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Abstract—Bounded exhaustive testing (BET) techniques have
been shown to be effective for detecting faults in software. BET
techniques based on imperative predicates, enumerate all test
inputs up to the given bounds such that each test input satisfies
the properties encoded by the predicate. The search space is
bounded by the user, who specifies the number of objects of
each type and the list of values for each field of each type.
To optimize the search, existing techniques detect isomorphic
instances and record accessed fields during the execution of a
predicate. However, these optimizations are extension-unaware,
i.e., they do not speed up the search when the predicate is
modified, say due to a fix or additional properties.

We present a technique, named iGen, that speeds up test gen-
eration when imperative predicates are extended. iGen memoizes
intermediate results of a test generation and reuses the results in
a future search – even when the new search space differs from the
old space. We integrated our technique in two BET tools (one for
Java and one for Python) and evaluated these implementations
with several data structure pairs, including two pairs from the
Standard Java Library. Our results show that iGen speeds up test
generation by up to 46.59× for the Java tool and up to 49.47× for
the Python tool. Additionally, we show that the speedup obtained
by iGen increases for larger test instances.

I. INTRODUCTION

Software testing is the most common approach in industry
for detecting software bugs. Unfortunately, manually writing
tests is tedious and time consuming. Automated test generation
has been widely studied, over several decades, in both research
and industry [1]–[4].

Bounded exhaustive testing (BET) [5]–[12], an approach
to automated test generation, has been shown effective for
detecting faults in various software applications [5], [6], [11].
BET techniques based on imperative predicates generate all test
inputs, up to the given bounds, that satisfy a set of properties
encoded by the imperative predicate [13]–[15].

One of the most widely studied BET techniques based
on imperative predicates is Korat [13], [16], which was
originally implemented for Java, but variations of Korat have
been implemented for other programming languages [7], [9]
(including C/C++, C#, CUDA, and Python). Korat takes as
input: (1) a boolean predicate, traditionally termed repOK [17],
which is written in an imperative language, e.g., Java; and
(2) bounds on the space to explore. The bounds are given
by the user, as the number of objects of each type and the
domain, i.e., list of values, for each field of each type. Korat
searches through the bounded space by generating candidate
vectors (i.e., concrete assignment of values to each field for
each object) within specified bounds, and executing repOK on

each candidate; repOK returns true if the given candidate
is valid, i.e., satisfies all the properties.

Due to a large number of candidates to explore, even for
small bounds, the test generation (and execution of those
tests) quickly becomes intractable [7], [8]. To optimize the
search, Korat implements backtracking search with pruning by
monitoring field accesses during the execution of the repOK
predicate on each enumerated test input. Additionally, Korat
detects isomorphic object graphs to optimize the search space.

To further reduce the cost of test generation, researchers and
practitioners have explored several algorithms to parallelize
BET techniques. Parallel Korat [8] includes a set of algorithms
for test generation and execution on map-reduce model;
PKorat [9] improves parallel test generation by dynamic
partitioning of the search space; and intKorat [7] speeds up
test generation by utilizing graphics processing units (GPUs).
Motivation. These recent techniques not only require spe-
cialized hardware, but they are also, as the original Korat,
extension-unaware, i.e., if the imperative predicate is modified
by the user, the entire search for finding valid candidate vectors
has to be done from scratch.

An imperative predicate can undergo modification
for various reasons, including a bug fix (e.g., a fix
in java.util.TreeSet between Java 6 and Java
7 [18]) or reuse of a predicate to generate test inputs
for more complex data structures, e.g., if the original
predicate encoded properties for java.util.TreeMap
(a common form of height-balanced binary search trees),
the predicate can be extended to encode properties for
org.apache.commons.collections4.bag.TreeBag
(the standard implementation of a sorted bag).
Technique. We present the first technique, named iGen, that
speeds up test generation for extended imperative predicates.
iGen implements mixed ranges, a novel approach for memoiz-
ing test inputs generated based on a predicate; mixed ranges
track ranges of candidates that need not be explored if the
predicate is extended with extra properties on the candidate
vectors (e.g., a previously unbalanced tree should be balanced).
Our approach also works if the search space is different (e.g.,
a new field was added in one of the types) from prior searches;
we currently do not support a removal of a field or property.
Last but not least, our approach is orthogonal to prior efforts to
speed up test generation by parallelizing the algorithm [7]–[9].

We implemented the iGen technique by extending two
existing BET tools, written in two programming languages:



Korat [16] (for Java) and PyIG [19] (for Python). We named
the two new (extension-aware) implementations Korati and
PyIGi, respectively.
Evaluation. We evaluated the benefits of Korati and PyIGi in
several ways. First, we simulated the extension of predicates
written for one data structure to predicates written for another
data structure, e.g., an extension of Binary Tree to Binary
Search Tree to Red Black Tree. The data structures used in
this part of our evaluation are commonly used in prior work
on bounded exhaustive test generation [7], [8], [10], [13]; we
used the exact code, which is available online, as used in
prior studies. We also evaluated the benefits of combining
parallel generation and iGen and compared it with Parallel
Korat. Second, we used two pairs of data structures from
popular Java libraries; the first pair illustrates extension due
to a bug fix (aforementioned fix in java.util.TreeSet),
and the second pair illustrates an extension of one data
structure to implement another data structure (org.-
apache.commons.collections4.bag.TreeBag
uses java.util.TreeMap). Third, we compared our
technique to an incremental technique for constraints written
in Alloy [20]. Finally, we show an application of our technique
for speeding up model counting [21], [22].
Results. Our results show that Korati and PyIGi speed up test
generation up to 46.59× and 49.47×, respectively. Parallel
generation scales almost linearly and compares favorably with
Parallel Korat. Also, our results show that iGen provides
increasing benefits, unlike Titanium [20], as the size of the
generated structures increases. Finally, iGen speeds up an
existing model counting technique between 4.37× and 29.97×.

II. BACKGROUND AND EXAMPLE

This section introduces Korat as a representative BET
technique and illustrates the key ideas behind mixed ranges,
implemented in Korati and PyIGi, through an example.
Korat (extension-unaware technique). Consider using Korat
for generating a bounded exhaustive suite of test inputs that are
binary search trees with parent pointers (or BSTP for brevity).
The user writes the repOK method that checks the properties
of desired trees, and finitization that bounds the search size,
i.e., number of nodes in a tree instance. Figure 1 shows the
class declaration (BSTP), the repOK method, and finitization
(finBinaryTree). The repOK method checks acyclicity
along left and right fields; correctness of the size field,
which caches the number of nodes reachable from the root
node; binary search constraints on the node elements (i.e., for
every node the value of the elem field is larger than the values
of elem fields for nodes in a left subtree); and correctness of
the parent pointers.

