
Verifying Finality for Blockchain Systems
Karl Palmskog Milos Gligoric
University of Texas at Austin, USA

palmskog@utexas.edu,gligoric@utexas.edu

Lucas Peña Grigore Roşu
University of Illinois at Urbana-Champaign, USA

lpena7@illinois.edu,grosu@illinois.edu

1 Introduction
Blockchain systems such as Bitcoin [12] and Ethereum [14]
are increasingly used as financial transaction mechanisms
(cryptocurrencies). A desirable property of a transaction
mechanism is durability—after a user has submitted a transac-
tion and received initial confirmation, the transaction should
not be rolled back. However, in a blockchain system, there
may be several competing chains of blocks that agree on
the transaction history from the initial genesis block only up
to some point. These forks may arise as a result of network
delays or adversarial behavior by some nodes, and can lead
to transactions disappearing as soon as one of the forks is
preferred by most nodes. To address the problem of long-
ranging blockchain revisions, Buterin and Griffith proposed
Casper [9], a finality system that overlays a proof-of-work
blockchain such as Ethereum. When a large enough fraction
of participants in the system are honest, Casper defends both
against active attacks and catastrophic crashes.
In ongoing work, we are formally verifying Casper in

Coq, both at the abstract protocol level and at the level
of a distributed blockchain system. In the terminology of
Appel et al. [7], we aim to make the Casper specification
two-sided: implementable in Ethereum nodes and provably
beneficial to Ethereum users. A further goal is to lay the foun-
dation for making the Casper specification live, i.e., enable
verifying Ethereum node implementations. Below, we give
some background on Casper and previous verification efforts,
and then describe our modeling and verification approach.

2 Background
We build directly on two previous modeling and verification
efforts: verified abstract models of various versions of Casper
in Isabelle/HOL by Hirai [11], and a model in Coq of a dis-
tributed blockchain system called Toychain by Pîrlea and
Sergey [13]. We give a brief overview of the Casper finality
system and each of these two pillars.

Casper finality. The global state in a blockchain system can
be viewed as consisting of a block tree, with the genesis block
at the root. New blocks with transactions are continually be-
ing added to the tree through a proposal mechanism such as
proof-of-work [12]. Intuitively, Casper works by engaging a
group of validators who then attest to, by broadcasted votes,
that certain blocks in the tree belong to a designated canoni-
cal blockchain. When a certain block has been attested to by

CoqPL’19, January 19, 2019, Lisbon, Portugal
2019.

enough validators, it is deemed to be finalized. To participate,
validators are forced to demonstrate that they have a stake
in the blockchain system by making a cryptocurrency de-
posit. The deposit may be slashed if the validator is verifiably
reported by other validators to be behaving adversarially;
the reporting validators are then rewarded.
For verification, we focus on two properties of Casper

proved informally [9]: accountable safety and plausible live-
ness. Accountable safety states that conflicting blocks in
different block tree forks cannot both be finalized if more
than 2

3 of validators by deposit behave honestly. Plausible
liveness states that regardless of what has happened before,
it is always possible to continue to finalize blocks when more
than 2

3 of validators by deposit follow the protocol.

Casper formalizations. Hirai formalized and verified sev-
eral variants of Casper in Isabelle/HOL [11]. These formal-
izations are highly abstract, in the sense that they elide most
details on the structure of hashes, blocks, and validators. For
example, the requirements on the fractions of validators is
captured, via Isabelle’s locale mechanism [8], as a constraint
on membership in abstract sets:∧

q1 q2 . ∃q3 .∀v .v ∈2 q3 → v ∈1 q1 ∧v ∈1 q2

Here,
∧

is all-quantification, and v ∈i q means that the
validator v belongs to a set q drawn from some validator
powerset (quorum) identified by i . While accountable safety
is verified for the most recent Casper, plausible liveness is
only proven for an earlier Casper version with different inter-
validator messages.

Toychain. Toychain is a formalization of blockchain sys-
tems in Coq using the MathComp library [4]. It defines
blocks, forks, and distributed node state, but abstracts from
specific block proposal mechanisms. Toychain describes the
behavior of a blockchain system as a relation between global
states, and establishes that absent adversarial interference, a
canonical chain becomes known to all nodes in the steady
state. For example, the global state is a Coq record

Record World := mkW { localState : StateMap;

inFlightMsgs : seq Packet; consumedMsgs : seq Packet; }.

where localState maps node names to their current block
tree and other local data. We have extended and revised Toy-
chain in collaboration with its authors to support capturing
full realistic blockchain system specifications such as that
for Bitcoin [2]. Our distributed system model for Casper
verification in Coq is derived from this version of Toychain.

1



CoqPL’19, January 19, 2019, Lisbon, Portugal Karl Palmskog, Milos Gligoric, Lucas Peña, and Grigore Roşu

3 Modeling and Verification Approach
We decided to translate Hirai’s Casper definitions and the-
orems [11] from Isabelle/HOL to Coq, and connect the re-
sulting Casper definitions with the Toychain definitions. At
the same time, we are extending the Toychain distributed
system definitions to capture the behavior of nodes as found
in the Casper-based beacon chain for Ethereum [1].

From Isabelle/HOL to Coq. We initially focused on the ac-
countable safety property. Since the development for safety
by Hirai mostly uses first-order reasoning, we were able to
successfully leverage the CoqHammer extension [3, 10] to
perform proofs in Coq that closely followed Isabelle/HOL
proofs. At the same time, we reformulated Isabelle locale
variables to Coq section variables using MathComp concepts,
with validators as a finite type V:
Variables quorum_1 quorum_2 : {set {set V}}.

