Selective Mutation Testing for Concurrent Code

Milos Gligoric
University of lllinois
Urbana, IL 61801, USA

gliga@illinois.edu

Lingming Zhang
University of Texas
Austin, TX 78712, USA
zhanglm@utexas.edu

ABSTRACT

Concurrent code is becoming increasingly important with
the advent of multi-cores, but testing concurrent code is
challenging. Researchers are developing new testing tech-
niques and test suites for concurrent code, but evaluating
these techniques and test suites often uses a small number
of real or manually seeded bugs.

Mutation testing allows creating a large number of buggy
programs to evaluate test suites. However, performing mu-
tation testing is expensive even for sequential code, and the
cost is higher for concurrent code where each test has to
be executed for many (possibly all) thread schedules. The
most widely used technique to speed up mutation testing is
selective mutation, which reduces the number of mutants by
applying only a subset of mutation operators such that test
suites that kill all mutants generated by this subset also kill
(almost) all mutants generated by all mutation operators.
To date, selective mutation has been used only for sequen-
tial mutation operators.

This paper explores selective mutation for concurrent mu-
tation operators. Our results identify several sets of con-
current mutation operators that can effectively reduce the
number of mutants, show that operator-based selection is
slightly better than random mutant selection, and show that
sequential and concurrent mutation operators are indepen-
dent, demonstrating the importance of studying concurrent
mutation operators.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Experimentation

Keywords: Selective mutation testing, concurrent code

1. INTRODUCTION

Concurrent code is becoming increasingly important with
the wide-spread proliferation of multi-core processors in to-
day’s computers, ranging from mobile phones to tablets and
laptops to desktops and data centers. While concurrent code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA 13, July 15-20, 2013, Lugano, Switzerland

Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

Cristiano Pereira and Gilles Pokam
Intel Corporation
Santa Clara, CA 95054, USA

{cristiano.l.pereira,gilles.a.pokam}@intel.com

unleashes the full potential of multi-core processors, devel-
oping concurrent code poses great challenges. Foremost,
concurrent code is subject to unique concurrency bugs, in-
cluding data races, atomicity violations, and deadlocks [31]1.
Finding these bugs warrants additional focus on developing
and evaluating testing techniques for concurrent code.

Testing concurrent code is not only important but also
expensive. A concurrent test executes two or more threads.
Since the test result depends on the thread schedule, detect-
ing concurrency bugs requires not just a single execution of
the test for one schedule but exploration of the state-space
reachable for multiple executions of various thread sched-
ules. Researchers have proposed many techniques for state-
space exploration, including random testing [9,15], unit test-
ing [25], and systematic exploration [20,38,52]. However,
these testing techniques and concurrent test suites have been
mostly evaluated using programs with a small number of real
or manually seeded concurrency bugs.

Mutation testing [1,13,22,28] is an approach for evaluat-
ing test suites and testing techniques using a large number
of systematically seeded program changes, which allows for
statistical analysis of results [2]. Given a system under test,
mutation testing first applies mutation operators to gener-
ate a set of mutants and then executes a test suite on each
mutant to check if the mutant can be killed. The ratio of
the number of killed mutants to the number of all (non-
equivalent) generated mutants is called the mutation score.

Mutation testing has a high cost as the test suite is ex-
ecuted on all mutants. For sequential code, this cost is
mostly due to the large number of mutants because exe-
cuting one test on one mutant is relatively fast. For con-
current code, however, this cost is much higher because ex-
ecuting/exploring even one test on even one mutant is fairly
expensive. Even a relatively small test (say, a few threads
with a few dozens lines of code) can result in a large state
space and large number of schedules (say, thousands or mil-
lions of states and schedules). Hence, running one concur-
rent test on one mutant takes time, and mutation testing
requires running many tests on many mutants.

To reduce the cost of mutation testing, researchers have
proposed [4,37,40,41,49,55] two approaches for selecting a
subset of the generated mutants: selective mutation (based
on carefully selecting mutation operators) and random se-
lection (based on randomly selecting generated mutants).

n this paper we focus on shared-memory concurrent code,
the most widely used paradigm for concurrent programming,
where threads exchange data and synchronize with one an-
other through shared memory.

The previous studies used two metrics to compare differ-
ent approaches: (1) cost in terms of the number of mu-
tants, with savings defined as the ratio of the number of
non-selected mutants to the total number of generated mu-
tants, and (2) effectiveness in terms of non-selective muta-
tion score, defined as the percentage of all generated non-
equivalent mutants that are killed by the test suites that kill
all selected non-equivalent mutants.

Selective mutation identifies a subset of operators that
have high effectiveness and provide high savings. In other
words, selective mutation generates fewer mutants such that
test suites that have a high mutation score for these mutants
also have a high mutation score for all mutants generated by
all mutation operators. Selective mutation has been exten-
sively studied for sequential mutation operators [4, 37, 40,
41,49,55]). However, selective mutation has not been stud-
ied for concurrent mutation operators, and researchers have
no practical guidelines for choosing operators in mutation
testing for concurrent code.

The major goal of this paper is to characterize the cost-
effectiveness trade-offs that can be obtained for various sub-
sets of concurrent mutation operators. To address this goal,
we repeat all previous studies on selective mutation for se-
quential code [4,37,40,41,49,55] but perform them for con-
current code. In brief, these studies select the subset of oper-
ators based on the number of mutants they generate [37,41],
on the categories of operators [4,40], and on correlation of
mutant killing [49]; additionally, a recent study [55] com-
pares random selection and selective mutation. More details
of these studies are presented in Section 2.2.

We additionally perform three new evaluations for concur-
rent code. First, we analyze cost-effectiveness exhaustively
for all possible subsets of operators; the fact that a relatively
small number (15) of concurrent operators generate mutants
allows exhaustively trying all possible (215) subsets of oper-
ators to identify the subsets with the best cost-effectiveness
trade-off. Second, we evaluate a new metric for comparing
the cost of different selective approaches, measuring not only
the number of mutants but also the exploration costs (i.e.,
time to execute schedules) for concurrent tests. Third, we
evaluate whether sequential and concurrent mutation oper-
ators are independent or subsume one another.

Our study provides the following conclusions:

e There are important differences between concurrent and
sequential mutation operators: selective mutation is appli-
cable to concurrent code but provides lower savings than
for sequential code, selecting operators based on the num-
ber of mutants or categories of operators does not provide
good effectiveness, and random selection is not as good as
selective mutation.

e While each previous study [4, 37,40, 41, 49] provided one
set of sequential mutation operators that researchers can
use to speed up mutation for comparing test suites and
testing techniques/tools, we provide several sets of concur-
rent mutation operators (Table 5) that researchers can use
to trade-off the cost and effectiveness of mutation testing.
One can choose savings for concurrent mutants as high as
for sequential mutants but with reduced effectiveness, or
one can choose high effectiveness but with low savings.

e We show evidence that the savings in terms of the number
of mutants corresponds to the savings in terms of explo-
ration cost for concurrent code.

Table 1: Mutation operators for concurrent code
that have been previously proposed [6] and our three
new operators: RTS, MTS, and WTIS

| Category | Concurrency Mutation Operators |
- MXT - Modify Method-X Time (wait(),
2 5 sleep(), join(), and await() method calls)
5 3 MSP — Modify Synchronized Block Parame-
%8~ ter
g=2 ESP — Exchange Synchronized Block Param-
g =1 8 eters
Ag s MSF — Modify Semaphore Fairness
> 5\/ MXC — Modify Permit Count in Semaphore
B and Modify Thread Count in Latches and
EO 8 Barriers

MBR — Modify Barrier Runnable Parameter
RTXC — Remove Thread Method-X Call
(wait(), join(), sleep(), yield(), notify(), no-
tify All() Methods)

RCXC — Remove Concurrency Mecha-
nism Method-X Call (methods in Locks,
Semaphores, Latches, Barriers, etc.)

