
217

Unifying Execution of Imperative Generators and

Declarative Specifications

PENGYU NIE, The University of Texas at Austin, USA

MARINELA PAROVIC, The University of Texas at Austin, USA

ZHIQIANG ZANG, The University of Texas at Austin, USA

SARFRAZ KHURSHID, The University of Texas at Austin, USA

ALEKSANDAR MILICEVIC,Microsoft, USA

MILOS GLIGORIC, The University of Texas at Austin, USA

We present DeuteriumÐa framework for implementing Java methods as executable contracts. Deuterium

introduces a novel, type-safe way to write method contracts entirely in Java, as a combination of imperative

generators and declarative specifications (written in a first-order relational logic with transitive closure).

Existing approaches are typically based on encoding both the specification and the program heap into a

constraint language, and then using an off-the-shelf constraint solverÐwithout any additional guidanceÐto

search for a new program heap that satisfies the specification. Deuterium takes advantage of user-provided

generators to prune the search space and reduce incurred overhead of constraint solving. Deuterium supports

two ways of solving declarative constraints: SAT-based and search-based with in-memory state exploration.

We evaluate our approach on a suite of data structures, established as a standard benchmark by prior work.

Furthermore, we use random and sequence-based test generation to create a new benchmark designed to

mimic realistic execution scenarios. Our results show that generators improve the performance of executable

contracts and that in-memory state exploration is the algorithm of choice when heap sizes are small.

CCS Concepts: · Software and its engineering→ Specification languages; Imperative languages; Domain

specific languages; Development frameworks and environments; · Theory of computation → Program

specifications.

Additional Key Words and Phrases: Imperative generators, declarative specifications, Deuterium

ACM Reference Format:

Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric.

2020. Unifying Execution of Imperative Generators and Declarative Specifications. Proc. ACM Program. Lang.

4, OOPSLA, Article 217 (November 2020), 26 pages. https://doi.org/10.1145/3428285

1 INTRODUCTION

A declarative program specification (specification for short) states the intent of the program, i.e.,what
the program is supposed to do. This stands in contrast to an imperative program implementation,
whose main goal is to prescribe how this intent is to be achieved (typically by means of executing
steps that are directly translatable to a commodity hardware instruction set).

Authors’ addresses: Pengyu Nie, The University of Texas at Austin, USA, pynie@utexas.edu; Marinela Parovic, The University

of Texas at Austin, USA, marinelaparovic@gmail.com; Zhiqiang Zang, The University of Texas at Austin, USA, zhiqiang.

zang@utexas.edu; Sarfraz Khurshid, The University of Texas at Austin, USA, khurshid@utexas.edu; Aleksandar Milicevic,

Microsoft, USA, almili@microsoft.com; Milos Gligoric, The University of Texas at Austin, USA, gligoric@utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART217

https://doi.org/10.1145/3428285

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428285
https://doi.org/10.1145/3428285


217:2 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

When a specification is written in a suitably expressive logic, it tends to be significantly more
succinct than an equivalent imperative implementation. A common usage of specifications is for
writing method contracts (contracts for short) [Barnett et al. 2011; Burdy et al. 2005; Chalin et al.
2005; Fähndrich et al. 2012; Kuncak et al. 2013; Logozzo 2013; Samimi et al. 2010], where a method is
annotated with pre- and post-conditions expressed in a declarative logic language. Prior workmostly
focused on using the contracts for runtime checking of the imperative implementations [Barnett
et al. 2011; Burdy et al. 2005; Chalin et al. 2005; Fähndrich et al. 2012; Logozzo 2013].

The use of specifications in contracts gave rise to the idea of programs being written as executable
contracts, with the promise of such programs being more readable, easier to maintain, and less
error-prone than their imperative counterparts [Fuchs 1992; Hoare 1987; Kuncak et al. 2013;
Polikarpova et al. 2013; Rayside et al. 2009]. Prior work explored ways of replacing imperative
method implementations with executable contracts [Kuncak et al. 2013; Milicevic et al. 2011;
Samimi et al. 2010], as well as adding imperative constructs around a modeling/specification
language [Milicevic et al. 2014; Near and Jackson 2010]. When a contract is encountered during
program execution, a suitable search algorithm (e.g., a constraint solver) is used to find a new
program heap that satisfies the contract. In many cases, unfortunately, this step (translation +
search) can be costly.
We propose a new approachÐDeuteriumÐfor writing contracts as a fusion of declarative

specifications and imperative generators. Contracts written in Deuterium are fully executable
without any additional input from the user.

The key idea behind Deuterium is that a user can provide an imperative generator (i.e., an
arbitrary imperative code for creating and initializing objects on the heap) and use it to prune the
search space and thus reduce performance overhead. Because an imperative generator is now a
part of the contract, the declarative part need not be a complete functional specification; instead, it
may be only a partial specification, as long as the generator and the specification together ensure
the intended behavior. Furthermore, Deuterium is the first technique of its kind to demonstrate
how an in-memory state exploration algorithm [Rosner et al. 2014] can be employed as a back-end
solver; Deuterium also supports traditional SAT-based solvers.
Deuterium introduces a new specification languageÐ2HÐwhich aims to make contracts both

expressive and easy to write. (The chemical symbol for deuterium is 2H.) Unlike the majority of
existing specification languages (e.g., JML [Chalin et al. 2005], Spec# [Barnett et al. 2005]), 2H is
more expressive as it is based on a first-order logic over relations with transitive closure. Other
languages that are as expressive require the specifications to be written as plain strings (e.g.,
JFSL [Yessenov 2009b]) or a separate domain specific language (e.g., Alloy-like language in case of
PBnJ [Samimi et al. 2010]) that can be very different from the host language (e.g., Java); they also
require extending the compiler (e.g., PBnJ [Samimi et al. 2010]), which might introduce additional
challenges during the integration with existing development workflows. 2H, in contrast, is fully
embedded in Java and requires no extension to the language syntax or compiler, thus it benefits
from many existing Java tools, from IDEs for code completion and refactoring, all the way to
compilers for static type-checking of contracts. Other examples where a specification language is
deeply embedded an imperative host language include Rosette [Torlak and Bodik 2013] for Racket,
and 𝛼Rby [Milicevic et al. 2014] for Ruby.

Prior work has identified areas of applicability for executable contracts. Concretely, tasks that are
not performance critical, like prototyping, differential testing, test input generation, and mocking
are all good candidates [Rayside et al. 2009; Samimi et al. 2013]; additionally, NP-hard problems
where no well-known, super optimized textbook solution is readily available can sometimes be
solved more efficiently with executable contracts compared to writing an ad-hoc algorithm by
hand [Milicevic et al. 2011]. This paper assumes this argument and focuses entirely on improving

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:3

the state-of-the-art by (1) reducing the barrier to entry for programmers who are not necessarily
proficient in formal methods by proposing an embedded, type-safe, specification language, and
(2) improving scalability by using generators.

In summary, our main contributions include:

★ Language and tool.We introduce a type-safe language (2H) and a tool (Deuterium) for writing
contracts as a combination of imperative generators and specifications in a first-order rela-
tional logic with transitive closure, all embedded in plain Java. Our evaluation shows that using
generators improves both performance and scalability of executable contracts.

★ New approach to constraint solving. Deuterium supports two constraint solving engine
types: (1) SAT-based, and (2) in-memory search-based. Deuterium is the first framework to
apply a search-based approach with in-memory state exploration to the problem of executing
specifications. We show that the two solvers have complementary strengths.

★ Extended benchmark suite.The standard benchmark suiteÐestablished by priorworkÐconsists
of executing specifications of well-known algorithms against increasingly growing data struc-
tures and measuring how well the approach scales. We extend this suite by adding synthetic
programs designed specifically to mimic realistic execution scenarios (and thus address the most
common criticism of the standard benchmark). To that end, we used random [Pacheco et al.
2007] and sequence-based test generation [Visser et al. 2006] to create a new benchmark where
methods implemented as executable contracts are executed multiple times, in a random order, as
part of a larger program. We believe this new benchmark provides useful new insights and thus
could prove to be a valuable tool for evaluating future approaches in this domain.

The artifacts for this paper are available at https://github.com/EngineeringSoftware/deuterium.

2 EXAMPLES

We illustrate the method contracts in Deuterium using three examples, such that each example
illustrates a different aspect of the framework: (1) the binary search tree data structure, written as
a combination of imperative generators in Java and declarative specifications in 2H; (2) the same
binary search tree data structure, but written entirely with declarative specifications in 2H; and (3)
an N-Queens problem solver.

2.1 Binary Search Tree: Imperative Generators + Declarative Specifications

Binary search tree (BST) is a classic data structure for storing a set of values in a sorted order. A
Java representation is shown in Figure 1a: a tree has a root node, and each node stores a value
and pointers to left and right subtrees.
Figure 1b shows a declarative specification of the BST invariants (lines 4ś14) and specification

fields (lines 3 and 17). Specification fields (also known as “ghost statež) are defined only to simplify
complex specifications, and are not used/accessed in normal execution (but only as ghost state
during constraint solving). The specification field children (line 3) denotes both left and right

children of a node. The specification field nodes (line 17) denotes all nodes contained in the BST. In
2H, invariants are provided by virtue of calling the D.invariant method; Deuterium, at runtime,
asserts that these invariants hold at the beginning of any method implemented in 2H, and ensures

that they hold at the end as well. The first invariant (line 6) specifies that the tree is acyclic: a node
(this) must not be reachable by transitively following its children field. With relational algebra,
the set of nodes reachable from this is conveniently expressed by computing the transitive closure
of children and then selecting the tuples that start with this. The second and third invariants

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.

https://github.com/EngineeringSoftware/deuterium


217:4 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

1 class BST { Node root; }

2 class Node { int value; Node left, right; }

(a) Class definitions.