Figure 2 shows an example BSTP instance with values 0,
1 and 2. Corresponding candidate vector is shown on the left
of the tree. Field domains (fd) for size=3 is shown at the top.
Field domains specifies that each of the fields left, right,
and parent have 4 possible values (i.e., null or one of
three possible nodes N0, N1, and N2), and the size field has
only one possible value (i.e., 3). For this size, the exploration

1 public class BSTP {
2 Node root;
3 int size;
4 static class Node {
5 Node left, right, parent;
6 int elem;
7 }
8 boolean repOK() {
9 return isAcyclic() && sizeOK() &&

10 ordersOK() && parentsOK();
11 }
12 static IFinitization finBinaryTree(int num) {
13 IFinitization f = FinitizationFactory.create(

BSTP.class);
14 IObjSet nodes = f.createObjSet(Node.class, num,

true);
15 f.set("root", nodes);
16 f.set("size", f.createIntSet(num, num));
17 f.set("Node.left", nodes);
18 f.set("Node.right", nodes);
19 f.set("Node.elem", f.createIntSet(0, num-1));
20 f.set("Node.parent", nodes);
21 return f;
22 } · · ·
23 }

Fig. 1: Binary search tree with parent pointers (BSTP), with
properties and finitization

fd(BSTP.root) = [null,N0, N1, N2], fd(BSTP.size) = [3]

fd(Node.left) = fd(Node.right) = fd(Node.parent) = fd(BSTP.root)

fd(Node.elem) = [0, 1, 2]
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Fig. 2: An example candidate vector with its corresponding
tree instance, and the field domains (for size=3)

1 public class RBT {
2 static class Node {
3 · · ·
4 int color; // New field.
5 }
6 boolean repOK() {
7 return isAcyclic() && sizeOK() && ordersOK() &&
8 parentsOK() && colorsOK(); // New property.
9 }

10 static IFinitization finBinaryTree(int num) {
11 · · ·
12 // Set bounds on the newly defined field.
13 f.set("Node.color", f.createIntSet(0, 1));
14 return f;
15 } · · ·
16 }

Fig. 3: Red-black tree with parent pointers (RBT), with new
field, property, and bound, which are highlighted

space has size 4 · 1 · (4 · 4 · 3 · 4)3 > 224. The space grows
exponentially. For example, for size 8, there are more than
2103 candidate inputs. Korat prunes most of this input space,
exploring 2,698,488 candidates, and generating 1430 trees in
1.95 seconds.
iGen (extension-aware technique). Assume the user now
wants to implement the data structure to represent height-



BSTP cv
valid 1 0 2 3 1 0 0 0 0 1 0 0 2 1

RBT cv 1 0 2 3 1 0 0 0 0 0 1 0 0 0 2 1 0
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Fig. 4: For size=3, augment a valid candidate vector from
the base subject (BSTP cv

valid) to a candidate in the extended
subject (RBT cv) by introducing color fields, initialized to
their default values, i.e., 0. Next, start bounded exhaustive
exploration from RBT cv to find a valid candidate vector for
the extended subject (RBT cv

valid)

balanced binary search trees, specifically red-black trees
(RBT) [23]. The user could do so by reusing the BSTP class.
Figure 3 shows (a part of) the new class declaration (RBT),
repOK method, and finitization; we highlight new code and
do not repeat code from the BSTP class. The user has added
one new field (color), which represents a node’s red or black
color. In addition, the user has extended the repOK to add a
check for coloring constraints, i.e., (1) red nodes cannot have
red children, and (2) the number of black nodes on any path
from root to a leaf is the same. Given this extended predicate,
Korat constructs the new search space, which for size=3 is 8×
larger (because each node now has the “color” field that has
one of two values) than the old search space. The extended
candidate vector has 17 elements, i.e., 3 more elements than
the base candidate vector. Korat explores the extended space by
creating a new independent search and generates 3 red-black
trees, exploring 208 candidates.

Unlike the extension-unaware BET techniques, Korati (i.e.,
integration of our iGen technique into Korat) generates tests
incrementally by re-using the base tests. Figure 4 illustrates
an example of how Korati transforms a base test for size=3
(BSTP cv

valid) into an extended candidate vector (RBT cv),
invokes Korat on it, and generates an extended test for the
same size=3 (RBT cv

valid).
Figure 5 shows the amount of savings in the state space

exploration (the red and white regions), achieved by Korati for
size=3, when different pairs of base and extended subjectb →
subjecte subjects are used. Specifically, we show the savings
in the explored space for the following extensions: BT→BST ,
BST→BSTP, and BSTP→RBT . For instance, for BSTP→RBT ,
Korati uses the existing suite of 5 base tests for BSTP, and
generates the suite of all 3 extended tests for RBT , by exploring
only 35 candidates (compared to 208 that Korat explored), i.e.,
a savings of 5.94× in the space exploration over the extension-
unaware technique.

III. IGEN

This section describes our approach for memoizing the Korat
search. We describe the key concepts, including mixed ranges,
and show the way they enable incremental test generation by
building on a Korat-like algorithm.
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Fig. 5: Visualization of incremental BET for binary tree
extension, size=3. The space of candidate vectors explored
is colored blue. Green horizontal lines indicate valid candidate
vectors, mapped from a base subject to an extended subject.
Regions that need not be explored are colored in red and white

Definitions. We define a subject, e.g., Binary Tree, as a triple:

(Classes, Properties,Bounds)

where Classes is a set of classes used to define the subject
(e.g., BSTP and Node), Properties is a set of properties that
a valid instance of the subject should satisfy (i.e., the repOK
method), and Bounds specifies the number of instances of
each class in Classes and the list of values for each field (i.e.,
finitization). We define an instance of a subject as a candidate
vector, i.e., a concrete assignment of values to each field from
the domain for that field as specified in the Bounds.

Further, we define a function bet(subject, cv, cv′), which
takes as input a subject, and a range specified by the starting and
ending candidate vectors; the function enumerates all candidate
vectors in the given bounds in the given range, and returns
a set of all candidate vectors that are valid. If the last two
arguments are not given, the function enumerates all candidates
within the bounds specified by the subject. We also define a
function nextCv(cv), which takes as input a candidate vector
and returns a subsequent candidate vector in order in which
the invocation of the bet function enumerated the instances.

We define a simple mixed range, written as [cv, cv′), as
a pair of candidate vectors such that the first element is a
valid candidate and the second element (cv′) is the subsequent
candidate of the first element (cv), which may be valid or
invalid, i.e., repOK(cv) ∧ cv′ = nextCv(cv).

