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Abstract

Natural language comments convey key aspects of source
code such as implementation, usage, and pre- and post-
conditions. Failure to update comments accordingly when the
corresponding code is modified introduces inconsistencies,
which is known to lead to confusion and software bugs. In
this paper, we aim to detect whether a comment becomes in-
consistent as a result of changes to the corresponding body of
code, in order to catch potential inconsistencies just-in-time,
i.e., before they are committed to a code base. To achieve this,
we develop a deep-learning approach that learns to correlate a
comment with code changes. By evaluating on a large corpus
of comment/code pairs spanning various comment types, we
show that our model outperforms multiple baselines by sig-
nificant margins. For extrinsic evaluation, we show the use-
fulness of our approach by combining it with a comment up-
date model to build a more comprehensive automatic com-
ment maintenance system which can both detect and resolve
inconsistent comments based on code changes.

1 Introduction
Comments serve as a critical communication medium for
developers, facilitating program comprehension and code
maintenance tasks (Buse and Weimer 2010; de Souza, An-
quetil, and de Oliveira 2005). Code is highly-dynamic in na-
ture, with developers constantly making changes to address
bugs and feature requests. Many code changes require recip-
rocal updates to the accompanying comments to keep them
in sync; however, this is not always done in practice (Wen
et al. 2019; Fluri et al. 2009; Ratol and Robillard 2017; Jiang
and Hassan 2006; Zhou et al. 2017; Tan et al. 2007). Out-
dated comments which inaccurately portray the code they
accompany adversely affect the software development cycle
by causing confusion (Wen et al. 2019; Jiang and Hassan
2006; Tan et al. 2007; Zhou et al. 2017) and misguiding de-
velopers, hence making code vulnerable to bugs (Jiang and
Hassan 2006; Tan et al. 2007; Ibrahim et al. 2012). There-
fore, it is desirable to have systems that can automatically
detect such inconsistencies and alert developers.

Previous work has explored heuristic-based approaches
for automatically detecting specific types of inconsisten-
cies (e.g., identifier naming (Ratol and Robillard 2017), pa-
rameter constraints (Zhou et al. 2017), null values and
exceptions (Tan et al. 2012), locking (Tan et al. 2007),

(a) Inconsistent

(b) Consistent

Figure 1: In the example from the Apache Ignite project
shown in Figure 1(a), the existing comment becomes incon-
sistent upon changes to the corresponding method, and in
the example from the Alluxio project shown in Figure 1(b),
the existing comment remains consistent after code changes.

interrupts (Tan, Zhou, and Padioleau 2011)). Some have
also addressed the notion of coherence between comments
and code as a text similarity problem with traditional ma-
chine learning models that leverage bag-of-words tech-
niques (Corazza, Maggio, and Scanniello 2018; Cimasa
et al. 2019). In contrast, we design an approach that gen-
eralizes across types of inconsistencies and captures deeper
comment/code relationships. Furthermore, prior research
has predominantly focused on detecting inconsistencies that
already reside in a software project, within the code repos-
itory. We refer to this as post hoc inconsistency detection
since it occurs potentially many commits after the inconsis-
tency has been introduced.

Ideally, these inconsistencies should be detected before
they ever enter the repository (e.g., during code review)
since they pose a threat to the development cycle and reli-
ability of the software until they are found. Because incon-
sistent comments generally arise as a consequence of de-
velopers failing to update comments immediately following
code changes (Wen et al. 2019), we aim to detect whether a
comment becomes inconsistent as a result of changes to the
accompanying code, before these changes are merged into a
code base. We refer to this as just-in-time inconsistency de-
tection, as it allows catching potential inconsistencies right
before they can materialize.
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Detecting inconsistencies immediately following code
changes allows us to utilize information from the version
of the code before the changes, for which the comment is
consistent. By considering how the changes affect the rela-
tionship the comment holds with the code, we can determine
whether the comment remains consistent after the changes.
For instance, in Figure 1(a), the comment describes the re-
turn type of nodeIds() as an array. When the method is
modified to return a Set instead of an array, the comment no
longer describes the correct return type, making it inconsis-
tent. Such analysis is not possible in post hoc inconsistency
detection since the exact code changes that triggered incon-
sistency cannot be easily pinpointed, making it difficult to
align the comment with relevant parts of the code.

Moreover, due to challenges in crafting data extraction
rules (Tan et al. 2007; Tan, Zhou, and Padioleau 2011) and
annotating substantial amounts of data (Corazza, Maggio,
and Scanniello 2018), prior post hoc work relies on a lim-
ited set of examples and projects. In contrast, we build a
large corpus for just-in-time inconsistency detection by min-
ing commit histories of software projects for code changes
with and without corresponding comment updates.

Few approaches exploit code changes for inconsistency
detection and these rely on task-specific rules (Sadu 2019),
hand-engineered surface features (Liu et al. 2018; Malik
et al. 2008), and bag-of-words techniques (Liu et al. 2018).
Instead, we learn salient characteristics of these inputs
through a deep-learning framework that encodes their syn-
tactic structures. Namely, we use recurrent neural networks
(RNNs) and gated graph neural networks (GGNNs) (Li et al.
2016) to learn contextualized representations of the com-
ment and code changes and multi-head attention (Vaswani
et al. 2017) to relate these representations in order to discern
how the code changes affect the comment. We also study
how manual features can complement our neural approach.

Furthermore, on its own, an inconsistency detection sys-
tem can only flag comments that developers failed to update.
Actually amending them to reflect code changes requires
significant developer effort. Approaches for automatically
updating comments based on code changes have been re-
cently proposed (Panthaplackel et al. 2020b; Liu et al. 2020).
However, they do not handle cases in which an update is not
needed, such as in Figure 1(b). While the type of the key
argument is modified, its purpose is unchanged (i.e., it still
represents the key to be checked in PROPERTIES). Based on
our user study (Panthaplackel et al. 2020b), such cases de-
teriorated the overall quality of the system. As a form of
extrinsic evaluation, we evaluate the utility of our approach
by integrating it with this comment update model, to build a
more comprehensive automatic comment maintenance sys-
tem that detects and resolves inconsistencies.

To summarize, our main contributions are as follows:
(1) We develop a deep learning approach for just-in-time
inconsistency detection that correlates a comment with
changes in the corresponding body of code and which out-
performs the post hoc setting as well as several baselines.
(2) For training and evaluation, we construct a large corpus
of comments paired with code changes in the corresponding
methods, encompassing multiple types of method comments

and consisting of 40,688 examples that are extracted from
1,518 open-source Java projects.1 (3) We demonstrate the
value of inconsistency detection in a comprehensive auto-
matic comment maintenance system, and we show how our
approach can support such a system.

2 Task
Our task is to determine whether a comment is inconsistent,
or semantically out of sync with the corresponding method.
Most inconsistencies result from developers making code
changes without properly updating the accompanying com-
ments. Suppose Mold from the consistent comment/method
pair (C, Mold) is modified to M . If C is not in sync with M
and is not updated, it will become inconsistent once M is
committed. We frame this problem in two distinct settings,
with the task being constant across both: determine whether
C is inconsistent with M .

• Post hoc: Here, only the existing version of the com-
ment/method pair is available; the code changes that trig-
gered the inconsistency are unknown.

• Just-in-time: Here, the goal is to catch inconsistencies
before they are committed. Unlike the post hoc setting,
Mold is available, allowing us to analyze the changes be-
tween Mold and M .

In line with most prior work in inconsistency detec-
tion (Corazza, Maggio, and Scanniello 2018; Tan et al. 2007,
2012; Khamis, Witte, and Rilling 2010), we focus on iden-
tifying inconsistencies in comments comprising API docu-
mentation for Java methods. API documentation consists of
a main description and a set of tag comments (Oracle 2020).
While some have considered treating the full documenta-
tion as a single comment (Corazza, Maggio, and Scanniello
2018), we choose to perform inconsistency detection at a
more fine-grained level, analyzing individual comment types
within this documentation. Furthermore, in contrast to pre-
vious studies tailored to a specific tag (Zhou et al. 2017; Tan
et al. 2012) or specific keywords and templates (Tan et al.
2007; Tan, Zhou, and Padioleau 2011), we simultaneously
consider multiple comment types with diverse characteris-
tics. Namely, we address inconsistencies in the @return
tag comment, which describes a method’s return type, and
the @param tag comment, which describes an argument of
the method. Additionally, we examine inconsistencies in the
less-structured summary comment, derived from the first
sentence of the main description.

