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ABSTRACT
Regression testing is used to check the correctness of evolving
software.With the adoption of Agile development methodology, the
number of tests and software revisions has dramatically increased,
and hence has the cost of regression testing. Researchers proposed
regression test selection (RTS) techniques that optimize regression
testing by skipping tests that are not impacted by recent program
changes. Ekstazi is one such state-of-the art technique; Ekstazi is
implemented for the Java programming language and has been
adopted by several companies and open-source projects.

We report on our experience implementing and evaluating Ek-
stazi#, an Ekstazi-like tool for .NET. We describe the key challenges
of bringing the Ekstazi idea to the .NET platform. We evaluate
Ekstazi# on 11 open-source projects, as well as an internal Mi-
crosoft project substantially larger than each of the open-source
projects. Finally, we compare Ekstazi# to an incremental build sys-
tem (also developed at Microsoft), which, out of the box, provides
module-level dependency tracking and skipping tasks (including
test execution) whenever dependencies of a task do not change
between the current and the last successful build. Ekstazi# on aver-
age reduced regression testing time by 43.70% for the open-source
projects and by 65.26% for the Microsoft project (the latter is in
addition to the savings provided by incremental builds).
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1 INTRODUCTION
Regression testing—running tests at a new project revision to en-
sure absence of regressions—is commonly used in industry to check
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the correctness of evolving software [16, 25, 29, 30]. The widespread
adoption of Agile development methodology has led to a rapid in-
crease in the number of tests and revisions, substantially increasing
the cost of regression testing.

Regression Test Selection (RTS) techniques optimize regression
testing by skipping tests that are not impacted by the changes
introduced since the last test execution [33]. To this end, test depen-
dencies are automatically tracked, i.e., discovered and remembered
between executions. Dependency tracking can be done at different
levels of granularity—statement, method, file, or module—leading
to different trade-offs. Tests whose dependencies did not change
since the last test execution may safely be skipped.

Researchers mostly studied RTS techniques with fine-grained
dependencies, such as statements or methods [8, 9, 33]. These tech-
niques collect dependencies either statically or dynamically. A tech-
nique that finds dependencies statically may be unsafe (i.e., it may
miss to run some tests as it may not discover all true dependen-
cies) [18]. On the other hand, a technique that collects dynamic
fine-grained dependencies may introduce substantial overhead [13].

A common approach in industry is to use module-level RTS, i.e.,
track dependencies between project modules (arguably due to the
high cost of fine-grained dependencies). Module-level RTS is cur-
rently available in many modern build systems [1, 2, 14], including
Microsoft’s CloudMake [5, 14]. Consider a project with two mod-
ules: M1 and M2, where M2 depends on M1. Assume also that there are
two test modules TM1 and TM2 that exercise M1 and M2, respectively.
If a module changes (e.g., M1), CloudMake executes all tasks that
transitively depend on the changed module; this includes its own
test module (TM1), as well as the tests of all of its dependents (TM2).
Module-level RTS is imprecise, i.e., runs more tests than necessary.
This happens because dependencies are associated with a group of
tests (i.e., a test module) rather than with individual tests, and de-
pendencies are on modules rather than on individual classes inside
those modules.

To balance the trade-offs between overhead, safety, and precision,
we recently developed Ekstazi, an RTS tool for Java that collects
dynamic file dependencies [13]. Specifically, Ekstazi collects file
dependencies for individual test classes, and it computes checksums
of each dependency. At a new revision, Ekstazi recomputes check-
sums, finds modified files, and runs test classes that depend on at
least one of those files. Ekstazi has been shown effective in reducing
both the number of executed test classes and testing time [13]. As
a result, Ekstazi has been adopted by a number of open-source
projects (e.g., Apache Camel and CXF [6]).

The current implementation of Ekstazi supports only languages
that run on the Java Virtual Machine (JVM). Although the basic
idea behind Ekstazi is fully generic and readily applies to other lan-
guages, in practice, however, implementing it for a new language
may be hampered by various architectural differences between Java
and that other language. In this paper, we address the challenges of
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Figure 1: An example project used to illustrate file-level
(dashed lines) and module-level dependencies (solid lines)

bringing the Ekstazi technique to .NET and provide a freely avail-
able implementation: Ekstazi# (https://github.com/marko-vasic/
ekstaziSharp). Additionally, we compare the efficacy (in terms of
end-to-end test execution time savings) of file-level RTS (as imple-
mented in Ekstazi#) to module-level RTS that is typically provided
by a build system capable of performing incremental builds.

