
Regression Test Selection for

Distributed Software Histories

Milos Gligoric1, Rupak Majumdar2, Rohan Sharma1, Lamyaa Eloussi1, and
Darko Marinov1

1 University of Illinois at Urbana-Champaign, USA
2 Max Planck Institute for Software Systems, Germany

{gliga,sharma27,eloussi2,marinov}@illinois.edu, rupak@mpi-sws.org

Abstract. Regression test selection analyzes incremental changes to a
codebase and chooses to run only those tests whose behavior may be
affected by the latest changes in the code. By focusing on a small subset
of all the tests, the testing process runs faster and can be more tightly
integrated into the development process. Existing techniques for regres-
sion test selection consider two versions of the code at a time, effectively
assuming a development process where changes to the code occur in a
linear sequence.
Modern development processes that use distributed version-control sys-
tems are more complex. Software version histories are generally mod-
eled as directed graphs; in addition to version changes occurring lin-
early, multiple versions can be related by other commands, e.g., branch,
merge, rebase, cherry-pick, revert, etc. This paper describes a regression
test-selection technique for software developed using modern distributed
version-control systems. By modeling different branch or merge com-
mands directly in our technique, it computes safe test sets that can be
substantially smaller than applying previous techniques to a linearization
of the software history.
We evaluate our technique on software histories of several large open-
source projects. The results are encouraging: our technique obtained an
average of 10.89× reduction in the number of tests over an existing tech-
nique while still selecting all tests whose behavior may differ.

1 Introduction

Regression testing [22, 36, 37] reruns previously completed tests whenever a
change is made to a piece of software, to ensure that the change has not af-
fected the outcome of those tests. Regression testing can be expensive if the test
suite is large and tests take a long time to run. Therefore, substantial research
has focused on speeding up regression testing by selecting an adequate subset of
tests (with several extensive surveys [5,11,37] on the topic). These test-selection
techniques are usually based on computing changes between two program ver-
sions3, the “old” and the “new” versions, and using a fast syntactic algorithm to

3 We use the term “version” for what version-control systems often call “revision”.

identify the subset of tests whose behavior may change between the old and new
versions. Empirically, these techniques are effective in reducing the set of tests to
be run and are widely used in companies such as Google [16] and Microsoft [34].

Fig. 1: Linux history

Existing test-selection techniques view software
history as a linear sequence of commits to a centralized
version-control system (such as CVS or SVN). How-
ever, modern software development processes that use
distributed version-control systems (DVCSs) do not
match this simplistic view. Software version histories
that use DVCSs, such as Git and Mercurial, are com-
plex graphs of branches, merges, and rebases of the
code that mirror more complex sharing patterns be-
tween developers. For example, Figure 1 shows a part
of the Linux Kernel Git repository [25]: this software
history is a complex graph, with multiple branches
being merged. (There is a case in Linux where 30
branches are merged at once.) We empirically find that such complexities are not
isolated to the Linux kernel development: most open-source codebases perform
frequent merges. Section 4 reports detailed results for a number of open-source
projects; we find about third of the commits to be merge-related.

In this paper, we consider the problem of test selection for codebases that
use DVCS commands. One possible baseline approach is to apply traditional
test selection by picking an arbitrary linearization of the history. While this
technique is safe, i.e., it does not miss tests whose outcome may be affected by
the change, we empirically demonstrate that this approach can be very imprecise,
i.e., it can select many tests whose outcome cannot be affected by the change.
Instead, we propose a test-selection technique that explicitly takes into account
the history graph of software versions. We have implemented our technique and
show, through an evaluation on several open-source code repositories, that our
technique selects on average an order of magnitude fewer tests than the baseline
technique while still retaining safety.

We evaluate our technique both on real open-source code repositories that
use DVCS and on distributed repositories that we systematically generate from
projects that use a linear sequence of commits. We compare several options for
selecting tests at each merge version of such repositories. These options have
different trade-offs in terms of cost (how many traditional test selections need to
be performed to compute the selected tests) and precision (how many tests are
selected to be run, while maintaining safety). In particular, we describe a fast
test-selection technique for code merges that does not require any test selection
computation, but still achieves a reduction of 10.89× better than a baseline
technique that performs one traditional test selection for a merge point, and
only 2.78× worse than an expensive technique that performs one traditional test
selection for each branch being merged.

The accompanying technical report [15] provides additional results, visual-
izations, and proofs.

n1

{t1,t2,t3,t4}

n2

{t1,t4}

n3

{t2,t4}

n4

{t1,t4}

n5

{t2,t4}

n6

{t2,t4}

n7

{t3}

b1

master

b2

δ1(m)

δ5(p)

δ3(m)

δ2(p)

δ4(p)

δ6(q)

(a) Example software history

Code
Methods in C

m p q

T
e
s
ts

in
T t1 {m(); } X ✗ ✗

t2 {p(); } ✗ X ✗

t3 {q(); } ✗ ✗ X

t4 {m(); p(); } X X ✗

(b) Methods and tests in C and T

1 git init // initialize the repository
2 git add C // add C to the repository
3 git add T // add T to the repository
4 git commit -m ‘C and T’ // commit n1

5 git checkout -b b1 // go to a new branch ‘b1’
6 δ1(m) // modify method ‘m’ in branch ‘b1’
7 git commit -am ‘Modified m’ // commit n2

8 δ2(p) // modify method ‘p’ in branch ‘b1’
9 git commit -am ‘Modified p’ // commit n3

10 git checkout master // go to ‘master’ branch
11 git checkout -b b2 // go to a new branch ‘b2’
12 δ3(m) // modify method ‘m’ in branch ‘b2’
13 git commit -am ‘Modified m’ // commit n4

14 δ4(p) // modify method ‘p’ in branch ‘b2’
15 git commit -am ‘Modified p’ // commit n5

16 git checkout master // go to ‘master’ branch
17 δ5(p) // modify method ‘p’ in ‘master’ branch
18 git commit -am ‘Modified p’ // commit n6

19 δ6(q) // modify method ‘q’ in ‘master’ branch
20 git commit -am ‘Modified q’ // commit n7

(c) Sequence of commands that
creates the history on the left

Fig. 2: Example of a software history and one potential sequence of changes and
commands to create this history

2 Overview

We motivate regression test selection through an example session using Git [14],
a popular DVCS.

