suites created by search-based test case generation

techniques (13.01% compared to 19.04%), whereas the coarse-

grained RTS was more effective for test suites created by

feedback-directed random techniques (28.10% compared to

31.89%). We also found that commits affect the performance

of RTS techniques, and do so differently for different types of

RTS techniques.

Acknowledgments. We thank the fellow students of EE 382V

(Software Evolution) at The University of Texas at Austin

for constructive discussions on the material presented in this

paper. We also thank Marko Dijmasevic, Ahmet Celik, Sarfraz

Khurshid, and Marko Vasic for their feedback on this work.

This research was partially supported by the US National

Science Foundation under Grants Nos. CCF-0845628, CCF-

1566363, CNS-1239498 (to UTA) and CCF-1526652 (to

UNL), and by a Google Faculty Research Award (to UTA).



REFERENCES

[1] A. Arcuri, M. Z. Iqbal, and L. Briand. Random testing: Theoretical
results and practical implications. Transactions on Software Engineering,
pages 258–277, 2012.

[2] A. Aydin, M. Alkhalaf, and T. Bultan. Automated test generation
from vulnerability signatures. In International Conference on Software
Testing, Verification and Validation, pages 193–202, 2014.

[3] J. Bible, G. Rothermel, and D. S. Rosenblum. A comparative study
of coarse- and fine-grained safe regression test-selection techniques.
Transactions on Software Engineering and Methodology, 10(2):149–183,
2001.

[4] D. L. Bird and C. U. Munoz. Automatic generation of random self-
checking test cases. IBM Syst. J., 22(3):229–245, 1983.

[5] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. Regression test
selection techniques: A survey. Informatica (Slovenia), 35(3):289–321,
2011.

[6] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing
based on Java predicates. In International Symposium on Software

Testing and Analysis, pages 123–133, 2002.

[7] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation.
In Automated Software Engineering, pages 443–446, 2008.

[8] T. Y. Chen, F. Kuo, H. Liu, and W. E. Wong. Code coverage of adaptive
random testing. Transactions on Reliability, 62(1):226–237, 2013.

[9] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. TestTube: A system for
selective regression testing. In International Conference on Software

Engineering, pages 211–220, 1994.

[10] Commons Codec home page. https://github.com/apache/
commons-codec.git.

[11] Commons Collections home page. https://github.com/apache/
commons-collections.git.

[12] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing
of refactoring engines. In International Symposium on Foundations of

Software Engineering, pages 185–194, 2007.

[13] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. ReAssert: Suggesting
repairs for broken unit tests. In Automated Software Engineering, pages
433–444, 2009.

[14] B. A. Daou. Regression test selection for database applications.
Advanced Topics in Database Research, 3:141–165, 2004.

[15] Commons DBCP home page. https://github.com/apache/commons-dbcp.
git.

[16] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact.
Empir. Softw. Eng., 10(4):405–435, 2005.

[17] S. Ducasse, M. Oriol, and A. Bergel. Challenges to support automated
random testing for dynamically typed languages. In International

Workshop on Smalltalk Technologies, pages 9:1–9:6, 2011.

[18] G. Edwards, Y. Brun, and N. Medvidovic. Automated analysis and code
generation for domain-specific models. In Joint Working Conference on

Software Architecture & European Conference on Software Architecture,
pages 161–170, 2012.

[19] Ekstazi home page. http://www.ekstazi.org.

[20] S. Elbaum, P. Kallakur, G. Rothermel, and S. Kanduri. Understanding
the effects of changes on the cost-effectiveness of regression testing
techniques. Journal of Software Testing, Verification and Reliability,
13(2):65–83, 2001.

[21] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environments.
In International Symposium on Foundations of Software Engineering,
pages 235–245, 2014.

[22] E. Engström and P. Runeson. A qualitative survey of regression testing
practices. In Product-Focused Software Process Improvement, pages 3–
16. Springer-Verlag, 2010.

[23] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Information & Software Technology,
52(1):14–30, 2010.