We evaluated Ekstazi# on 11 open-source projects, totaling 313,166
lines of code and over 220 revisions. We measured (1) the number
of non-executed (skipped) test methods, and (2) total savings in
test execution time. On average (across all projects and all revi-
sions), Ekstazi# executed only 32.62% of test methods (compared
to RetestAll, i.e., running all tests at every revision), reducing total
test execution time by 43.70%.

We also evaluated Ekstazi# at Microsoft, on an internal project
substantially larger than each one of our open-source projects: it
consisted of 45 program modules and 37 test modules (one module
means one .dll file), totaling 2,730 .cs files and 391,992 lines of
code. This project is built using Microsoft’s latest incarnation of
CloudMake, called Concord [24]. Concord is a general-purpose
build system featuring dependency tracking and incremental builds
(skipping tasks whose dependencies did not change), meaning that
module-level RTS is provided out of the box. Our results show that
in addition to the saving provided by Concord, Ekstazi# reduced the
number of executed test methods by 75.61% and total test execution
time by 65.26%.

2 FILE-LEVEL VS. MODULE-LEVEL RTS
This section illustrates file-level and module-level RTS techniques
and describes relevant features of Concord and Ekstazi.

Figure 1 shows an example project that includes two modules
(M1 and M2) and two test modules (TM1 and TM2).

Concord is a general-purpose (language-agnostic) build system.
That means it only knows about files, build tasks, dependencies
between tasks, and how to execute each build task. To build the ex-
ample in Figure 1, the user has to specify that the program modules
(M1, M2) are built by invoking the C# compiler, and the test modules
(TM1, TM2) are built by first invoking the C# compiler and then run-
ning XUnit on the compiled DLL. Task dependencies (depicted with
solid lines in Figure 1) must also be statically specified by the user
(which is common for build systems supporting deterministic and
cacheable builds, including Microsoft’s CloudMake [5, 14], Google’s
Bazel [1], and Facebook’s Buck [2]).

When a build is requested, Concord detects modified files and
computes a transitive closure of affected modules; whichever test
modules are affected are executed. As a result, if M1 changed in any
way possible (e.g., a new, currently unused, class is added), all test
classes from modules TM1 and TM2 are executed. This is not due to
a deficiency of Concord; rather, this is a fundamental property of
a language-agnostic build system, which, as such, can only offer
module-level RTS capabilities.

Ekstazi is a dynamic RTS technique which, in contrast, collects
dependencies at a much finer level of granularity: for each test class,
Ekstazi dynamically observes and collects files that get used (in
any shape or form) during that test execution. As a result, file-level
dependencies are collected (shown with dashed lines in Figure 1).
Additionally, instead of detecting changes at the file level, which is
the best a language-agnostic build system can do, Ekstazi computes
smart checksums (excluding trivia like debug information) for each
class. When a build is requested, smart checksums are used to detect
changed classes, and previously collected dependencies are used to
detect affected tests that must be executed.

Going back to our running example, if only class C2 has changed,
Ekstazi executes only T1, while Concord executes all tests in mod-
ules TM1 and TM2 (i.e., T1, T2, T3, T4).

3 EKSTAZI#
Ekstazi# is an implementation, written in C#, of the Ekstazi tech-
nique for .NET.
Instrumentation: Before executing tests, all classes are instru-
mented to enable dependency collection. Ekstazi# instruments con-
structors and accesses to static methods and fields, using the Mono
Cecil library, which is similar to ASM for Java. Unlike Ekstazi which
instruments code dynamically (when a class is loaded), Ekstazi# in-
struments code statically (before executing tests), because dynamic
class rewriting is not supported in .NET.
Testing framework: Frequently, test classes for a single module
are run inside a single Virtual Machine. Therefore, to be able to
capture dependencies for each test class individually, we have to
detect the beginning and end of each test class. We do this by
instrumenting test class in a way that is specific to a testing frame-
work (we currently support NUnit and XUnit). In Ekstazi#, we
also support selection granularity on test methods, i.e., capturing
dependencies for individual test methods. We evaluate both (test
class and method) selection granularities.
Checksum: Ekstazi# implements smart checksums, which ignore
debug info for each class. Optionally, methods in a class can be
sorted by name, which adds resilience to simple formatting changes;
in our experiments, however, this provided no benefits. To compute
checksums, Ekstazi# relies on a 3rd party open-source library (https:
//crc32c.angeloflogic.com) and its implementation of CRC-32C.