Distributed software histories. Figure 2a visualizes a version history ob-
tained by performing the sequence of Git commands from Figure 2c. First, we
initialize the software history4, add two files and make a commit n1 with these
files (lines 1-4). Figure 2b shows the abstract representation of the committed
files C and T; file C (“Code”) defines three methods m, p, and q that are checked
by tests t1, t2, t3, and t4 defined in file T (“Test”). Second, we create a new
branch b1 (line 5), make and commit changes to m (lines 6–7) and p (lines 8–9).
Third, we create another branch b2 (lines 10–11) and perform a similar sequence
of commands as on the first branch (lines 12–15). Finally, we switch to the
master branch (line 16) and perform a similar sequence of commands (lines 17–
20). Although the sequence of commands is similar for each branch, we assume
non-conflicting changes on different branches.

Figure 2b further shows which test executes which method; we will assume
that we have available such a coverage matrix for every version in the software
history. When a method changes, the tests that executed that method are called
modification-traversing tests. We focus on modifications at a method level for
simplicity; one can track coverage of other program elements as well [37].

4 git init creates the initial node not shown in Figure 2a.

Traditional test selection. Traditional test selection takes as input an old
version, a new version, and a coverage matrix for the old version, and returns
a set of tests such that each test in the set either is new or traverses at least
one of the changes made between the old and the new version. (We formally
define test selection in Section 3.) Tests that traverse a change can be found
from the coverage matrix by taking all the tests that have a checkmark (’X’) for
any changed method (corresponding to the appropriate column in Figure 2b).

In our running example, all tests are new at n1, thus all tests are selected.
(Figure 2a indicates above each node the set of selected tests.) At version n2,
after modifying method m, test selection would take as input n1 and n2 and
return tests that traverse the changed method. Based on our coverage matrix
(Figure 2b), tests t1 and t4 should be selected. Following the same reasoning,
we can obtain a set of selected tests for each version in the graph. For simplicity
of exposition, we assume that the coverage matrix remains the same for all the
versions. However, the matrix may change if a modification of any method leads
to modification in the call graph. In case of a change, the matrix would be
recomputed; however, note that for each test that is not selected (because it
does not execute any changed method), the row in the coverage matrix would
not change.

Test selection for distributed software histories. Test selection for dis-
tributed software histories has not been studied previously. We illustrate what
the traditional test selection would select when a software history (Figure 2a)
is extended by executing some of the commands available in DVCSs. Specifi-
cally, we show that a naive application of the traditional test selection leads
to safe but imprecise results (i.e., selects too much), or requires several runs of
traditional test-selection techniques, which introduces additional overhead and
therefore reduces the benefits of test selection. We consider three commands:
merge, cherry-pick, and revert.

Command: Merge. The merge command joins two or more development
branches together. A merge without conflicts and any additional edits is called
auto-merge and is the most common case in practice. Auto-merge has a property
that the changes between the merge point and its parents are a subset of the
changes between the lowest common ancestors [3,10] of the parents and the par-
ents; we exploit this property in our technique and discuss it further in Section 3.
If we execute git merge b1 b2 after the sequence shown in Figure 2c, while we
are still on the master branch, we will merge branches b1 and b2 into a new
version n8 on the master branch; this version n8 will have three parents: n3, n5,
and n7. The question is what tests to select to run at version n8.

We propose multiple options (and Section 4 summarizes how to automati-
cally choose between these options). First, we can use traditional test selection
between the immediate dominator [1] of the new version (n1) and the new ver-
sion (n8). In our example, the changes between these two versions modify all
the methods, so test selection would select all four tests. The advantage of this
option is that it runs traditional test selection only once, but there can be many
changes, and therefore many tests are selected. Second, we can run the tradi-

tional test selection between the new version and each of its parents and take
the intersection of the selected tests. In our example, we would run the tradi-
tional test selection between the following pairs: (n3, n8), (n5, n8), (n7, n8); the
results for each pair would be: {t1, t2, t3, t4}, {t1, t2, t3, t4}, and {t1, t2, t4},
respectively. The intersection of these sets gives the final result: {t1, t2, t4}. The
intuition is that the tests not in the intersection, {t3}, need not be run because
their result for the new version, n8, can be copied from at least one parent, in
this case from n7. Although the second option selects fewer tests, it requires
running traditional test selection three times, which can lead to significant over-
head. Third, we can collect tests that were modification-traversing on at least
two branches (from the branching version at n1 to the parents that get merged).
In our example, we would select {t1, t2, t4}. As opposed to previous options, this
option requires zero runs of the traditional test-selection techniques. However,
this option is only safe for auto merge and requires that the test selection results
be stored for previous versions.