1 class Node {

2 // Spec field: All children

3 Rel<Node> children = D.specField(union(left, right));

4 { D.invariant(

5 // acyclic (no node is reachable from itself)

6 closure(this, n→n.children).notContains(this),

7 // for each node: left subtree has lesser keys

8 rclosure(this.left, n→ n.children)

9 .filter(n→ n != null)

10 .all(n→ n.value < value),

11 // for each node: right subtree has greater keys

12 rclosure(this.right, n→n.children)

13 .filter(n→ n != null)

14 .all(n→ n.value > value)); }}

15 class BST {

16 // Spec field: All nodes in the tree

17 Rel<Node> nodes = D.specField(rclosure(root, n→n.children).subtract(null));}

(b) Specifications for classes written in 2H.

1 Node genBalTree(Node[] nodesArray, int low, int high) {

2 if (high <= low) return null;

3 Node current = nodesArray[low];

4 int mid = (high+low+1)/2;

5 current.left = genBalTree(nodesArray, low+1, mid);

6 current.right = genBalTree(nodesArray, mid, high);

7 return current;}

(c) Generator that creates a valid shape for BST.

1 void add(int x) {

2 // SpecCase for a pre-condition

3 if (D.specCase(nodes.join(n→n.value).notContains(x))) {

4 root = genBalTree(nodes.union(new Node()).toArray(), 0, nodes.size()+1);

5 D.modifies(Node.class, "value");

6 D.ensures(nodes.join(n→n.value).equals(old(nodes.join(n→n.value)).union(x)));

7 } // else nothing will be modified

8 D.exe(this, x);}

(d) Contract for the BST.add method.

1 // class Node

2 @SpecField({"children: set Node | this.children = this.left + this.right"})

3 @Invariant({"this !in this.^children",

4 "all n : {n1 : this.left.*children | n1 != null} | n.value < this.value",

5 "all n : {n1 : this.right.*children | n1 != null} | n.value > this.value"})

6 // class BST

7 @SpecField({"nodes: set Node | this.nodes = this.root.*children - null"})

8 // method BST.add

9 @Specification({@Case(

10 requires="x !in nodes.value",

11 modifies="Node.value",

12 ensures="nodes.value = @old(nodes.value) + x")})

(e) JFSL specifications for the BST example. In contrast to 2H, JFSL specifications are written as strings in a
language very different from the host language.

Fig. 1. An example contract written in Deuterium for BST.add.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:5

(lines 8ś14) specify the ordering property: values of the nodes in the left subtree are smaller than
the current one, and values of the nodes in the right subtree are larger than the current one.
The genBalTree method in Figure 1c is an imperative generator used to generate a single BST

instance (1) containing the existing nodes plus a given node, and (2) has a valid shape (the acyclicity
property holds). The generator simply creates balanced tree by recursively dividing the set of nodes
in two, for left and right subtrees. The idea is to use this simple generator in conjunction with the
declarative specifications for BST.add. Consequently, the solver is now faced with a much simpler
task of only assigning values to nodes (and not having to rearrange the nodes). As we will show,
this improves performance.

Figure 1d shows the contract for the add method. A SpecCase provides a mechanism to split the
contract into multiple cases based on different pre-conditions that may hold in the pre-invocation
state. In this example, we provide a contract only when the value x is not already present in the
tree (line 3). Otherwise, the tree does not need to be changed.

The specification in the then-branch specifies how to update the heap to include the value into
the BST. First, genBalTree generates the shape for the new BST (line 4). Then, the frame condition
(the Modifies call, line 5) specifies which fields may be modified in order to satisfy the contract.
Finally, the post-condition (the Ensures call, on line 6), specifies the property that the solver must
satisfy. Concretely, only the Node.value field may be modified, and the tree in the post-state must
contain all the current values (nodes.join(n→n.value)) plus the new value x.
D.exe (line 8) executes the contract. Deuterium discovers the contract, invokes the generator,

and then runs a solver to execute the specifications. A solution, if found, is guaranteed to satisfy the
post-condition and all the invariants, i.e., it is correct by construction w.r.t. the provided contract.
Note that the invariant on line 6 (Figure 1b) is not needed in our example because we ensure
acyclicity with a generator, but we showed it for completeness.

Deuterium uses JFSL as an intermediate protocol to communicate with the SAT-based solver and
introduces a novel protocol for the search-based solver. Figure 1e shows the specifications in JFSL
automatically translated from the 2H specifications, including the specification fields (lines 2ś7),
the invariants (lines 3ś5), and the SpecCase (lines 9ś12).

It is important to note that Deuterium does not prescribe any semantics for generators. Instead,
Deuterium invokes the supplied generator as a regular Java method. The generator is allowed
to mutate the heap in an arbitrary way. Afterwards, Deuterium attempts to satisfy the contract
against the heap state left after the generator was executed. If there is a bug in the generator, we
expect that constraint solving fails, because it will not be able to find a solution.

2.2 Binary Search Tree: Pure Declarative Specifications

Method contracts inDeuterium can opt to have no imperative generators, i.e., only have declarative
specifications. Figure 2 shows an alternative version of contract for BST.add written as pure
declarative specifications in 2H. We use the same class definitions in Figure 1a and the same
specifications for classes in Figure 1b. The SpecCase (line 3) checks the pre-condition such that the
specification in the then-branch is only used when the value x is not already present in the tree.
Next, the fresh object specification (line 5) specifies a new Node object should be created, which
is referenced as newNode. Then, the frame condition (the Modifies calls, line 7ś14) specifies the
fields that may be modified, including nodes, root, value (of newNode and can only be modified to
the new value x), left/right (of the nodes where the old left/right is null, and can be modified
to either newNode or remain as null). The same post-condition (the Ensures call, line 16) specifies
the new values should include the old values plus the value x.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:6 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

1 void add(int x) {

2 // SpecCase for a pre-condition

3 if (D.specCase(!nodes.join(n→n.value).contains(x))) {

4 // Fresh object

5 Node newNode = D.freshObject(Node.class);

6 // Modifies

7 D.modifies(nodes);

8 D.modifies(root);

9 D.modifies(D.field(Node.class, "value"),

10 (n, v)→ n == newNode, (n, v)→x);

11 D.modifies(D.field(Node.class, "left"),

12 (n, l)→ l == null, (n, l)→ union(newNode, null));

13 D.modifies(D.field(Node.class, "right"),

14 (n, r)→ r == null, (n, r)→ union(newNode, null));

15 // Ensures for a post-condition

16 D.ensures(nodes.join(n→n.value).equals(old(nodes.join(n→n.value).union(x))));

17 } // else do nothing

18 D.exe(this, x);}

Fig. 2. Contract for the BST.add method written in pure 2H.

1 class Cell { int i, j; }

2 static void solveNQueens(Cell[] queens) {

3 // Requires for a pre-condition

4 D.requires(queens != null);

5 // Modifies

6 D.modifies(D.field(Cell.class, "i"));

7 D.modifies(D.field(Cell.class, "j"));

8 // Ensures for two post-conditions

9 // 1. Queens do not attack each other

10 D.ensures(range(0, queens.length).all(m→ range(m+1, queens.length).all(n→

11 queens[m].i != queens[n].i && queens[m].j != queens[n].j

12 && queens[m].i - queens[m].j != queens[n].i - queens[n].j

13 && queens[m].i + queens[m].j != queens[n].i + queens[n].j)));

14 // 2. Queens are on the chess board

15 D.ensures(range(0, queens.length).all(m→

16 queens[m].i >= 0 && queens[m].i < queens.length

17 && queens[m].j >= 0 && queens[m].j < queens.length));

18 D.exe(null, queens);}

Fig. 3. Contract for the N-Queens problem.

2.3 N-Queens Problem Solver

We show another example to illustrate more syntax provided by 2H, in particular array operations.
In this example we want to solve N-Queens problem [Wikipedia 2020], where N chess queens are
placed on a N×N chessboard, such that none of the queens can attack each other. Figure 3 shows
the Java definition and specifications adequate to solve the problem. A class Cell is defined to
represent a position on the chessboard at the i-th row and j-th column. The method solveNQueens
takes an array of Cell (whose length is N, i.e., N = queens.length) as argument, and will modify
the fields i, j of the cells to get a valid solution of N-queens problem.
The pre-condition (Requires call, line 4) specifies that the argument queens should not be

null. Deuterium will throw an exception if the requirement is not satisfied. The frame condition
(Modifies calls, line 6ś7) specifies the fields i and j of the cells can be modified.

The first post-condition (line 10ś13) specifies that the queens do not attack each other. Two levels
of all quantifications are used here, to select two (indexes of) chess queens from the array. The range
of the first quantification (m) includes integers in the interval [0, queens.length), and the range
of the second quantification (n) includes integers in the interval [m + 1, queens.length). Then it
specifies that the two queens do not attack each other, i.e., not on the same row, column, or diagonal.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:7

BST.java

// 2H Specifications

void add(int x){

...D.ensures(...);

D.exe(this, x);}

// Generator

void genBalTree(...){}

class BST {

Node root;}

class Node {

int value;

Node left, right;}

BST.class

bytecode

Generator

bytecode

2H

bytecode

JVM

genBalTree()

heap

solver

solution

translate

javac java

Fig. 4. Deuterium’s workflow: from a contract to compiled code to invocations of the generator and a solver.

The second post-condition (line 15ś17) specifies that all queens are on the chessboard of N×N, by
checking if the row number i and the column number j are in the interval [0, queens.length).
Finally, when D.exe is invoked, if there is a solution to the N-Queens problem of size N, the

queens array will be updated to represent the solution; otherwise, Deuterium will throw an
exception to report that there is no solution.

3 FRAMEWORK

This section describes Deuterium workflow (Section 3.1), 2H (Section 3.2), fusion of generators
and specifications (Section 3.3), integration with a SAT-based solver and our optimizations to it
(Section 3.4), and an approach for utilizing search-based solver to execute specifications (Section 3.5).