RNA — Replace Notify All with Notify

RJS — Replace Join with Sleep

ELPA — Exchange Lock/Permit Acquisition
EAN — Exchange Atomic Call with Non-
Atomic

RTS — Remove Thread Start

MTS — Move Thread Start

ASTK — Add Static Keyword to Method
RSTK — Remove Static Keyword from
Method

RSK — Remove Synchronized Keyword from
Method

RSB — Remove Synchronized Block

RVK — Remove Volatile Keyword

RFU — Remove Finally Around Unlock
RXO —~ Replace One Concurrency
Mechanism-X with ~ Another (Locks,
Semaphores, etc.)

EELO — Exchange Explicit Lock Objects
SHCR — Shift Critical Region

SKCR — Shrink Critical Region

(MOCMC)

Concurrency Method Calls

Modify the Occurrence of

(MK)

Switch | Modify Keyword

rent

Concur-
Objects
(SCO)

>3 e

% S S g EXCR — Expand Critical Region

St &= SPCR — Split Critical Region

=omc WTIS — Replace While With If Inside

Synchronized

e We find that sequential and concurrent mutation operators
are independent, i.e., none subsumes the other: concurrent
test suites that achieve a high mutation score for sequential,
respectively concurrent, mutants do not achieve high muta-
tion score for concurrent, respectively sequential, mutants.
This further demonstrates the importance of studying con-
current mutation operators.

2. BACKGROUND
2.1 Existing Mutation Operators

Each mutant is a small syntactic change to the system
under test (SUT). Mutants are generated by applying mu-
tation operators, which define how to modify the original
code to generate a mutated version. Jia and Harman pro-
vide a survey of mutation testing [28], including mutation
operators. For example, operators were proposed for proce-
dural languages [12,30], object-oriented languages [33], and
other programming paradigms [5,26]. The most relevant for
our study are operators for concurrent code.

Bradbury et al. [6] proposed mutation operators for con-
current Java. However, the cost-effectiveness of these op-
erators has not been evaluated until this study. Table 1

includes their operators, grouped in 5 categories based on
the programming constructs that the operators modify [6].
Each category (first column) and operator (second column)
are identified by an acronym, e.g., “MK” for the “Modify
Keyword” category and RSK for the “Remove Synchronized
Keyword from Method” operator. Note that the operators
are defined such that the mutated code is similar to common
programming mistakes, e.g., RSK changes the method dec-
laration by removing the synchronized keyword which can
cause data races or atomicity violations. The details of these
mutation operators and the example mutants can be found
in the original paper [6]. We additionally introduce three
new operators described in Section 3.1.

2.2 Selective Mutation

Selective mutation [4, 37,40, 41, 49], initially called “con-
strained mutation” [37], reduces the number of mutants by
selecting a subset of mutation operators—called sufficient
mutation operators. The subset should be selected such that
test suites that kill all non-equivalent mutants from the se-
lected subset also kill almost all non-equivalent mutants gen-
erated by all mutation operators. In contrast to the opti-
mization techniques for mutation testing (e.g., [19,51,57]),
which are sound in that they do not affect the mutation score
but only compute it faster, selective mutation is a heuristic
that could change the mutation score. Therefore, selective
mutation strongly relies on empirical studies.

Mathur [37] originally proposed that selective mutation
removes (two) operators that generate the most mutants.
The operators that generate the most mutants were termed
dominant operators.

Offutt et al. [41] named the approach that removes n most
dominant operators as n-selective mutation and empirically
evaluated it for n € {2,4,6}. Their study showed that
2, 4, and 6-selective mutation can achieve savings of over
20%, 40%, and 60% with effectiveness of 99.99%, 98.84%,
and 88.71%, respectively. In the follow-up study, Offutt et
al. [40] extended selective mutation to different categories
of mutation operators; the categories are created based on
the programming constructs that are mutated, e.g., expres-
sions, operands, or statements. In the same study, Offutt
et al. introduced the “99% rule”, which says that only a set
of operators that achieves (non-selective) mutation score of
99% or more is sufficient. (In practice this rule may be
relaxed, because a sufficient mutation score would depend
on the quality requirements of the software project, as with
other coverage metrics.) The experiments considered 22 op-
erators (for the Fortran programming language), and the
results showed that a category with 5 operators is sufficient.

Barbosa et al. [4] defined guidelines for selecting a suffi-
cient set of operators across categories. The experiments
considered 71 mutation operators (for C), and the results
identified a set of 10 operators that gave the best results
and provided savings higher than the previous studies.

Namin et al. [49] performed a statistical analysis on 108
mutation operators (for C) to identify a set of operators that
can predict the mutation score accurately. The resulting set
contains 28 operators.

Most recently, Zhang et al. [55] compared operator-based
mutant selection techniques with two random mutant selec-
tion techniques: (1) one-round, which selects mutants uni-
formly from the set of all mutants, and (2) two-round, which
selects mutants in two phases: first it uniformly selects a

mutation operator and then selects a mutant generated by
that mutation operator. They compared operator-based se-
lection techniques [4,40,49] with random selection where the
number of mutants selected randomly was 50%, 75%, and
100% of the mutants generated by operator-based selection
techniques. The comparison was needed for all operator-
based selection techniques, because they do not subsume
one another and the original evaluations were done on dif-
ferent sets of programs and mutation operators. The results
showed that random selection is even slightly better than all
operator-based selection techniques.

All these previous studies on selective mutation focused on
sequential mutation operators. In contrast, we investigate
selective mutation for concurrent mutation operators.

3. MUTATION INFRASTRUCTURE

In this section, we first introduce three new concurrent
mutation operators that we propose based on our experience
with testing concurrent code [19,25,43,45]. We then present
our tool for generating mutants for concurrent code. We
finally describe mutant execution for concurrent code, which
greatly differs from mutant execution for sequential code.

Note that we also describe some key design decisions that
others can use when they build tools for concurrent mutation
testing and describe some important constraints that arise
when testing concurrent code, not only for mutation testing,
but testing in general.

3.1 New Mutation Operators

We propose three new mutation operators (shown in bold
in Table 1): RTS, MTS, and WTIS. These new mutation
operators generate mutants that are similar to common pro-
gramming mistakes [6,17,31]. RTS removes an invocation
of the start method on a Thread object.

MTS moves an invocation of the start method on a Thread
object. Specifically, MTS moves this invocation statement
within the same block of statements to the destination state-
ment that is the post-dominator of the original statement.
The mutants generated by RTS and MTS can cause the pro-
gram to deadlock if the affected thread is supposed to send a
signal to the other thread(s) or can cause an incorrect result
to be calculated if a thread has not been executed.

WTIS replaces while with if inside a synchronized block.
A correct implementation of monitors in Java requires while
due to spurious thread wake-ups. WTIS is a well known bug
pattern that can cause an order violation [17].

Our intuition was that all three operators would create
mutants that greatly differ from the mutants generated by
the other operators and thus all three operators could end
up in the sufficient sets of operators. Interestingly, our ex-
periments show that only WTIS ends up in sufficient sets of
operators, while RT'S and MTS get subsumed by other mu-
tation operators. This also shows the importance of empir-
ically evaluating selective mutation because intuition about
independence of the operators can be misleading.

3.2 Mutant Generation

To evaluate selective mutation for concurrent operators,
it is necessary to have a tool that implements all mutation
operators from Table 1. Also, it is important that the tool
handles large codebases. Unfortunately, existing mutation
tools for concurrent code [7,19,35] implement only a subset
of the mutation operators and/or are not reported to scale.

We developed a tool, called Comutation?, that imple-
ments all the mutation operators from Table 1. Also, Comu-
tation can be applied to larger codebases (Section 4); in fact,
some programs we mutated in our study are larger than any
program used in any previous study on selective mutation.

We next discuss how Comutation inserts mutations in the
SUT and why an alternative would not apply for concurrent
code. There are two common approaches to inserting muta-
tions. One approach is to create multiple copies of the SUT
and insert one mutation in each copy, thereby generating as
many copies as there are mutants; we follow this approach.