Command: Cherry-pick. Cherry-pick copies the changes introduced by
some existing commit. If we execute git cherry-pick n2 after the sequence
shown in Figure 2c, we will apply changes (δ1) made between versions n1 and
n2 on top of version n7 in master branch (which is extended with a new version
n8). Naively applying the traditional test selection on versions n7 and n8 would
select the same tests as at version n2. However, test t1 does not need to be
selected at n8, as this test is not affected by changes on the master branch (on
which the cherry-picked commit is applied). Therefore, the outcome of t1 at n8

will be the same as at n2.
Command: Revert. This command reverts some existing commits. If we

execute git revert n6 after the sequence shown in Figure 2c, we will revert
changes made between versions n1 and n6. The master branch will be extended
with a new version n8. Naively applying traditional test-selection techniques
between versions n7 and n8 would select the same set of tests as at version n6.
Instead, if we consider the revert command being executed and changes being
made, we can reuse the results of a test from version n1 as long as the test is
not modification-traversing for any other change after the version being reverted
(n6). In our example, we can see that the result of all tests can be reused, and
therefore no test has to be selected.

To conclude, naively applying traditional test selection may lead to imprecise
results and/or spend too much time on analysis. We believe that our technique,
which reasons about the history and commands being executed, leads to a good
balance between reduction (in terms of the number of tests being executed) and
time spent on analysis.

3 Test Selection Technique

3.1 Modeling Distributed Software Histories

We model a distributed software history as a directed acyclic graph G = 〈N,E〉
with a unique root n0 ∈ N corresponding to the initial version. Each node n ∈ N

corresponds to a version, and each edge corresponds to the parent-child relation
among versions. Each node is created by applying one of the DVCS commands to
a set of parent nodes; we assume the command is known. (While the command
that creates a node is definitely known at the point of creation, it is not usually
kept in the DVCS and cannot always be uniquely determined from the history.)
The functions pred(n) = {n′ ∈ N | 〈n′, n〉 ∈ E} and succ(n) = {n′ ∈ N |
〈n, n′〉 ∈ E} denote the set of parents and children of version n, respectively. We
write n � n′ if there exists a directed path from n to n′ or the two nodes are
the same. We write n �∗ n′ to denote the set of all nodes between versions n
and n′: n �∗ n′ = {n′′ | n � n′′ and n′′ � n′}. Similarly, we write n �e n′ to
denote the set of all edges between versions n and n′: n �e n′ = {〈n′′, n′′′〉 ∈ E |
n′′, n′′′ ∈ n �∗ n′}. The function sdom(n) = {n′ | n0 �e n′∪n′ �e n = n0 �e n
and n 6= n′} denotes the set of nodes that strictly dominate n. For n 6= n0, the
function imd(n) denotes the unique immediate dominator [1] of n, i.e., imd(n) =
n′ such that n′ ∈ sdom(n) and ∄n′′ ∈ sdom(n) such that n′ ∈ sdom(n′′). The
function dom(n, n′) denotes the lowest common dominator of n and n′, i.e., for
a version n′′ such that pred(n′′) ⊇ {n, n′}, dom(n, n′) = imd(n′′). The function
lca(n, n′) denotes the lowest common ancestors [3,9,10] (also known as “merge-
bases” or “best common ancestors” in Git terminology [13,20]) for two versions,
i.e., lca(n, n′) = {n′′ | n′′ � n and n′′ � n′ and ∄n′′′ 6= n′′ such that n′′′ � n
and n′′′ � n′ and n′′ � n′′′}. (We illustrate the difference between lca and dom

in the technical report [15].) The following property holds for all nodes:

dom(n, n′) � lca(n, n′) (1)

3.2 Test Selection for Two Versions

We formalize test selection following earlier work in the area [32, 37] and also
model changes and modification-traversing tests. This section focuses on test
selection between two software versions. Next sections present our technique for
distributed software histories.

Let G be a distributed software history. For a version n, let A(n) denote
the set of tests available at the version n. Let n and n′ be two versions such
that n � n′. A test selection technique takes as input the versions n and n′

and returns a subset Ssel(n, n
′) of A(n′). Note that new tests, i.e, A(n′) \ A(n)

are always in Ssel(n, n
′). A test-selection technique is safe [31] if every test in

A(n′) \ Ssel(n, n
′) has the same outcome when run on the versions n and n′.

A trivially safe test-selection technique returns A(n′). However, we are in-
terested in selection techniques that select as small a subset as possible. One
way to obtain a minimal set is to run each test in A(n′) on the two versions
and keep those that have different outcomes. However, the purpose of the test
selection technique is to be more efficient than running all tests. A compromise
between minimality and efficiency is provided by the notion of modification-

traversing tests [32], which syntactically approximate the set of tests that may
have a different outcome.

Let ∂(n, n′) be the set of static code changes between versions n and n′ (which
need not be parent-child versions). Various techniques compute these changes
at various levels of granularity (e.g., basic blocks, statements, methods, or other
program elements). By extension, we denote the set of changes on all edges from
n to n′ as

∂⋆(n, n′) =
⋃

〈n′′,n′′′〉 ∈n�en′

∂(n′′, n′′′)

We use the following property:

∂(n, n′) ⊆ ∂⋆(n, n′) (2)

It is not an equality because some changes can be reverted on a path from n
to n′, e.g., consider a graph with three versions n1, n2, and n3, where all the
changes between n1 and n2 are reverted between n2 and n3: the code at n3 is
exactly the same as the code at n1, and therefore ∂(n1, n3) = {}.