3.1 Overview

Deuterium contains two major components: (1) 2H for writing the declarative specifications in
the contracts, and (2) a runtime system for executing the contracts. Specifications are written in
first-order relational logic with transitive closure using pure Java syntax (Section 3.2) and can
be combined with imperative generators (Section 3.3) for improved runtime performance and
expressive power.
Figure 4 shows the workflow of Deuterium. A call to D.exe with the caller object and method

arguments instructsDeuterium to execute the contract.Deuterium first invokes the generator and
then invokes a solver with the heap and the specifications. Deuterium extracts the specifications
from the compiled Java bytecode that corresponds to 2H specifications and translates them into
one of the formats required by the solvers, and the solvers take care of updating the program heap
to reflect the solution.
Deuterium integrates with two types of solvers: (1) the SAT-based solver, which serializes the

heap that becomes an input to a SAT solver and deserializes the solution, using reflection, back to
JVM by changing the objects and field values on the heap, and (2) the search-based solver, which
performs in-memory state exploration, so no serialization/deserialization of the heap is needed.

We implementedDeuterium as a Java library to enable the usage of the standard compiler (javac)
to compile the entire contract to standard Java bytecode, and the usage of the default runtime (java)
to execute the compiled bytecode. Moreover, in Deuterium, the compiler ensures that contracts
are typechecked. Once D.exe is invoked, Deuterium takes over and performs translation of the
heap to a format accepted by a solver.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:8 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

Table 1. API for Relational Logic.

Type Expression

Atomic Relations

Relation<T> obj obj.type∉{Rel, Class}, T=obj.type

Relation<T> obj Rel<T>=obj.type

Relation<T> T.class

Relation<int> range(int from, int to)

Relation<T> null

Join

Relation<T> obj.fld T=fld.type

Relation<R> join(Relation<T>, BRelation<T, R>)

Relation<R> Rel<T>.join(BRelation<T, R>)

Transitive / Reflexive Transitive Closure

BRelation<T, T> closure(BRelation<T, T>)

Relation<T> closure(Relation<T>, BRelation<T, T>)

BRelation<T, T> rclosure(BRelation<T, T>)

Relation<T> rclosure(Relation<T>, BRelation<T, T>)

Set Operations

Relation<T> 𝑜𝑝(Relation<T>, Relation<T>)

𝑜𝑝 ∈ {union, subtract, intersect}

Filter

Relation<T> filter(Relation<T>, BRelation<T, boolean>)

Relation<T> Rel<T>.filter(BRelation<T, boolean>)

Arrays

Relation<int> arr.length

Relation<T> arr[idx] T=arr.elemType

BRelation<int, T> elems(arr) T=arr.elemType

Basic Predicates

boolean Relation<T> 𝑜𝑝 Relation<T>

𝑜𝑝 ∈ {==, !=, < , >, <= , >=}

boolean 𝑜𝑝(Relation<T>, Relation<T>)

boolean Rel<T>.𝑜𝑝(Relation<T>)

𝑜𝑝 ∈ {in, notIn, contains, notContains, equals}

Quantifications

boolean 𝑞(Relation<T>, BRelation<T, boolean>)

boolean Rel<T>.𝑞(BRelation<T, boolean>)

𝑞 ∈ {all, some, one, lone, none}

Pre-invocation state

Relation<T> old(Relation<T>)

3.2 2H Language
2H is a domain specific language for writing declarative specifications in a first-order relational
logic with transitive closure. Unlike JML [Chalin et al. 2005] and JFSL [Yessenov 2009b], 2H is
embedded in Java, so new users need not learn a new syntax. 2H consists of two APIs: an API for
relational logic expressions, and a high-level API for specifications.

3.2.1 API for Relational Logic. This API is shown in Table 1. In each row, the left-hand side indicates
the type of the right-hand side expression. We make use of the syntax for generics ⟨...⟩ to denote
the relation type. We do not show integer arithmetic or boolean logical operations (e.g, &&) as they
have the same semantics as in Java.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:9

Table 2. High-Level API for Specifications.

Spec Type API Signature

Method Specifications

Requires D.requires(boolean p)

SpecCase D.specCase(boolean p): boolean

Ensures D.ensures(boolean p)

Modifies D.modifies(Field f

[, TRelation<T, R, boolean> domainFilter

[, TRelation<T, R, R> rangeFilter]])

T=f.declType, R=f.type

FreshObject D.freshObject(Class<T> c): T

FreshObjects D.freshObjects(Class<T> c, int n): Rel<T>

Class Specifications

Invariant D.invariant(boolean... p)

SpecField D.specField(Relation<T> r): Rel<T>

In 2H, all objects (except those of type Rel) are relations implicitly: a Class object represents a
relation containing all instances of that class, and a non-Class object represents a singleton relation
containing the object itself. We also introduce class Rel⟨T⟩ to represent explicit relations, which
can be obtained via the 2H API (e.g., D.specField), or Rel.of(...). range is a syntactic sugar that
creates a relation of integers within the given bounds. null is a special relation that is compatible
with any type.

A BRelation⟨T, R⟩ represents a binary relation of type T→R. Lambda expressions conveniently
rise up to the task for expressing binary relations. For example, t→t.fld is a relation that maps
objects of type T to their field values fld.

Join is a basic binary operation in relational logic. Field access (using the standard “dotž syntax in
Java) on free variables is treated as a join operation. For example, this.left (line 8 in Figure 1b) is
a join operation and is equivalent to join(this, n→n.left). 2H also provides the join API method
for joins between a relation and a binary relation, where the type of the relation must match the
domain of the binary relation, which is statically checked and enforced by the Java compiler.
Methods closure and rclosure compute the transitive closure and the reflexive transitive

closure of a binary relation, respectively. The alternative versions of the two methods which accept
two argumentsÐa relation and a binary relationÐperform a join operation on the former and the
transitive or reflexive transitive closure of the latter. These operations are particularly useful for
specifying linked data structures (e.g., trees, graphs).

2H supports other relational operators, including union, subtraction, intersection, and
filter-ing. 2H also supports getting array length and array indexing using in standard Java syntax.
The method elems provides access to all elements of an array as a binary relation from the indexes
to its elements.

Predicates in 2H are expressions of boolean type, including comparisons between relations, check-
ing if a relation is in (a subset of), notIn (not a subset of), contains (a superset of), notContains
(not a superset of), or equals (equals to) another relation. First-order quantification is provided via
the all, some, one (exactly one), lone (at most one), and none operators.

Finally, the old operation gives the pre-invocation state of a relation, i.e., the value of the relation
evaluated at the beginning of the contract. This operation should only be used in post-conditions.

3.2.2 High-Level API for Specifications. This API is shown in Table 2. For each API method we
show its signature. The arguments within “[]ž are optional; we omit the return type if it is void.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:10 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

The return values are used for combining the API calls with other Java code, e.g., field declaration
and if-statements.
Requires or SpecCase specifies a predicate that should be checked as a pre-condition. Requires

specifies a compulsory pre-condition which will cause execution failure if not satisfied; SpecCase
returns a boolean value that can be used as the condition of an if-statement to represent a specifica-
tion case: the specifications in the then-branch are used if the pre-condition is true, otherwise the
specifications in the else-branch are used; we showed an example in Figure 1d.
Ensures specifies a predicate that must hold in the post state, i.e,. at the end of the contract.
Modifies specifies the side-effects the solver can make. The first argument is the field that

can be modified; it can be either a field reference (e.g., this.root), or a Java reflections Field
object. The second and third optional arguments allow fine-grained Modifies specifications: the
second argument, domainFilter, specifies the instances where the field can be modified; the third
argument, rangeFilter, specifies the possible values the field can be modified to. Both filters are
ternary relations that have two arguments: the owner object (of type T) and the field value (of type
R) at pre-invocation state; and one return value of type boolean or R.
FreshObject specifies that a new object of the argument class should be created by the solver.

The return value of FreshObject can be used in later specifications to refer to the newly created
object. FreshObjects should be used if multiple new objects of the same class are needed.
Invariant, which should be written in class initializer blocks, specifies one or more predicates

that should hold for all objects of the class.
SpecField defines a relation that is used in other specifications to simplify formulas; the return

value should be used as an initializer for a ghost field.

3.3 Fusing Generators and Specifications

The execution of purely declarative specifications might not be optimal: both a SAT-based solver
and a search-based solver have the exponential worst case time complexity [Cook 1971; Levin 1973].
In contrast, many methods can be implemented imperatively with better time complexity. Using
Deuterium, it is possible to fuse the two execution styles and benefit from both. Users can write an
imperative generator to generate the backbone structure of the solution (e.g., a red black tree with a
valid shape and colors without assigned values), and declarative specifications in 2H to obtain the
final solution (e.g., fill in the values in a red black tree). This process is illustrated in Figure 5. A
solution returned by Deuterium, if found, is still guaranteed to be correct, because Deuterium
asserts that all invariants and post-conditions must hold at the end of the method. If, for example,
the generator contains a bug and assigns wrong colors in the generated tree, Deuterium will
simply not be able to find a solution.
Note that generators in Deuterium, unlike the generators previously used in automated test

generation [Daniel et al. 2007; Gligoric et al. 2010; Kuraj et al. 2015; Rosner et al. 2014], only need
to generate a single valid backbone instance instead of all valid instances; writing a generator to
obtain a single valid backbone instance is much simpler, and the execution of such generator is
much faster than enumerating all instances.