[24] E. Engström, M. Skoglund, and P. Runeson. Empirical evaluations of
regression test selection techniques: a systematic review. In International
Symposium on Empirical Software Engineering and Measurement, pages
22–31, 2008.

[25] EvoSuite home page. http://www.evosuite.org/.

[26] G. Fraser and A. Arcuri. Whole test suite generation. Transactions on
Software Engineering, 39(2):276–291, 2013.

[27] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. In International Symposium on Software Testing and Analysis,
pages 147–158, 2010.

[28] M. Gligoric. Regression Test Selection: Theory and Practice. PhD thesis,
The University of Illinois at Urbana-Champaign, 2015.

[29] M. Gligoric, L. Eloussi, and D. Marinov. Ekstazi: Lightweight test
selection. In International Conference on Software Engineering, Demo,
pages 713–716, 2015.

[30] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In International Symposium

on Software Testing and Analysis, pages 211–222, 2015.

[31] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov. Test generation through programming in UDITA. In
International Conference on Software Engineering, pages 225–234,
2010.

[32] A. Groce, A. Alipour, C. Zhang, Y. Chen, and J. Regehr. Cause reduction
for quick testing. In International Conference on Software Testing,

Verification and Validation, pages 243–252, 2014.
[33] J. P. Guilford. Fundamental Statistics in Pyschology and Education.

McGraw-Hill, 1956.

[34] A. Gyori, A. Shi, F. Hariri, and D. Marinov. Reliable testing: Detect-
ing state-polluting tests to prevent test dependency. In International

Symposium on Software Testing and Analysis, pages 223–233, 2015.

[35] J. Hartmann. Applying selective revalidation techniques at Microsoft.
In Pacific NW Software Quality Conference, pages 255–265, 2007.

[36] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of testing
less without sacrificing quality. In International Conference on Software

Engineering, pages 483–493, 2015.
[37] JaCoCo home page. http://eclemma.org/jacoco/.

[38] M. Kendall. A new measure of rank correlation. Biometrika, 1(2):81–89,
1938.

[39] Commons Lang home page. https://github.com/apache/commons-lang.
git.

[40] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang. TCA: An efficient
two-mode meta-heuristic algorithm for combinatorial test generation (t).
In Automated Software Engineering, pages 494–505, 2015.

[41] Commons Math home page. https://github.com/apache/commons-math.
git.

[42] A. M. Memon. Automatically repairing event sequence-based GUI test
suites for regression testing. Transactions on Software Engineering and

Methodology, 18(2):4:1–4:36, 2008.
[43] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and D. Marinov.

Parallel test generation and execution with Korat. In International

Symposium on Foundations of Software Engineering, pages 135–144,
2007.

[44] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso. Regression
testing in the presence of non-code changes. In International Conference
on Software Testing, Verification and Validation, pages 21–30, 2011.

[45] Commons Net home page. https://github.com/apache/commons-net.git.

[46] A. Orso and G. Rothermel. Software testing: A research travelogue
(2000–2014). In Future of Software Engineering, pages 117–132, 2014.

[47] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to
large software systems. In International Symposium on Foundations

of Software Engineering, pages 241–251, 2004.
[48] C. Pacheco. Directed Random Testing. PhD thesis, Massachusetts

Institute of Technology, 2009.

[49] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In International Conference on Software

Engineering, pages 75–84, 2007.

[50] Commons Pool home page. https://github.com/apache/commons-pool.
git.

[51] D. Qi, A. Roychoudhury, and Z. Liang. Test generation to expose
changes in evolving programs. In Automated Software Engineering,
pages 397–406, 2010.

[52] Randoop manual. http://randoop.googlecode.com/hg-history/v1.3.3/doc/
index.html.

[53] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A
tool for change impact analysis of Java programs. In Object-oriented

Programming, Systems, Languages, and Applications, pages 432–448,
2004.