An alternative approach is to use mutant schemata [51]
to create only one mutated version of the SUT for all mu-
tants, which uses a global ID to specify which mutant (if
any) should be enabled. For (intra-class) sequential muta-
tion operators, both approaches are applicable, the trade-off
laying essentially in the performance cost imposed by each
approach. For concurrent mutation operators (and inter-
class sequential mutation operators [42]), on the other hand,
mutant schemata would require significant global changes in
the SUT for some mutation operators.

For example, consider the RVK operator that removes the
volatile keyword from a field declaration. (According to
the Java memory model [36], this keyword specifies that
each access to the field should introduce a happens-before
edge.) Mutant schemata would require creating two fields
(one volatile, one not) and instrumenting every field access
to determine which of the two fields to access. Moreover, the
particular instrumentation could change the semantics of the
code (e.g., an access to the non-volatile field could introduce
a happens-before edge [36] due to the instrumentation).

Although mutant schemata can significantly improve the
performance of mutation testing [51], it is orthogonal to se-
lective mutation and does not directly impact any results pre-
sented in this paper. Namely, we measure the savings of
selective mutation in terms of the number of mutants that
are not generated (and in terms of exploration cost), not in
terms of the time saved for not generating those mutants.
This is consistent with previous studies [4,37,40, 41,49, 55].

3.3 Mutant Execution

A substantial difference between concurrent and sequen-
tial tests is that the result of concurrent tests depends on
thread schedules: the same concurrent test code can produce
one result for one schedule and another result for another
schedule. This inherent non-determinism of concurrent tests
raises important questions for mutation testing, including
the theoretical questions of defining when a mutant is killed
and practical questions of (quickly) determining if a mutant
can be killed.

Defining Killed Mutants. For (deterministic) sequential
code, a mutant is killed if, for some test, the observable
output of the mutated code differs from the output of the
original code. For concurrent code, a mutant is killed if, for
some test, the set of observable outputs of the mutated code
for all possible schedules differs from the set of outputs of
the original code for all possible schedules [10,19]. Hence,

2Currently, the Comutation tool itself cannot be made
publicly available because Intel did not authorize the re-
lease. However, the mutants generated by Comutation
are publicly available at http://mir.cs.illinois.edu/
comutation/. Note that the mutants are sufficient to re-
produce the results of the study.

determining precisely if a concurrent mutant is killed is much
harder than for a sequential mutant. Given a concurrent
program, a test, and a mutant, it would be necessary to
execute all possible schedules of both the original program
and the mutant to determine if the mutant is killed. Doing
so, however, is not practical, as the number of schedules to
explore can be huge.

Approximating Killed Mutants. Several approaches are
used in practice to reduce the number of explored schedules
for a concurrent test. Some approaches pick a single sched-
ule [25], a set of random schedules [15], or a subset of sched-
ules with a limited number of thread preemptions [29, 38].
Exploring only a subset of schedules can lead to finding only
a subset of all possible outputs. When the outputs are sim-
ply “pass” or “fail”, these approaches can fail to find that a
test can fail for some schedule (false negative); this is not
specific to mutation testing.

What is specific to mutation testing is defining mutants to
be killed based on different subsets of all possible outputs.
As a consequence, it may fail to detect that a mutant is killed
(false negative) if a schedule that would lead to a different
output is never executed in the mutated code. Also, it may
report that a mutant is killed when this should not be the
case (false positive) if a different output is obtained on the
mutated code than on the original code.

While it may seem that false positives can be avoided

by running the same schedules on the mutated and origi-
nal code, note that this cannot be done [10]. First, in the-
ory, it may be impossible to enforce the execution of the
same schedules in the original and mutated run because the
changes in the mutant may enable or disable some sched-
ules (e.g., grabbing some locks that prevent threads from
executing or releasing some locks that allow other threads
to execute). Second, in practice, it is very hard to tightly
control the scheduler for larger programs where the execu-
tion can depend on real time, as is the case for some of our
experiments (Section 4).
Collecting Killed Mutants. To enable the evaluation of
selective mutation, Comutation builds a full test-mutant ma-
trixz to encode all tests that kill each mutant. In other words,
Comutation does not stop executing tests on a mutant after
it is killed but rather executes all tests on each mutant. (In
the actual use of mutation testing, one would stop executing
tests on a mutant after it is killed for the first time.)

More precisely, Comutation does not execute all tests on
each mutant but uses a common mutation testing optimiza-
tion [19,30,44,47] that determines mutants that are hit. A
mutant is hit if its mutated location is executed while run-
ning a test on the original code; Comutation does not exe-
cute mutants that are not hit because they cannot be killed
for that test. While generating the mutants, Comutation
instruments the original code to be able to detect which
mutants are hit during the original run. After generating
the mutants, Comutation executes all tests on the original
code and collects mutants that are hit. (Note that the in-
strumentation has no effect on concurrent behavior as long
as we control the schedule, which is done for most of our ex-
periments, and in other cases we keep the instrumentation
very lightweight, i.e., only collect mutant IDs.)

Note that Comutation potentially executes the original
code only for a subset of schedules, so it may fail to find that
some mutant could be hit (and thus could incorrectly label
the mutant as not killed). However, even for toy programs

http://mir.cs.illinois.edu/comutation/
http://mir.cs.illinois.edu/comutation/

it may not be feasible to explore all the schedules. Also note
that for some concurrent mutation operators it can be hard
to track if a mutant is hit or not, even if all schedules would
be explored. For example, this is the case for the RVK opera-
tor (for reasons similar as in mutant schemata). For mutants
generated by such operators, Comutation runs all tests. Fi-
nally note that some concurrent mutation operators make
several changes to the code (e.g., EELO can replace syn-
chronized (o1) { synchronized (02) with synchronized
(02) { synchronized (o1) ...). In such cases, Comutation
considers that a mutant is hit if any change is executed, as
similar to higher-order mutation of sequential code [23].

4. STUDY

This section describes the experiments that we carried
out to evaluate selective mutation for concurrent code. The
main goals of the evaluation were to (1) determine sets of
mutation operators for concurrent code that researchers can
use to trade-off the savings and the effectiveness of muta-
tion testing, (2) explore relationship between the savings in
terms of the number of mutants and in terms of exploration
cost, and (3) evaluate whether sequential and concurrent
mutation operators are independent.

Specifically, we address the following questions for concur-
rent operators, which subsume all questions from previous
studies on sequential mutation operators (citation listed by
each question) and include three new questions:

Q1: [41]; What are the most dominant mutation operators
for concurrent code?

Q2: [40,41]; Is n-selective mutation applicable in the con-
text of mutation testing of concurrent code?

@3: [40]; Which category of mutation operators can achieve
the highest (non-selective) mutation score?

Q4: [4]; What is the set of mutation operators that achieves
a high (non-selective) mutation score and significant
savings (in terms of the number of mutants)?

Q5: [49]; What are the highest savings that can be achieved
for different values of (non-selective) mutation scores?

Q6: Which sets of concurrent mutation operators provide
good trade-offs for uses in future research studies?

Q7: [55); How do operator-based and random mutant se-
lection compare for concurrent mutation operators?

@)8: How do the savings in terms of number of mutants and
the savings in terms of exploration cost relate?

Q9: Are concurrent and sequential mutation operators in-
dependent, i.e., none subsumes the other?

To answer these questions, we performed experiments on
14 Java programs that differ in size, number of tests, and
concurrent constructs. The experimental setup closely fol-
lowed the experiments done for mutation testing of sequen-
tial code.

We performed all the experiments on a machine with a
4-core Intel Core i7 2.70GHz processor and 4GB of main
memory, running Linux version 3.2.0.