4 EVALUATION
This section describes our evaluation of Ekstazi#. To this end, we an-
swer the following research questions using open-source projects:
RQ1: What are the average savings in test execution time?
RQ2: What are the average savings in number of executed tests?
RQ3: What difference does the smart checksum make?
RQ4: How does selection granularity affect performance?
Additionally, we evaluated Ekstazi# on a large project at Mi-

crosoft by answering the following questions:
RQ5: What are the average savings in test execution time and

number of tests for a large industrial project?
RQ6: How much savings can Ekstazi# provide on top of the

module-level savings of Concord?
Execution Platforms: We performed the experiments with the
open-source projects on a VM with 1-core, 2GB main memory, run-
ning Microsoft Windows 10. The host machine is a 4-core Intel(R)
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Table 1: Metrics of the Projects Used in the Evaluation

Project URL[https://github.com/] SHA LOC #Files Tests
classes methods

Abot sjdirect/abot.git c07b71af89 10,737 108 39.20 421.20
DynamicExpresso davideicardi/DynamicExpresso.git 186219674d 5,819 63 24.05 205.20
FCLP fclp/fluent-command-line-parser.git d8eade0f36 6,832 149 6.00 137.70
FluentValidation JeremySkinner/FluentValidation.git 445f6390f3 15,667 226 63.00 531.95
JsonFx jsonfx/jsonfx.git 1c72c653a2 34,839 151 35.10 781.10
MoreLinq morelinq/MoreLINQ.git d987f0ef30 9,784 161 64.50 494.75
Nancy NancyFx/Nancy.git ef567c2930 69,120 958 135.45 1,600.20
NewtonsoftJson JamesNK/Newtonsoft.Json.git 218c25c859 116,373 628 183.00 2,253.25
OptiKey OptiKey/OptiKey.git 84ea4049a4 23,440 292 50.00 190.00
RequestReduce mwrock/RequestReduce.git ddd623b5ee 16,477 137 13.00 97.00
Stateless dotnet-state-machine/stateless.git 7c03035f10 4,078 56 12.00 111.95
Avg. N/A N/A 28,469.63 266.27 56.84 620.39
Σ N/A N/A 313,166 2,929 625.30 6,824.30

Core(TM) i7-6700 CPU @ 3.40GHz with 16GB of RAM, running
Ubuntu 14.04 LTS. For the experiments at Microsoft, we used a
machine with 12-core Intel(R) Xeon(R) E5-1650 v3 CPU @ 3.50GHz
with 32GB of RAM, running Microsoft Windows 10.

4.1 Projects
4.1.1 Open-source Projects. To the best of our knowledge, this

is the first extensive study of regression testing on C# projects.
Therefore, one contribution (although minor) of this paper is a
collection of C# projects that could be a valuable starting point for
other researchers working on program analysis for .NET languages.

Table 1 shows some basic information about the projects used in
our study, including name, git URL, SHA of the latest used revision
in our experiment, number of lines of code (LOC) computed using
the cloc tool, number of all source (.cs) files, and the average number
of test classes and test methods per revision; the last two columns
show the average values computed across 20 revisions that are used
in the experiments. The last two rows show (where applicable) the
average and total values across all projects.

The C# projects used in this evaluation vary in size (from 4,078
to 116,373 LOC), number of test classes (from 6 to 183 test classes),
and domain of application.

4.1.2 Microsoft’s Project. We deployed Ekstazi# at Microsoft
and evaluated its benefits on a large project (referred to as MSProj)
with 45 program modules and 37 test modules, totaling 391,992
LOC, across 2,730 .cs files.

4.2 Experiment Setup
For each project, we chose the latest revision available, and per-
formed the following steps (similar to recent work on RTS [13]):
a) Select 20 (40 for MSProj) buildable revisions in the software

history that are closest to the latest available revision.
b) Restore (i.e., checkout) the oldest revision among the revisions

chosen in the previous step.
c) Execute tests with the RetestAll technique; this step reports the

total number of available tests and measures execution time.
d) Integrate Ekstazi#, select affected test classes, instrument classes,

and execute selected tests. This step collects new dependencies

for each executed test class, and reports the number of selected
test methods (#Sel), the overhead times spent selecting affected
tests (A[s]), instrumenting code (I [s]), and executing tests and
collecting new dependencies ((E+C)[s]).

e) If this is not the latest revision, move one revision forward, and
start again from step c).

4.3 Answers to the Research Questions
4.3.1 RQ1: What are the Average Savings in Test Execution Time.

The key metric for evaluating the benefits of an RTS technique is
the savings in end-to-end execution time [13]; in our experiments,
we do not include compilation in the end-to-end time. Table 2 shows
the execution time for Ekstazi# and RetestAll. Columns 4, 5, and 6
show analysis time, instrumentation time, and execution+collection
time, respectively. Each column shows the cumulative time across 20
revisions. Column 7 shows cumulative end-to-end time for Ekstazi#.
Column 9 shows cumulative end-to-end time for RetestAll. Finally,
the last column show the percentage of end-to-end execution time
(across all revisions) of Ekstazi# to RetestAll (time[%] = Total[s] /
E[s] * 100).