A test is called modification-traversing if its execution on n executes any
code element that is modified in n′. (Note that “modified” includes all the cases
where the existing elements from n are changed or removed in n′ or where
new elements are added in n′.) We define a predicate ς(t, ∂) that holds if the
test t is modification-traversing for any change in the given set of changes ∂.
The predicate can be computed by tracking code paths during a test run and
intersecting covered program elements with a syntactic difference between the
two versions. We define a function mt(T , ∂) = {t ∈ T | ς(t, ∂)} that returns
every test from the set of tests T that is modification-traversing for any change
in the set of changes ∂. Two properties that we will need later are that mt

distributes over changes:

mt(T , ∂1 ∪ ∂1) = mt(T , ∂1) ∪mt(T , ∂2) (3)

and thus mt is monotonic with respect to the set of changes:

∂ ⊆ ∂′ implies mt(T , ∂) ⊆ mt(T , ∂′) (4)

Traditional test selection selects all modification-traversing tests from the old
version that remain in the new version and the new tests from the new version:

tts(n, n′) = mt(A(n) ∩ A(n′), ∂(n, n′)) ∪ (A(n′) \ A(n)) (5)

As pred(n′) is often a singleton {n}, we also write tts({n}, n′) = tts(n, n′).
Under the assumption that tests execute deterministically, test selection

based on modification-traversing tests is provably safe [32, 33].

3.3 Test Selection for Distributed Software Histories

Our technique for test selection takes as inputs (1) the software history G =
〈N,E〉 optionally annotated with tests selected at each version, (2) a specific
version h ∈ N that represents the latest version (which is usually called HEAD in

DVCS), and (3) optionally the DVCS command used to create the version h. It
produces as output a set of selected tests Ssel(h) at the given software version.
We define our technique and prove that it guarantees safe test selection.
Command: Commit. The h version has one parent, and the changes between
the parent and h can be arbitrary, with no special knowledge of how they were
created. The set of selected tests can be computed by applying the traditional
test selection between the h version and its parent:

Scommit(h) = tts(pred(h), h) (6)

Command: Merge. Merge joins two or more versions and extends the history
with a new version that becomes h. We propose two options to compute the set
of selected tests at h: the first is fast but possibly imprecise, the second is slower
but more precise.

Option 1: This option performs the traditional test selection between the
immediate dominator of h and h itself:

S1
merge(h) = tts(imd(h), h) (7)

This option is fast: it computes only one traditional test selection, even if the
merge has many parents. However, the number of modifications between the
two versions being compared can be large, leading to many tests being selected
unnecessarily. Our empirical evaluation in Section 4 shows that this option indeed
selects too many tests, discouraging the straightforward use of this option.

Option 2: This option performs one traditional test selection between each
parent of the merged version and the merged version h itself, and then intersects
the resulting sets:

Sk
merge(h) =

⋂

n∈pred(h)

tts(n, h) (8)

This option can be more precise, selecting substantially fewer tests. However, it
has to run k traditional test selections for k parents.

Theorem 1 S1
merge(h) and Sk

merge(h) are safe for every merge version h.

Command: Automerge. A common special case of merge is auto merge, where
versions are merged automatically without any manual changes to resolve con-
flicts. (Using the existing DVCS commands can quickly check if a merge is an
auto merge.) Empirically (see Figure 3), auto merge is very common: on average
over 90% of versions with more than one parent are auto merges.

The key property of auto merge is that the merged code version has a union
of all code changes from all branches but has only those changes (i.e., no other
manual changes). Formally, given k parents p1, p2, . . . pk that get merged into a
new version h, the changes from each parent p to the merged version h reflect
the changes on all the branches for different parents:

∂(p, h) =
⋃

p′∈pred(h),p′ 6=p

⋃

l∈lca(p,p′)

∂(l, p′) (9)

The formula uses lca because of the way Git auto merges branches [13, 20].
For auto merge, we give a test-selection technique, S0

merge, that is based
entirely on the software history up to the parents being merged and does not
require running any traditional test selection between pairs of code versions at
the point of merge (although it assumes that test selection was performed on
the versions up to the parents of the merge). The set of selected tests consists of
(1) existing tests (from the lowest common dominator of two (different) parents
of h) affected by changes on at least two different branches being merged (because
the interplay of the changes from various branches can flip the test outcome):

Saff (h) =
⋃

p,p′∈pred(h),p6=p′,d=dom(p,p′)

(
⋃

n∈d�∗p\{d}

Ssel(n)) ∩ (
⋃

n∈d�∗p′\{d}

Ssel(n))

(10)

and (2) new tests available at the merge point but not available on all branches:

Snew (h) = A(h) \
⋂

p′′∈pred(h)

A(p′′) (11)

Finally, S0
merge(h) = Saff (h) ∪ Snew (h). The advantage of this option is that

it runs zero traditional test selections. One disadvantage is that it could select
more tests than Sk

merge. Another disadvantage is that it requires storing tests
selected at each version.

Theorem 2 S0
merge(h) is safe for every auto merge version h.

Intuitively, S0
merge is safe because a test that is affected on only one branch

need not be rerun at the merge point: it has the same result at that point as on
that one branch. The proof is in the technical report [15].
Command: Cherry-pick. Cherry-pick reapplies the changes that were per-
formed between a commit ncp and one of its parents n′

cp ∈ pred(ncp) (the parent
can be implicit for non-merge ncp), and extends the software history (on the
branch where the command is applied) with a new version h. We propose two
options to determine the set of selected tests at h. The first option uses the
general selection for a commit (the traditional test selection between the current
node and its parent): S1

cherry(h) = tts(pred(h), h).