3 Architecture
We aim to determine whether C is inconsistent by under-
standing its semantics and how it relates to M (or changes
between Mold and M ). We show an overview of our ap-
proach in Figure 2. First, the comment encoder, a Bi-
GRU (Cho et al. 2014), encodes the sequence of tokens in
C (Figure 2 (1)). When learning a representation for a given

1Data and implementation are available at https://
github.com/panthap2/deep-jit-inconsistency-
detection.
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Figure 2: High-level architecture of our approach.

Figure 3: Sequence-based code edit representation (Medit)
corresponding to Figure 1(b), with removed tokens in red
and added tokens in green.

token, the forward and backward BiGRU passes, in princi-
ple, provide context of other tokens in C. However, this in-
formation can get diluted, especially when there are long-
range dependencies, and the relevant context can also vary
across tokens. To address this, we update these representa-
tions from the comment encoder with more context about
how they relate to the other tokens through multi-head self-
attention (Vaswani et al. 2017) (Figure 2 (2)). Next, we learn
code representations with a code encoder (Figure 2 (3)),
which can be a sequence encoder (cf. §3.1) or an abstract
syntax tree (AST) encoder (cf. §3.2).

Since the essence of the task comes down to whether
C accurately reflects M , we must capture the relationship
between C and M (or changes between Mold and M ).
Prior work does this by computing comment/code similar-
ity through lexical overlap rules (Ratol and Robillard 2017;
Sadu 2019), which do not work well when different terms
have similar meanings, and cosine similarity between vector
representations, which have been found to perform poorly
on their own (Liu et al. 2018; Cimasa et al. 2019). Fur-
thermore, this notion of similarity is only appropriate for
the summary comment which provides an overview of the
corresponding method as a whole. More specialized com-
ment types like @return and @param describe only spe-
cific parts of the method. Therefore, their representations
may not be very similar to the representation of the full
method. In contrast, we learn the relationship between com-
ments and code by computing multi-head attention between
each hidden state of the comment encoder and the hidden
states of the code encoder (Figure 2 (4)).

We combine the context vectors resulting from both atten-
tion modules to form enhanced representations of the tokens
in C, which carry context from other parts of C as well as
the code. These are then passed through another BiGRU en-
coder (Figure 2 (5)). We take the final state of this encoder
to be the vector representation of the full comment, and we
feed it through fully-connected and softmax layers (Figure 2
(6)). This leads to the final prediction (Figure 2 (7)).

Figure 4: AST-based code edit representation (Medit) cor-
responding to Figure 1(b), with removed nodes in red and
added nodes in green.

3.1 Sequence Code Encoder

In the just-in-time setting, we represent the changes between
Mold and M with an edit action sequence, Medit. We have
previously shown that explicitly defining edits in such a way
outperforms having the model implicitly learn them (Pan-
thaplackel et al. 2020b). Each action consists of an action
type (Insert, Delete, Keep, ReplaceOld, ReplaceNew)
that applies to a span of tokens, as shown in Figure 3. We
encode Medit with a BiGRU. Because Mold is unavailable
in the post hoc setting, we cannot construct an edit action
sequence. So, we encode the sequence of tokens in M .

3.2 AST Code Encoder

To better exploit the syntactic structure of code, we leverage
its abstract syntax tree (AST). Following prior work in other
tasks (Fernandes, Allamanis, and Brockschmidt 2019; Yin
et al. 2019), we encode ASTs and AST edits using gated
graph neural networks (GGNNs) (Li et al. 2016). For the
post hoc setting, we encode T , an AST-based representa-
tion corresponding to M . In the just-in-time setting, we in-
stead encode Tedit, an AST-based edit representation. We
use GumTree (Falleri et al. 2014), to compute AST node
edits between Told (corresponding to Mold) and T , identify-
ing inserted, deleted, kept, replaced, and moved nodes. We
merge the two, forming a unified representation, by consol-
idating identical nodes, as shown in Figure 4.

GGNN encoders for T and Tedit use parent (public →
MethodDeclaration) and child (MethodDeclaration→
public) edges. Like prior work (Fernandes, Allamanis, and
Brockschmidt 2019), we add “subtoken nodes” for identi-
fier leaf nodes to better handle previously unseen identi-
fier names. To integrate these new nodes, we add subnode
(toString→ to), supernode (to→ toString), next subn-
ode (to → string), and previous subnode (string → to)
edges. When encoding Tedit, we also include an aligned
edge type between nodes in the two trees that correspond
to an update (String and PropertyKey). Additionally, we
learn edit embeddings for each action type. To identify how
a node is edited (or not edited), we concatenate the corre-
sponding edit embedding to its initial representation that is
fed to the GGNN.
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Train Valid Test Total
@return 15,950 1,790 1,840 19,580
@param 8,640 932 1,038 10,610
Summary 8,398 1,034 1,066 10,498
Full 32,988 3,756 3,944 40,688
Projects 829 332 357 1,518

Table 1: Data partitions.

4 Data
By detecting inconsistencies at the time of code change,
we can extract automatic supervision from commit histo-
ries of open-source Java projects. Namely, we compare con-
secutive commits, collecting instances in which a method
is modified. We extract the comment/method pairs from
each version: (C1, M1), (C2, M2). In prior work, we iso-
late comment updates made based on code changes through
cases in which C1 6=C2 (Panthaplackel et al. 2020b). By as-
suming that the developer updated the comment because
it would have otherwise become inconsistent as a result
of code changes, we take C1 to be inconsistent with M2,
consequently leading to a positive example, with C=C1,
Mold=M1, and M=M2. For negative examples, we addition-
ally examine cases in which C1=C2 and assume that if the
existing comment would have become inconsistent, the de-
veloper would have updated it. Following this process, we
collect @return, @param, and summary comment exam-
ples. We additionally incorporate 7,239 positive @return
examples from our prior work (Panthaplackel et al. 2020b)
which studies @return comment updates.

While convenient for data collection, the assumptions we
make do not always hold in practice. For instance, if C1 is
refactored without altering its meaning, we would assign a
positive label because C1 6=C2, despite it actually being con-
sistent. Because such cases of comment improvement are not
within the scope of our work, we adopt previously proposed
heuristics (Panthaplackel et al. 2020b) to reduce the number
of instances in which the comment and code changes are un-
related. The negative label is also noisy since C1=C2 when a
developer fails to update comments in accordance with code
changes, pointing to the problem we are addressing in this
paper. We minimize such cases by limiting to popular, well-
maintained projects (Jarczyk et al. 2014). For more reliable
evaluation, we curate a clean sample of 300 examples (cor-
responding to 101 projects) from the test set, consisting of
50 positive and 50 negative examples of each comment type.

In line with prior work (Ren et al. 2019; Movshovitz-
Attias and Cohen 2013), we consider a cross-project setting
with no overlap between the projects from which examples
are extracted in training/validation/test sets. From our data
collection procedure, we obtain substantially more negative
examples than positive ones, which is not surprising be-
cause many changes do not require comment updates (Wen
et al. 2019). We downsample negative examples, for each
partition and comment type, to construct a balanced dataset.
Statistics of our final dataset are shown in Table 1.

Comments are tokenized based on space and punctuation.
We parse methods into sequences using javalang (Thunes
2020). Comment and code sequences are subtokenized (e.g.,

camelCase → camel, case; snake case → snake, case), as
done in prior work (Alon et al. 2019; Fernandes, Allamanis,
and Brockschmidt 2019), to capitalize on composability and
better address the open vocabulary problem in learning from
source code (Cvitkovic, Singh, and Anandkumar 2019). De-
tails on data statistics, filtering, and annotation procedures
are given in Appendix A.