Next, we consider a pair of base and extended subjects
subjectb → subjecte (e.g., BSTP → RBT ) that are
compatible; we define the conditions when two subjects are
compatible later in Section III-A. We introduce a function
extend(cvb) that takes an instance (i.e., candidate vector) of a
base subject and creates an instance of the extended subject
by augmenting the candidate vector to include new elements
(classes and/or fields) and assigning to each new element its
first value from the domain for that element as specified with
the bounds of the extended subject, i.e., Boundse (for an
example of how a candidate vector is extended see Figure 4).
We say that a mixed range is a simple mixed range augmented
for subjecte, i.e., if [cv, cv′) is a simple mixed range, then
[extend(cv), extend(cv′)) is a mixed range.



Input: subjectb - base subject
Input: subjecte - extended subject

1: function ISCOMPATIBLE(subjectb, subjecte)
2: if subjectb.Classes.flds 6⊆ subjecte.Classes.flds then:
3: return False
4: fi
5: if subjectb.Properties ≮ subjecte.Properties then:
6: return False
7: fi
8: commonFields← subjecte.Classes.flds ∩ subjectb.Classes.flds
9: for each field in commonFields do:

10: if subjecte.Bounds(field) != subjectb.Bounds(field) then:
11: return False
12: fi
13: done
14: return True
15: end function

Fig. 6: Procedure to check compatibility, i.e., if the given
subject can be used as the base for the extended subject

Finally, we introduce a function igen(subjectb, subjecte),
which generates instances for the extended subject based on
previously generated instances of the base subject. Specifically,
we define the igen function as:

⋃
cvb∈bet(subjectb)

bet(subjecte, extend(cvb), extend(nextCv(cvb)))

In other words, igen re-uses the base tests by partitioning the
search problem into several (non-overlapping) sub-problems.
Conceptually, each sub-problem is simply a ranged search [8]
over a mixed range.

We give a brief intuition that igen, as defined above,
generates the same set of tests as bet(subjecte). First, for
every simple mixed range [cv, cv′), the augmented candidates
(extend(cv) and extend(cv′)) would be enumerated in that or-
der by bet(subjecte). Second, any valid candidate in subjecte
must belong to one of the mixed ranges. Assume that this does
not hold and there is a valid candidate that does not belong to
one of the mixed ranges. If the candidate is valid, it means that
its backbone structure, i.e., properties for the base subject, is
valid. If that was the case, based on the definition of a simple
mixed range, the candidate would be the first element for one
of the simple ranges, which contradicts our assumption that it
does not belong to any mixed range.

A. Checking Applicability

Our technique supports incremental generation if the base
and extended subjects are compatible, defined by the following
conditions: (1) the set of fields in the extended subject is a
super set of the set of fields for the base subject, (2) the set of
properties for the extended subject is stronger than the set of
properties for the base subject, and (3) the bounds on the input
fields for common fields for the subjects remains the same.
We discuss other code transformations, which we currently do
not support, in Section V.

Figure 6 illustrates the algorithm that checks if the incre-
mental generation is feasible. For a previously run subject
with iGen, we check if it can be used as the base subject for

Input: subjectb - base subject
Input: subjecte - extended subject

1: function IGEN(subjectb, subjecte)
2: if not ISCOMPATIBLE(subjectb, subjecte) then:
3: return BET(subjecte)
4: fi
5: testse← ∅
6: testsb← LOADTESTS(subjectb)
7: for each test in testsb do:
8: cv← BUILDCANDIDATEVECTOR(subjectb, test)
9: cv′← NEXTCV(subjectb, cv)

10: startCV ← EXTEND(subjectb, subjecte, cv)
11: endCV ← EXTEND(subjectb, subjecte, cv′)
12: mixedRange ← tuple(startCV, endCV)
13: testsFound ← BET(subjecte, mixedRange)
14: ADDALL(testse, testsFound)
15: done
16: return testse
17: end function

Fig. 7: Procedure for incremental test generation for the given
extended subject by reusing tests from the base subject

extended; we check the set of fields on Line 2, the set of
properties on Line 5, and the bounds on common input fields
on Line 10. Note that the relevant set of fields only includes
fields that are used in the finitization; the existence of other
fields has no impact on search and therefore they are ignored
by our algorithm. Similarly, we can ignore fields whose domain
has only a single value because their existence does not impact
the test generation. Note that the new fields in the extended
subject could be added in classes for the base subject or they
could be in a new set of classes.

Regarding the set of properties, we detect condition strength-
ening by statically analyzing repOK method. Specifically, we
look for the cases that are a conjunction of new properties with
already existing properties. The conjunction can be explicit
(e.g., isAcyclic() && sizeOK() && ordersOK())
or it can be implicit by extending the code of the existing
functions. It is important that the order of field accesses, for
the fields used in finitization, does not change.

B. Incremental Generation
Figure 7 shows the incremental generation algorithm. First,

we identify if the incremental technique is applicable for the
given pair of base and extended subjects (Lines 2-4); if not, no
re-use is possible, and the traditional extension-unaware BET
will be used to generate tests (Line 3) for the extended subject.
Otherwise, we initialize the list of generated tests to an empty
set (Line 5), and retrieve the list of previously generated tests
for the base subject (Line 6). We then iterate over each test of
the base subject (Lines 7-15). In each iteration, we load the
candidate vector for the base test (we know that the candidate
vector was valid) and find its subsequent candidate vector for
the base subject, which can be valid or invalid (Line 9). Next
(Lines 10 and 11), we augment these two consecutive candidate
vectors to the candidate vectors for the extended subject by
adding new fields and setting them to their initial values (i.e.,
zeros). These two extended candidate vectors form a mixed
range of candidates to be explored for the extended subject



(Line 13). All tests (i.e., valid candidates) found in this range
are added to the set of tests for the extended subject (Line 14);
the union of results for all ranges is the result of the function.
Recall the functions nextCv, extend, and bet in the first
part of Section III, e.g., bet explores the given bounds, to find
all valid candidates in the given range of candidates.

IV. EVALUATION

To evaluate the benefits of incremental generation with iGen,
we implemented our technique in two tools, one for Java and
one for Python, by extending the existing publicly available
tools, namely Korat (for Java) and PyIG (for Python); we call
our prototype implementations Korati and PyIGi, respectively.
We answer the following research questions:
RQ1: What is the amount of savings in state space exploration,

when a predicate is extended, due to the iGen technique?
RQ2: What is the speedup, in terms of test generation time,

due to the iGen technique?
RQ3: What is the speedup trend due to the iGen technique as

the size of generated instances increases, and how does
this speedup trend compare to the trend of Titanium [20],
a recent incremental technique for constraints written
in the Alloy specification language?