Table 2: Subject programs used in the experiments

g »

) 2 2 g 2

Q 3 8 s g

_ = = n =
Subject H* H* H* H* 3
Account 52 6 22 503691 2343256
Accounts 43 6 8 1645 4679
Airline 38 5 18 88654 320434
Allocation 78 5 20 66998 141179
Barber 135 65 11 | 38978256 86820210
Bubble 37 2 12 81629 249985
Buffer 89 9 8 08887 223918
Guava? 11T 57395 336 569 na na
LinkedList 179 1 32 2717344 11610491
Lucene? 3 68218 738 334 na na
MergeSort 200 16 2 1022530 1464879
Pool? 152 4664 451 243 na na
Shop 113 3 9 33187 65364
Tree 122 38 15 437695 670085

= [] 131363 | 1689 | 1303 | 44030516 | 103914980 |

4.1 Subject Programs

Table 2 lists the subject programs used in the study. For
each subject, we tabulate its name, number of lines of code
without comments or whitespace (reported by CLOC [11]),
total number of concurrent mutants generated by our tool,
number of tests, and number of explored states and transi-
tions if applicable (more details later in the section).

The programs come from different sources [16, 19, 21, 32,
46]. Ten (small) programs contain classes that demonstrate
various concurrent Java constructs and spawn most of the
threads in tests (although small, these programs are im-
plemented using appropriate concurrent constructs and are
preferable when comparing testing techniques); all these pro-
grams were previously used in research on testing concurrent
code [19,25]. Three (big) programs are from real-world open-
source code: Guava [21] is a Google project that includes con-
current collections and concurrency libraries; Lucene [32] is
an Apache project that implements a concurrent text search
engine; and Pool [46] is an Apache project that provides a
concurrent object-pooling API. We used the original code
for this study, without any special modifications.

Note that Guava, Lucene, and Pool are substantially larger
than any program used in previous studies on selective mu-
tation [4,37,40,41,49,55].

4.2 Generated Mutants

The number of mutants generated by a set of mutation
operators varies based on the language constructs used in
the SUT. Some studies report a high number of sequential
mutants even for very simple code [49]. However, a (real-
istic) concurrent (Java) program uses concurrent constructs
sparingly. Therefore, the number of mutants generated by
concurrent mutation operators is not as high as the num-
ber of mutants generated by sequential mutation operators
for code of similar size. As discussed in Section 1, selective
mutation is still highly desirable for multithreaded code be-
cause execution/exploration of tests even on a single mutant
is expensive, so reducing the cost is important.

Table 3 shows the number of mutants for each subject and
mutation operator. The "M column and row show the total
number of mutants for each subject and mutation operator,
respectively. All the mutants are generated automatically

Table 3: Number of generated mutants with all mutation operators for all the subjects. > M is the total
number of generated mutants, > H is the total number of hit mutants, and } K is the total number of killed

mutants
MPCM MOCMCT MK SCO MCR
O O ~ 4]
el oalal ofl 2| R 2la| Bl wle|ElE| 2| al 2|> off €l €|l c| 8| &
% x| 3 % [N 9} 4 = | B 0 | n 0 0 > [") X % [

Subject = 2l lm| = gl 2| 2L B |3 <] & g E| = & 2| n| 8| ®]| B > M
Account 0 TJ]o0] o 0] 0] 0oJo] o] 0[o[[o]o 3 1 0o 0 T] o] 0] 0] o 6
Accounts 0 0 [0] o 0 o] oJo[ol oo oo 2 2 o0]o 0 T o 1 o] o 6
Airline 0 0 [0] o T o] o1 o] 1[o[[o]o 0 2 o0]o 0 o] o] o] o[o 5
Allocation 0 0 [0] o 0] 0] oJo[o olo|[o]o 3 1 0 [o 0 o 1] o] o[o 5
Barber 0 320 o 35 0] oJo] o oo o]0 0 s o0]o 0 o 1] 3] 6] 3 65
Bubble 0 T o] o 0 0] oJo[ol olo|[o]o 0 1 0 [o 0 o] o] o] o[o 2
Buffer 0 0 [0] o T 0] 2o ol olo[o]o 0 35 0o 0 o] o] o] o[o 9
Guava 0 [13 [0 | 2 T 113 1| 1] 7] slo[[o[o] i3] 1i5 |36 |3 0 o o 1|17 [1 336
TinkedList 0 o [0 o o 0o oo o[o[oo[o 0 > o]0 0 o 1 o[o[1 1
Tucene 2 [11d [1] 2 [2 [[[2] 5] 3 [11 [T [24] s[4 [5 0 65 [28 [28 [35 [© 738
MorgoSort 0 o [0 o s o o3[o 3 [203 3 o] 0o 0 o] o[o[o[o 6
Pool 0 [100 [o [o[5] o] 7o o] o[o]0 o] 106 8o 5 [0 0 0 [13 [22 [32 [1 I51
Shop 0 0o [0 o o o] oo ol olo[1[0 1 > o0 lo 0 o] o[o 1 [o 3
Troe 0 0o [0] & T 9] o[1] s 1 [o][0o]o 2 T o [o g o] o[o] o[o 38
M 12 [370 [1 [10 [[50 [33 | 20 [8 [20 [1L [3 [[2 [4 | 384 [310 | 8 [8 9 [[134 [44 [55 [o1 [12 || 1689

T T [o2 [T [6 [46 [20 [s [7 [17 [6 3 [[22 [32a 261 [0 [7 5 [126 [42 [51 [88 [10

K 0 [130 [0 5 5 9 [0[5 9 5[0 0 [0 37109 0[O g T3 2 21 2

 Comutation does mot dotect hit mutants gencrated by RVR mutation operator; wo run all tost cases for cach RVK mutant (sce Section 1.4)

by applying Comutation on the original code. As can be
seen, Comutation can handle real-world examples. Mutation
operators are grouped the same way as in Table 1. Values
for some operators are not shown in Table 3 because they
generate 0 mutants in the programs used in the study.

Mutation operators can be sorted based on how domi-
nant they are [37,41], i.e., based on the number of mutants
that the operators generate (row "M in Table 3). Interest-
ingly, the distribution of mutants generated by concurrent
mutation operators is highly non-uniform, similar to the dis-
tribution for sequential operators [40,41].

Answer 1: RSK is the most dominant mutation operator
for concurrent code, closely followed by MSP and RSB.

4.3 Test Suites

All programs came with a number of manually written
tests. For all programs but Guava, Lucene, and Pool, we in-
spected all the mutants not killed by the original tests to
identify which mutants are equivalent to the original code,
and then we created additional tests to kill these mutants.
For the three big examples, it was not feasible to inspect
non-equivalent mutants. Therefore, following previous stud-
ies [40,41,49,55], we treat all non-killed mutants as equiv-
alent. Table 2 shows the number of tests that kill all non-
equivalent mutants. As pointed by others [49], equivalent
mutants are of no interest to researchers who would use the
mutants for comparison of test suites and testing techniques.

For Guava (which has a total of over 200,000 tests) and
Lucene (which has a total of over 1,500 tests) we execute
only a subset of tests to make the study feasible and focused
on concurrent code. Specifically, we select all test methods
from the test classes that reference Thread at least once.

As common in studies of mutation testing, we remove from
the test suite ineffective tests that do not kill any mutant.

Our experiments use one test suite per program. All pre-
vious studies [37,40,41,49,55] on selective mutation testing
tried to remove the potential bias of one test suite by gen-
erating a large number of test suites and averaging results
across all of them. However, even the early experiments by
Offutt et al. [40] showed that different test suites lead to very
similar results, and the most recent study by Zhang et al. [55]

shows almost negligible variance in (non-selective) mutation
score across various test suites (standard deviation of under
0.25 for the score of over 99.00). Moreover, selecting multi-
ple test suites is possible for sequential code because there
are subjects available with large test pools (e.g., SIR pro-
grams [14]), sometimes generated using tools for automatic
generation of tests. Unfortunately, there are no comparable
subjects for concurrent code or test generation tools [39].