The second option, called S0
cherry, does not require running traditional test

selection, but is safe only for auto cherry-pick. This option selects each test that
satisfies one of the following three conditions: (1) tests selected between n′

cp and
ncp as well as between the point p at which cherry-pick is applied ({p} = pred(h))
and d = dom(p, n′

cp), (2) tests selected between n′
cp and ncp and also selected

before n′
cp up to d, and (3) new tests at ncp.

S0
cherry(h) = (Ssel(n

′
cp, ncp) ∩ ((∪n∈d�∗p\{d}Ssel(n)) ∪ (∪n∈d�∗n′

cp\{d}
Ssel(n))))

∪ (A(ncp) \ A(n′
cp)) (12)

The intuition for (1) is that the combination of changes that affected tests on
both branches, from d to p and from d to n′

cp, may lead to different test outcomes.
The intuition for (2) is that changes before ncp may not exist in the branch on
which the cherry-pick is applied and so the outcome of these tests may change.
If neither (1) nor (2) hold, the test result can be copied from ncp itself. The
formula for cherry pick is similar to that for auto merge but applies to only one
commit being cherry picked rather than to an entire branch being merged.
Command: Revert. Revert computes inverse changes of some existing commit
nre and extends the software history by applying those inverse changes to create
a new version that becomes h. (Reverting a merge creates additional issues that
we do not handle specially: one can always run the traditional test selection.)
Similar to cherry-pick, we propose two options to determine the set of selected
tests. The first option is a naive application of the traditional test selection
between h and its parent, i.e., S1

revert(h) = tts(pred(h), h).
The second option, called S0

revert, does not run traditional test selection, but
is safe only for auto revert. It selects each test that satisfies one of the following
three conditions: (1) tests selected between nre and its parent ({p′} = pred(nre))
as well as before the point to which the revert is applied ({p} = pred(h)) up to
their dominator (d = dom(p, p′)), (2) tests selected between nre and its parent
p′ and also selected before the point that is being reverted (p′) up to d, and
(3) tests that were deleted at the point being reverted (such that in the inverse
change tests are added):

S0
revert(h) = (Ssel(p

′, nre) ∩ ((∪n∈d�∗p\{d}Ssel(n)) ∪ (∪n∈d�∗p′\{d}Ssel(n))))

∪ (A(p′) \ A(nre)) (13)

Intuitively, revert is an inverse of cherry-pick and safe for the same reasons: the
tests that are not selected would have the same outcome at the h version as at
the version prior to nre.

4 Evaluation

We performed several experiments to evaluate the effectiveness of our technique.
First, we demonstrate the importance of having a test-selection technique for
distributed software histories. Second, we evaluate the effectiveness of our test-
selection technique by comparing the number of tests selected using S1

merge,

Sk
merge, and S0

merge on a number of software histories (both real and system-
atically generated), i.e., we consider how much test selection would have saved
had it been run on the versions in the history. Third, we compare S1

cherry and

S0
cherry on a number of real cherry-pick commits.

Real software histories are highly non-linear. We collected statistics for
software histories of several large open-source projects that use Git. To check
whether software histories are non-linear across many project types, we chose
projects from different domains (e.g., Cucumber is a tool for running acceptance
tests, JGit is a pure Java implementation of the Git version-control system, etc.),

P
r
o
je
c
t

S
H
A

S
iz
e

M
B

A
u
th

o
r
s
†

(C
)o

m
m

it
s

(M
)e

r
g
e
s

(R
)e

b
a
s
e
s
†

C
h
e
r
r
y
p
ic
k
s
&

R
e
v
e
r
ts

(C
R
)

(M
+
R
+
C
R
)

/
C

M
/
C

o
n

m
a
s
te

r

A
u
to

-m
e
r
g
e
s

%

Activator a3bc65e 1.2 14 1499 446 10 29 32.35 93.93 95.73
TimesSquare d528622 0.31 22 145 50 1 1 35.86 65.71 96.00
Astyanax ba58831 2.0 59 725 134 3 14 20.82 23.04 94.02
Bootstrap c75f8a5 3.2 474 6893 1573 21 557 31.20 25.75 83.21
Cucumber 5416686 1.2 145 2495 413 21 148 23.32 15.92 77.48
Graphhopper e2805e4 7.2 13 1265 59 3 59 9.56 3.64 55.93
JGit 7995d87 9.0 83 2801 615 774 24 50.44 33.35 97.48
LinuxKernel e62063d 484.5 11133 400479 27472 151569 – – 30.12 –
LinuxKVM b796a09 406.2 8542 273639 17483 107768 – – 8.92 –
Retrofit 5bd3c1e 0.62 61 631 216 4 2 35.18 58.54 99.07
Others (14) - 231.28 2150 86380 14066 12928 3829 35.68 20.64 85.15

Min - 0.31 13 145 50 1 0 9.30 3.64 55.93
Max - 484.5 11133 400479 27472 151569 1973 63.37 93.93 100.00
Median - 5.20 60.50 2175.00 373.00 19.49 34.50 31.77 27.03 94.62
Ari. mean - 47.77 945.66 32373.00 2605.29 11379.25 211.95 31.76 34.05 90.25
Geo. mean - 5.69 79.04 2275.60 415.71 45.60 21.11 18.91 20.49 51.93
Std. Dev. - 121.71 2717.26 93955.04 6343.27 36281.83 447.38 14.19 26.56 10.30