RQ4: What is the benefit of using the iGen technique in a
parallel setting, and how does it compare to prior work
on Parallel Korat [8], namely SEQ-ON algorithm?

RQ5: What is the reduction in the amount of memory used
due to the iGen technique?

RQ6: What is the benefit of using the iGen technique for
classes in Standard Java Libraries?

RQ7: What benefits does the iGen technique provide when
applied in the context of recent work [24] that used
Korat as a backend model counter?

Execution platform: We obtained all data on a machine with
4-core 2.2 GHz Intel Xeon CPU and 16GB of RAM, running
Ubuntu 16.04 LTS. We used Oracle Java 1.8.0_121 and PyPy
5.8.0, for Java and Python executions, respectively. For each
run, we limited the heap size to 8GB.

We first discuss the subjects and subject pairs used in our
study and then answer our research questions.

A. Subjects and Subject Pairs

To evaluate iGen, we consider several pairs of subjects:
subjectb → subjecte. We split all pairs of subjects into three
groups. The first group (named GroupT) contains various tree
data structures, the second group (named GroupL) contains
various list data structures, and the third group (named
GroupJL) contains data structures from popular Java libraries.

Table I shows the groups. The first column of the table
shows the name and the acronym for each data structure. The
second column shows the set of fields used in the finitization
for the structure; the fields may belong to various classes. For
example, for BT there are 4 fields used in the finitization; these
fields belong to two classes: BT and Node. Finally, the third
column shows the set of properties that each instance has to
satisfy, i.e., the repOK method. For example, for BT there

should be no cycles (isAcyclic) and size should match
the number of nodes in the tree (sizeOK). All subjects in
the first two groups are taken from the existing online source
code repositories [16], [19], and the same subjects were used
in prior work on automated test generation (e.g., [8]).

GroupT includes (1) binary tree (BT), (2) binary search tree
(BST), which has the same properties as BT and additional
properties on the order of elements, (3) binary search tree
where each node keeps a pointer to its parent (BSTP), which
has additional properties on these pointers, and (4) red black
tree (RBT), which extends the properties of BSTP with
properties on the color of each node. Note that RBT is actually
java.util.TreeMap class, but we use the RBT acronym
to better reflect the underlying data structure.

GroupL includes (1) doubly linked list (DLL), (2) doubly
linked list that has unique elements (DLLU), and (3) sorted
doubly linked list with unique elements (DLLS).

GroupJL includes (1) TreeMap which is a red-black tree
navigable map implementation available in the Standard Java
Library, (2) TreeSet6 which is a navigable set (available in
Java 6 and earlier versions) implemented based on TreeMap
(this version allowed insertion of null values in an empty set),
(3) TreeSet7 which is a navigable set available in Java 7 and
later versions (this version of the set does not allow insertion
of null values in an empty set). (4) TreeBag which is the
standard implementation of a sorted bag, using a TreeMap,
available in the Apache commons.

To answer the research questions, we consider one pair of
subjects at a time. We evaluated our technique on all pairs
of adjacent subjects for GroupT and GroupL. Specifically,
we evaluated three pairs for GroupT: BT→BST , BST→BSTP,
and BSTP→RBT , and two pairs for GroupL: DLL→DLLU
and DLLU→DLLS. Additionally, we evaluate two pairs in
GroupJL: TreeSet6→TreeSet7 (which illustrates extension of
an imperative predicate due to change in properties of a data
structure) and TreeMap→TreeBag (which illustrates extension
of a an imperative predicate due to a reuse of one data structure
to implement another data structure). Note that the first pair
in this group is a trivial extension in the predicate.

B. Results and Answers

1) RQ1: Savings in the State Space Exploration: Table II
shows the number of candidate vectors explored by the
extension-unaware BET techniques (i.e., Korat and PyIG), for
sizes from 4 to 10, for each subject. Although Korat and
PyIG do not execute the exact same algorithm, the number
of generated instances is the same for our examples. One key
observation from this table is that different properties affect the
number of candidates explored by BET differently. This case is
specially evident for larger sizes. For instance, for size=10, there
is a 155 million difference in the number of candidates explored
for BT→BST (due to addition of ordersOK() constraint),
while this number is only 2 million for BST→BSTP, when
parentsOK() constraint is added. Further, note that the
number of explored candidates for DLLU and DLLS is the
same, for all sizes, as there is no new field introduced by DLLS,



TABLE I: Subjects Used in Evaluation with their Class Fields and repOK

Subjects Class Fields repOK Method
G

ro
up

T BinaryTree (BT) fields(BT) ≡ {root, size, Node.left, Node.right} isBT() ≡ isAcyclic() && sizeOK()
BinarySearchTree (BST) fields(BST) ≡ fields(BT) ∪ {Node.key} isBST() ≡ isBT() && ordersOK()
BST w/ parent pointers (BSTP) fields(BSTP) ≡ fields(BST) ∪ {Node.parent} isBSTP() ≡ isBST() && parentsOK()
RedBlackTree (RBT) fields(RBT) ≡ fields(BSTP) ∪ {Node.color} isRBT() ≡ isBSTP() && colorsOK()

G
ro

up
L DoublyLinkedList (DLL) fields(DLL) ≡ {head, size, Entry.prev, Entry.next} isDLL() ≡ isStructOK()

DLL w/ unique elems (DLLU) fields(DLLU) ≡ fields(DLL) ∪ {Entry.value} isDLLU() ≡ isDLL() && elementsUnique()
DLLU w/ sorted elems (DLLS) fields(DLLS) ≡ fields(DLLU) isDLLS() ≡ isDLLU() && elementsSorted()

G
ro

up
JL

JDK TreeMap (TreeMap) fields(TreeMap) ≡ fields(RBT) isTreeMap()
JDK 6 TreeSet (TreeSet6) fields(TreeSet6) ≡ fields(RBT) isTreeSet6()
JDK 7 TreeSet (TreeSet7) fields(TreeSet7) ≡ fields(TreeSet6) isTreeSet7() ≡ isTreeSet6() && noNullValues()
Apache Commons TreeBag fields(TreeBag) ≡ fields(TreeMap) ∪ {TreeBag.size} isTreeBag() ≡ isTreeMap() && bagSizeOK()

TABLE II: Number of Candidates Explored by Extension-Unaware Techniques

Si
ze

BT BST BSTP RBT DLL DLLU DLLS
4 245 875 1099 1251 39 162 162
5 947 6155 7205 7989 57 881 881
6 3653 45,233 49,985 54,117 78 6263 6263
7 14,092 340,990 362,011 384,231 102 52,062 52,062
8 54,418 2,606,968 2,698,488 2,820,170 129 485,096 485,096
9 210,444 20,086,300 20,480,122 21,157,272 159 4,988,399 4,988,399
10 815,100 155,455,872 157,135,472 160,957,128 192 56,117,901 56,117,901
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Fig. 8: Difference in number of candi-
dates explored by BET (Size=10)