Deuterium gives flexibility to users to decide whether or not to use a generator and what goes
into the generator. For data structure examples like red black tree or binary search tree (Section 2.1),
it is straightforward to come up with generators that generate backbone structures, and they play
a key role in speeding up constraint solving (as we will show in our evaluation in Section 4). For
other examples (e.g., N-Queens in Section 2.3) using generators may not provide additional benefits.
Finding the right balance between generators and specifications is not straightforward and will
depend on the example at hand, as well as users’ background and experience.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:11

𝑛0:4

𝑛1:1

𝑛3:0 𝑛4:3

𝑛2:5

𝑛0

𝑛1

𝑛3 𝑛4

𝑛2

𝑛5

𝑛0:3

𝑛1:1

𝑛3:0 𝑛4:2

𝑛2:4

𝑛5:5

root = {𝑛0}

Node.left = {(𝑛0 → 𝑛1), (𝑛1 → 𝑛3), (𝑛2 → 𝑛5)}

Node.right = {(𝑛0 → 𝑛2), (𝑛1 → 𝑛4)}

Node.color = {(𝑛0 → BLACK), (𝑛1 → RED), (𝑛2 → RED),

(𝑛3 → BLACK), (𝑛4 → BLACK), (𝑛5 → BLACK)}

nodes = {𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5}

nodes.value = {0, 1, 2, 3, 4, 5}

/*other constraints, e.g., invariants ... */

Node.value = {𝑛0 → 3, 𝑛1 → 1,

𝑛2 → 4, 𝑛3 → 0,

𝑛4 → 2, 𝑛5 → 5}

generator

SAT-based solver

add(2)

generate a red black tree

with 6 nodes

solve

Fig. 5. Example of Deuterium adding a new value into a red black tree with a generator (top left part) and
the SAT-based solver (bottom part and top right part). Deuterium uses the generator to obtain the shape of
the structure and assign colors and SAT-based solver to assign values.

heap

solution

Squander Kodkod
SAT Solver

(outside JVM)

serialize

heap

deserialize

heap

relational formula

relational model

boolean formula

boolean model

2H bytecode JFSL spec
parse

Fig. 6. Workflow of the SAT-based solver. (c.f. Fig. 4 the łsolverž box.)

3.4 The SAT-Based Solver

Deuterium uses an adapted and optimized version of Squander [Milicevic et al. 2011]. As illustrated
in Figure 6, Deuterium translates the specifications written in 2H to JFSL, which are then solved
by Squander. Note that we use the solver in an interactive mode rather than in the batch mode.
Once it finds a solution, Squander automatically updates the heap to reflect the solution.
Squander [Milicevic et al. 2011] is a framework that enables solving specifications written in
JFSL during the execution of Java programs. The execution of a specifications takes four steps: (1)
Squander translates JFSL specifications to Kodkod [Torlak and Jackson 2007] (a constraint solver
for relational logic) formulas and bounds; (2) Squander serializes the objects on the heap to Kodkod
atomic relations; (3) Kodkod solves the formulas with the help of a SAT solver outside of the
host JVM; and (4) if a solution is found, Squander deserializes the solution and updates the heap.
Although we could have skipped the translation to JFSL and directly built Kodkod formulas, we
decided to utilize Squander to simplify the implementation.
JFSL [Yessenov 2009b] is a lightweight specification language originally designed for a bounded
verifier for Java called JForge [Yessenov 2009a]. JFSL specifications are written as plain-string

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:12 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

Table 3. Mappings from 2H Operators to JFSL Specifications.

2H Operator JFSL Specification

union @+

subtract @-

intersect @&

join .

closure ^

rclosure *

old @old

in in

equals =

filter(t, v →r) {v : t | r}

𝑞(t, v →r) 𝑞 v : t | r

𝑞 ∈ {all, some, one, lone, none}

range(from, to) {v : int | v >= from && v < to}

elems(arr) arr.elems

Shared Literals and Operators

this, null, obj.fld (field access), ==, !=, <, >, <=, >=, !, &&, ||,

arr.length (array length query), arr[idx] (array indexing)

annotations like @Requires(ł...”); syntactically, they closely resemble Alloy [Jackson 2002]. 2H is
as expressive as JFSL, but, in contrast, is fully embedded in Java.

3.4.1 Parsing from 2H to JFSL. We built a parser from the Java bytecode of the compiled 2H
specifications to JFSL using the ASM library [Bruneton et al. 2002; Kuleshov 2007]. We choose to
parse from the bytecode rather than the source code of 2H; the latter may seem straightforward in
isolation, but it takes additional steps to integrate it into compilation, store the specifications, and
load them during execution. The parser reads the list of bytecode instructions in the method body
or the class initializer (for class specifications). The parser identifies different types of specifications
based on the APIs in Tables 1 and 2, reads the block of bytecode instructions for the API invocations,
replaces the 2H operators with corresponding expressions in JFSL, and outputs the result JFSL
specifications. Table 3 shows the mappings used to translate 2H to JFSL.

3.4.2 Cached Parsing (CP). The original solver by default collects the specifications at the beginning
of each method. In cases when the same method is executed many times (e.g., in a for loop), the
corresponding specifications are discovered and parsed for each method invocation. We added a
caching mechanism such that the specifications are collected, parsed and cached in memory only
once (at the time of the first method invocation) and are simply fetched from the cache for later
invocations. This is orthogonal to caching the results of SAT solvers that are previously explored
in several systems, including Green [Visser et al. 2012].

3.4.3 Performance Improvements (PI). The original Squander engine was not well suited for han-
dling heaps with many integers. This limitation was discovered by our new benchmark based on
random and sequence-based test generation. We implemented necessary optimizations, for example,
speeding up the initialization of range integer-type relations, added them back to Squander, and
observed considerable performance benefits. We believe this experience gives some more credence
to the usefulness of our newly designed benchmark.

3.4.4 Example. Figure 5 illustrates the process of using Deuterium with a generator and the
SAT-based solver to add a new value to a red black tree. The generator (top left part) generates
a backbone of the tree with proper shape and colors; then, the SAT-based solver (bottom part)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:13

setBounds()

vars = initState()

heap.assign(vars)

repOk()?

var = accessedVarsStack.pop()

var.hasNext()?

var.toNext()var.toFirst()

heap

solution
Y

N

YN

2H

bytecode

Fig. 7. Workflow of the search-based solver. (c.f. Fig. 4 the łsolverž box.)

translates the current objects on the heap and the specifications written in 2H to SAT formulas and
solves it; finally, the heap is updated to reflect the solution (top right part).

3.5 The Search-Based Solver

Deuterium is the first approach to use an in-memory search-based solver to execute specifica-
tions. The main insight is that such execution can avoid the costly translation and serialization
steps involved when a SAT-based solver is used. The search-based solver executes declarative
specifications by performing in-memory state exploration, starting from the program heap at the
time of the method invocation until it modifies the program heap to satisfy the invariants and
post-conditions of the invoked method. To implement the in-memory state explorer we use a
variant of Korat [Boyapati et al. 2002], which was originally developed for bounded-exhaustive test
input generation.

Figure 7 shows the workflow of the search-based solver. Deuterium creates, from compiled 2H,
two methods required by the exploration algorithm: repOk [Liskov and Guttag 2000] for checking
the invariants and post-conditions, and setBounds for setting the exploration boundaries from
the Modifies specifications. The solver starts by initializing all variables to their first possible
state within the boundaries (vars = initState()). In each iteration, the solver checks repOk, and
if it passes, the exploration terminates with the current heap state as the solution. The solver
tracks the accessed variables during the invocation and maintains a stack (accessedVarsStack)
where variables closer to the top of the stack are accessed later. The solver then updates the state
by: (a) taking the variable on top of accessedVarsStack (if the stack is empty, the exploration
terminates with no solution) and (b) incrementing its state (i.e., changing to the next possible
state within the boundary) if the variable has next state, otherwise, setting it to the first state
and repeating this process. In this way, the solver prunes the search space by avoiding changing
variables that are not accessed in repOk.

In addition to repOk and setBounds, Deuterium also creates auxiliary fields to store the pre-
invocation states (i.e., old) of the fields and specification fields. Deuterium performs these trans-
lation using the ASM bytecode manipulation library [Bruneton et al. 2002; Kuleshov 2007]. We
summarize the key translation steps below.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:14 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

1

0 3

2 4

root

left
right

left
right

old_root

old_left

old_right

old_left

old_right

4

3

1 0

2

old_root

old_left

old_left old_right

old_right

Fig. 8. Example of Deuterium creating auxiliary old fields for binary tree. On the left side is the current tree
where solid arrows show current fields (root, left, right) and dashed arrows show old fields (old_root, old_left,
old_right). On the right side is the old tree reconstructed from old fields. This example illustrates that copying
fields by value for each object effectively does a deep copy of the entire heap.

1 class BST {

2 Set<BooleanSupplier> postconds;

3 boolean add() { ...

4 postconds.add(()→nodes.join(n→n.value).equals(old_nodes.join(n→n.old_value).union(x))); ...}

5 boolean repOk() {

6 return nodes.all(n→n.checkInvariants()) && postconds.allMatch(n→n.test()); }}

7 class Node {

8 boolean checkInvariants() {

9 return !( closure(this, n→n.children).notContains(this)

10 && rclosure(this.left, n→n.children).filter(n→ n != null).all(n→ n.value < value)

11 && rclosure(this.right, n→n.children).filter(n→ n != null).all(n→ n.value < value)); }}

Fig. 9. repOk method for executing BST.add.

3.5.1 Creating Auxiliary Fields. For each Java field (fld), Deuterium creates an auxiliary field
(old_fld) to store its pre-invocation state, and updates this new field prior to executing any method
contract. To save the old value, it suffices to assign fld to old_fld regardless of the field type even
for reference fields, because performing this assignment for each object effectively does a deep
copy; see an example in Figure 8.

For each specification field (sfld), Deuterium creates, from the bytecode of SpecField specifi-
cation, an auxiliary method (get_sfld()) for computing the concrete values based on the program
heap. During the in-memory exploration, Deuterium keeps the specification field up-to-date as the
Java heap changes, i.e., when the search-based solver advances to the next heap state. Deuterium
also creates an auxiliary field old_sfld to store its pre-invocation state.

3.5.2 Creating repOk and setBounds. Deuterium first creates checkInvariants by processing
the bytecode of Invariants invocations; checkInvariants returns true iff the invariants of the
caller object are satisfied. Deuterium maintains a set of predicates postconds to store the post-
conditions to be checked. Deuterium modifies each Ensures from D.ensures(p) to postconds.-
add(()→p).

Figure 9 shows the repOkmethod automatically created byDeuterium for BST.add from Figure 1.
Deuterium creates repOk method as the conjunction of two predicates: (1) all invariants of the
objects on the heap are satisfied using the checkInvariants method; and (2) all post-conditions
are satisfied, which are collected in postconds.