4.4 Mutant Execution

As described in Section 3.3, Comutation can use differ-
ent exploration approaches to execute/explore tests for (mu-
tated) concurrent code. Our experiments use two explo-
ration approaches. (1) Stress testing simply runs the orig-
inal or mutated SUT (with no further modifications) on a
regular JVM. (2) Java PathFinder (JPF) [52] is an explicit-
state model checker implemented as a special JVM that can
explore all possible schedules; it also supports a limited num-
ber of thread preemptions [38].

In our study, we used the most thorough exploration pos-
sible for each subject: we used JPF to execute all schedules
up to 6 preemptions if feasible and used stress testing when
JPF runs out of memory, tests depend on real time, or have
long execution time. Specifically, we executed all programs
but Guava, Lucene, and Pool with JPF. We executed Guava,
Lucene, and Pool using a single stress run because some tests
depend on real time and some tests that spawn a number of
threads incur long execution time.

4.5 Hit/Killed Mutants

Table 3 shows the total number of hit/killed mutants for
each subject in the >H/YK row. To determine these num-
bers, we followed the procedure from Section 3.3, using stress
runs or JPF for each subject. Recall from Section 3.3 that
the precise numbers of hit and killed mutants may differ be-
cause of false positives and false negatives. In total, there are
15 operators that create at least one mutant that is killed.

4.6 Collecting Cost-Effectiveness Data

Traditionally [40, 41], evaluations of selective mutation
use two types of test suites: a test suite that kills all non-
equivalent mutants generated by a selected set of mutation
operators (selective adequate test suite) and a test suite that

Table 4: Average/Total values for {2, 4, 6, MK,
MCR, MOCMC, MPCM, SCO}-selective mutation
adequate tests. Detail results are shown only for
2-selective mutation because of the space limit

then for several other sets of operators. To compare two sets
of operators, we use the average effectiveness (“Score[%]”)
and cost savings (“%Save”), as in the previous studies [4,37,
40,41, 49,55]. Using simple averages (rather than weight-
ing by the number of mutants) avoids biasing the results by

[Subject [[%Tests | #Live | Score[%] [[#NSM [#SM [%Save | .
Account $3.33 3 50.00 G 3 56.67 programs with more mutants [49].
Accounts 0.00 0 100.00 S 1] 5333 The average “Score[%)]” values for 2- (without {RSK, MPS}),
Trline } } ; ; } . .
Allocation 10.00 B 50.00 5 3 50.00 4- (without {RSK, MPS, RSB, SHCR}), and 6- (without
LEAIT ~= - _— i I LR {RSK, MPS, RSB, SHCR, SPCR, RVK}) selective muta-
Buffor 0.00 0 100.00 5 5 0.00 tion are all below 99% and thus not sufficient. Moreover, as
Guava 0.00 0 100.00 336 210 37.50 . «g % .
TinkedTist 500 5 15000 7 7 500 n increases, the average “Score[%]” decreases more rapidly
Lucene 0.00 0 100.00 738 376 | 49.05 than for sequential mutation operators.
MergeSort 0.00 0 100.00 16 13 18.75
Pool 32.76 7 81.58 451 236 47.67
Shop 33.33 0 100.00 8 4 50.00
Tree 0.0 — ° 100.99 s 30 A5‘26 Answer 2: Different from selective mutation for se-
n-selective Ve, Total ve.
S seloctive 11.38 0.85 51.54 935 | 38.39 quential mutation operators, n-selective mutation test-
4-selective 47.28 9.00 63.23 1689 491 63.24 o s o s s
e o3 5% o a3 ing (n € {2,4,6}) is Anot applicable to mutation testing
Category Ave. Total Ave. for concurrent mutation operators.
MK 22.65 1.00 83.66 797 51.53
MCR 59.92 9.92 47.38 336 84.10
MOCMC 66.33 15.71 40.38 1689 154 80.87
MPCM 59.53 3.21 44.78 393 85.17 3 3] 3 N
s b0 L o et s s Selective Mutation for Categories. As described in

kills all non-equivalent mutants generated by all mutation
operators (non-selective adequate test suite). In our study,
we generate each adequate test suite by taking all tests that
kill at least one mutant (from selected mutants or all mu-
tants, for respective test suites).

More precisely, each experiment follows these three steps:
(1) select a subset of mutation operators; (2) find an ade-
quate test suite for the mutants generated by the selected
mutation operators; and (3) measure the non-selective mu-
tation score achieved by the test suite with respect to all
mutation operators. As in previous studies [40,41, 49, 55],
we measure non-selective mutation score relative to mon-
equivalent mutants (rather than relative to all generated
mutants). The optional fourth step is to check if the “99%
rule” is satisfied: a set of operators is sufficient, i.e., non-
selective mutation score is above 99% (Section 2.2).

4.7 Results for Selective Mutation

n-Selective Mutation. Initially [37,40,41], selective mu-
tation was proposed to remove n most dominant mutation
operators (Section 2.2) and was evaluated for n € {2,4, 6}.
Our first set of experiments evaluates n-selective mutation
but in the context of concurrent mutation operators.

Table 4 shows the detailed per-program values only for
2-selective mutation because of space limit (the top of the
table). “%Tests” is the percentage of tests that do not be-
long to the selective adequate test suite relative to the non-
selective adequate test suite. “#Live” is the number of all
(non-equivalent) mutants not killed by the selective ade-
quate test suite. “Score[%]” is the non-selective mutation
score achieved with a selective adequate test suite with re-
spect to all (non-equivalent) mutants. “4NSM” is the num-
ber of mutants generated by non-selective mutation opera-
tors. “#SM” is the number of mutants generated by selective
mutation operators. “%Save” is the percentage of mutants
saved if selective mutation is used, i.e., (#NSM - #SM) / #NSM.
In brief, “%Save” and “Score[%]” show the cost savings and
effectiveness of selective mutation, respectively.

The middle of Table 4 shows the average/total values
across all the programs, first for 2-selective mutation and

Section 2.1, mutation operators can be grouped in cate-
gories based on the constructs they modify. Our second set
of experiments evaluates selective mutation based on cate-
gories [40] for concurrent mutation operators. The bottom
of Table 4 shows the average values, across all subject pro-
grams, of mutation score for all 5 categories from Table 1.

Answer 3: The “Modify Keyword” (MK) category is the
most effective. However, different from sequential mu-
tation operators, no category achieves sufficient score.

Trade-offs in Terms of Savings and Mutation Scores.
Our next set of experiments evaluates all possible sets of mu-
tation operators even from different categories, i.e., all sets
of operators of size 1, 2, 3, ..., 15. The operators that gener-
ate no killed mutant are not considered. Note that the pre-
vious studies on selective mutation for sequential operators
could not perform this exhaustive analysis because they had
a larger number of operators that generate killed mutants.
Overall, we evaluated 2'° sets of operators; for each set, we
first (1) measure the non-selective mutation score for each
program and (2) average the score over all programs. We
then (3) identify the set that achieves maximum savings for
each average score (Pareto optimality). We finally (4) plot
the maximum savings and indicate the size of the set (1-9
operators) using an appropriate shape (Figure 1). (If there
are multiple sets with the same values, we plot the smallest
set size.) Only five sets are sufficient; the set that satisfies
the “99% rule” and achieves the highest savings of 46.37% in-
cludes these operators: {MSP, RSK, RTXC, SHCR, SKCR,
SPCR, WTIS}. We also identify the set that has the muta-
tion score of 100% and achieves the highest savings (42.98%);
the set includes: {RCXC, RJS, RSB, RSK, SHCR, WTIS}.
It is worth mentioning that all sets that achieve savings over
99% require WTIS (“Replace While With If Inside Synchro-
nized”), one of our new mutation operators (Section 3).

Answer 4: {MSP, RSK, RTXC, SHCR, SKCR, SPCR,
WTIS} is the set that achieves the highest savings
(46.37%) with the sufficient mutation score (99.67%).