TABLE III: Percent [%] of Candidates Pruned by iGen for
Various subjectb → subjecte Pairs; Percent is Computed out
of All Candidates That are Explored by Extension-Unaware
Techniques for subjecte Subject (Table II)

Si
ze iGen savings in explored space [%]

BT→BST BST→BSTP BSTP→RBT DLL→DLLU DLLU→DLLS
4 26.40 78.34 86.73 23.46 85.19
5 14.70 84.84 89.66 6.36 86.38
6 7.78 90.23 92.12 1.23 88.50
7 4.01 94.07 94.11 0.19 90.32
8 2.03 96.56 95.63 0.03 91.69
9 1.02 98.05 96.78 < 0.01 92.73
10 0.51 98.92 97.62 < 0.01 93.53

and the new property (elementsSorted() constraint) does
not change the order of field access in the BET search.

Figure 8 shows the difference in the number of candidate
vectors explored by extension-unaware BET tools for size=10,
based on the raw numbers shown in the last row of Table II
(highlighted in gray). Note that for the two subject pairs
BT→BST and DLL→DLLU, there is a large difference in
number of explored candidates. This is because the search
space is considerably larger for the extended subjects BST and
DLLU. Therefore, we expect iGen, which is an incremental
technique, to provide smaller speedup for these two subject
pairs (BT→BST and DLL→DLLU). However, for the other
three subject pairs, there is a smaller difference in the number
of explored candidates between base subject and extended
subject; therefore, we expect iGen to provide higher speedup.

Table III shows iGen savings in the state space exploration,
over the traditional extension-unaware BET. For each subject
pair (subjectb → subjecte), we first applied BET on the ex-
tended subject and collected the number of explored candidates

(Nbet). Next, we applied iGen on the pair, and we measured
only the number of candidates explored by iGen (Nigen) for the
subjecte. Then, we computed savings in explored space as (1
- Nigen/ Nbet) · 100. For instance, for BST→BSTP (size=10),
BET explored 157,135,472 candidates, while iGen explored
only 1,696,396 candidates, i.e., savings of 98.92%.

Further, as we expected based on our reasoning of numbers
in Figure 8, iGen provided higher savings for three subject
pairs BST→BSTP, BSTP→RBT , and DLLU→DLLS, as there
was a small amount of incremental solving to be done, while
solving the extended constraints from scratch (using BET) was
prohibitively expensive. In addition, for these three subject pairs
we observed an increasing trend in the amount of savings, as
the size of the generated instances increased. For the remaining
two subject pairs, BT→BST and DLL→DLLU, the achieved
savings decreased for larger instances, as the incremental
solving required became considerably large.

2) RQ2: Speedup in Test Generation Time: For each subject
pair (subjectb → subjecte), we first measured test generation
time for the extended subject, using extension-unaware BET
tools (Tbet). Next, we measured incremental test generation
(iGen) time for the adjacent subject, using our implementations
(Tigen). We then calculated the speedup based on the recorded
execution times as Tbet/ Tigen.

Table IV shows the results. For RQ2 (this question), we
only focus on the top two parts: Korati\Korat and PyIGi\PyIG.
The left half of the table shows the test generation time
using extension-unaware BET tools (Korat and PyIG) for each
extended subject. For any cell on the left half, there is a
corresponding cell on the right half, which shows the speedup
in execution time using our implementations. The reported
execution time is computed as an average value of 3 runs.



TABLE IV: Extension-Aware Test Generation Speedup over Extension-Unaware Techniques

Si
ze Extension-Unaware Generation Time [ms] Extension-Aware Generation Speedup [×]

BST BSTP RBT DLLU DLLS BT→BST BST→BSTP BSTP→RBT DLL→DLLU DLLU→DLLS

K
or

at
\

K
or

at
i

4 144 158 174 126 155 1.00 1.05 1.07 0.95 1.14
5 164 171 194 135 197 1.01 1.04 1.10 0.98 1.46
6 236 242 265 152 194 1.04 1.34 1.29 0.96 1.31
7 420 456 500 219 287 1.01 1.95 1.28 0.98 1.68
8 1697 1918 2197 485 561 1.04 3.71 3.22 0.99 1.68
9 11,434 12,074 13,669 3434 2882 1.02 18.02 9.67 1.01 5.98
10 93,929 97,281 106,800 39,540 29,026 1.04 46.59 16.82 1.01 10.45

Py
IG

\
Py

IG
i

4 167 242 248 49 42 1.14 2.66 3.35 1.26 7.00
5 358 480 452 188 155 1.09 1.88 1.57 1.11 2.54
6 724 811 1357 286 297 1.05 1.57 2.24 1.04 1.66
7 3190 3826 5949 625 623 1.01 4.50 3.95 1.01 1.53
8 22,812 27,743 28,294 4051 4310 1.02 11.37 6.39 1.06 3.79
9 196,032 217,523 233,054 46,597 45,657 1.03 29.94 9.09 1.00 4.84
10 1,605,420 1,673,692 3,111,485 521,909 534,937 1.01 49.47 25.17 1.01 8.89

A
llo

y
\

Ti
ta

ni
um

4 371 405 580 486 418 1.74 2.76 4.79 1.81 2.99
5 660 648 778 915 583 1.64 1.37 4.27 1.36 2.80
6 1560 1638 941 2566 688 1.58 1.41 2.14 1.19 2.51
7 3796 3669 1333 12,140 861 1.13 1.51 1.37 1.01 2.53
8 9194 10,661 2340 117,726 815 1.21 1.04 1.65 1.00 2.14
9 43,167 55,255 4230 memory 958 1.08 1.15 1.33 n/a n/a
10 189,216 222,161 6501 memory 1397 1.01 1.11 1.18 n/a n/a

For instance, Korat and PyIG required 97.3 and 1673.7
seconds, respectively, to generate all BSTP instances with 10
nodes, while Korati and PyIGi only needed 2.1 and 33.8
seconds, to generate the same instances incrementally on top
of existing BST tests, i.e., 46.59× and 49.47× speedup in test
generation time, respectively.

As we expected based on our reasoning of numbers in
Figure 8 and Table III, our implementations did not provide
considerable speedup for the two subject pairs BT→BST and
DLL→DLLU. For smaller sizes, we even observed minor
slowdowns, e.g., sizes 4-8 for DLL→DLLU, because the slight
overhead of iGen (which includes loading tests previously
generated for the base subject) did outweigh the savings
achieved. Further, we observed that Korati and PyIGi show
similar behaviors for most subject pairs and sizes, and their
speedup is higher for larger instances.