Deuterium creates the setBoundsmethod from the Modifies specifications. For each Modifies,
Deuterium sets the bounds, i.e., the possible assignments to the fields provided in the specification,
to all objects on the heap whose type matches the type of the field.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:15

4

1

0 3

5

0

0

0 0

0

0

0

1

3 4

2

5

3

1

0 2

5

4

add(2)

generate a red black tree

with 6 nodes

post-conditions
invariants

repOk

×
×
×

×

✓

×

✓

✓

✓

generator

search-based solver

Fig. 10. Example of Deuterium adding a new value into a red black tree with a generator (top part) and the
search-based solver (bottom part). Deuterium uses the generator to obtain the shape of the structure and
assign colors and search-based solver to assign values.

3.5.3 Using Fine Grained Modifies (FGM). Deuterium also utilizes the fine grained modifies (i.e.,
domainFilter and rangeFilter) when using search-based solver. Deuterium creates a different
setBounds method when the optional arguments to Modifies are provided: Deuterium sets the
bound for a field of an object that do not satisfy the domainFilter to exactly its current value
(i.e., no exploration needed); for those that satisfy the domainFilter, Deuterium evaluates the
rangeFilter and uses the evaluation result as the bounds.

3.5.4 Example. Figure 10 illustrates the in-memory search exploration. The search-based solver
starts from the shape and colors generated by the generator (Section 3.3), and initializes all values
to 0. Then the solver explores different heap states by modifying the values, and checking repOk

on each heap state. The solver terminates when it finds the first heap state that satisfies repOk (or
explores the entire space without finding a solution).

4 EVALUATION

In this section, we evaluate Deuterium and compare the performance of 8 configurations (Table 4).
We compare two styles of writing method contractsÐfusion of generator (Gen) + 2H vs. pure
2HÐand two solversÐsearch-based solver (Search) vs. SAT-based solver (SAT). The configuration
using pure 2H and SAT-based solver with no optimization (NoGen+SAT) corresponds to the baseline
in prior workÐSquander [Milicevic et al. 2011].
We devise two sets of workloads that are intended to resemble realistic program traces. More

precisely, we use random testing [Pacheco et al. 2007] and systematic-based test generation [Visser
et al. 2006] to obtain sequences of method calls that differ in length; these sequences also resulted in
different heap sizes. Our approach to evaluation stands in contrast to the benchmarks used in prior
work where the goal was always to measure the time to execute a specification only once against
program heaps of varying size [Milicevic et al. 2011].

We aim to answer the following research questions:

RQ1: How does in-memory exploration compare to SAT solving (in terms of execution time) on
executing specifications?

RQ2: How effective are the imperative generators at improving performance and scalability of
contracts?

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:16 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

Table 4. Configurations Used in Our Evaluation.

Configuration Contract Style Solver

Gen+SAT+CP+PI Fusion of

Generator + 2H

SAT-based with both CP and PI

Gen+Search+FGM Search-based with FGM

NoGen+SAT (Squander)

Pure 2H

SAT-based

NoGen+SAT+CP SAT-based with CP

NoGen+SAT+PI SAT-based with PI

NoGen+SAT+CP+PI SAT-based with both CP and PI

NoGen+Search Search-based

NoGen+Search+FGM Search-based with FGM

RQ3: What are the benefits obtained by Deuterium’s optimizations to the SAT-based solver?

RQ4: What is the succinctness of contracts (measured in terms of the number of lines of code
and number of characters) written in Deuterium compared to pure imperative code?

We next present environment setup (Section 4.1), subjects (Section 4.2), and workloads (sections 4.3
and 4.4) before answering the research questions (Section 4.5).

4.1 Environment Setup

We ran all the experiments on an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 16GB of RAM,
running Ubuntu 18.04 LTS. We used Oracle Java 1.8.0_191 and set a timeout to 30 minutes for each
run. We repeat all experiments three times and report average values.

4.2 Subjects

We implemented several methods as contracts for 12 data structures using Deuterium. We started
from data structures that are publicly available and were used in prior research [Pacheco et al.
2007; Sharma et al. 2011b; Visser et al. 2006]. Moreover, we used 3 data structures from the Java
Class Library (JCL). The first column in Table 5 shows the name of each data structure and the
original source: JPF [Visser et al. 2006], JCL [Oracle and/or its affiliates 2020], or TACO [Galeotti
et al. 2010]. Our earlier example from Figure 1 corresponds to BST (JPF). These data structures
have been establish as the standard benchmark suite in this domain.

For each data structure, we implemented three methods: add, remove, find (or their equivalents)
with Deuterium method contracts. Imperative versions of the methods that we implemented were
already available. The methods we decided to implement were frequently used as subjects in prior
work on (automated) software testing, e.g., Kuraj et al. [2015]; Pacheco et al. [2007]; Sharma et al.
[2011a,b]; Visser et al. [2006].

4.3 Randomly Generated Workloads

To obtain the randomly generated workloads we used Randoop, a tool for feedback-directed random
test generation [Pacheco et al. 2007]. Randoop takes a class under test and outputs a number of JUnit
tests where each test is a sequence of method calls defined by the class under test. Randoop starts
by randomly choosing a method to invoke and providing default values for method arguments. In
each iteration of the algorithm, Randoop chooses another method and provides as arguments either
default values or the results of prior method invocations. The length of each method sequence is
determined by a number of factors, including Randoop’s configuration provided by the user.

In our experiments, we restrict Randoop to only use (1) constructors, (2) the toString method,
and (3) methods that have contracts; we use default values for other configuration parameters. We
obtained four random workloads that differ in size by running Randoop four times and providing

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:17

different limit for the number of generated tests: 100, 200, 500 and 1,000. To generate tests we used
existing imperative code on which we run Randoop. We measure the maximum heap size of each
workload, which is the maximum number of objects in the structure created at any point during
the execution of the workload.

4.4 Systematically Generated Workloads

To obtain systematic workloads, we used sequence-based test generation with shape abstrac-
tion [Visser et al. 2006]. In other words, we generate tests by systematically executing all sequences
of method calls up to a given length. We use shape abstraction to avoid sequences that lead to the
same program state. The goal of our experiment was to systematically evaluate the impact of heap
size and search space on various Deuterium configurations.
For these systematic workloads, we only use two methods (add and remove or equivalent) for

each data structure to limit exponential explosion in the number of sequences; this is also consistent
with prior research [Pacheco et al. 2007; Sharma et al. 2011b; Visser et al. 2006]. As a result, the
heap size in each workload correlates with the length of sequences. For each data structure, we
iteratively extend the max sequence length up to 50 (and 35 for FibonacciHeap (JPF) because test
generation time exceeds 12 hours) and as long as there is at least one Deuterium configuration
that does not exceed execution time of 30 minutes for generated sequences.

4.5 Results

Table 5 shows the results of our experiments for various configurations under randomly generated
workloads. The first column shows the name of the data structure, the second column shows the size
of the workload (i.e., number of generated tests), and the third column shows the maximum heap
size of the workload. Columns 4ś11 show the time to execute the workload with 8 configurations.
We highlight the best/shortest time for each workload using bold fonts. All reported numbers for
execution time are in milliseconds.
Figure 11 shows the results for the systematic workloads, one line plot for each data structure.

We focus on comparing Gen+SAT+CP+PI and NoGen+SAT+CP+PI configurations as these two
configurations provide the best view of the improvement over the state-of-the-art. In each plot,
x-axis shows sequence length and y-axis (log scale) shows cumulative (i.e., time for all sequences in
the workload) execution time. For example, TreeMap (JCL) has 16,524 sequences at length 18. Note
that both the time needed to execute one sequence and the number of sequences grow exponentially
as sequence length increases.
Figure 12 shows the results for the systematic workloads, in the same format as the aforemen-

tioned results, but shows the execution time divided by the number of sequences in the workload.
The discontinued lines means the total execution time exceeds the time limit we set (30 minutes).

We can see that for NoGen+SAT+CP+PI, the execution time per sequence grows exponentially
as the size of the sequence increases. In contrast, for a number of subjects, the execution time
per sequence of Gen+SAT+CP+PI grows linearly. The results strengthen our findings that using
generators in contracts greatly reduces execution time and improves scalability.

AnsweringRQ1. Our results in randomly generatedworkloads (Table 5) show that Gen+Search+FGM
always outperforms Gen+SAT+CP+PI by several orders of magnitudes. For all subjects but Fibonacci-
Heap, NoGen+Search+FGM outperforms NoGen+SAT+CP+PI. This indicates that doing in-memory
state exploration to solve declarative specifications can be faster than invoking a SAT solver.

Another observation is that for larger workloads, SAT-based solver scales better with the increase
of the heap size. (We made this observation in our preliminary evaluation not reported in this

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:18 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

Table 5. Number of Tests, Maximum Heap Size and Test Execution Time (in Milliseconds) for Randomly
Generated Workloads.