100 —

) %

—+ ¥

~ 80 ; ¥ il
g i
R iy
‘(J)U 60 %%
2 v4
s % e @%
2 4l setofsizel +
© set of size 2
2 30 | setofsize3 ¥
g setofsize4 [
E L setofsize5 v

20 set of size 6

setofsize7 <&
10 - setofsize8 ¢
o setofsize9)

0 10 20 30 40 50 60 70 80 90 100
Average Mutation Score (%)

Figure 1: The best savings for mutation scores con-
sidering all sets of mutation operators (averaged
across all programs)

Table 5: Sets of mutation operators that achieve the
closest values to targeted mutation score and savings

Targeted [%] Achieved [%] Operators
%Save | Score[%] %Save | Score[%] | %States P
{RCXC, RIS,
MAX 100 42.98 100.00 40.58 RSB, RSK,
SHCR, WTIS}
{MSP, RSK,
RTXC, SHCR,
MAX >99 46.37 99.67 44.95 SKCR, SPCR.
WTIS}
{MSP, RSK,
~50 MAX 49.14 96.10 49.21 RTXC, SHCR,
SKCR, WTIS}
{ELPA, MXC,
RCXC, RJS,
~60 MAX 59.97 91.54 65.43 RSB, SHCR,
WTIS}
~ {RJS, RSB,
70 MAX 69.90 84.14 72.82 WTIS}
{RTXC, SHCR,
~80 MAX 79.77 75.96 84.31 SKCR, SPCR,
WTIS}
~ (RIS, SHCR,
90 MAX 89.28 58.10 93.41 SPCR}

Answer 5: Figure 1 shows the mazimum savings for each
value of the mutation score. For the score over 95%, the
savings ranges from 40% to 50%. For the savings over
90%, the score is about 60%.

Sets of Mutation Operators for Future Studies. While
each previous study [4, 37,40, 41, 49, 55] provided one set
of sequential mutation operators that researchers can use
to speed up mutation testing without sacrificing effective-
ness, we provide several sets of concurrent operators that
researchers can use to trade-off the cost and effectiveness of
mutation testing. Table 5 shows the sets of mutation opera-
tors that achieve the values closest to the targeted mutation
score and/or savings. (If multiple sets achieve the same
savings and mutation score, we show only one because of
the space limits.) If the goal is to maintain high effective-
ness (over 99%) for concurrent mutation operators, one can
only reduce the number of mutants by about half (savings of
46.37%); however, if the goal is to greatly reduce the number
of mutants (say, 10X, for savings of about 90%), one can still
do that but be prepared to have the expected effectiveness
reduced (score of 58.10%).

Table 6: Operator-based vs. random selection. Ran-
dom selection is done based on the set of operators
that achieve mutation score of 99.67%

Score[%]
Subject one-round random two-round random
50% | 75% | 100% | 50% | 75% | 100%
Account 75.33 90.00 100.00 65.00 83.33 100.00
Accounts 0.00 0.00 100.00 0.00 0.00 100.00
Airline 0.00 0.00 100.00 0.00 0.00 100.00
Allocation 40.50 68.00 89.00 44.50 64.50 82.50
Barber 100.00 100.00 100.00 100.00 100.00 100.00
Bubble 0.00 0.00 100.00 0.00 0.00 100.00
Buffer 100.00 100.00 100.00 100.00 100.00 100.00
Guava 76.53 85.07 90.44 75.02 83.11 89.75
LinkedList 61.00 61.00 85.00 55.00 55.00 91.00
Lucene 100.00 100.00 100.00 100.00 100.00 100.00
MergeSort 100.00 100.00 100.00 100.00 100.00 100.00
Pool 92.69 96.05 98.21 93.11 96.16 98.68
Shop 50.00 50.00 86.00 50.00 50.00 81.00
Tree 0.00 0.00 100.00 0.00 0.00 100.00
[Ave.]
[5686 | 6072 | 9633 | 5500 | 5043 | 9592 |

Answer 6: Table 5 is a key contribution of this paper
and provides researchers with sets of operators to use in
future studies on (mutation) testing of concurrent code.

Operator-based vs. Random Mutant Selection. Our
next experiments compare operator-based and random mu-
tant selection. Similar to the recent study for sequential
mutation operators [55], we consider both one-round and
two-round random selection strategies (Section 2.2). We
compare them to the set of concurrent mutation operators
that achieves the score of 99.67%. Our experiments follow
the previous study [55] in randomly selecting 50%, 75%, and
100% of the number of mutants generated by the operator-
based selection (46.37% of all mutants).

Table 6 shows the results of this experiment. Each num-
ber is averaged across 50 runs of random selection. The
“Avg.” numbers should be compared to 99.67%. We can see
that the operator-based mutant selection is slightly better
than random selection for the programs used in our exper-
iments. This contrasts the results on sequential code [55]
which showed that random selection performs slightly bet-
ter than the operator-based selection in most of the cases.
In agreement to the results on sequential code [55], our ex-
periments show that one-round and two-round random se-
lections are about the same.

Answer 7: Operator-based mutant selection performs
slightly better than random selection for concurrent mu-
tation operators.

Savings in Terms of the Number of States. All previ-
ous studies on selective mutation measured the cost of muta-
tion testing using only the number of mutants as the metric.
This appears reasonable for sequential code as one can ex-
pect that running tests on mutants takes on average similar
time across different mutants. However, for concurrent code,
tests are not simply executed but rather explored for various
schedules. We could not tell a priori how reducing the num-
ber of mutants affects the cost of exploring the state space
for concurrent tests. For example, it could have been the
case that reducing the number of mutants in half reduces
the exploration cost 10X (because the selected mutants are
much cheaper to explore).

We performed experiments to measure the savings of se-
lective mutation in terms of the exploration cost, specifically
in terms of the number of states that JPF explores for the
tests and selected mutants. Jagannath et al. [27] showed
that the number of explored states relates to exploration
time. Our experiments were performed for all the programs
that are explored with JPF (all but the three largest pro-
grams). Table 5 shows the average results in the column
“%States”. Although the table does not include “%Save”
values averaged across programs explored by JPF our find-
ings are based on those values. We do not show the detailed
results for the space limit. (Note that “%States” column
should not be directly compared with “%Save” because the
latter is computed over all subjects.) Our analysis of the
two kinds of savings shows the following.

Answer 8: The savings in terms of the number of mu-
tants correspond to the savings in terms of exploration
cost for concurrent code.

Sequential vs. Concurrent Mutation Operators. Our
final set of experiments was designed to check whether con-
current tests that achieve high mutation score for sequential,
respectively concurrent, mutants also achieve high mutation
score for concurrent, respectively sequential, mutants. First,
we generate sequential mutants using the Javalanche muta-
tion tool [47]. Javalanche uses selective mutation for se-
quential mutants and implements four sufficient operators:
Negate Jump Condition (NJC), Omit Method Call (OMC),
Replace Arithmetic Operator (RAO), and Replace Numer-
ical Constant (RNC). Second, we collect the test-mutant
matrix that encodes which tests kill which mutants; we run
the same set of tests as for the concurrent mutants. The
numbers of generated, hit, and killed mutants are shown in
Table 7.2 Third, we create for each program 20 test suites
that kill all concurrent mutants, following the approach sim-
ilar to Zhang et al. [55] to create each test suite: randomly
select a test, include the test in the test suite if it kills at
least one new mutant, and repeat the steps until all con-
current mutants are killed. We measure mutation score for
sequential mutation operators achieved by the created test
suites. On average, across all the programs, mutation score
for sequential mutation operators is 57.78%. As Javalanche
uses sufficient operators, the mutation score for all sequen-
tial operators should be similar. This finding demonstrates
that sequential mutants are not subsumed by concurrent mu-
tants. Fourth, we randomly select for each program 20 test
suites that kill all sequential mutants, following the same
approach to create test suites as in the previous experiment.
We use these suites to measure mutation score for concurrent
mutation operators. On average, across all the programs,
mutation score for concurrent mutants is 84.73%. This find-
ing demonstrates that concurrent mutants are not subsumed
by sequential mutants.