3) RQ3: Trend of iGen Speedup vs. Trend of Titanium
Speedup: Titanium [20] is a recent technique to efficiently
analyze extended Alloy specifications [25]. Unlike iGen,
which introduced mixed ranges for BET techniques based on
imperative predicates, Titanium achieves speedup by tightening
input bounds to speedup the underlying constraint solving;
the tightening (when exploring subjecte) is based on the
knowledge from the execution on subjectb.

For our experiment, we implemented each subject from
GroupT and GroupL in Alloy. For each subject, we only
generated non-isomorphic instances by enforcing a linear order
on node instances [26], in Alloy code. This was required as
both BET techniques (Korat and PyIG), by construction, only
generate non-isomorphic instances.

Next, we took Titanium, which is publicly available [27]. For
each subject pair (subjectb → subjecte), we measured (1) the
time needed by Alloy Analyzer to generate instances for the
extended subject (Talloy), and (2) the time spent by Titanium for
efficient solving of the subjecte given the subjectb (Ttitanium).

The last/third segment of Table IV shows the speedup achieved
by Titanium over the default Alloy Analyzer; we measured the
speedup the same way as for iGen, i.e., Talloy/ Ttitanium.

As expected, Titanium achieved speedup to generate tests for
all subjects. For DLLU (sizes 9 and 10), Titanium encountered
a java.lang.OutOfMemoryError, while running the
Alloy Analyzer on the subjectb, as the 8GB memory limit
was exceeded. Hence, we do not report numbers for columns
DLL→DLLU and DLLU→DLLS for these two sizes.

In most cases, we observed higher speedup for iGen
compared to Titanium, e.g., for BST→BSTP (size=10) Korati
and PyIGi provided 46.59× and 49.47× speedup respectively,
compared to the 1.11× speedup for Titanium; however, as these
two techniques are inherently different (one is for declarative
languages using backend SAT solving, while the other uses
bounded exhaustive testing based on imperative predicates),
we do not account this greater speedup as being superior.
However, we do still compare the trend of speedup across the
two techniques. Unlike iGen, we observed that Titanium shows
a descending speedup trend as the size of generated instances
increases, and for larger sizes, e.g., 10, the speedup seems
to be converging towards 1×. Speedup trends are similar for
two subject pairs – BT→BST and DLL→DLLU – due to the
reasons discussed in Section IV-B1 and Figure 8.

4) RQ4: Potential Benefits of Parallel Generation: iGen with
mixed ranges is embarrassingly parallel. Hence, we evaluated
potential benefits of parallel generation by simulating parallel
runs: we run one worker at a time on a single machine
and compute maximum, and average running time across all
workers. Each worker takes the same number of valid instances
for base subject, and consequently, creates the same number of
mixed ranges. Note that there is no overlap among explorations
done by individual workers. Further, there are no inter-worker
communications after the work has been distributed, and
therefore, similar results are expected in a distributed setting.



TABLE V: Parallel Korati (subjectb → subjecte) and SEQ-
ON (subjecte) Speedups in Worker Execution Time, Compared
to a Sequential Run of Korat (Size=10)

W
or

ke
rs Speedup over Korat [×]

BT→BST BST→BSTP BSTP→RBT DLLU→DLLS

avg min avg min avg min avg min

K
or

at
i

2 2.0 2.0 79.3 78.3 31.7 30.3 19.0 18.6
4 4.1 4.0 110.4 108.5 53.1 50.7 29.4 27.6
8 8.1 8.0 146.2 136.6 83.9 77.1 46.9 44.5
16 15.3 14.8 172.0 163.2 119.7 104.6 62.9 58.3
32 28.7 25.5 216.0 203.1 161.0 124.5 79.0 72.2
64 51.2 47.0 268.3 209.7 194.3 161.6 88.2 80.2

SE
Q

-O
N

2 2.0 2.0 2.0 2.0 2.0 1.9 1.9 1.9
4 4.0 4.0 4.0 4.0 4.0 3.9 3.8 3.7
8 7.9 7.8 7.9 7.8 7.8 7.7 7.3 7.0
16 15.3 14.4 14.9 14.2 15.0 14.0 13.1 12.8
32 28.6 27.5 27.3 25.7 27.8 26.2 23.5 22.6
64 51.3 48.8 46.8 41.3 47.6 43.9 39.9 37.3

Next, we implemented the equi-distancing for SEQ-ON
algorithm [8] to simulate parallelizing Korat runs across
workers. Note that unlike Korati (and generally iGen), the SEQ-
ON algorithm is extension-unaware; it uses key intermediate
results stored during the first execution of Korat, to distribute
the work and speed up future executions for the same constraint
solving problem. Similar to the evaluation method in prior
work [8], we first found the equi-distant candidate vectors
using the equi-distancing algorithm (for the extended subject),
and then used those candidates to evenly distribute the work.
We did not account for the resource allocation time, as prior
work showed it would be near constant across the workers [8].
Further, we did not consider the time spent to distribute inputs
among the workers.

Table V shows the average and minimum speedup in execu-
tion time, across the workers, that the two parallel techniques
Korati and SEQ-ON, achieved over Korat. Specifically, for
each subject pair, we measured the time needed to run: (1)
Korat on the subjecte (Tkorat), (2) parallel Korati on the
subjectb → subjecte pair (TKorati ), and (3) SEQ-ON on the
subjecte (TSEQ−ON ). The top half of the table shows numbers
for Tkorat/ TKorati , and the bottom half shows numbers for
Tkorat/ TSEQ−ON . We chose size=10 for all subjects, and
considered a range of 2 to 64 workers.

As expected, both parallel techniques, achieved considerable
speedup over running Korat sequentially. For instance, parallel
Korati achieved up to 268.3× speedup on average worker
time, over a sequential Korat run. For the 3 subject pairs,
BST→BSTP, BSTP→RBT , and DLLU→DLLS, even for small
number of workers, e.g., two, the speedup was substantial;
79.3×, 31.7×, and 19.0×, respectively.

We observed that parallel Korati (extension-aware) outper-
forms SEQ-ON (extension-unaware) in most cases. For instance,
for BT→BST with 2 workers, Korati achieved on average the
speedup of 79.3×, while SEQ-ON achieved the speedup of
2.0×. As we expected, based on our reasoning of numbers in
Figure 8, for BT→BST , with 32 and 64 workers, we observed
minor slowdown (less that 8%) compared to SEQ-ON.

Note that there is no column for DLL→DLLU, because the
base subject, i.e., DLL, had only one valid instance (i.e., one
range), a case that would not be impacted by a parallel run.
For other pairs, the base subject had at least 64 valid instances,
facilitating the requirement for our parallel experiment.