Gen

+SAT

+CP+PI

Gen

+Search

+FGM

NoGen+SAT NoGen+Search

Class #Tests
Max

Heap - +CP +PI +CP+PI - +FGM

BST

(JPF)

100 2 3,303 647 5,205 3,968 4,511 3,277 711 561
200 4 6,095 623 10,037 7,623 8,484 5,973 887 630
500 5 13,725 702 24,611 18,686 19,445 13,216 28,448 704
1000 5 27,406 961 51,481 38,566 38,817 25,938 29,870 1,035

BinomialHeap

(JPF)

100 2 6,535 541 9,379 7,045 8,847 6,501 545 588
200 2 13,119 617 19,588 14,967 18,194 13,155 651 645
500 4 35,946 698 54,778 42,500 48,291 35,485 1,651 917
1000 4 77,952 906 120,466 92,847 104,192 76,128 58,214 1,893

FibonacciHeap

(JPF)

100 5 28,673 589 34,997 30,625 33,486 30,489 1,156 836
200 6 79,449 727 91,215 82,549 88,903 78,146 939,386 244,972
500 8 257,342 2,421 300,317 269,770 290,658 258,851 timeout timeout
1000 8 584,470 8,170 723,838 647,229 694,799 658,475 timeout timeout

TreeMap

(JPF)

100 3 6,149 526 9,302 7,029 8,678 6,140 856 610
200 3 12,370 611 19,938 14,525 17,660 12,253 1,150 666
500 4 32,126 691 53,918 39,934 46,716 32,161 23,704 990
1000 5 68,372 1,022 119,597 87,747 100,095 68,439 446,545 2,818

LinkedList

(JCL)

100 3 5,063 612 7,138 5,899 6,511 5,212 688 703
200 4 9,928 715 14,571 11,747 12,941 9,835 4,293 962
500 5 25,273 915 38,206 31,178 32,589 25,384 187,966 1,295
1000 5 53,825 1,271 80,366 65,513 67,475 53,240 829,906 4,270

TreeMap

(JCL)

100 3 7,949 610 13,042 10,663 10,367 8,692 1,067 651
200 4 16,829 725 29,604 24,266 22,379 17,930 8,496 821
500 5 44,526 881 80,722 66,051 59,223 44,566 227,391 3,597
1000 5 98,366 1,335 177,956 146,848 129,757 98,190 timeout 8,121

TreeSet

(JCL)

100 2 6,093 612 9,262 6,569 8,590 5,972 645 632
200 4 12,016 649 19,402 13,698 17,448 11,934 2,270 822
500 5 31,725 813 52,170 37,427 46,694 31,167 821,340 2,283
1000 5 66,922 1,095 113,551 79,671 99,072 67,536 804,446 2,677

AvlTree

(TACO)

100 3 19,180 544 21,588 20,156 20,739 19,086 1,070 666
200 4 43,573 597 49,411 45,607 46,541 43,810 5,433 851
500 4 123,624 719 141,855 132,677 134,410 125,838 47,336 1,652
1000 5 278,792 1,029 311,358 297,287 298,140 273,176 148,082 4,055

NodeCaching-
LinkedList
(TACO)

100 3 8,017 670 10,872 8,839 10,266 8,118 732 699
200 4 16,707 722 23,616 19,479 21,866 17,633 903 967
500 5 45,399 895 66,429 55,858 61,122 49,533 1,711 1,701
1000 5 98,905 1,213 146,786 120,769 132,177 107,858 3,488 3,513

LinkedList

(TACO)

100 3 5,518 623 8,050 6,467 7,501 5,646 714 642
200 4 10,665 688 16,717 13,439 14,918 11,594 1,194 713
500 5 27,707 817 45,854 37,427 39,789 31,776 6,586 844
1000 5 59,804 1,112 98,567 81,009 85,813 67,729 16,247 1,171

SinglyLinkedList

(TACO)

100 3 4,020 514 6,212 4,971 5,675 4,340 547 542
200 4 7,558 566 12,580 9,872 10,950 8,237 607 597
500 5 18,424 653 32,367 26,094 26,937 20,542 703 684
1000 5 37,855 852 68,348 55,775 55,501 42,786 983 904

TreeSet

(TACO)

100 2 5,931 653 8,601 6,571 8,159 5,978 665 623
200 4 11,932 705 17,862 13,642 16,068 11,879 3,554 887
500 5 31,408 797 48,009 36,762 42,575 31,021 1,246,943 1,972
1000 5 65,997 1,098 102,833 78,969 91,421 65,542 1,247,772 2,586

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:19

0 5 10 15 20 25 30

100ms

1s

10s

1min

10min
timeout

T
im

e

BST (JPF)

0 5 10 15 20 25 30 35

BinomialHeap (JPF)

0 5 10

FibonacciHeap (JPF)

0 5 10 15

100ms

1s

10s

1min

10min
timeout

T
im

e

TreeMap (JPF)

0 5 10 15 20 25 30 35 40 45

LinkedList (JCL)

0 5 10 15

TreeMap (JCL)

0 5 10 15

100ms

1s

10s

1min

10min
timeout

T
im

e

TreeSet (JCL)

0 5 10 15

AvlTree (TACO)

0 5 10 15 20 25

NodeCachingLinkedList (TACO)

0 5 10 15 20 25 30 35 40 45 50

Sequence Length

100ms

1s

10s

1min

10min
timeout

T
im

e

LinkedList (TACO)

0 5 10 15 20 25 30 35

Sequence Length

SinglyLinkedList (TACO)

0 5 10 15

Sequence Length

TreeSet (TACO)

Gen+SAT+CP+PI NoGen+SAT+CP+PI

Fig. 11. Execution time in systematically generated workloads for two Deuterium configurations.

paper.) Therefore, we used a SAT-based solver to evaluate the effect of using generators (RQ2) in
systematically generated workloads which have much larger heap sizes.

Answering RQ2. Results for both workloads show that using generator can substantially improve
the performance of executing contracts, especially in the execution with larger heap sizes. In Table 5,
Gen+Search+FGM is the best configuration for all but two small workloads on BST (JPF) and TreeSet
(TACO). In Figure 11, Gen+SAT+CP+PI achieved better performance than NoGen+SAT+CP+PI on
all subjects.
Regarding the scalability, based on the results for systematically generated workloads, we can

see that Gen+SAT+CP+PI scales for method sequences that are 5ś20 method calls longer than
NoGen+SAT+CP+PI.

Answering RQ3. We can observe that both optimizations (CP, PI) for SAT-based Deuterium had
positive effect on speeding up the constraint solving. Based on the numbers in Table 5, NoGen+-
SAT+CP+PI saves 31.34% of execution time on average (up to 49.62%) compared to NoGen+SAT,
while NoGen+SAT+CP saves 19.66% (up to 29.84%) and NoGen+SAT+PI saves 11.52% (up to 27.08%).
These differences are quite significant, which clearly illustrates the benefits of our optimizations.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:20 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

0 5 10 15 20 25 30

1ms

10ms

100ms

1s

10s

T
im

e
 P

e
r 

S
e
q
u
e
n
c
e

BST (JPF)

0 5 10 15 20 25 30 35

BinomialHeap (JPF)

0 5 10

FibonacciHeap (JPF)

0 5 10 15

1ms

10ms

100ms

1s

10s

T
im

e
 P

e
r 

S
e
q
u
e
n
c
e

TreeMap (JPF)

0 5 10 15 20 25 30 35 40 45

LinkedList (JCL)

0 5 10 15

TreeMap (JCL)

0 5 10 15

1ms

10ms

100ms

1s

10s

T
im

e
 P

e
r 

S
e
q
u
e
n
c
e

TreeSet (JCL)

0 5 10 15

AvlTree (TACO)

0 5 10 15 20 25

NodeCachingLinkedList (TACO)

0 5 10 15 20 25 30 35 40 45 50

Sequence Length

1ms

10ms

100ms

1s

10s

T
im

e
 P

e
r 

S
e
q
u
e
n
c
e

LinkedList (TACO)

0 5 10 15 20 25 30 35

Sequence Length

SinglyLinkedList (TACO)

0 5 10 15

Sequence Length

TreeSet (TACO)

Gen+SAT+CP+PI NoGen+SAT+CP+PI

Fig. 12. Execution time per sequence in systematically generated workloads.

Answering RQ4. To answer this question, we compute lines of code (LOC) and number of charac-
ters (NOC) for the methods (or contracts) used in our study and code they depend on. We used
NOC in addition to LOC because declarative specifications and imperative code have different
formatting styles.

Table 6 shows our results. On average, contracts in 2H has LOC of 115 and NOC of 3,164; fusion of
generators and 2H has LOC of 161 and NOC of 3,973; while equivalent imperative implementations
has LOC of 284 and NOC of 4,455. 2H shows succinctness over imperative implementations on
many of the subjects (e.g., in TreeMap (JPF): LOC 134 vs. 460, NOC 3,387 vs. 6,668). The imper-
ative implementation of these data structures can be hard and non-trivial, thus the declarative
specifications in 2H can be used as (executable) prototypes at an early stage of development.

5 LIMITATIONS AND FUTURE WORK

An advantage of the search-based solver is that it supports some Java features, e.g., floating point
computation, that are not well supported by SAT-based solvers [Alouneh et al. 2018]. Studying

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:21

Table 6. Comparison of LOC andNOC (Number of Characters) among Pure 2H, Gen+2H (Fusion of Generators
+ 2H), and Imperative Implementation.

Class
2H Gen+2H Imp.

LOC NOC LOC NOC LOC NOC

JP
F

BST 83 1,920 110 2,409 157 2,161

BinomialHeap 152 4,401 194 5,035 325 5,329

FibonacciHeap 152 4,355 212 5,434 268 3,813

TreeMap 134 3,387 193 4,532 460 6,668

JC
L

LinkedList 102 2,730 122 2,952 304 4,572

TreeMap 109 3,291 174 4,695 510 8,178

TreeSet 140 3,578 198 4,725 475 7,484

T
A
C
O

AvlTree 99 2,653 139 3,415 188 3,533

NodeCachingLinkedList 135 4,084 194 4,923 178 3,149

LinkedList 97 2,682 130 3,103 126 2,109

SinglyLinkedList 74 1,832 103 2,250 78 1,130

TreeSet 105 3,059 163 4,206 349 5,345

Avg. 115 3,164 161 3,973 284 4,455

examples that require such features is an interesting direction to explore. This will lead to further
fusions: a user could combine an imperative generator, a declarative specification to be executed
by the search-based solver, and a declarative specification to be executed by the SAT-based solver.

Our results showed that Deuterium with the search-based solver outperforms Deuterium with
the SAT-based solver if the heap sizes are small. Deuterium could automatically choose the most
appropriate solver for each invocation of a method contract based on prior invocations with similar
heap shapes and sizes.

Based on our anecdotal experience and empirical evidence (answers to RQ4 in Section 4), writing a
contract as a combination of generators and specifications is usually easier and less error-prone than
writing a full imperative implementation. Future work could perform a user study to collect more
empirical evidence to support this finding. Specifically, we could design a controlled experiment
where two groups of users are asked to complete the same programming task, where one group
writes contracts in Deuterium and the other group writes imperative code (in Java); the two groups
of users should have similar experience on programming in Java and be given the same tutorials
about the task and Deuterium. Then, we could measure the time, LOC, and NOC to complete the
task for each user, and check the correlation between these measurements for the two groups.
The user interaction with Deuterium could be improved by providing enhanced debugging

experience. For example, if the user-provided generator has a bug, Deuterium currently prints an
error message when constraint solving fails to find a solution. In the future, we plan to localize the
bug and point to specific lines in the generator that are incorrect.