3Unfortunately, Javalanche was unable to run tests for Guava
and Lucene as code uses annotations on method parameters,
which causes Javalanche/ASM instrumentation to crash.
Also, tests in these projects do not properly shut down
thread pools, which leads to runtime exceptions when ex-
ecuted with Javalanche.

Table 7: Number of generated sequential mutants
with Javalanche [47]

O
ol =| 2| £

Subject z 5| = 2|l sm | sH | TK
Account 2 2 8 12 24 20 18
Accounts 8 27 2 27 64 57 49
Airline 7 2 3 19 31 31 18
Allocation 18 6 0 53 7 53 26
Barber 7 10 7 20 44 42 34
Bubble 5 3 4 16 28 28 21
Buffer 5 19 1 8 33 33 29
LinkedList 14 9 0 14 37 32 24
MergeSort 19 23 15 94 151 123 66
Pool 486 1351 126 1463 3426 2257 1712
Shop 6 12 3 40 61 50 43
Tree 16 25 6 50 97 93 7
> M 593 1489 175 1816 4073 |

> H 458 1033 139 1189 [2819]

> K 413 808 102 794 2117

Table 8: The best savings, with sufficient mutation

score, obtained in all studies on selective mutation
Selective Mutation Study

[40] | [4] [[49] | [this]

_ | Language Fortran | C C Java

2 Code sequential conc.

£ | & [#Mutation Op. 22 71 108 27

= S | #Selected Op. 5 10 28 7

E ToSave 77.66 | 65.01 92.60 | 46.37
g Language C

= E Code sequential na
— | #Mutation Op. 108

VrSave 92.72 | 83.06 [92.58

Answer 9: Concurrent and sequential mutation oper-
ators are independent, i.e, none subsumes the other,
demonstrating the importance of the study on concur-
rent mutation operators.

Summary of Savings in Studies on Selective Muta-
tion. Table 8 shows the best savings (in terms of the num-
ber of mutants) reported in all studies on selective mutation
testing, where each savings is achieved with a sufficient set
of mutation operators. The best savings for concurrent code
are substantially smaller (46.37%) than the best savings for
sequential code (sometimes over 90%). One potential rea-
son for smaller reduction is the smaller number of concurrent
mutation operators and generated mutants. Another reason
may be that concurrent mutation operators are more care-
fully selected, targeting generation of different types of bugs.
We do believe that more concurrent mutation operators are
required because of the spectrum of bugs that they have to
cover [31], even if at the same time these operators generate
a large number of mutants. Indeed, the goal of our study
was not to achieve high savings but to evaluate selective
mutation for concurrent code and to provide several sets of
concurrent mutation operators that researchers can use in
their future studies.

S. THREATS TO VALIDITY

Internal Validity. The main uncontrolled factors that may
influence the results of our study are potential faults in our

tool for mutating code, collecting execution results, and an-
alyzing the results. To reduce this threat, we reviewed many
outputs of mutation testing tool and inspected the results
of the execution of mutants on small programs.

External Validity. The conclusions of the study are based
on the results obtained on 14 programs, which may not
be representative for all programs and selective mutation.
Firstly, some of the programs are small and do not come
from production code. Secondly, some of the programs may
be considered “old” in that they mostly use synchronized
block/keyword rather than explicit locks. Lastly, no pro-
gram uses new concurrency constructs (e.g., Java 7 includes
Fork/Join parallel framework). To overcome the potential
issues, the study relies on the programs that differ in size
and constructs. All the programs have been used in many
previous studies on different topics. Also, our study includes
three (big) programs that are used in production. It remains
as the future work to perform experiments for more muta-
tion operators that focus on new parallel constructs.
Construct Validity. First, in our evaluation, we used only
one pool of tests to select test suites for each program, which
we extended for simple example to kill all non-equivalent
mutants. The results may greatly differ if different test
suites are used in the experiments. Unfortunately, we were
unable to follow the approach taken in previous studies on
sequential selective mutation to generate test cases auto-
matically: the available tool [39] for test case generation
for concurrent code is not fully automated and works with
one class at a time. Our study relies on the previous em-
pirical studies on sequential selective mutation that show
that test suite does not have a significant impact on the
results [40,55]. Second, we mark all non-killed mutants as
equivalent (for big examples). Having an actual set of equiv-
alent mutants (which would require manual inspection) can
potentially lead to different results. Our approach follows
previous studies on selective mutation in deeming mutants
equivalent if they are not killed by any test from the entire
test pool. Third, we limit the number of preemptions (JPF)
and runs (stress) to make the study feasible. These can lead
to false positives and false negatives. To reduce this threat,
we set a relatively high value for preemption bound.

6. RELATED WORK

There has been a lot of research on mutation testing in
the last three decades, investigating different aspects of the
technique. Some of the aspects include proposals of muta-
tion operators for different programming paradigms [18,30],
development of automated tools targeting different program-
ming languages [12,24,34,47], proposals for optimizing the
technique, including the execution process and reduction in
number of mutation operators [23,37,51,56,57], and evalu-
ation of the optimizations. Jia and Harman describe many
aspects of mutation testings in their recent survey [28]. In
this section we relate our study to other optimization tech-
niques, coverage metrics, and tools.

Our study is closely related to studies on sequential mu-
tation operators [4,37,40,41,49,55], discussed in Section 2.

Mutant schemata [51] merges all mutated versions of code
together in, so called, metamutant. Schemata reduces com-
pilation time, as metamutant has to be compiled only once,
which can provide significant savings. Many existing tools
for mutation testing implement this optimization. Currently
our infrastructure for mutation testing of concurrent code

creates one version of the code for each mutant. Schemata
are orthogonal to selective mutation.

Higher-order mutation [23] optimizes mutation testing by
replacing a number of mutants with one mutation, called
first-order mutants (FOMs), with one mutant with a num-
ber of mutations, called a higher-order mutant (HOM). Sub-
suming HOM is harder to kill than FOMs and guarantees
that FOMs are killed if HOM is killed. There has been some
initial work on HOM for concurrent mutation operators [53].

MuTMuT [19] is an optimization that targets mutation
testing of concurrent code. It optimizes the execution of
mutants by reducing the state space that has to be explored
for each mutant. Reduction up to 77% is reported. MuT-
MuT is an orthogonal optimization to selective mutation.

New coverage metrics were proposed specifically for con-
current code [3,8,48,50,54]. It would be valuable to investi-
gate the correlation between mutation testing for concurrent
code and these coverage metrics.

Following the development of mutation operators, a num-
ber of tools have been implemented for many programming
languages including Java [24, 34,47]. MulJava [34] imple-
ments both intra-class and inter-class mutation operators
and was among the first tools for Java. Jumble [24] is an
industrial tool for mutation testing that mutates bytecode
and focuses on efficiency. ConMAn [7] implements a set of
concurrent mutation operators. Javalanche [47] is a recent
tool for mutation testing that uses selective mutation.

7. CONCLUSIONS

This paper described the first study on selective mutation
for concurrent mutation operators. The results show impor-
tant differences between concurrent mutation operators and
sequential mutation operators: selective mutation is appli-
cable to concurrent code but provides lower savings than for
sequential code, selecting operators based on the number of
mutants or categories of operators does not provide good
effectiveness, and random selection is not as good as selec-
tive mutation. Second, we provide several sets of concurrent
operators that researchers can use to trade-off the cost and
effectiveness of mutation testing. Third, we show evidence
that the savings in terms of the number of mutants corre-
spond to the savings in terms of exploration cost for concur-
rent code. Fourth, we show that sequential and concurrent
mutation operators are independent, i.e., concurrent tests
suites that kill all sequential, respectively concurrent, mu-
tants do not achieve high mutation score for concurrent, re-
spectively sequential mutants, which demonstrates the need
for the study on selective concurrent mutation operators.