Memory Usage [MB]

K
or

at

BST 28.83
BSTP 32.86
RBT 38.23
DLLU 8.70
DLLS 8.71

K
or

at
i

BT→BST 27.49
BST→BSTP 8.72
BSTP→RBT 11.38
DLL→DLLU 8.69
DLLU→DLLS 7.35

5) RQ5: Reduction in Memory
Usage: Table to the right,
shows the memory usage (in
megabytes), for end-to-end runs
of Korat and Korati. We used
java.lang.management
standard Java library to measure
memory usage. Specifically,
we manually invoked JVM’s
garbage collection (GC) in code
(System.gc()), right before
test generation, and measured memory usage right after test
generation. We considered instances of size=6, as this was the
largest size that did not require a GC invocation during each
execution. Our preliminary evaluation shows Korati requires
less memory for all subjects (up to 3.77× for BST→BSTP)
compared to Korat. We expected this memory savings, as
Korati explores fewer candidates (Table III), meaning it runs
repOK fewer times; each repOK invocation allocates objects,
e.g., work-list and visited-set. Further, for BT→BST and
DLL→DLLU, we expected smaller savings as there is a larger
extension between the two subject pairs (Figure 8).

6) RQ6: Applicability to Data Structures in Standard Java
Libraries: We report the results for subject pairs in GroupJL.
Table VI shows the results for TreeMap→TreeBag. We first
describe the reason for two finitizations for this pair. TreeBag,
as mentioned earlier, implements a sorted bag (e.g., {“a”: 2,
“b”: 1, “c”: 2}), using a TreeMap. Namely, TreeMap keeps
a mapping from an element to the count of that element in the
bag. As the count for any element can be arbitrarily large, we
chose two different values for the max count of each element:
2 for Finitization I and 3 for Finitization II.

The first column in Table VI shows size for the underlying
map in TreeBag. Columns two and three show search
time and number of explored candidate vectors for Korat,
respectively. Finally, columns four and five show speedup
(time), and savings on the number of explored candidate vectors
(percent) for Korati. We can observe increasing speedup for
both finitizations although speedup for the second finitization
is smaller due to a larger space of the extended subject. Clearly,
choosing a larger value for the max count would further increase
the search space for Korati and reduce the achieved speedup.

We also briefly discuss the second pair in the GroupJL:
TreeSet6→TreeSet7. This is an example when the semantics
of a data structure (in the Standard Java Library) has changed:
having a set with a single element that has null value was
allowed in earlier versions of Java. The extension in repOK
simply checks that a set with a single value cannot have null
element. Interestingly, even in this simple case Korat would
still re-explore the entire search space only to obtain the same
result as in the run for the base subject. On the other hand, this



TABLE VI: Test Generation for TreeMap→TreeBag

Si
ze Korat Korati

Time [ms] Explored [#] Speedup [×] Explored [%]

Fi
ni

tiz
at

io
n

I

4 341 2213 1.04 65.66
5 365 12,399 1.05 74.82
6 488 72,633 1.10 85.93
7 877 478,964 1.66 91.59
8 2632 3,348,532 3.47 95.11
9 14,834 24,328,614 8.01 97.18
10 111,324 181,333,796 16.65 98.24
11 929,518 1,371,394,558 26.78 98.86

Fi
ni

tiz
at

io
n

II

4 369 7605 1.02 19.11
5 542 48,393 1.04 19.18
6 868 259,233 1.15 24.08
7 2599 1,625,109 1.16 27.00
8 13,976 10,533,044 1.17 30.26
9 96,962 70,467,428 1.23 33.55
10 770,904 508,222,956 1.24 35.05

TABLE VII: Using Korat [24] and Korati as a Backend Model
Counter to Solve 100 Heap-PC Problems per Subject

Subject Korat [24] Korati
Time [ms] Explored [#] Speedup [×] Space Saved [%]

DLL 2550 3,233,440 4.37 88.09
HBST 3287 3,716,300 14.93 98.98
RBT 7283 7,056,576 27.44 99.00
SLL 7373 18,305,148 29.97 98.98

is an ideal case for Korati, which explores no new candidates.
As the number of explored instances with Korati is equal to
the number of valid instances obtained for the base subject
(and the overhead of Korati is negligible), we do not show the
results in a table; speedup goes from 1.05× for size 4 up to
320.15× for size 10.

7) RQ7: Application to Model Counting: Recent work [21],
[22] used Korat as a backend model counter, to find the number
of solutions for a constraint derived from path conditions that
occur in symbolic execution. Specifically, to solve problems
modeled as repOK() && heap-PC, where the term heap-PC
is used to emphasize that the nature of the constraints are on
the fields of heap allocated objects.

Korat-API [24] is a recent framework that systematically
applied Korat to solve model counting problems for 4 data
structure subjects with size=10 nodes. For each subject, 100
path conditions were generated, that all shared the same
repOK(), but had different heap-PC conditions. We used
the same publicly available Java subjects [28], to evaluate how
well Korati performs compared to Korat.

Table VII summarizes the results. The first column shows
the acronyms of subjects used in [24], namely: DLL for doubly
linked list, HBST for height-balanced binary search tree, RBT
for red-black tree, and SLL for singly linked list. The subsequent
columns show the average values to solve 100 heap-PC
problems. Specifically, Columns 2 and 3 show the average
execution time and average number of explored candidates
for Korat, respectively. Column 4 shows the average speedup
in the execution time Korati achieved over Korat. Column 5
shows the average percent of explored space saved when using
Korati compared to Korat.

Similar execution times (Column 2) were reported in Table 4
of [24]; our numbers are slightly smaller, as we used the vanilla

Korat which does not have the dynamic compilation overhead
of Korat-API, and we used a different execution platform.
We recalculated the base execution times for Korat on our
execution platform, to accurately measure the Korati speedup.
As shown, Korati outperformed Korat for all 4 subjects, ranging
from 4.37× for DLL, to 29.97× for SLL. We expected the
speedup, as unlike Korat that needs to solve repOK() for each
problem, Korati can solve repOK() once, and re-use the results
to incrementally solve future path condition problems where
repOK() stays the same and heap-PC changes.

V. DISCUSSION

Limitations. The subjects used in our evaluation may not be
representative. We used subjects distributed with Korat [16]
that have been used independently in many prior studies on
BET [8]–[10], [13]. Moreover, data structures that we used are
the backbone of many complex data structures, e.g., DOMs,
XML schema, ASTs [6], [11], [22]. Additionally, we evaluated
Korati on standard data structures from Java libraries.