Hypothesis qs : ∀ q1 q2, q1 ∈ quorum_1 → q2 ∈ quorum_1 →

∃ q3, q3 ∈ quorum_2 ∧ q3 \subset q1 ∧ q3 \subset q2.

Defining a global state s as the votes cast by validators on
block hashes, this hypothesis (along with suitable assump-
tions on the block parent hash relation) allowed us to prove
the following property for arbitrary states:
fork s → ∃ q, q ∈ quorum_2 ∧ ∀ v, v ∈ q → slashed s v

Intuitively, this property states that if a fork arises from
validator attestations, some set of validators in quorum_2 have
misbehaved and will have their deposits slashed. Abstractly,
this corresponds to the informal notion of accountable safety.

Bridging the gap to Toychain. Under cursory inspection,
the definitions and proven properties in the abstract models
of Casper are quite far from those in the Casper paper [9].
Our goal is to instantiate the properties in the more concrete
setting of Toychain and bring them closer to the pen-and-
paper versions. Assuming deposits are given by a function
d : V → nat, we can instantiate the hypothesis qs from above
by reasoning on powersets of validators that have combined
deposits equal to or above some amount n:
[set x in powerset [set: V] | \sum_(v in x) (d v) >= n]

For example, quorum_1 can be defined along these lines with
((2 * \sum_(v : V) (d v)) %/ 3).+1 for n, and quorum_2 can be
defined with ((\sum_(v : V) (d v)) %/ 3).+1 for n, consistent
with the informal definitions.

Working from the other end of the abstraction spectrum,
we define functions and datatypes in Coq following those
in the beacon chain implementation [1], to be used when
defining Toychain node state and node-local behavior. For
example, following Toychain, a block can be abstracted to
a Coq record type containing, most notably, a hash of the
previous block and a collection of attestations by validators:
Record Block := mkB { parent_hash : Hash;

attestations : seq Attestation;

(* ... omitted fields ... *) }.

Using notions from the FCSL PCM library [5], we then define
block trees, which are part of the state of each distributed
node, as finite maps from hashes to blocks:
Definition Blocktree := union_map Hash Block.

This allows us to instantiate a suitably concrete parent rela-
tion over hashes:
Definition hash_parent (bt : Blocktree) : rel Hash :=

[rel x y | (x ∈ dom bt) && if find y bt is Some b

then parent_hash b == x else false].

Ongoing refinements include aligning the Toychain con-
cept of a fork, which is in terms of block sequence prefixing,
with the more abstract Casper notion of a fork in terms of
finalized blocks over the closure of the parent hash relation.

Ultimately, we aim to transfer accountable safety and plau-
sible liveness from Hirai’s abstract models to hold for steps
over the Toychain global state according to a step relation
and node state definition matching those in the Ethereum
reference beacon chain node implementation [1]. That is, we
will express and prove both properties along the lines of the
clique consensus property in Toychain [13], i.e., similarly to
Theorem accountable_safety_inv : ∀ (w w' : World),

accountable_safety w → step w w' → accountable_safety w'.

We then plan to use the step relation as a basis for a veri-
fied node implementation. We also want to capture sharded
systems, which consist of many separate blockchains for
reasons of scalability [6], and to keep up with the Casper
protocol design, which is a moving target.

References
[1] 2018. Beacon Chain. https://github.com/ethereum/beacon_chain/
[2] 2018. Bitoychain. https://github.com/palmskog/bitoychain
[3] 2018. CoqHammer. https://github.com/lukaszcz/coqhammer
[4] 2018. Mathematical Components Project. https://math-comp.github.

io/math-comp/
[5] 2018. PCM library. https://github.com/imdea-software/fcsl-pcm
[6] 2018. Sharding FAQs. https://github.com/ethereum/wiki/wiki/

Sharding-FAQs
[7] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.

Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017.
Position paper: the science of deep specification. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 375, 2104 (2017).

[8] Clemens Ballarin. 2014. Locales: A Module System for Mathematical
Theories. Journal of Automated Reasoning 52, 2 (01 Feb 2014), 123–153.

[9] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality
Gadget. CoRR abs/1710.09437 (2017).

[10] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automa-
tion for Dependent Type Theory. Journal of Automated Reasoning 61,
1 (2018), 423–453.

[11] Yoichi Hirai. 2018. A repository for PoS related formal methods. https:
//github.com/palmskog/pos

[12] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-
tem. http://www.bitcoin.org/bitcoin.pdf

[13] George Pîrlea and Ilya Sergey. 2018. Mechanising blockchain consen-
sus. In Certified Programs and Proofs. 78–90.

[14] Gavin Wood. 2014. Ethereum: A secure decentralised generalised
transaction ledger. (2014). http://gavwood.com/paper.pdf

2

https://github.com/ethereum/beacon_chain/
https://github.com/palmskog/bitoychain
https://github.com/lukaszcz/coqhammer
https://math-comp.github.io/math-comp/
https://math-comp.github.io/math-comp/
https://github.com/imdea-software/fcsl-pcm
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/palmskog/pos
https://github.com/palmskog/pos
http://www.bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf

	1 Introduction
	2 Background
	3 Modeling and Verification Approach
	References

