
Learning to Format Coq Code Using Language Models

Pengyu Nie1, Karl Palmskog2, Junyi Jessy Li1, and Milos Gligoric1

1 The University of Texas at Austin, Austin, TX, USA
2 KTH Royal Institute of Technology, Stockholm, Sweden

pynie@utexas.edu, palmskog@acm.org, jessy@austin.utexas.edu, gligoric@utexas.edu

Should the final right bracket in a Record declaration be on a separate line? Should arguments
to rewrite be separated by a single space? Coq code tends to be written in distinct manners
by different people and teams. The expressiveness, flexibility, and extensibility of Coq’s lan-
guages and notations means that Coq projects have a wide variety of recognizable coding styles,
sometimes explicitly documented as conventions on naming and formatting. In particular, even
inexperienced users can distinguish vernacular using the standard library and plain Ltac from
idiomatic vernacular using the Mathematical Components (MathComp) library and SSReflect.

While coding conventions are important for comprehension and maintenance, they are costly
to document and enforce. Rule-based formatters, such as Coq’s beautifier, have limited flexi-
bility and only capture small fractions of desired conventions in large verification projects. We
believe that application of language models—a class of Natural Language Processing (NLP)
techniques for capturing regularities in corpora—can provide a solution to this conundrum [1].
More specifically, we believe that an approach based on automatically learning conventions from
existing Coq code, and then suggesting idiomatic code to users in the proper context, can be
superior to manual approaches and static analysis tools—both in terms of effort and results.

As a first step, we here outline initial models to learn and suggest space formatting in Coq
files, with a preliminary implementation for Coq 8.10, and evaluated using on a corpus based
on MathComp 1.9.0 which comprises 164k lines of Coq code from four core projects [3].

Language Models for Coq Formatting

Natural language has repeating patterns which can be predicted statistically at the level of,
say, individual words with high accuracy. Programming languages have similar predictability,
usually called naturalness, which can be exploited to perform a variety of software engineering
tasks [1]. We consider, from this view, the problem of predicting spacing between tokens
obtained from Coq’s lexer. For example, according to MathComp’s contribution guide, there
should be no space between the tactic tokens move and =>, which we can learn by observing
the relative locations of the two tokens in a large Coq corpus adhering to the conventions.
n-gram model: We constructed a baseline model based on predicting the next token after
observing the n−1 previous tokens, as often used in NLP and software engineering. To capture
formatting, we inserted special tokens holding spacing information before each token.
Neural model: We constructed a sophisticated model based on bi-directional recurrent neural
networks [4]. The model embeds Coq tokens and spacing information into vectors, and predicts
token formatting using the embedding vectors of both the left-hand and right-hand context.

Preliminary Implementation and Evaluation

To implement learning and suggesting of spacing in Coq files based on our models, we mod-
ified the SerAPI library [2] to serialize tokens in Coq files, organized at the sentence level.
We then serialized all sentences in our MathComp corpus, and extracted information on
token kind and spacing using the source file location information included in each token.



Learning to Format Coq Code Using Language Models Nie, Palmskog, Li, and Gligoric

Table 1: Evaluation of Formatting Sug-
gestions on our MathComp Corpus.

Model Top-1 Acc. Top-3 Acc.

Neural 96.8% 99.7%
n-gram 93.4% 98.9%

Finally, we implemented our language models using
the PyTorch machine learning framework. To evalu-
ate the models using our implementation, we divided
corpus files into training, validation, and testing sets,
and calculated the top-1 and top-3 accuracy of space
prediction on the testing set after training. According
to the results, which can be seen in Table 1, both the
n-gram and the neural model are able to learn and
suggest formatting conventions with high accuracy. However, the more sophisticated neural
model performs significantly better than the n-gram model.

Challenges and Future Directions

Despite the high accuracy achieved by our preliminary implementation even when using the
baseline n-gram model, we believe our spacing prediction (based only on raw token streams)
needs significant tuning for practical use. For example, newlines before Qed sentences often get
mispredicted, and unlike for name suggestions [3], it is usually inconvenient to inspect more
than the top-1 suggestion for spacing. Moreover, for MathComp, we were able to construct,
with help from maintainers, a sufficiently large corpus with strict adherence to conventions; for
other projects, it may be more challenging, e.g., due to project size or lack of consensus on
conventions. We ask the Coq community for input on the following challenges and directions:
Measuring successful predictions: Certain formatting errors, such as improper mid-
sentence line breaks, are usually considered worse than others. Can we collaboratively define
Coq-specific measures of formatting prediction success and use them to improve the models?
Finding conventions and corpus code: Which files in which projects are idiomatically
formatted? What are the main coding styles used in the Coq community? With agreement on
these questions, style conformity for files and whole projects can be precisely measured.
Manually improving generated suggestions: How do we best represent and apply rule-
based conventions to do reranking of suggestions generated by a trained language model? How
should we weigh manually specified conventions against learned ones?
Refactoring of code to adhere to conventions: Our preliminary implementation only
modifies spacing, but code may require refactoring to properly address convention requirements,
most simply, introducing or changing bullets and specific notations.
Integrating suggestions into the development process: How do we best provide our tools
for suggesting conventions to the community? For example, displaying formatting suggestions
during code reviews of pull requests on GitHub may work well for large projects, but small
projects may have different workflows and thus benefit more from integration with IDEs.

References
[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A survey of machine learning for big code and

naturalness. ACM Computing Surveys, 51(4):81, 2018.

[2] E. J. Gallego Arias. SerAPI: Machine-friendly, data-centric serialization for Coq. Technical report, MINES
ParisTech, 2016. https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408.

[3] P. Nie, K. Palmskog, J. J. Li, and M. Gligoric. Deep generation of Coq lemma names using elaborated
terms. In IJCAR, 2020. To appear. Extended version at https://arxiv.org/abs/2004.07761.

[4] M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power. Semi-supervised sequence tagging with bidirec-
tional language models. In ACL, pages 1756–1765, 2017.

2

https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://arxiv.org/abs/2004.07761