5 Models
We outline baseline, post hoc, and just-in-time inconsistency
detection models.

5.1 Baselines
Lexical overlap: A comment often has lexical overlap with
the corresponding method. We include a rule-based just-in-
time baseline, OVERLAP(C, deleted), which classifies C as
inconsistent if at least one of its tokens matches a code token
belonging to a Delete or ReplaceOld span in Medit.
Corazza, Maggio, and Scanniello (2018): This post hoc
bag-of-words approach classifies whether a comment is co-
herent with the method that it accompanies using an SVM
with TF-IDF vectors corresponding to the comment and
method. We simplify the original data pre-processing, but
validate that the performance matches the reported numbers.
CodeBERT BOW: We develop a more sophisticated bag-
of-words baseline that leverages CodeBERT (Feng et al.
2020) embeddings. These embeddings were pretrained on a
large corpus of natural language/code pairs. In the post hoc
setting, we consider CodeBERT BOW(C, M ), which com-
putes the average embedding vectors of C and M . These
vectors are concatenated and fed through a feedforward net-
work. In the just-in-time setting, we compute the average
embedding vector of Medit rather than M , and we refer to
this baseline as CodeBERT BOW(C, Medit).
Liu et al. (2018): This is a just-in-time approach for de-
tecting whether a block/line comment becomes inconsis-
tent upon changes to the corresponding code snippet. Their
task is slightly different as block/line comments describe
low-level implementation details and generally pertain to
only a limited number of lines of code, relative to API
comments. However, we consider it as a baseline since it
is closely related. They propose a random forest classifier
which leverages features which capture aspects of the code
changes (e.g., whether there is a change to a while state-
ment), the comment (e.g., number of tokens), and the rela-
tionship between the comment and code (e.g., cosine simi-
larity between representations in a shared vector space). We
re-implemented this approach based on specifications in the
paper, as their code was not publicly available. We disregard
9 (of 64) features that are not applicable in our setting. De-
tails about our re-implementation are given in Appendix B.

5.2 Our Models
Post hoc: We consider three models, with different ways of
encoding the method. SEQ(C, M ) encodes M with a GRU,
GRAPH(C, T ) encodes T with a GGNN, and HYBRID(C,
M , T ) uses both. Multi-head attention in HYBRID(C, M ,
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Cleaned Test Sample Full Test Set
Model P R F1 Acc P R F1 Acc

Baselines

OVERLAP(C, deleted) 77.7 72.0 74.7 75.7 74.1 62.8 68.0 70.4
Corazza, Maggio, and Scanniello (2018) 65.1 46.0 53.9 60.7 63.7 47.8 54.6 60.3
CodeBERT BOW(C, M ) 66.2 70.4 67.9 66.9 68.9 73.2 70.7 69.8
CodeBERT BOW(C, Medit) 65.5 80.9 72.3 69.0 67.4 76.8 71.6 69.6
Liu et al. (2018) 77.6 74.0 75.8 76.3 77.5 63.8 70.0 72.6

Post hoc
SEQ(C, M ) 58.9 68.0 63.0 60.3 60.6 73.4 66.3 62.8
GRAPH(C, T ) 60.6 70.2 65.0 62.2 62.6 72.6 67.2 64.6
HYBRID(C, M , T ) 53.7 77.3 63.3 55.2 56.3 80.8 66.3 58.9

Just-In-Time
SEQ(C, Medit) 83.8 79.3 81.5 82.0 80.7 73.8 77.1 78.0
GRAPH(C, Tedit) 84.7 78.4 81.4 82.0 79.8 74.4 76.9 77.6
HYBRID(C, Medit, Tedit) 87.1 79.6 83.1 83.8 80.9 74.7 77.7 78.5

Just-In-Time + features
SEQ(C, Medit) + features 91.3 82.0 86.4 87.1 88.4 73.2 80.0 81.8
GRAPH(C, Tedit) + features 85.8 87.1 86.4 86.3 83.8 78.3 80.9 81.5
HYBRID(C, Medit, Tedit) + features 92.3 82.4 87.1 87.8 88.6 72.4 79.6 81.5

Table 2: Results for baselines, post hoc, and just-in-time models. Differences in F1 and Acc between just-in-time vs. baseline
models, just-in-time vs. post hoc models, and just-in-time + features vs. just-in-time models are statistically significant.

T ) is computed with the hidden states of the two encoders
separately and then combined.
Just-In-Time: To allow fair comparison with the post hoc
setting, these models are identical in structure to the models
described above except that Medit is used instead of M .
Just-In-Time + features: Because injecting explicit knowl-
edge can boost the performance of neural models (Chen
et al. 2017; Xuan, Hieu, and Le 2018), we investigate adding
comment and code features to our approach. These are com-
puted at the token/node-level and concatenated with embed-
dings before being passed to encoders. Features are derived
from prior work on comments and code (Panthaplackel et al.
2020a,b), including linguistic (e.g., POS tags) and lexical
(e.g., comment/code overlap) features.

5.3 Model Training
Models are trained to minimize negative log likelihood.
We use 2-layer BiGRU encoders (hidden dimension 64).
GGNN encoders (hidden dimension 64) are rolled out for
8 message-passing steps, also use hidden dimension 64. We
initialize comment and code embeddings, of dimension 64,
with pretrained ones (Panthaplackel et al. 2020b). Edit em-
beddings are of dimension 8. Attention modules use 4 atten-
tion heads. We use a dropout rate of 0.6. Training ends if the
validation F1 does not improve for 10 epochs.

6 Intrinsic Evaluation
We report common classification metrics: precision (P), re-
call (R), and F1 (w.r.t. the positive label) and accuracy (Acc),
averaged across 3 random restarts. We also perform signifi-
cance testing (Berg-Kirkpatrick, Burkett, and Klein 2012).

In Table 2, we report results for baselines, post hoc and
just-in-time inconsistency detection models. In the post hoc
setting, we find that our three models can achieve higher
F1 scores than the bag-of-words approach proposed by
Corazza, Maggio, and Scanniello (2018); however, they un-
derperform the CodeBERT BOW(C, M ) baseline and sig-
nificantly underperform all just-in-time models, including
the simple rule-based baseline. This demonstrates the benefit

of performing inconsistency detection in the just-in-time set-
ting, in which the code changes that trigger inconsistency are
available. Additionally, by encoding the syntactic structures
of the comment and code changes, our just-in-time models
outperform this rule-based baseline as well as all other base-
lines and post hoc approaches. While the HYBRID(C, Medit,
Tedit) model achieves slightly higher scores (on the basis
of F1 and accuracy) than SEQ(C, Medit) and GRAPH(C,
Tedit), the differences are not statistically significant.

Our just-in-time models outperform the rule-based and
feature-based baselines, without any hand-engineered rules
or features. However, by incorporating surface features into
our just-in-time models, we can further boost performance
(by statistically significant margins). This suggests that our
approach can be used in conjunction with task-specific
rules (Tan et al. 2007; Tan, Zhou, and Padioleau 2011; Tan
et al. 2012; Ratol and Robillard 2017) and feature sets (Liu
et al. 2018) to build improved systems for specific domains.

Furthermore, in Table 3, we analyze the performance of
the three just-in-time + features models with respect to in-
dividual comment types. While these models are trained on
all comment types together without explicitly tailoring it in
any way to handle them differently, they are still able to
achieve reasonable performance across types. We provide
further analysis of individual comment types and compare
to comment-specific baselines in Appendix C.

7 Extrinsic Evaluation
We further evaluate how our approach could be used to build
a comprehensive just-in-time comment maintenance system
which first determines whether a comment, C, has become
inconsistent upon code changes to the corresponding method
(Mold → M ), and then automatically suggests an update if
this is the case. To do this, we combine the inconsistency de-
tection approach with our previously proposed comment up-
date model (Panthaplackel et al. 2020b) which updates com-
ments based on code changes. For training and evaluating
this combined system, we have two sets of comment/method
pairs from consecutive commits for each example in our cor-
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Cleaned Test Sample Full Test Set
Model P R F1 Acc P R F1 Acc

@return
SEQ(C, Medit) + features 88.5∗ 72.0∗ 79.4∗ 81.3∗ 87.6∗ 73.3∗ 79.8∗ 81.4∗
GRAPH(C, Tedit) + features 81.2 77.3 79.1∗ 79.7 82.2 79.3 80.6 80.9∗

HYBRID(C, Medit, Tedit) + features 88.7∗ 72.0∗ 79.4∗ 81.3∗ 87.3∗ 73.7∗ 79.8∗ 81.4∗

@param
SEQ(C, Medit) + features 90.0 95.3 92.5 92.3† 92.2 88.3† 90.2 90.4
GRAPH(C, Tedit) + features 96.5 92.0 94.2 94.3 94.5 89.0† 91.7 91.9
HYBRID(C, Medit, Tedit) + features 94.6 89.3 91.8 92.0† 93.3 85.9 89.4 89.9

Summary
SEQ(C, Medit) + features 96.0 78.7 86.5§ 87.7 84.7§ 58.3 69.0 73.9§

GRAPH(C, Tedit) + features 80.8 92.0 86.0§ 85.0 76.0 66.4 70.6 72.5
HYBRID(C, Medit, Tedit) + features 93.7 86.0 89.5 90.0 85.0§ 57.0 68.1 73.5§

Table 3: Evaluating performance with respect to different types of comments. Scores are averaged across 3 random restarts,
and scores for which the difference in performance is not statistically significant are shown with identical symbols.

pus. Recall from our data collection procedure that we ex-
tracted pairs of the form (C1, M1), (C2, M2), where C=C1,
Mold=M1, and M=M2. We now introduce Cnew=C2, the
gold comment for M . If C is consistent with M , C=Cnew.