Ideally, we want Deuterium to enable users to obtain both correct code and efficient implementa-

tion. Currently, Deuterium ensures correctness by enabling the execution of contracts; however,
the execution cost might not be acceptable for a production environment (although it should be
fine for non-performance-critical tasks). To improve performance, the future work should develop
an automated synthesis technique that transforms contracts written in DeuteriumÐincluding
generators and specificationsÐto fast imperative implementations. Additionally, the synthesis tech-
nique should produce a certificate that the contract and the output imperative implementation are
consistent. Rayside et al. [2012] did a preliminary exploration in this direction, as they synthesized
imperative iterators for JDK Collections classes from declarative specifications.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:22 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

6 RELATED WORK

We present the most closely related work. We compare our work to two groups: (1) prior work on
integration of declarative and imperative paradigms, and (2) declarative languages for Java.

Integration of declarative and imperative paradigms. Lopez et al. [1993] introduced Kaleido-
scope, a tool for Constraint Imperative Programming, which integrates constraints and object-
oriented programming. JForge Specification Language (JFSL) [Yessenov 2009b] is a language that
combines Alloy-like first-order relational logic with transitive closure and Java. It was developed for
JForge [Yessenov 2009a,b], which is a bounded verifier. The design of 2H is partially inspired by JFSL;
2H uses pure Java syntax to achieve equivalent expressiveness level for declarative specifications.
Our contributions also include combination of generators and specifications.
Squander [Milicevic et al. 2011] enabled the execution of embedded JFSL specifications in Java;

the specifications are written in Java annotations. Deuterium adapted and optimized Squander as
a SAT-based solver for executing specifications written in 2H.
Kuncak et al. [2013] studied executing specifications using synthesis and constraint solving

for Scala. Several differences between their work and our work include: (1) on the language
side, Scala supports functional programming and is more extensible, thus the integration with
declarative specifications is simpler; (2) they compile as many specification fragments as possible
to functional programming code before invoking a constraint solver, and in contrast, we proposed
using generators to limit the search-space; (3) their work is backed by a conventional SMT solver,
while our work is the first to use in-memory search to execute contracts (in addition to using a
SAT-based solver); (4) we introduce a novel benchmark that mimics a more practical scenario.
PBnJ [Samimi et al. 2010] provides an extension to Java to support runtime checking using

declarative specifications, and it also supports replacing the execution of imperative implementation
with the execution of declarative specifications when the former is found to be incorrect. It achieved
so by extending the Java syntax and Java compiler; in contrast, 2H requires no extension to
syntax/compiler to support a fusion of declarative and imperative execution in Java. One can use
Deuterium to re-implement the functionalities provided by PBnJ.
The Alloy modeling language [Jackson 2002] is a declarative language based on first-order

relational logic with transitive closure. Prior work studied the integration of Alloy and Java. Al-
Naffouri [2004] developed MintEra, a framework that transforms the Alloy predicates (written as
comments in Java) to executable Java code using a customized Java parser. Rosner et al. [2014]
developed HyTek that combines declarative predicates in Alloy and imperative predicate methods in
Java to achieve more efficient test generation. TestEra [Marinov and Khurshid 2001] is a framework
for automated specification-based testingwith Alloy specifications usingAlloy analyzer.Deuterium
is the first approach for writing method contracts as a combination of generators and declarative
specifications. Additionally, 2H uses a pure Java syntax.
Meng et al. [2017] developed an extension for CVC4, which enables mapping of a declarative

modeling language (Alloy) to SMT constraints. More recently, Abbassi et al. developed Astra [Ab-
bassi 2018; Abbassi et al. 2019], a library that converts Alloy to SMT-LIB. Future work could enable
Deuterium to utilize SMT solvers.
There is a closely related line of work on unifying imperative generators and declarative speci-

fications for (random) test generation. UDITA [Gligoric et al. 2010] is a Java-like language with
non-deterministic constructs for writing test input generators. SciFe [Kuraj et al. 2015] is a frame-
work for combining enumerators aimed for exhaustively generating instances of complex data
structures. Claessen et al. [2014] proposed an approach to write generators that conform to “al-
most uniformž distribution with respect to the given declarative predicates. Fetscher et al. [2015]
built a solver that effectively generates random well-typed test inputs, given a specification of

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:23

a type-system expressed in a subset of first-order logic with equality and inequality constraints.
Luck [Lampropoulos et al. 2017] is a domain-specific language and framework to simplify writing
and maintenance of generators; the generators are conveniently expressed by decorating predicates
with lightweight annotations to control the distribution of generated values and the amount of
constraint solving that happens before each variable is instantiated. Prior work reduces the problem
of generating random test inputs to constraint solving. But unlike Deuterium, which starts from
an already existing heap, they start from an empty heap and generate many heaps that satisfy the
specification. The goal of generators in Deuterium is to obtain only a single valid instance (which
is an easier task).
PQL [Reichenbach et al. 2012] is a first-order query language embedded in Java for expressing

parallel computations. PQL targets specific domain and does not integrate imperative generators.
Prior work also studied the integration of declarative specifications into other imperative program-

ming languages. Ball and Rajamani [2001] developed SLIC, a specification language for checking
pre- and post-conditions for C. CodeContract [Fähndrich et al. 2012, 2010; Logozzo 2013] is a plugin
for .NET to support writing method specifications in place for runtime checking and visualization.
Barnett et al. [2011, 2005] developed Spec#, an extension of .NET, that enables writing specifica-
tions about methods and data usages. Unlike prior work, Deuterium targets implementation via
specification, although the specifications could be used for runtime checking.
Torlak and Bodik [2013] developed Rosette, a framework for designing and developing solver-

aided languages, i.e., to introduce syntax for declarative specifications into an existing imperative
language. The goal of Deuterium, however, is to integrate declarative pattern into Java without
changing syntax.
Sketch [Solar-Lezama et al. 2006] is a system for program synthesis, i.e., finding a program

that satisfies a specification for all possible heaps. Deuterium finds one post-heap that satisfies a
specification for a given pre-heap. Also, Deuterium brings new language embedded in Java and
combination of generators and specifications for a different task (i.e., executable method contracts).

Declarative languages for Java. JML [Burdy et al. 2005; Chalin et al. 2005] is a specification
language used to formally specify the behavior of Java classes; the specifications are based on
first-order logic with quantifiers. Specifications in JML are written as comments and additional
tools are required to utilize them, e.g., OpenJML [Cok 2011]. Chalin et al. [2010] discussed and
envisioned various applications of JML. In particular, they prototyped Java Contract for writing
JML-like specifications as code; however, their API was rather simple as opposed to 2H which is
based on relational logic.

7 CONCLUSION

We presented Deuterium, a framework for implementing Java methods as executable contracts.
We introduced a novel, type-safe way to write method contracts entirely in Java as a combination
of imperative generators and declarative specifications. Deuterium also introduced an in-memory
state exploration algorithm designed to take advantage of user-specified imperative generators to
prune the search space and reduce incurred overhead. We evaluated this novel approach on a suite
of standard data structures. Additionally, we used random and sequence-based test generation to
create a new benchmark designed to mimic more realistic execution scenarios. Our results showed
that in-memory state exploration is an ideal choice if heap sizes are small while the generators
substantially improve performance of executable contracts in general. We believe that Deuterium
enables the use of method contracts for non-performance critical tasks, like prototyping, differential
testing, test input generation, and mocking.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



217:24 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

0 5 10 15 20 25 30

1

10

100

1k

10k

#
S
e
q
u
e
n
c
e

BST (JPF)

0 5 10 15 20 25 30 35

BinomialHeap (JPF)

0 5 10

FibonacciHeap (JPF)

0 5 10 15

1

10

100

1k

10k

#
S
e
q
u
e
n
c
e

TreeMap (JPF)

0 5 10 15 20 25 30 35 40 45

LinkedList (JCL)

0 5 10 15

TreeMap (JCL)

0 5 10 15

1

10

100

1k

10k

#
S
e
q
u
e
n
c
e

TreeSet (JCL)

0 5 10 15

AvlTree (TACO)

0 5 10 15 20 25

NodeCachingLinkedList (TACO)

0 5 10 15 20 25 30 35 40 45 50

Sequence Length

1

10

100

1k

10k

#
S
e
q
u
e
n
c
e

LinkedList (TACO)

0 5 10 15 20 25 30 35

Sequence Length

SinglyLinkedList (TACO)

0 5 10 15

Sequence Length

TreeSet (TACO)

Fig. 13. Number of sequences in systematically generated workloads.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. We also thank Ahmet Celik, Karl Palmskog,
Nadia Polikarpova, and Chenguang Zhu for their feedback on this work. This work was partially
supported by the US National Science Foundation under Grant No. 1652517.

A APPENDIX

Figure 13 shows the number of systematically generated sequences for the data structures at each
size (up to the sizes used in our evaluation).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.



Unifying Execution of Imperative Generators and Declarative Specifications 217:25

REFERENCES

Ali Abbassi. 2018. Astra: Evaluating Translations from Alloy to SMT-LIB. http://hdl.handle.net/10012/14286

Ali Abbassi, Nancy A. Day, and Derek Rayside. 2019. Astra Version 1.0: Evaluating Translations from Alloy to SMT-LIB.

ArXiv abs/1906.05881 (2019).

Basel Y. Al-Naffouri. 2004. MintEra: A Testing Environment for Java Programs. Thesis (M. Eng.). Massachusetts Institute of

Technology.

Sahel Alouneh, Sa’ed Abed, Mohammad H. Al Shayeji, and Raed Mesleh. 2018. A Comprehensive Study and Analysis on

SAT-Solvers: Advances, Usages and Achievements. Artificial Intelligence Review (2018), 1ś27.