Our prototype tools and our scripts for processing the results
may contain bugs. We built our prototype on top of Korat and
PyIG that are thoroughly tested and used differential testing
(between Korati, PyIGi, Korat, and Alloy) for test generation.
Code transformations. Our work focuses, as discussed in
Section III-A, on cases that a developer starts from a weaker
repOK and then strengthens it to generate instances of a more
complex data structure. Basically, we naturally cover cases
when one uses an existing data structure to implement another
data structure, e.g., using TreeMap to implement TreeBag.
One can also imagine that a developer may go too far (with
strengthening) and then has to revert some of the properties.
While the latter case could happen in practice, it is somewhat
less interesting algorithmically; to support backward changes,
we could memoize valid instances at various places during the
execution of a repOK and if some properties are removed,
we can simply return the memoized valid instances captured
prior to the removed properties. Other transformations to code,
e.g., refactorings [29]–[32], adding a field, or removing a field,
can also impact the generated instances. iGen already supports
cases when a field is added or removed. We plan to explore
other potential transformations of properties in the future.
Benefits. Clearly, the benefits of iGen, like any incremental
technique, depend on the differences between the base subject
and extended subject; if the candidate space is substantially
larger for the extended subject, the speedup is limited. Our
evaluation showed both cases when iGen provides substantial or
limited speedup. Given that the overhead of iGen is negligible,
it should be used as the default test generation engine.
Future work. iGen is the first system to introduce incremen-
tal constraint solving for Java (Python) constraints. While
incremental solving using SAT is commonplace, its use
requires translating imperative code to declarative propositional
logic formulas, which has high overhead and does not scale.
Incremental solving for Java can substantially enhance various
constraint-based analyses, including test generation (this paper’s
focus), symbolic execution, synthesis, and repair.



VI. RELATED WORK

BET has its basis in the spirit of model checking [33],
which introduced the idea of exhaustive exploration of large
state spaces, and various optimization techniques for effective
pruning. The specific form of BET using imperative pred-
icates, which is our focus, is one of many test generation
techniques [34]. Our focus in this section is on most closely
related work to our approach.
Parallel Korat Misailovic et al. [8] introduced the first
approach for parallel test generation and execution using Korat,
which we discussed in prior sections. PKorat [9] introduced an
alternative parallel approach based on a work list that consists of
work items that Korat search must explore. Dini et al. [10], [35]
built on Parallel Korat [8] and introduced invalid ranges that
optimize re-execution of the Korat search on the same search
problem by skipping known ranges of consecutive invalid
candidates. Invalid ranges provide the basis for our work. The
key difference is that previous work optimized Korat when the
exact same search problem is re-solved whereas iGen allows
memoizing and re-using intermediate results of the BET search
even when the search space is changed. Recent work [7] utilized
GPUs to speed up test generation.
Ranged analysis was also used for ranged symbolic execu-
tion [36] using KLEE [37], ranged model checking using
JPF [36], [38], and ranged declarative constraint solving
using Alloy [25], [39]. Qiu [40] defined feasible ranges,
i.e., sequences of feasible paths, for Symbolic PathFinder to
summarize path condition satisfaction to enable memoization.
Generation of complex data structures has received much
attention for BET. TestEra [15] was among the first to generate
tests up to the given bounds based on declarative predicates
written as Alloy formulas. Korat [13] enabled the user to
write the predicates as executable checks in an imperative
language. Generalized symbolic execution [41] combined lazy
initialization of reference fields with symbolic analysis of
primitive fields to more efficiently handle predicates that
contain constraints on primitives using off-the-shelf decision
procedures, e.g., SMT solvers [42]. UDITA [11] supports both
declarative predicates and imperative generators. HyTeK [43]
allowed predicates to be written in a combination of declarative
predicates and imperative checks. More recently, Kuraj et al. [5]
introduced SciFe that uses an algebra of enumerators to make
the generation incremental and parallelizable. iGen focuses
on re-using the key results of the search during execution of
properties to enhance generation of structurally complex tests
as the imperative predicates are extended.
Incremental analysis for systematic bug finding was used for
efficient generation of complex inputs [44], symbolic execu-
tion [45]–[47], and model checking [48]–[51]. Uzuncaova [44]
introduced a technique based on Alloy for incremental test
generation for software product lines where each product
consists of a base feature and may have some combination of
additional features; this technique employed off-the-shelf SAT
and SMT solvers. Bagheri and Malek’s recent work addressed
evolving Alloy specifications by using the set of solutions

enumerated by SAT in its previous run to refine the search space
bounds for SAT’s next run [20]. In contrast, iGen integrates
memoization within the solver – for imperative constraints.

KLEE [37] introduced memoization of constraint solving
results during one run of symbolic execution of the program.
Green [46] enabled memoization across different runs, even for
different programs. Memoise [52] introduced a trie structure
to efficiently summarize symbolic execution results for re-
use when the program evolves. Such re-uses of constraint
solving results has a basic difference from our approach: iGen
memoizes key intermediate results during constraint solving,
not just its end result(s).
Test-suite augmentation techniques generate new tests that
target changed code. Santelices et al. [53] introduced MaTRIX,
an augmentation technique based on dependency analysis
and symbolic execution. Xu et al. [54] explored cost and
effectiveness of several augmentation techniques. Qi et al. [55]
introduced a technique based on dynamic symbolic execution.
Kim et al. [56] proposed a hybrid framework that combines
several test generation techniques. Alshahwan and Harman [57]
augment test-suites with the goal to increase output diversity.
Mixed ranges are conceptually similar to augmentation tech-
niques because we reason about the changes between subjects
and properties to speed up generation of new tests.
Propositional satisfiability (SAT) solvers [58], [59] imple-
ment numerous techniques for efficient solving. Mixed ranges
in iGen share the spirit of some of these techniques. The key
difference is the very different level iGen works at – Java
predicates have much more complex structures and semantics
than CNF formulas. Moreover, while structural properties
can be translated to SAT, e.g., using the Alloy tool-set, a
straightforward application of incremental SAT for generating
complex structures like iGen is not feasible.

VII. CONCLUSIONS

We presented iGen, a novel approach to optimize bounded
exhaustive testing based on imperative predicates. iGen mem-
oizes intermediate results of a test generation and reuses the
results in a future search even when the new search space
differs from the old search space. We instantiated iGen for two
programming languages (Java and Python) and evaluated these
implementations with several data structure pairs, including two
pairs from the Standard Java Library. Our results show that
iGen speeds up test generation up to 46.59× and 49.47×
(over extension-unaware techniques) for Java and Python,
respectively. Additionally, we show that the speedup increases
for larger test instances. iGen also complements the existing
work on parallel test generation and the work on using BET
techniques for backend model counting, and the combination
of these techniques is a promising future direction.
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