† We use a heuristic to determine the number of authors and rebases

Fig. 3: Statistics for several projects that use Git

implemented in different languages, of various sizes, having different number of
unit tests and developers. Figure 3 shows the collected statistics (in detail for
10 projects and averages for 14 others; we provide an extended table in the
technical report [15]). The key column is (M+R+CR)/C that shows the ratio of
the number of merges, rebases5, cherry-picks, and reverts over the total number
of commits for the entire software history. The ratio can be as high as 63.37% and
is 31.76% on average. Stated differently, we may be able to improve test selection
for about a third of the commits in an average DVCS history. Additionally, we
collected a similar ratio only for the master branch, because most development
processes run tests for all commits on that branch but not necessarily on other
branches (e.g., see the Google process for testing commits [16]). While this ratio
included only merges (and not rebases, cherry-picks, or reverts), its average
is even higher for the master branch than for the entire repository (34.05%
vs. 31.76%), which increases the importance of test selection for distributed
software histories. Finally, to confirm that the ratio of merges is independent
of the DVCS, we collected statistics on three projects that use Mercurial [27]—
OpenJDK, Mercurial, and NetBeans—and the average ratio of merges was 20%,
which is slightly lower than the average number for Git but still significant.

Implementation. We implemented a tool in Java to perform test selection
proposed in Section 3. The tool is independent of the DVCS being used and

5 Note that we approximate the number of rebases by counting commits with different
author and committer field.

S
el
ec
te
d
te
st
s
[%

]

Subject
Available Tests Total Execution [sec]
min max min max

Cucumber (core) 156 308 10 14
Graphhopper (core) 626 692 14 20
JGit 2231 2232 106 116
Retrofit 181 184 10 10

S 1
merge/A

S 0
merge/A

S k
merge/A

1 2 3 4 5 6 7 8 9 1 01 11 21 31 4
0

2 0

4 0

6 0

8 0

1 0 0
Cu cu m b e r

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

Gra p h Hop p e r

1 2 3 4 5 6 7 8 9 1 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0
JGit

1 2 3 4 5 6 7 8 9 1 0

Re t rofit

Version

Fig. 4: Percentage of selected tests for real merges using various techniques

scales to quite large projects. Because any test-selection technique for distributed
histories would require a traditional test selection between two versions (tts) for
linear histories, and because there is no publicly available tool for the traditional
test selection that scales to the large projects used in our study, we implemented
a simple prototype tool for projects written in Java, following known results [5,
28,37,38]. Specifically, our tts computes changes and tracks executed code at the
class level but still guarantees safety [28].

Real merges. Our first set of experiments evaluates our technique on the actual
software histories. We used software histories of four large open-source projects
(downloaded from GitHub): Cucumber, GraphHopper, JGit, and Retrofit. We se-
lected these projects as their setup was not too complex6, and they differ in size,
number of authors, number of commits, and number of merges. For each project,
we identify the last merge commit in the current software history and then run
our test-selection tool on all the merge commits whose immediate dominator
was in the 50 commits before the last merge commit.

6 We have to build and run tests over a large number of commits, and dependencies
in many real projects make running tests from older commits rather non-trivial.

0 5 1 0 1 5 2 0 2 5

Nu m b e r of n od e s p e r b ra n ch

2

4

6

8

1 0

1 2

1 4

A
v

e
ra

g
e

 s
p

e
e

d
u

p

(a) Average speedup across all subjects

0 1 0 2 0 3 0 4 0 5 0

Ve rs ion

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

N
u

m
b

e
r

o
f

te
s

ts

Ava ila b le Se le c te d

(b) JFreeChart history statistics

Fig. 5: (a) S1
merge/S

0
merge (speedup) for various numbers of commits in each

branch constructed from linear software histories, (b) example linear history

At every merge, we run all three options—S1
merge, Sk

merge, and S0
merge—

and compare the number of tests they select. Testing literature [5, 12, 33, 35, 37]
commonly measures the speedup of test selection as the ratio of the number of
selected tests over the number of available tests (Ssel/A)7. In addition, Figure 4
reports the min and max number of available tests across the considered merge
commits, and the min and max total time to execute these tests. All tests in
these projects are unit tests and take a similar amount of time to execute, so
computing the ratio of the numbers of tests is a decent approximation of the
ratio of test execution times.

Figure 4 plots the results for these four projects. In most cases, Sk
merge and

S0
merge achieve substantial saving compared to S1

merge. (Calculated differently,

the average speedup of S0
merge over S1

merge was 10.89× and Sk
merge over S0

merge

was 2.78×.) Although S0
merge achieved lower saving than Sk

merge in a few cases

(that we discuss below in more detail), it is important to recall that Sk
merge

requires k runs of traditional test selection, while S0
merge requires 0 runs.

We inspected in more detail the cases where Sk
merge/S

0
merge was low. For

GraphHopper (versions 2, 10, and 11), two branches have a large number of exactly
the same commits (in particular, one branch has 11 commits and another has 10
of those 11 commits, which were created with some cherry-picking); when these
branches were merged, the differences between the merged version and parents
were rather small, resulting in a few tests being selected by Sk

merge, although
the changes between the parents and the dominator were rather big, resulting in
many tests being selected by S0

merge. For JGit (version 10) and Cucumber (version
14), some new tests were added on one branch before merging it with another;
S0
merge is rather conservative in selecting (all) new tests, but new tests are not

added frequently.