7.1 Evaluation Method

The GRU-based SEQ2SEQ update model encodes C and a
sequential representation of the code changes (Medit). Using
attention (Luong, Pham, and Manning 2015) and a pointer
network (Vinyals, Fortunato, and Jaitly 2015) over learned
representations of the inputs, a sequence of edit actions
(Cedit) is generated, identifying how C should be edited
to form the updated comment (Cnew). This model also em-
ploys the same linguistic and lexical features as the just-in-
time + features models. The model is trained on only cases
in which C has to be updated and is not designed to ever
copy the existing comment. We consider three different con-
figurations for adding inconsistency detection in this model:
Update w/ implicit detection: We augment training of the
update model with negative examples (i.e., C does not need
to be updated). The model implicitly does inconsistency de-
tection by learning to copy C for such cases. Inconsistency
detection is evaluated based on whether it predicts Cnew=C.
Pretrained update + detection: The update model is Pan-
thaplackel et al. (2020b), trained on only positive examples.
At test time, if the detection model classifies C as inconsis-
tent, we take the prediction of the update model. Otherwise,
we copy C, making Cnew=C. We consider three of the pre-
trained just-in-time detection models.
Jointly trained update + detection: We jointly train the in-
consistency detection and update models on the full dataset
(including positive and negative examples). We consider
three of our just-in-time detection techniques. The update
model and detection model share embeddings and the com-
ment encoder for all three, and for the sequence-based and
hybrid models, the code sequence encoder is also shared.
During training, loss is computed as the sum of the update
and detection components. For negative examples, we mask
the loss of the update component since it does not have to
learn to copy C. At test time, if the detection component
predicts a negative label, we directly copy C and otherwise
take the prediction of the update model.

7.2 Results
We report precision, recall, F1, and accuracy for detection.
As we have done previously (Panthaplackel et al. 2020b),
we evaluate update through exact match (xMatch) as well
as metrics used to evaluate text generation (BLEU-4 (Pa-
pineni et al. 2002) and METEOR (Banerjee and Lavie
2005)) and text editing tasks (SARI (Xu et al. 2016) and
GLEU (Napoles et al. 2015)). In Table 4, we compare per-
formances of combined inconsistency detection and update
systems on the cleaned test sample. As reference points, we
also provide scores for a system which never updates (i.e.,
always copies C as Cnew) and Panthaplackel et al. (2020b),
which is designed to always update (and only copy C if an
invalid edit action sequence is generated). For completeness,
we also provide results on the full dataset (which are analo-
gous) in Appendix D.

Since our dataset is balanced, we can get 50% exact match
by simply copying C (i.e., never updating). In fact, this
can even beat Panthaplackel et al. (2020b) on xMatch, ME-
TEOR, BLEU-4, SARI, and GLEU. This underlines the im-
portance of first determining whether a comment needs to
be updated, which can be addressed with our inconsistency
detection approach. On the majority of the update metrics,
both of these underperform the other three approaches (Up-
date w/ implicit detection, Pretrained update + detection, and
Jointly trained update + detection). SARI is calculated by
averaging N-gram F1 scores for edit operations (add, delete,
and keep). So, it is not surprising that the Update w/ implicit
detection baseline, which learns to copy, performs fewer ed-
its, consequently underperforming on this metric. Because
Panthaplackel et al. (2020b) is designed to always edit, it
can perform well on this metric; however, the majority of
the pretrained and jointly trained systems can beat this.

The Update w/ implicit detection baseline, which does not
include an explicit inconsistency detection component, per-
forms relatively well with respect to the update metrics, but
it performs poorly on detection metrics. Here, we use gener-
ating C as the prediction for Cnew as a proxy for detecting
inconsistency. It achieves high precision, but it frequently
copies C in cases in which it is inconsistent and should be
updated, hence underperforming on recall. The pretrained
and jointly trained approaches outperform this model by
wide statistically significant margins across the majority of
metrics, demonstrating the need for inconsistency detection.
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Update Metrics Detection Metrics
xMatch METEOR BLEU-4 SARI GLEU P R F1 Acc

Never Update 50.0 67.4 72.1 24.9 68.2 0.0 0.0 0.0 50.0
Panthaplackel et al. (2020b) 25.9 60.0 68.7 42.0∗ 67.4 54.0 95.6 69.0 57.1
Update w/ implicit detection 58.0 72.0 74.7 31.5 72.7 100.0 23.3 37.7 61.7
Pretrained update + detection

SEQ(C, Medit) + features 62.3† 75.6∗ 77.0∗ 42.0∗ 76.2 91.3∗ 82.0§ 86.4∗ 87.1§¶

GRAPH(C, Tedit) + features 59.4 74.9§ 76.6† 42.5‖ 75.8∗† 85.8 87.1 86.4∗ 86.3†

HYBRID(C, Medit, Tedit) + features 62.3† 75.8†‖ 77.2 42.3† 76.4 92.3 82.4§ 87.1† 87.8∗‖

Jointly trained update + detection
SEQ(C, Medit) + features 61.4∗ 75.9‖ 76.6† 42.4†‖ 75.6† 88.3† 86.2 87.2† 87.3§‖

GRAPH(C, Tedit) + features 60.8 75.1§ 76.6† 41.8∗ 75.8∗ 88.3† 84.7∗ 86.4∗ 86.7†¶

HYBRID(C, Medit, Tedit) + features 61.6∗ 75.6∗† 76.9∗ 42.3† 75.9∗ 90.9∗ 84.9∗ 87.8 88.2∗

Table 4: Results on joint inconsistency detection and update on the cleaned test sample. Scores for which the difference in
performance is not statistically significant are shown with identical symbols.

We do not observe a significant difference between the
pretrained and jointly trained systems. The pretrained mod-
els achieve slightly higher scores on most update metrics and
the jointly trained models achieve slightly higher scores on
the detection metrics; however, these differences are small
and often statistically insignificant. Overall, we find that our
approach can be useful for building a real-time comment
maintenance system. Since this is not the focus of our paper
but rather merely a potential use case, we leave it to future
work for developing more intricate joint systems.

8 Related Work
Code/Comment Inconsistencies: Prior work analyze how
inconsistencies emerge (Fluri et al. 2009; Jiang and Hassan
2006; Ibrahim et al. 2012; Fluri, Wursch, and Gall 2007) and
the various types of inconsistencies (Wen et al. 2019); but,
they do not propose techniques for addressing the problem.
Post Hoc Inconsistency Detection: Prior work propose
rule-based approaches for detecting pre-existing inconsis-
tencies in specific domains, including locks (Tan et al. 2007),
interrupts (Tan, Zhou, and Padioleau 2011), null excep-
tions for method parameters (Zhou et al. 2017; Tan et al.
2012), and renamed identifiers (Ratol and Robillard 2017).
The comments they consider are consequently constrained
to certain templates relevant to their respective domains.
We instead develop a general-purpose, machine learning
approach that is not catered towards any specific types of
inconsistencies or comments. Corazza, Maggio, and Scan-
niello (2018) and Cimasa et al. (2019) address a broader
notion of coherence between comments and code through
text-similarity techniques, and Khamis, Witte, and Rilling
(2010) determine whether comments, specifically @return
and @param comments, conform to particular format. We
instead capture deeper code/comment relationships by learn-
ing their syntactic and semantic structures. Rabbi and Sid-
dik (2020) propose a siamese network for correlating com-
ment/code representations. In contrast, we aim to correlate
comments and code through an attention mechanism.
Just-In-Time Inconsistency Detection: Liu et al. (2018)
detect inconsistencies in a block/line comment upon changes
to the corresponding code snippet using a random forest
classifier with hand-engineered features. Our approach does