In the future, we would like to investigate relation between
concurrent mutation, recently proposed coverage criteria for
concurrent code, and real bugs. We also believe that future
studies on (mutation) testing of concurrent code could use
the sets of operators we found (Table 5).

8. ACKNOWLEDGMENT

We thank Sarfraz Khurshid, Darko Marinov, and Alek-
sandar Milicevic for their feedback on this work, and Danny
Dig, Hassan Eslami, Yu Lin, Qingzhou Luo, and Stas Ne-
gara for comments on a draft. This material is based upon
work partially supported by Illinois-Intel Parallelism Center
(I2PC), the National Science Foundation under Grant Nos.
CCF-1012759 and CCF-0746856.

9.

(1
(2]

(3]
(4]
5]

6]
(7]

8]

[9

[10]
[11]
[12]
[13]
[14]
[15]

(16]

(17]
(18]

(19]
(20]
[21]
(22]
(23]
(24]
(25]
(26]

(27]

(28]

REFERENCES

P. Ammann and J. Offutt. Introduction to Software Testing.
2008.

A. Arcuri and L. C. Briand. A practical guide for using
statistical tests to assess randomized algorithms in software
engineering. In ICSE, pages 1-10, 2011.

Z. L. B. Krena and T. Vojnar. Coverage metrics for
saturation-based and search-based testing of concurrent
software. In RV, pages 53-62, 2011.

E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi.
Toward the determination of sufficient mutant operators for C.
STVR, 11:113-136, 2001.

L. Bottaci. Type sensitive application of mutation operators for
dynamically typed programs. In Mutation, pages 126-131,
2010.

J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation operators
for concurrent Java. In Mutation, pages 83-92, 2006.

J. S. Bradbury, J. R. Cordy, and J. Dingel. Comparative
assessment of testing and model checking using program
mutation. In Mutation, pages 210-219, 2007.

A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications
of synchronization coverage. In PPoPP, pages 206-212, 2005.
S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A randomized scheduler with probabilistic guarantees of finding
bugs. In ASPLOS, pages 167-178, 2010.

R. H. Carver. Mutation-based testing of concurrent programs.
In ITC, pages 845-853, 1993.

Count Lines of Code home page. http://cloc.sourceforge.net/.
M. E. Delamaro and J. C. Maldonado. Proteum — a tool for
the assessment of test adequacy for C programs. In CPCS,
pages 79-95, 1996.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. Computer,
pages 34-41, 1978.

H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and
its potential impact. ESE, pages 405-435, 2005.

O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded Java program test generation. IBM Syst. J.,
41:111-125, 2002.

Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Towards a
framework and a benchmark for testing tools for multi-threaded
programs. CCPE, 19:267-279, 2007.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how
to test them. In IPDPS, pages 286-293, 2003.

S. Ghosh and A. P. Mathur. Interface mutation. STVR,
11:227-247, 2001.

M. Gligoric, V. Jagannath, and D. Marinov. MuTMuT:
Efficient exploration for mutation testing of multithreaded
code. In ICST, pages 55-64, 2010.

P. Godefroid. Model checking for programming languages using
VeriSoft. In POPL, pages 174-186, 1997.

Guava home page. http://code.google.com/p/guava-libraries/.
R. G. Hamlet. Testing programs with the aid of a compiler.
TSE, 3:279-290, 1977.

M. Harman, Y. Jia, and W. B. Langdon. Strong higher order
mutation-based test data generation. In F'SE, pages 212-222,
2011.

S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. Inglis, and
M. Utting. Jumble Java byte code to measure the effectiveness
of unit tests. In Mutation, pages 169-175, 2007.

V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and

D. Marinov. Improved multithreaded unit testing. In FSE,
pages 223-233, 2011.

V. Jagannath, M. Gligoric, S. Lauterburg, D. Marinov, and

G. Agha. Mutation operators for actor systems. In Mutation,
pages 157-162, 2010.

V. Jagannath, M. Kirn, Y. Lin, and D. Marinov. Evaluating
machine-independent metrics for state-space exploration. In
ICST, pages 320-329, 2012.

Y. Jia and M. Harman. An analysis and survey of the

(29]
(30]

(31]
(32]
(33]
(34]

(35]

(36]
(371

(38]

(39]

[40]

[41]
[42]

[43]

[44]
[45]

[46]

[47]

(48]

[49]

(50]
(51]

(52]

(53]

(54]

55]

[56]

(571

development of mutation testing. T'SE, 37:649-678, 2011.

JPF home page. http://babelfish.arc.nasa.gov/trac/jpf/.

K. N. King and A. J. Offutt. A Fortran language system for
mutation-based software testing. SPE, 21:685-718, 1991.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug
characteristics. In ASPLOS, pages 329-339, 2008.

Lucene home page. http://lucene.apache.org/core/.

Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation
operators for Java. In ISSRE, pages 352-364, 2002.

Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: a mutation
system for Java. In ICSE, pages 827-830, 2006.

P. Madiraju and A. Namin. ParaMu — a partial and
higher-order mutation tool with concurrency operators. In
Mutation, pages 351-356, 2011.

J. Manson, W. Pugh, and S. V. Adve. The Java memory model.
In POPL, pages 378-391, 2005.

A. Mathur. Performance, effectiveness, and reliability issues in
software testing. In COMPSAC, pages 604-605, 1991.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent
programs. In OSDI, pages 267-280, 2008.

A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov.
BALLERINA: Automatic generation and clustering of efficient
random unit tests for multithreaded code. In ICSE, pages
727-737, 2012.

A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant operators.
TOSEM, 5:99-118, 1996.

A. J. Offutt, G. Rothermel, and C. Zapf. An experimental
evaluation of selective mutation. In ICSE, pages 100-107, 1993.
J. Offutt, Y.-S. Ma, and Y.-R. Kwon. The class-level mutant of
MulJava. In AST, pages 78-84, 2006.

H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie.
PinPlay: A framework for deterministic replay and reproducible
analysis of parallel programs. In CGO, pages 2-11, 2010.

PIT home page. http://pitest.org/.

G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai, J. E.
Gottschlich, J. Ha, and Y. Wu. CoreRacer: A practical memory
race recorder for multicore x86 tso processors. In MICRO,
pages 216-225, 2011.

Apache Commons Pool home page. http://commons.apache.org/
pool/.

D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation
testing by checking invariant violations. In ISSTA, pages
69-80, 2009.

E. Sherman, M. B. Dwyer, and S. Elbaum. Saturation-based
testing of concurrent programs. In FSE, pages 53-62, 2009.

A. Siami Namin, J. H. Andrews, and D. J. Murdoch. Sufficient
mutation operators for measuring test effectiveness. In ICSE,
pages 351-360, 2008.

R. Taylor, D. Levine, and C. Kelly. Structural testing of
concurrent programs. T'SE, 18:206-215, 1992.

R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis
using mutant schemata. In ISSTA, pages 139-148, 1993.

W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. Springer Autom. Softw. Eng.,
10:203-232, 2003.

L. Wu and G. Kaiser. Constructing subtle concurrency bugs
using synchronization-centric second-order mutation operators.
In SEKE, pages 244-249, 2011.

C.-S. D. Yang, A. L. Souter, and L. L. Pollock. All-du-path
coverage for parallel programs. In ISSTA, pages 153-162, 1998.
L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is
operator-based mutant selection superior to random mutant
selection? In ICSE, pages 435-444, 2010.

L. Zhang, D. Marinov, and S. Khurshid. Faster mutation
testing inspired by test prioritization and reduction. In ISSTA,
2013. to appear.

L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. Regression
mutation testing. In ISSTA, pages 331-341, 2012.

http://cloc.sourceforge.net/
http://code.google.com/p/guava-libraries/
http://babelfish.arc.nasa.gov/trac/jpf/
http://lucene.apache.org/core/
http://pitest.org/
http://commons.apache.org/pool/
http://commons.apache.org/pool/