Thomas Ball and Sriram K Rajamani. 2001. SLIC: A Specification Language for Interface Checking (of C). Technical Report.

Technical Report MSR-TR-2001-21, Microsoft Research.

Mike Barnett, Manuel Fähndrich, K Rustan M Leino, Peter Müller, Wolfram Schulte, and Herman Venter. 2011. Specification

and Verification: The Spec# Experience. Commun. ACM 54, 6 (2011), 81ś91.

Mike Barnett, K. Rustan M. Leino, andWolfram Schulte. 2005. The Spec# Programming System: An Overview. In Construction

and Analysis of Safe, Secure, and Interoperable Smart Devices. 49ś69.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat: Automated Testing Based on Java Predicates.

In International Symposium on Software Testing and Analysis. 123ś133.

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A Code Manipulation Tool to Implement Adaptable

Systems. In Adaptable and Extensible Component Systems.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and

Erik Poll. 2005. An Overview of JML Tools and Applications. International Journal on Software Tools for Technology

Transfer 7, 3 (2005), 212ś232.

Patrice Chalin, Joseph R Kiniry, Gary T Leavens, and Erik Poll. 2005. Beyond Assertions: Advanced Specification and

Verification with JML and ESC/Java2. In International Symposium on Formal Methods for Components and Objects. 342ś363.

Patrice Chalin, Robby, Perry R. James, Jooyong Lee, and George Karabotsos. 2010. Towards an Industrial Grade IVE for Java

and Next Generation Research Platform for JML. International Journal on Software Tools for Technology Transfer 12, 6

(2010), 429ś446.

Koen Claessen, Jonas Duregård, and Michal H Palka. 2014. Generating Constrained Random Data with Uniform Distribution.

In International Symposium on Functional and Logic Programming, Vol. 8475. 18ś34.

David R. Cok. 2011. OpenJML: JML for Java 7 by Extending OpenJDK. In NASA Formal Methods Symposium. 472ś479.

Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In Symposium on Theory of Computing. 151ś158.

Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated Testing of Refactoring Engines. In Symposium

on the Foundations of Software Engineering. 185ś194.

Manuel Fähndrich, Michael Barnett, Daan Leijen, and Francesco Logozzo. 2012. Integrating a Set of Contract Checking

Tools into Visual Studio. In Workshop on Developing Tools as Plug-ins. 43ś48.

Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. 2010. Embedded Contract Languages. In Symposium on Applied

Computing. 2103ś2110.

Burke Fetscher, Koen Claessen, Michał Pałka, John Hughes, and Robert Bruce Findler. 2015. Making random judgments:

Automatically generating well-typed terms from the definition of a type-system. In European Symposium on Programming

Languages and Systems. 383ś405.

Norbert E. Fuchs. 1992. Specifications Are (Preferably) Executable. Software Engineering Journal 7, 5 (1992), 323ś334.

Juan Pablo Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and Marcelo Fabian Frias. 2010. Analysis of Invariants

for Efficient Bounded Verification. In International Symposium on Software Testing and Analysis. 25ś36.

Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and Darko Marinov. 2010. Test Generation

through Programming in UDITA. In International Conference on Software Engineering. 225ś234.

C.A.R. Hoare. 1987. An Overview of Some Formal Methods for Program Design. Computer 9 (1987), 85ś91.

Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM Trans. Softw. Eng. Methodol. 11, 2 (2002),

256ś290.

Eugene Kuleshov. 2007. Using the ASM Framework to Implement Common Java Bytecode Transformation Patterns. In

Aspect-Oriented Software Development.

Viktor Kuncak, Etienne Kneuss, and Philippe Suter. 2013. Executing Specifications Using Synthesis and Constraint Solving.

In International Conference on Runtime Verification. 1ś20.

Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. 2015. Programming with Enumerable Sets of Structures. In International

Conference on Object-Oriented Programming, Systems, Languages, and Applications. 37ś56.

Leonidas Lampropoulos, Diane Gallois-Wong, Cătălin Hriţcu, John Hughes, Benjamin C Pierce, and Li-yao Xia. 2017.

Beginner’s luck: a language for property-based generators. In Symposium on Principles of Programming Languages.

114ś129.

Leonid Anatolevich Levin. 1973. Universal Sequential Search Problems. Problemy Peredachi Informatsii 9, 3 (1973), 115ś116.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.

http://hdl.handle.net/10012/14286


217:26 Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar Milicevic, and Milos Gligoric

Barbara Liskov and John Guttag. 2000. Program Development in Java: Abstraction, Specification, and Object-Oriented Design.

Francesco Logozzo. 2013. Practical Specification and Verification with Code Contracts. In SIGAda Annual Conference on

High Integrity Language Technology. 7ś8.

Gus Lopez, Bjùrn N. Freeman-Benson, and Alan Borning. 1993. Kaleidoscope: A Constraint Imperative Programming

Language. In Constraint Programming, Proceedings of the NATO Advanced Study Institute on Constraint Programming.

313ś329.

Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A Novel Framework for Automated Testing of Java Programs. In

International Conference on Automated Software Engineering. 22ś31.

BaoluoMeng, AndrewReynolds, Cesare Tinelli, and Clark Barrett. 2017. Relational Constraint Solving in SMT. In International

Conference on Automated Deduction. 148ś165.

Aleksandar Milicevic, Ido Efrati, and Daniel Jackson. 2014. 𝛼Rby-An Embedding of Alloy in Ruby. In International Conference

on Abstract State Machines, Alloy, B, TLA, VDM, and Z. 56ś71.

Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson. 2011. Unifying Execution of Imperative and

Declarative Code. In International Conference on Software Engineering. 511ś520.

Joseph P Near and Daniel Jackson. 2010. An Imperative Extension to Alloy. In International Conference on Abstract State

Machines, Alloy, B and Z. 118ś131.

Oracle and/or its affiliates. 2020. Java™ Platform, Standard Edition 8 API Specification. https://docs.oracle.com/javase/8/

docs/api/.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-directed Random Test Generation.

In International Conference on Software Engineering. 75ś84.

Nadia Polikarpova, Carlo A Furia, and Scott West. 2013. To Run What No One Has Run Before: Executing an Intermediate

Verification Language. In International Conference on Runtime Verification. 251ś268.

Derek Rayside, Aleksandar Milicevic, Kuat Yessenov, Greg Dennis, and Daniel Jackson. 2009. Agile Specifications. In

International Conference on Object-Oriented Programming, Systems, Languages, and Applications. 999ś1006.

Derek Rayside, Vajihollah Montaghami, Francesca Leung, Albert Yuen, Kevin Xu, and Daniel Jackson. 2012. Synthesizing

Iterators from Abstraction Functions. In International Conference on Generative Programming and Component Engineering.

31ś40.

Christoph Reichenbach, Yannis Smaragdakis, and Neil Immerman. 2012. PQL: A Purely-Declarative Java Extension for

Parallel Programming. In European Conference on Object-Oriented Programming. 53ś78.

Nicolás Rosner, Valeria S. Bengolea, Pablo Ponzio, Shadi Abdul Khalek, Nazareno Aguirre, Marcelo F. Frias, and Sarfraz

Khurshid. 2014. Bounded Exhaustive Test Input Generation from Hybrid Invariants. In International Conference on

Object-Oriented Programming, Systems, Languages, and Applications. 655ś674.

Hesam Samimi, Ei Darli Aung, and Todd Millstein. 2010. Falling Back on Executable Specifications. In European Conference

on Object-Oriented Programming. 552ś576.

Hesam Samimi, Rebecca Hicks, Ari Fogel, and Todd Millstein. 2013. Declarative mocking. In International Symposium on

Software Testing and Analysis. 246ś256.

Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and Darko Marinov. 2011a. Predicate Coverage. http:

//mir.cs.illinois.edu/coverage/.

Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and Darko Marinov. 2011b. Testing Container Classes:

Random or Systematic?. In Fundamental Approaches to Software Engineering. 262ś277.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial

Sketching for Finite Programs. In International Conference on Architectural Support for Programming Languages and

Operating Systems. 404ś415.

Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages with Rosette. In Symposium on New Ideas, New

Paradigms, and Reflections on Programming & Software. 135ś152.

Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In Tools and Algorithms for the Construction

and Analysis of Systems. 632ś647.

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: Reducing, Reusing and Recycling Constraints in

Program Analysis. In International Symposium on the Foundations of Software Engineering. 58.

Willem Visser, Corina S Pǎsǎreanu, and Radek Pelánek. 2006. Test Input Generation for Java Containers using State Matching.

In International Symposium on Software Testing and Analysis. 37ś48.

Wikipedia. 2020. Eight Queens Puzzle. https://en.wikipedia.org/wiki/Eight_queens_puzzle.

Kuat T. Yessenov. 2009a. JForge: Eclipse Plug-in for Bounded Code Verification. https://groups.csail.mit.edu/sdg/forge/plugin.

html.

Kuat T. Yessenov. 2009b. A Lightweight Specification Language for Bounded Program Verification. Ph.D. Dissertation.

Massachusetts Institute of Technology.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 217. Publication date: November 2020.

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/
http://mir.cs.illinois.edu/coverage/
http://mir.cs.illinois.edu/coverage/
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://groups.csail.mit.edu/sdg/forge/plugin.html
https://groups.csail.mit.edu/sdg/forge/plugin.html

	Abstract
	1 Introduction
	2 Examples
	2.1 Binary Search Tree: Imperative Generators + Declarative Specifications
	2.2 Binary Search Tree: Pure Declarative Specifications
	2.3 N-Queens Problem Solver

	3 Framework
	3.1 Overview
	3.2 2H Language
	3.3 Fusing Generators and Specifications
	3.4 The SAT-Based Solver
	3.5 The Search-Based Solver

	4 Evaluation
	4.1 Environment Setup
	4.2 Subjects
	4.3 Randomly Generated Workloads
	4.4 Systematically Generated Workloads
	4.5 Results

	5 Limitations and Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	A Appendix
	References