not require such extensive feature engineering. Although
their task is slightly different, we consider their approach as
a baseline. Stulova et al. (2020) concurrently present a pre-
liminary study of an approach which maps a comment to the
AST nodes of the method signature (before the code change)
using BOW-based similarity metrics. This mapping is used
to determine whether the code changes have triggered a
comment inconsistency. Our model instead leverages the full
method context and also learns to map the comment directly
to the code changes. Malik et al. (2008) predict whether a
comment will be updated using a random forest classifier
utilizing surface features that capture aspects of the method
that is changed, the change itself, and ownership. They do
not consider the existing comment since their focus is not
inconsistency detection; instead, they aim to understand the
rationale behind comment updating practices by analyzing
useful features. Sadu (2019) develops at approach which
locates inconsistent identifiers upon code changes through
lexical matching rules. While we find such a rule-based ap-
proach (represented by our OVERLAP(C, deleted) baseline)
to be effective, a learned model performs significantly better.
Svensson (2015) builds a system to mitigate the damage of
inconsistent comments by prompting developers to validate
a comment upon code changes. Comments that are not val-
idated are identified, indicating that they may be out of date
and unreliable. Nie et al. (2019) present a framework for
maintaining consistency between code and todo comments
by performing actions described in such comments when
code changes trigger the specified conditions to be satisfied.

9 Conclusion
We developed a deep learning approach for just-in-time in-
consistency detection between code and comments by learn-
ing to relate comments and code changes. Based on evalua-
tion on a large corpus consisting of multiple types of com-
ments, we showed that our model substantially outperforms
various baselines as well as post hoc models that do not con-
sider code changes. We further conducted an extrinsic eval-
uation in which we demonstrated that our approach can be
used to build a comprehensive comment maintenance sys-
tem that can detect and update inconsistent comments.
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velopers informed with up-to-date-documentation, in order
to consequently help improve developers’ productivity and
software quality. Buggy software and incorrect API usage
can result in significant malfunctions in many everyday op-
erations. Maintaining comment/code consistency can help
prevent such negative-impact events.

However, over-reliance on such a system could result in
developers giving up identifying and resolving inconsistent
comments themselves. By presuming that the system de-
tects all inconsistencies and all of these are properly ad-
dressed, developers may also take the available comments
for granted, without carefully analyzing their validity. Be-
cause the system may not catch all types of inconsisten-
cies, this could potentially exacerbate rather than resolve
the problem of inconsistent comments. Our system is not
intended to serve as an infallible safety net for poor software
engineering practices but rather as a tool that complements
good ones, working alongside developers to help deliver re-
liable, well-documented software in a timely manner.
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Positive Negative Total
@return 9,807 72,826 82,633
@param 5,507 19,007 24,514
Summary 5,904 69,650 75,554
Full 21,218 161,483 182,701

Table 5: Dataset sizes before downsampling

A Additional Data Details
We provide additional information about our procedures for
filtering the dataset and curating a sample of the test set for
evaluation. We also include various statistics about the ex-
amples that comprise our dataset.

A.1 Filtering
Recall from our data collection procedure (§4) that we ex-
tracted comment/method pairs from consecutive commits,
of the form (C1, M1), (C2, M2), where C=C1, Mold=M1,
and M=M2. We apply heuristics to reduce the number
of cases in which there are unrelated comment and code
changes. We filter out positive examples in which the dif-
ferences between C1 and C2 entail minor cosmetic edits
(e.g., reformatting, spelling corrections). Similar to prior
work (Panthaplackel et al. 2020b), for @return examples,
we require there to be a code change to at least one return
statement or the return type of the method. We discard all
@return examples (positive and negative) that do not sat-
isfy this condition. This is because @return comments de-
scribe aspects of the return value of a method, which is typi-
cally related to the method return type and return statements.
We apply the same constraint to summary comment exam-
ples, since they often describe aspects of the output (e.g.,
Figure 1(a)). Because @param comments generally pertain
to the method’s arguments, we only use examples in which
an argument name or type is changed within the method.
Next, we reduce the number of noisy negative examples
in which a developer fails to update comments in accor-
dance with code changes by limiting to the top 1,000 starred
and forked projects, which are considered popular and well-
maintained (Jarczyk et al. 2014). Furthermore, because we
consider AST representations, we remove all examples con-
sisting of a method which cannot be parsed into an AST. Ad-
ditionally, we remove duplicate examples, as they have been
found to negatively affect training machine learning models
for source code (Allamanis 2019).

A.2 Downsampling Negative Class
In our data collection procedure, we obtained substantially
more negative examples. Because a naı̈ve classifier trained
to always predict the negative label can achieve high accu-
racy in such a setting, we downsample the negative class to
obtain a balanced dataset. We provide the sizes of the pos-
itive and negative classes before downsampling in Table 5.
Note that we also discard some examples to ensure no over-
lap between the projects in training, validation, and test.

A.3 Curating Test Sample
We construct a clean test set by randomly sampling without
replacement from the full test set in such a way that we at-

@return @param Summary Full
C 9.7 8.4 13.3 10.3
Mold 131.1 186.9 137.0 147.2
M 131.9 187.7 135.4 147.3
Medit 179.4 240.9 186.6 197.3
Told 127.2 184.1 130.5 142.9
T 128.1 184.5 129.5 143.2
Tedit 154.3 213.7 159.1 171.1

Table 6: Statistics on the average lengths of comment and
code representations.

tain a balanced sample, in terms of both labels (i.e., positive,
negative) and comment type (i.e., @return, @param, sum-
mary). Rather than assigning new labels to mislabeled exam-
ples, we choose to remove such examples altogether from
this sample. Note that for examples that are incorrectly la-
beled as negative and should actually be updated, we do not
have ground truth updated comments (i.e., Cnew) for eval-
uation. So, by removing mislabeled examples, we can use
the same set of examples to evaluate the combined inconsis-
tency detection and update system. This cleaning procedure
was done by one of the authors of this paper who has 8+
years of Java experience.

We remove 11% of examples for having the incorrect la-
bel, 3% for being uncertain about the correct label due to
the limited context provided in the method, and 6% from be-
ing poor examples (e.g., comments like “document me” or
code changes that simply comment out the entire method).
Therefore, we find 17-20% noise. For the individual com-
ment types, the percent of noise is 6-15% for @return, 14-
16% for @param, and 26-28% for summary comments. For
individual labels, it is 26-28% for positive and 8-12% for
negative.

A.4 Data Statistics
In Table 6, we show the average lengths of comment and
code representations for the various types of comments in
our dataset. The lengths for C and sequential code represen-
tations (i.e., Mold, M , Medit) are computed based on the
subtokenized sequences that are used by our model. Note
that the Medit representation also includes edit keywords.
We report the sizes of the AST representations (Told, T ,
Tedit) in terms of number of nodes. This also includes the
added subnodes.

B Re-Implementation of Liu et al. (2018)
From the 64 features used in Liu et al. (2018), we disregard
9 which are not compatible with our setting. Namely, since
the body of code they consider are not full methods, they
have separate features for the code snippet under considera-
tion and the method to which it belongs. On the other hand,
we look at only full methods, and so the separate notion
of “code snippet” is irrelevant. They have two separate fea-
tures comment: ratio of comment lines to the method, com-
ment: ratio of comment lines to the code snippet, and we dis-
card the latter. Next, they consider whether there is a name
change for the method in which the code snippet appears;
however, we look at two versions of the same method and
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Cleaned Test Sample Full Test
Model P R F1 Acc P R F1 Acc

@return

OVERLAP(C, deleted) 69.2 54.0 60.7 65.0‖ 67.6‖¶ 53.3‖ 59.6 63.9
Corazza, Maggio, and Scanniello (2018) 73.2 60.0¶ 65.9 69.0 68.9¶ 61.2§ 64.8 66.8
CodeBERT BOW(C, M ) 84.9∗ 74.7§ 79.4∗¶ 80.7∗ 85.6 82.7 84.1 84.3
CodeBERT BOW(C, Medit) 62.5 74.0§ 67.7‖ 64.7‖ 66.8‖ 78.8∗† 72.2 69.7
Liu et al. (2018) 76.9 62.0¶ 68.6‖ 71.7 76.0 63.0§ 68.9 71.6
Khamis, Witte, and Rilling (2010) 52.1 98.0 68.1‖ 54.0 51.6 97.3 67.4 52.9
GENMATCH 64.6 62.0¶ 63.3 64.0‖ 60.4 54.9‖ 57.5 59.5
SEQ(C, Medit) + features 85.3∗ 75.3§ 79.9¶ 81.0∗ 87.2§ 75.9 81.2∗§ 82.4
GRAPH(C, Tedit) + features 87.4 77.3∗ 82.0 83.0 84.0∗ 78.0∗ 80.8∗§ 81.4∗†

HYBRID(C, Medit, Tedit) + features 84.8∗ 78.0† 81.2 82.0¶ 84.3∗ 78.7† 81.3§ 81.9∗

Combined
SEQ(C, Medit) + features 88.5§ 72.0‖ 79.4∗¶ 81.3∗¶ 87.6§ 73.3¶ 79.8¶ 81.4∗†

GRAPH(C, Tedit) + features 81.2 77.3∗† 79.1∗ 79.7 82.2 79.3† 80.6∗ 80.9†

HYBRID(C, Medit, Tedit) + features 88.7§ 72.0‖ 79.4∗ 81.3∗ 87.3§ 73.7¶ 79.8¶ 81.4∗†

Table 7: Results for @return examples. Scores for which the difference in performance is not statistically significant are
shown with identical symbols.