[54] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and N. Li. Scaling
up automated test generation: Automatically generating maintainable
regression unit tests for programs. In Automated Software Engineering,
pages 23–32, 2011.

https://github.com/apache/commons-codec.git
https://github.com/apache/commons-codec.git
https://github.com/apache/commons-collections.git
https://github.com/apache/commons-collections.git
https://github.com/apache/commons-dbcp.git
https://github.com/apache/commons-dbcp.git
http://www.ekstazi.org
http://www.evosuite.org/
http://eclemma.org/jacoco/
https://github.com/apache/commons-lang.git
https://github.com/apache/commons-lang.git
https://github.com/apache/commons-math.git
https://github.com/apache/commons-math.git
https://github.com/apache/commons-net.git
https://github.com/apache/commons-pool.git
https://github.com/apache/commons-pool.git
http://randoop.googlecode.com/hg-history/v1.3.3/doc/index.html
http://randoop.googlecode.com/hg-history/v1.3.3/doc/index.html


[55] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. Transactions on Software Engineering, 22(8):529–551,
1996.

[56] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.
Harrold. Test-suite augmentation for evolving software. In Automated

Software Engineering, pages 218–227, 2008.
[57] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.

Do automatically generated unit tests find real faults? An empirical study
of effectiveness and challenges. In Automated Software Engineering,
pages 201–211, 2015.

[58] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov. Testing
container classes: Random or systematic? In Fundamental Approaches

to Software Engineering, pages 262–277, 2011.
[59] R. Sharma, M. Gligoric, V. Jagannath, and D. Marinov. A comparison of

constraint-based and sequence-based generation of complex input data
structures. In Workshop on Constraints in Software Testing, Verification
and Analysis, pages 337–342, 2010.

[60] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov. Balanc-
ing trade-offs in test-suite reduction. In International Symposium on

Foundations of Software Engineering, pages 246–256, 2014.
[61] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in

development environment. In International Symposium on Software

Testing and Analysis, pages 97–106, 2002.
[62] Streamline testing process with test impact analysis. http://msdn.

microsoft.com/en-us/library/ff576128%28v=vs.100%29.aspx.
[63] Testing at the speed and scale of Google. http://google-engtools.

blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html.
[64] P. Tonella. Evolutionary testing of classes. In International Symposium

on Software Testing and Analysis, pages 119–128, 2004.
[65] Tools for continuous integration at Google scale. http://www.youtube.

com/watch?v=b52aXZ2yi08.

[66] Vectorz home page. https://github.com/mikera/vectorz.git.

[67] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek. Test input generation for
Java containers using state matching. In International Symposium on
Software Testing and Analysis, pages 37–48, 2006.

[68] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal. Automatic
generation of system test cases from use case specifications. In
International Symposium on Software Testing and Analysis, pages 385–
396, 2015.

[69] D. Willmor and S. M. Embury. A safe regression test selection
technique for database driven applications. In International Conference

on Software Maintenance, pages 421–430, 2005.

[70] Z. Xu, Y. Kim, M. Kim, M. B. Cohen, and G. Rothermel. Directed
test suite augmentation: an empirical investigation. Journal of Software
Testing, Verification and Reliability, 25(2):77–114, 2015.

[71] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen. Directed
test suite augmentation: Techniques and tradeoffs. In International

Symposium on Foundations of Software Engineering, pages 257–266,
2010.

[72] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. Journal of Software Testing, Verification and

Reliability, 22(2):67–120, 2012.

[73] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. Transactions on Software Engineering, 28(2):183–200, 2002.

[74] L. Zhang, M. Kim, and S. Khurshid. Localizing failure-inducing pro-
gram edits based on spectrum information. In International Conference
on Software Maintenance, pages 23–32, 2011.

[75] J. Zheng, B. Robinson, L. Williams, and K. Smiley. An initial study
of a lightweight process for change identification and regression test
selection when source code is not available. In International Symposium

on Software Reliability Engineering, pages 225–234, 2005.

http://msdn.microsoft.com/en-us/library/ff576128%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/ff576128%28v=vs.100%29.aspx
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://www.youtube.com/watch?v=b52aXZ2yi08
http://www.youtube.com/watch?v=b52aXZ2yi08
https://github.com/mikera/vectorz.git