7 For space reasons, we omit the set cardinality from the ratios.

Based on this inspection, we propose the following heuristic for choosing the
best option for test selection at a merge version:

Smerge(h) = if (automerge & selection done at every commit)
if (many new tests) Sk

merge(h) else S0
merge(h)

else if (short branches) S1
merge(h) else Sk

merge(h)

Systematically generated merges. Our second set of experiments system-
atically compares the merge selection options on a set of graphs generated to
represent potential software histories. Specifically, for a given number of nodes
k, we generate all the graphs where nodes have the out degree (branching)
of at most two, each branch contains between 1 and k/2 − 2 nodes, all the
branches have the same number of nodes, and there are no linear segments on
the master branch (except the last few nodes that remained after generating
the branches). In other words, the generated graphs are diamonds of different
length. For example for k = 7, we have the following two graphs: ·<:>·<:>·

and ·<: :>·−·. The total number of merges for the given number of nodes k is
⌊(k − 1)/3⌋+ ⌊(k − 1)/5⌋+ . . .+ ⌊(k − 1)/(k − 1)⌋.

In addition to generating history graphs, we need to assign code and tests
to each node of the graph. As random code or tests could produce too unreal-
istic data, we use the following approach: (1) we took the latest 50 versions
of four large open-source projects with linear software histories: JFreeChart

(SVN: 3021), Goldman Sachs collections (Git: 28070efd), Ivy (SVN: 1550956),
and Functor (SVN: 1439120) (as an example, Figure 5b shows the number of
available and selected tests for JFreeChart), (2) we assigned a version from the
linear history to a node of the graph by preserving the relative ordering of ver-
sions such that a linear extension of the generated graph (partial order) matches
the given linear history (total order). Using the above formula to calculate the
number of merges for generated graph, for 50 versions, there are 68 merges (in
24 graphs); as we have four projects, the total number of merges is 272.

After the software histories are fully generated, we perform test selection
on each of the graphs for each of the projects and collect the number of tests
selected by all three options at each merge commit. As for the experiments on
real software histories, we calculate the speedup as the ratio of the number of
tests. Figure 5a shows the average speedup (across all four projects) for various
number of nodes per branch. As expected, with more commits per branch, the
speedup decreases, because the sets of changes on each branch become bigger
and thus their intersection (as computed by our S0

merge option) becomes larger.
However, the speedup remains high for quite long branches. In fact, this speedup
is likely an under-approximation of what can be achieved in real software projects
because the assignment of changes across branches may not be representative of
actual software histories: many related changes may be sprinkled across branches,
which leads to a smaller speedup. Also, linear software histories are known to
include more changes per commit [2]. We can see from the comparison of absolute
values of the speedup in Figure 5a and Figure 4 that real software histories have
an even higher speedup than our generated histories.
Real cherry-picks. We also compared S1

cherry and S0
cherry on 7 cherry-picks

identified in the Retrofit project. (No other version from the other three projects

in our experiments used a cherry-pick command.) For 6 cases, S0
cherry selected 7

tests more than S1
cherry, but all these tests were new. As mentioned, our current

technique is rather conservative in selecting new tests; in future, we plan to
improve our technique by considering coverage matrices across branches. In the
remaining case, S0

cherry selected 43% fewer tests (42 vs. 73 tests) than S1
cherry.

5 Related Work

Test selection is the most common optimization technique in regression test-
ing [5, 11, 37]. Regression testing in general, and test selection in particular,
have been studied for more than three decades [5,11,19,22,36,37] and are quite
important in practice [16, 34]. Prior research has investigated regression-testing
techniques for various languages and domains [5,6,8,11,12,21,26,33–35,37], but
all previous techniques considered only two program versions at a time. Most
traditional test-selection techniques are safe; the key difference is how they de-
fine the coverage matrix and identify differences between software versions. For
example, Rothermel and Harrold [33] presented a test-selection technique based
on control-flow graphs. Zhang et al. [38] defined the coverage matrix on extended
call graphs. Harrold and Soffa [18] and Gupta et al. [17] defined the coverage
matrix on definition-use pairs. Several researchers [23, 24, 28] used a coverage
matrix on modules (also known as “firewall” approach). Many other approaches
have been proposed; for an overview, see the recent surveys [5, 11, 37].

Our technique for distributed histories is compatible with all these traditional
techniques for linear histories as we abstract them in the core mt and tts func-
tions. We are the first to propose a technique for safe test selection for distributed
software histories; we use traditional test selection when a version is created by a
commit command, and we reason about software history, modification-traversing
tests, and commands being executed when a version is created by other DVCS
commands (merge, cherry-pick, and revert).

Others [2, 4, 7, 29, 30] have observed several pitfalls of mining DVCS, e.g.,
DVCS commands are not recorded. We assume our test-selection technique is
run at the time a new version is created (when the executed command is known).

6 Conclusions

We proposed the first test-selection technique that takes into account version
histories arising out of distributed development, and proposed several options
that trade off computation effort and precision. Our experimental results on real
software histories demonstrate that our technique scales to large projects and
achieves high effectiveness over a naive application of traditional test selection.

Acknowledgments. We thank Hsien-Chih Chang, Pranav Garg, Alex Gyori,
Sarfraz Khurshid, P. Madhusudan, Aleksandar Milicevic, Ben Raichel, August
Shi, and Mahesh Viswanathan for discussions, and the anonymous reviewers for
comments. This research was partially supported by the US National Science
Foundation Grant Nos. CNS-0958199 and CCF-1012759.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1986)

2. Alali, A., Kagdi, H., Maletic, J.I.: What’s a typical commit? A characterization of
open source software repositories. In: International Conference on Program Com-
prehension. pp. 182–191 (2008)

3. Bender, M.A., Pemmasani, G., Skiena, S., Sumazin, P.: Finding least common
ancestors in directed acyclic graphs. In: Symposium on Discrete Algorithms. pp.
845–853 (2001)

4. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P.:
The promises and perils of mining Git. In: International Working Conference on
Mining Software Repositories. pp. 1–10 (2009)

5. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: Regression test selection tech-
niques: A survey. Informatica (Slovenia) 35(3), 289–321 (2011)

6. Briand, L., Labiche, Y., He, S.: Automating regression test selection based on UML
designs. Information and Software Technology 51(1), 16–30 (2009)

7. Brindescu, C., Codoban, M., Shmarkatiuk, S., Dig, D.: How do centralized and dis-
tributed version control systems impact software changes? In: International Con-
ference on Software Engineering (2014), to appear

8. Chittimalli, P.K., Harrold, M.J.: Regression test selection on system requirements.
In: India Software Engineering Conference. pp. 87–96 (2008)

9. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common
ancestors in directed acyclic graphs. Theor. Comput. Sci. 380(1-2), 37–46 (2007)

10. Eckhardt, S., Mühling, A., Nowak, J.: Fast lowest common ancestor computations
in dags. In: Annual European Symposium on Algorithms. vol. 4698, pp. 705–716.
Springer Berlin Heidelberg (2007)

11. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Inf. Softw. Technol. 52(1), 14–30 (2010)

12. Engström, E., Skoglund, M., Runeson, P.: Empirical evaluations of regression test
selection techniques: a systematic review. In: International Symposium on Empir-
ical Software Engineering and Measurement. pp. 22–31 (2008)

13. git-merge-base, https://www.kernel.org/pub/software/scm/git/docs/

git-merge-base.html

14. Git home page, http://git-scm.com/
15. Gligoric, M., Majumdar, R., Sharma, R., Eloussi, L., Marinov, D.: Regression test

selection for distributed software histories. Technical report (2014), https://www.
ideals.illinois.edu/handle/2142/49112

16. Gupta, P., Ivey, M., Penix, J.: Testing at the speed and scale of
Google (Jun 2011), http://google-engtools.blogspot.com/2011/06/

testing-at-speed-and-scale-of-google.html

17. Gupta, R., Harrold, M.J., Soffa, M.L.: Program slicing-based regression testing
techniques. Softw. Test., Verif. Reliab. 6(2), 83–111 (1996)

18. Harrold, M.J., Soffa, M.L.: Interprocedual data flow testing. In: Third Symposium
on Software Testing, Analysis, and Verification. pp. 158–167 (1989)

19. Harrold, M., Soffa, M.: An incremental approach to unit testing during mainte-
nance. In: International Conference on Software Maintenance. pp. 362–367 (1988)

20. How does merging work?, http://cbx33.github.io/gitt/afterhours4-1.html
21. Jones, J., Harrold, M.J.: Test-suite reduction and prioritization for modified condi-

tion/decision coverage. Transactions on Software Engineering 29, 195–209 (2003)

https://www.kernel.org/pub/software/scm/git/docs/git-merge-base.html
https://www.kernel.org/pub/software/scm/git/docs/git-merge-base.html
http://git-scm.com/
https://www.ideals.illinois.edu/handle/2142/49112
https://www.ideals.illinois.edu/handle/2142/49112
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://cbx33.github.io/gitt/afterhours4-1.html

22. K.F. Fischer, F. Raji, A.C.: A methodology for retesting modified software. In:
National Telecommunications Conference (1981)

23. Kung, D.C., Gao, J., Hsia, P., Lin, J., Toyoshima, Y.: Class firewall, test order,
and regression testing of object-oriented programs. Journal of Object-Oriented
Programming 8(2), 51–65 (1995)

24. Leung, H.K.N., White, L.: Insights into regression testing. In: International Con-
ference on Software Maintenance. pp. 60–69 (1989)

25. LinuxKernel Git repository, git://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git

26. Memon, A.M., Soffa, M.L.: Regression testing of GUIs. In: International Sympo-
sium on Foundations of Software Engineering. pp. 118–127 (2003)

27. Mercurial home page, http://mercurial.selenic.com/
28. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large software sys-

tems. In: International Symposium on Foundations of Software Engineering. pp.
241–251 (2004)

29. Perez De Rosso, S., Jackson, D.: What’s wrong with Git?: A conceptual design
analysis. In: International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming & Software. pp. 37–52 (2013)

30. Rigby, P., Barr, E., Bird, C., Devanbu, P., German, D.: What effect does distributed
version control have on OSS project organization? In: International Workshop on
Release Engineering. pp. 29–32 (2013)

31. Rothermel, G., Harrold, M.J.: A safe, efficient algorithm for regression test selec-
tion. In: Conference on Software Maintenance. pp. 358–367 (1993)

32. Rothermel, G., Harrold, M.J.: A framework for evaluating regression test selec-
tion techniques. In: International Conference on Software Engineering. pp. 201–210
(1994)

33. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
Trans. Softw. Eng. Methodol. 6(2), 173–210 (1997)

34. Srivastava, A., Thiagarajan, J.: Effectively prioritizing tests in development en-
vironment. In: International Symposium on Software Testing and Analysis. pp.
97–106 (2002)

35. Willmor, D., Embury, S.M.: A safe regression test selection technique for database
driven applications. In: International Conference on Software Maintenance. pp.
421–430 (2005)

36. Yau, S.S., Kishimoto, Z.: A method for revalidating modified programs in the main-
tenance phase. In: Signature Conference on Computers, Software, and Applications
(1987)

37. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Software Testing, Verification and Reliability 22(2), 67–120 (2012)

38. Zhang, L., Kim, M., Khurshid, S.: Localizing failure-inducing program edits based
on spectrum information. In: International Conference on Software Maintenance.
pp. 23–32 (2011)

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
http://mercurial.selenic.com/