Cleaned Test Sample Full Test
Model P R F1 Acc P R F1 Acc

@param

OVERLAP(C, deleted) 85.7 96.0∗§ 90.6 90.0 84.0 93.3 88.4¶ 87.8¶

Corazza, Maggio, and Scanniello (2018) 74.1 40.0 51.9 63.0 59.1§ 43.9 50.4 56.7
CodeBERT BOW(C, M ) 62.8 57.3 59.9 61.7 58.9§ 64.4 61.5 59.7
CodeBERT BOW(C, Medit) 81.8 84.0 82.8 82.7 75.5 82.7 78.9§ 77.9
Liu et al. (2018) 90.4§ 62.7 74.0 78.0 88.6¶ 72.3 79.6§ 81.5
Khamis, Witte, and Rilling (2010) 97.8∗ 90.0‖ 93.8 94.0† 87.7¶ 89.0∗§ 88.3¶ 88.2¶

SEQ(C, Medit) + features 95.4 96.0∗ 95.7∗† 95.7∗ 91.4 89.2§ 90.3† 90.4†§

GRAPH(C, Tedit) + features 97.3∗ 94.0 95.6∗ 95.7∗ 94.9∗ 90.0 92.4 92.6
HYBRID(C, Medit, Tedit) + features 96.6† 95.3§ 96.0† 96.0 94.3† 89.3§ 91.7∗ 91.9∗

Combined
SEQ(C, Medit) + features 90.0§ 95.3§ 92.5 92.3§ 92.2 88.3∗ 90.2† 90.4†

GRAPH(C, Tedit) + features 96.5† 92.0 94.2 94.3† 94.5∗† 89.0∗§ 91.7∗ 91.9∗

HYBRID(C, Medit, Tedit) + features 94.6 89.3‖ 91.8 92.0§ 93.3 85.9 89.4 89.9§

Table 8: Results for @param examples. Scores for which the difference in performance is not statistically significant are shown
with identical symbols.

require the name to remain the same (as part of our data col-
lection procedure). So, we discard the feature refactoring:
rename method. Additionally, we discard external features
that are not extracted from outside the method (e.g., class-
related features) as we focus on detecting inconsistencies us-
ing only the method-level context. We leave it to future work
to study ways to incorporate the external context into our ap-
proach. We discard code: changes on class attribute, code:
class attribute related, refactoring: extract method, refactor-
ing: inline method, refactoring: encapsulate field, refactor-
ing: replace exception with test, comment: ratio of comment
lines to class.

C Comment-Specific Performance
Since much of the work in inconsistency detection has
focused on comment-specific or task-specific settings, we
analyze how our approach performs in a similar setting.
Namely, we consider training and evaluating our models
and baselines on only data pertaining to individual comment
types. We additionally study how comment-specific training
compares to combined training, in which we train on the full
dataset, comprised of multiple comment types.

C.1 @return Comments
We train the (learned) baselines introduced in Section 5.1
on only the 15,950 examples pertaining to @return com-
ments. We additionally consider two baselines for @return
comments. Khamis, Witte, and Rilling (2010) proposed
a heuristic for detecting inconsistency in @return com-
ments: the comment must begin with the correct return
type of the corresponding method. We implement a base-
line based on this heuristic. We also remove articles (e.g.,
a, the) from the beginning of the comment before apply-
ing this rule, as we found this to improve performance. Fur-
thermore, Panthaplackel et al. (2020b) released an @return
comment generation model trained on a large corpus of
@return comment/method pairs. We introduce another
baseline, GENMATCH, in which we use the pretrained gen-
eration model to generate an @return comment for Mold

and an @return comment for M . If the two comments
match exactly, we consider the code change to be irrelevant
to @return comments and thus the existing @return com-
ment remains consistent. We compare these baselines with
our models, trained on only @return comments. We addi-
tionally compare with our models, trained on the combined
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Cleaned Test Sample Full Test
Model P R F1 Acc P R F1 Acc

Summary

OVERLAP(C, deleted) 75.0∗ 66.0 70.2§ 72.0 71.4 49.7 58.6 64.9§

Corazza, Maggio, and Scanniello (2018) 55.6 30.0 39.0 53.0 61.7 41.1 49.3 57.8
CodeBERT BOW(C, M ) 61.6† 78.7† 68.8 64.3 63.7§ 75.6∗ 68.9∗†§ 66.0§†

CodeBERT BOW(C, Medit) 62.1† 80.0§ 69.8§ 65.3 64.5§ 72.4§ 68.0†§ 65.9§†

Liu et al. (2018) 85.2 76.7 80.7† 81.7 77.1∗ 57.0†¶ 65.5 70.0
SEQ(C, Medit) + features 72.7 92.7 81.4† 78.7 67.7 74.3∗ 70.6‖ 68.9
GRAPH(C, Tedit) + features 74.3∗ 92.0∗ 82.0 79.3 68.4 70.9 69.2∗ 68.2
HYBRID(C, Medit, Tedit) + features 70.7 90.0 79.2 76.3 64.5§ 72.9§ 68.4†§ 66.3†

Combined
SEQ(C, Medit) + features 96.0 78.7†§ 86.5∗ 87.7 84.7† 58.3† 69.0∗† 73.9∗

GRAPH(C, Tedit) + features 80.8 92.0∗ 86.0∗ 85.0 76.0∗ 66.4 70.6‖ 72.5
HYBRID(C, Medit, Tedit) + features 93.7 86.0 89.5 90.0 85.0† 57.0¶ 68.1§ 73.5∗

Table 9: Results for summary comment examples. Scores for which the difference in performance is not statistically significant
are shown with identical symbols.

training set, as done in the main paper.
In Table 7, we report results on the 100 @return exam-

ples in the cleaned test set as well as the 1,840 @return
examples in the full test set. While the CodeBERT BOW(C,
Medit) baseline performs quite well here, our approach can
outperform baselines (w.r.t. F1 and Acc) on the cleaned test
sample, when trained on only @return comments. We find
that training on the combined dataset slightly deteriorates
performance of our models. This is not surprising as in com-
bined training, models must learn to generalize across com-
ment types, not just @return comments. Nonetheless, the
difference in performance between training on the comment-
specific and combined sets are relatively small.

C.2 @param Comments
For @param comments, we consider another baseline de-
signed to follow the heuristic proposed by Khamis, Witte,
and Rilling (2010) for this comment type: the comment
should begin with the name of the parameter being docu-
mented. We remove articles from the beginning of the com-
ment and consider whether the first term is one of the argu-
ments of the method. If this is not the case, we classify it
as inconsistent. We consider the comment-specific and com-
bined settings, as we do for @return comments.

In Table 8, we report results on the 100 @param exam-
ples in the cleaned test set as well as the 1,038 @param ex-
amples in the full test set. We find that rule-based baselines
can perform very well for @param comments, especially
the Khamis, Witte, and Rilling (2010) baseline. This sug-
gests that most @param comments conform to the format
they suggested. Nonetheless, our models are able to learn
this without explicitly specifying this format and can even
achieve higher performance (by statistically significant mar-
gins) when trained on only @param comments. The com-
bined setting slightly deteriorates performance of our mod-
els; however, the GRAPH(C, Tedit) + features model can
still perform slightly better than Khamis, Witte, and Rilling
(2010) w.r.t. F1 on the cleaned test sample.

C.3 Summary Comments
Summary comments (e.g., Figure 5) do not have a well-
defined structure, and thus we do not have a format-based

Figure 5: A summary comment from the Apache Calcite
Avatica project becomes inconsistent upon changes to the
lookupField() method. It should be updated to be Looks
up a field with a given name, returning null if not found.

baseline as we did for @return and @param comments.
We evaluate baselines and our models, trained on comment-
specific data, as well as our model trained on the combined
training set.

In Table 9, we report results on the 100 summary exam-
ples in the cleaned test set as well as the 1,066 summary ex-
amples in the full test set. While Liu et al. (2018) is a strong
baseline here, we find that we can outperform all baselines in
the combined training setting. Unlike the case for @return
and @param comments, combined training appears to yield
improved performance over comment-specific training for
our models. This suggests that the models can extract valu-
able information from the more structured comments in the
training set that pertain to specific parts of the code in order
to address the less-structured summary comments.

D Combined Detection+Update (Full)
We illustrate our approaches for combining the tasks of de-
tection and update in Figure 6. In Table 10, we show results
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Figure 6: Overview of the three configurations used for the combined system which makes a prediction for whether C is
inconsistent (Pinconsistent) as well for the updated comment (Pcomment). Modules are trained on either the full training set,
including positive/inconsistent (+) and negative/consistent (-) examples, or only positive examples.

Update Metrics Detection Metrics
xMatch METEOR BLEU-4 SARI GLEU P R F1 Acc

Never Update 50.0 67.7 71.6 25.1 68.3 0.0 0.0 0.0 50.0
Panthaplackel et al. (2020b) 21.5 56.2 64.7 37.6∗ 63.4 53.1 91.8 67.2 55.3
Update w/ implicit detection 56.1∗ 71.3 73.4∗ 30.2 71.4 98.5 18.2 30.8 59.0
Pretrained update + detection

SEQ(C, Medit) + features 57.3§ 72.6∗ 73.9† 37.8§ 73.2§ 88.4† 73.2 80.0† 81.8∗†

GRAPH(C, Tedit) + features 55.2 71.8 73.5∗ 38.0†‖ 72.8∗ 83.8 78.3 80.9∗ 81.5†

HYBRID(C, Medit, Tedit) + features 57.3§ 72.6∗ 73.9† 37.6∗ 73.2†§ 88.6† 72.4 79.6† 81.5†

Jointly trained update + detection
SEQ(C, Medit) + features 56.5∗† 72.2†§ 73.5∗ 37.9†‖ 72.9∗ 85.7∗ 76.7∗ 80.9∗ 81.9∗†

GRAPH(C, Tedit) + features 56.2∗ 72.0§ 73.6∗ 37.8†§ 73.0∗† 85.9∗ 76.7∗ 81.0∗ 82.0∗†

HYBRID(C, Medit, Tedit) + features 56.8† 72.4∗† 73.8 38.1‖ 73.1§ 86.7 75.7 80.9∗ 82.1∗

Table 10: Results on joint inconsistency detection and update on the full test set. Scores for which the difference in performance
is not statistically significant are shown with identical symbols.

of combined detection+update systems on the full test set.
The results are analogous to those presented in Section 7.2
for the cleaned test set. While the differences for the up-
date metrics are less pronounced, the pretrained and jointly
trained approaches can again outperform Update w/ implicit
detection as well as the two reference points: Never Update
and Panthaplackel et al. (2020b). The drastic differences in
performance with respect to the detection metrics further
demonstrate the importance of explicit inconsistency detec-
tion in a combined detection+update system. In line with
our observations from the cleaned test set, we find the per-
formances of the pretrained and jointly trained systems to be
very close.

E Implicit vs. Explicit Edits
Through Medit and Tedit, we are explicitly defining the code
edits between Mold and M or between Told and T . During
preliminary experiments, we also considered having mod-
els implicitly learn the edits. Namely, instead of providing
Medit as the input to the sequence-based code encoder, we

encode Mold and M separately. Both of these are encoded
using the same GRU encoder, but multi-head attention is
computed with the two sets of hidden states separately and
then combined. We do the same for the graph-based ap-
proach (i.e., encode Told and T separately rather than use
Tedit) as well as the hybrid approach. Results for these ap-
proaches are shown in Table 11, where SEQ(C, Mold, M ),
GRAPH(C, Told, T ), and HYBRID(C, Mold, M , Told, T )
correspond to the encoding edits implicitly for the sequence-
based, graph-based, and hybrid approaches implicitly. We
find that implicitly encoding edits leads to performance that
is similar (or even worse in some cases) than the post hoc
setting. To truly take advantage of the just-in-time setting,
we find it necessary to encode edits explicitly, which can
boost performance by wide, statistically significant margins.
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Cleaned Test Sample Full Test
Model P R F1 Acc P R F1 Acc

Post hoc
SEQ(C, M ) 58.9 68.0 63.0 60.3 60.6 73.4 66.3 62.8
GRAPH(C, T ) 60.6 70.2 65.0 62.2 62.6 72.6 67.2 64.6
HYBRID(C, M , T ) 53.7 77.3 63.3 55.2 56.3 80.8 66.3 58.9

Just-In-Time (implicit)
SEQ(C, Mold, M ) 57.8 67.1 61.6 58.3 61.5 74.0 66.9 63.4
GRAPH(C, Told, T ) 58.5 67.3 62.6 59.9 61.3 71.8 66.1 63.3
HYBRID(C, Mold, M , Told, T ) 58.8 62.9 59.9 58.7 62.9 69.3 65.1 63.1

Just-In-Time
SEQ(C, Medit) 83.8 79.3 81.5 82.0 80.7 73.8 77.1 78.0
GRAPH(C, Tedit) 84.7 78.4 81.4 82.0 79.8 74.4 76.9 77.6
HYBRID(C, Medit, Tedit) 87.1 79.6 83.1 83.8 80.9 74.7 77.7 78.5

Table 11: Analyzing implicit code edit representations. Differences in F1 and Acc between just-in-time (explicit) models vs.
post hoc models and just-in-time (explicit) vs. just-in-time (implicit) are statistically significant.

Update Metrics Detection Metrics
xMatch METEOR BLEU-4 SARI GLEU P R F1 Acc

Never Update 50.0 67.4 72.1¶ 24.9 68.2 0.0 0.0 0.0 50.0
Panthaplackel et al. (2020b) 25.9 60.0 68.7 42.0 67.4§ 54.0 95.6 69.0 57.1§

Update w/ implicit detection
(C, M ) → Cnew 49.2 67.0 71.5∗ 27.9 68.4∗† 77.4 20.0∗ 31.4∗ 57.3§

(C, Mold, M ) → Cnew 48.0 66.4 71.4∗ 25.4∗ 67.6§ 68.4¶ 8.7 15.4 52.3
(C, Medit) → Cnew 50.9∗ 68.1 72.1†§¶ 28.5 69.2 80.1 20.2∗ 32.2∗ 57.6§

(C, M ) → Cedit ⇒ Cnew 50.6∗ 67.7 72.3† 25.4∗ 68.6∗ 100.0§ 1.8† 3.5† 50.9¶

(C, Mold M ) → Cedit ⇒ Cnew 50.3 67.5 72.2§ 25.3 68.4† 66.7¶ 1.6† 3.0† 50.8¶

(C, Medit) → Cedit ⇒ Cnew 52.1 68.6 72.9 26.9 69.6 100.0§ 7.1 13.2 53.6
+features 58.0 72.0 74.7 31.5 72.7 100.0§ 23.3 37.7 61.7

Table 12: Results for various configurations of Update w/ implicit detection on the cleaned test sample. Scores for which the
difference in performance is not statistically significant are shown with identical symbols.

Update Metrics Detection Metrics
xMatch METEOR BLEU-4 SARI GLEU P R F1 Acc

Never Update 50.0† 67.7§ 71.6† 25.1 68.3 0.0 0.0 0.0 50.0
Panthaplackel et al. (2020b) 21.5 56.2 64.7 37.6 63.4 53.1 91.8 67.2 55.3∗†§

Update w/ implicit detection
(C, M ) → Cnew 48.7 66.9 70.7∗ 27.1∗ 67.9 73.8 16.9∗ 27.1 55.6∗

(C, Mold, M ) → Cnew 47.9 66.4 70.6∗ 25.6† 67.5 65.2 8.7 15.3† 52.0
(C, Medit) → Cnew 50.0∗† 67.7∗†§ 71.2 27.9 68.6∗† 78.7 18.7† 30.1∗ 56.8§

(C, M ) → Cedit ⇒ Cnew 50.2∗ 67.9∗ 71.7 25.6† 68.5∗ 100.0§ 2.3 4.6 51.2
(C, Mold M ) → Cedit ⇒ Cnew 50.0† 67.8† 71.6† 25.2 68.4† 93.3∗§ 0.8 1.5 50.4
(C, Medit) → Cedit ⇒ Cnew 52.0 68.9 72.2 27.0∗ 69.4 99.6§ 7.4 13.7† 53.7†

+features 56.1 71.3 73.4 30.2 71.4 98.5∗ 18.2∗† 30.8∗ 59.0

Table 13: Results for various configurations of Update w/ implicit detection on the full test set. Scores for which the difference
in performance is not statistically significant are shown with identical symbols.

F Update w/ Implicit Detection
Configurations

The update components of our combined detection+update
systems are based on the architecture proposed by Panthap-
lackel et al. (2020b) for automatically updating comments
based on code changes. As mentioned in Section 7.1, their
approach entails encoding C and a sequential code edit rep-
resentation (Medit), and then using attention and a pointer
network over these learned representations to decode a se-
quence of comment edit actions (Cedit). The edit action se-
quence is finally parsed into an actual comment (Cnew) as
a post-processing step. This approach was initially designed
to handle only cases in which a comment has to be updated.
Our Update w/ implicit detection baseline model applies this

approach on both positive (i.e., inconsistent comments that
should be updated) and negative (i.e., consistent comments
that should not be updated) examples. Since their approach
was not designed to support negative examples, we evaluate
whether other input/output configurations of their architec-
ture would be better suited for our setting. Because the fea-
tures proposed in Panthaplackel et al. (2020b) were tailored
towards the specific inputs and outputs of their architecture,
we disable features for these various configurations. How-
ever, we do evaluate how these configurations compare to
the full model, which includes features.

We present results for the cleaned test sample and full
test set in Tables 12 and 13. Our notation for input/output
configurations is as follows: (inputs) → output. If the model
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(a) Example from OpenAPI Generator (b) Example from OWASP ZAP

Figure 7: Examples in which inconsistencies emerged as a result of developers failing to update comments upon code changes.
Predictions of the combined, pre-trained detection+update approach are shown.

generates Cedit which is then parsed into Cnew, we use the
following notation on the output side: Cedit ⇒ Cnew. Note
that (C, Medit) → Cedit ⇒ Cnew + features corresponds
directly to training Panthaplackel et al. (2020b)’s model on
the full training set (positive and negative examples), i.e., the
Update w/ implicit detection model used in the main paper.

Similar to our findings from Appendix E, we observe that
explicitly encoding code edits (Medit) significantly boosts
performance across most metrics, independent of the output
configuration. Training the model to generate Cedit appears
to yield improved performance across most update metrics,
but this appears to deteriorate performance w.r.t. the detec-
tion metrics. However, none of these configurations that rely
on implicit inconsistency detection can outperform Panthap-
lackel et al. (2020b)’s approach (trained only on positive
examples) on detection F1 or Acc. By incorporating fea-
tures, we see improvements across most metrics, but the
SARI and F1 metrics are still substantially higher for Pan-
thaplackel et al. (2020b). Furthermore, the pretrained and
jointly trained models presented in tables 4 and 10 can out-
perform all of these configurations. This study confirms that
even under various input/output configurations, without an
explicit inconsistency detection component, a combined de-
tection+update system cannot adequately identify inconsis-
tent comments. Even in scenarios in which a possible up-
date cannot be suggested, we argue that flagging inconsis-
tencies and alerting developers would be a critical function-
ality of such a system. Therefore, implicitly performing in-
consistency detection, as done by the various configurations
of Update w/ implicit detection, is not sufficient.

G Detecting Existing Inconsistencies
Recall that in our data collection procedure, we assign the
negative (i.e., consistent) label to examples in which the de-
veloper did not update a comment following code changes.
Based on our inspection of a sample of the full, unannotated
test set, we find examples that are mislabeled as negative,
and our model can correctly identify some of these cases.
For instance, in the example shown in Figure 7(a), the de-
veloper failed to amend the comment to indicate that the
method no longer returns enumNumber but rather its value

or null if it is not set. Similarly, in Figure 7(b), the devel-
oper failed to update ZapTextField to JPasswordField
in the comment when the return type of the method was
modified. The inconsistency in the OWASP ZAP project was
fixed after we reported the issue and the inconsistency in the
OpenAPI Generator project continues to persist today (at the
time of submission). 2

Our inconsistency detection model correctly predicts the
positive label for both of these cases, suggesting that it
would have been able to potentially prevent these inconsis-
tencies by alerting developers just-in-time. Furthermore, by
combining our pretrained HYBRID(C, Medit, Tedit) + fea-
tures detection model with a pretrained update model (Pan-
thaplackel et al. 2020b), we can additionally produce sug-
gestions for resolving these inconsistencies. Note that be-
cause the update model is trained on subtokenized com-
ments, it is not able to produce tokens like enumNumber;
however, simple heuristics could be used to conjoin subto-
kens in the final prediction. While the suggested updates
are not perfect, they could serve as starting points to help
guide developers in updating comments. Nonetheless, this
suggests that our approach can also be applied to detect ex-
isting inconsistencies (i.e., post hoc detection) by analyzing
the history of changes to a particular comment/method pair.

H Hyperparameters
Hyperparameters were tuned on validation data. For hidden
dimension size, we considered {64, 128}. For number of at-
tention heads, we considered {1, 4, 8}. For dropout, we con-
sidered {0.2, 0.3, 0.6}.

I Software and Hardware
We implemented all neural models using PyTorch, and rely
on PyTorch’s default initialization methods for initializing
model weights. We use the scikit-learn library to compute
evaluation metrics for inconsistency detection. All models
were trained on a single GPU, either NVIDIA Titan V GPUs
(12 GB) or GeForce GTX Titan Black GPUs (8 GB). The

2We have reported them as issues in their respective projects.
Warning: searching for these issues may reveal authors’ identities.
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# Epochs Training time

Detection

SEQ(C, M ) 16.3 1h 35.7s
GRAPH(C, T ) 15.3 26m 16s
HYBRID(C, M , T ) 28.3 2h 28m 10.3s
SEQ(C, Medit) 18.7 1h 23m 24.0s
GRAPH(C, Tedit) 15.0 29m 5.7s
HYBRID(C, Medit, Tedit) 14.7 1h 31m 42.3s
SEQ(C, Medit) + features 18.7 2h 38m 23s
GRAPH(C, Tedit) + features 17.3 1h 5m 21.7s
HYBRID(C, Medit, Tedit) + features 16.0 2h 51m 15.3s

Combined Detection+Update

Update w/ implicit detection 33.7 43m 20.7s
Pretrained update + detection

SEQ(C, Medit) + features 57.0 3h 2m 59s
Detection 18.7 2h 38m 23s
Update 38.3 24m 36s

GRAPH(C, Tedit) + features 55.6 1h 29m 57.7s
Detection 17.3 1h 5m 21.7s
Update 38.3 24m 36s

HYBRID(C, Medit, Tedit) + features 54.3 3h 15m 51.3s
Detection 16.0 2h 51m 15.3s
Update 38.3 24m 36s

Jointly trained update + detection
SEQ(C, Medit) + features 30.7 45m 22s
GRAPH(C, Tedit) + features 25.7 45m 17s
HYBRID(C, Medit, Tedit) + features 27.3 46m 11s

Table 14: Average number of training epochs, and training time for inconsistency detection models as well as the combined
detection+update models. Note that we used two different types of GPUs for these experiments, and therefore, the times are not
necessarily comparable across models. Additionally, following every epoch of training the detection-only models, we compute
precision, recall, F1, and Acc (using scikit-learn) on the validation data (as this determines the training termination condition),
which adds to the computation time.

average number of training epochs as well as the average
training times are provided in Table 14.

J Statistical Significance
We use bootstrap statistical significance testing (Berg-
Kirkpatrick, Burkett, and Klein 2012) with p < 0.05 and
10,000 samples of size 5,000 each.
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