Our results show that Ekstazi# is effective, i.e., reduces the over-
all time compared to RetestAll, for all projects. For several cases,
namely JsonFx and OptiKey, the savings are not substantial. These
projects have high ratio of LOC over the number of test classes
and/or short test execution times (Table 1), so the overhead of in-
strumentation and analysis becomes quite high, and Ekstazi# can
barely make up for it during test execution; this is not surprising.
In sum, across all projects, Ekstazi# reduces test execution time to
56.30% on average.

4.3.2 RQ2: What are the Average Savings in Number of Executed
Tests? Table 2 also shows the total number of executed tests with
Ekstazi# and RetestAll in columns 3 and 8, respectively. In addition,
in column 10, we show test selection ratio, i.e., a number of selected
tests over the total number of executed tests with RetestAll (m[%]
= #Sel(Ekstazi#) / #Sel(RetestAll) * 100).

Test selection ratio (in terms of executed test methods) ranges
from 8.55% to 53.39%, and that it is on average 32.62%.
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Table 2: Comparison of Ekstazi# (Class Selection with Smart Checksum) and RetestAll Approaches

Project #Revs Ekstazi# RetestAll Test Selection
#Sel A[s] I[s] (E+C)[s] Total[s] #Sel E[s] m[%] time[%]

Abot 20 1,455 15.97 12.94 447.71 476.62 8,424 1,525.15 17.27 31.25
DynamicExpresso 20 1,267 1.54 1.22 46.85 49.62 4,104 128.11 30.87 38.73
FCLP 20 1,204 4.26 4.52 15.09 23.89 2,754 30.99 43.71 77.08
FluentValidation 20 3,013 5.50 3.01 26.88 35.39 10,639 84.43 28.32 41.91
JsonFx 20 4,648 4.51 5.19 9.61 19.32 15,622 19.50 29.75 99.07
MoreLinq 20 3,922 8.64 4.88 302.87 316.40 9,895 786.27 39.63 40.24
Nancy 20 8,563 33.19 14.63 516.98 564.81 32,004 1,337.41 26.75 42.23
NewtonsoftJson 20 24,061 45.44 25.35 255.30 326.10 45,065 433.76 53.39 75.17
OptiKey 20 1,348 30.08 16.54 34.18 80.81 3,800 84.79 35.47 95.30
RequestReduce 20 166 8.72 6.30 114.68 129.70 1,940 468.09 8.55 27.70
Stateless 20 1,012 2.34 2.27 44.00 48.62 2,239 96.02 45.19 50.63
Avg. 20 4,605.36 14.56 8.80 164.92 188.29 12,407.81 454.04 32.62 56.30
Σ 220 50,659 160.19 96.85 1,814.15 2,071.28 136,486 4,994.52 N/A N/A

Table 3: Class Selection with Regu-
lar Checksum

Project m[%] time[%]

Abot 17.27 30.23
DynamicExpresso 35.84 43.75
FCLP 43.71 81.25
FluentValidation 28.33 44.84
JsonFx 33.20 102.10
MoreLinq 39.63 35.67
Nancy 27.50 41.64
NewtonsoftJson 53.68 70.10
OptiKey 35.47 114.68
RequestReduce 8.55 26.94
Stateless 45.19 48.76
Avg. 33.48 58.17

4.3.3 RQ3:What Dif-
ference Does the Smart
Checksum Make? Ta-
ble 3 shows the re-
sults of Ekstazi# on the
open-source projects,
when we turn off the
smart checksum (Sec-
tion 3). We show test
selection ratio (Column
2) and percent of time
to run tests compared
to RetestAll (Column
3). These values should
be compared with the
values in the last two
columns in Table 2.

Our results show
that, on average, slightly fewer tests are run when using smart
checksum, 32.62% compared to 33.48%, saving 0.86%. Analysis time
is slightly higher with the smart checksum, due to additional com-
plexity of checksum computation. However, execution time is lower
due to savings in number of tests run. In total, the run with smart
checksum takes 56.30% to execute, while the run with regular check-
sum takes 58.17%, saving 1.87%.

4.3.4 RQ4: How does Selection Granularity Affect Performance.
Table 4 shows the results of Ekstazi# if we configure the tool to
use method-level, rather than class-level, selection granularity (Sec-
tion 3). As before, we show the test selection ratio (Column 2) and
percent of time to run tests with Ekstazi# compared to RetestAll
(Column 3). These values should be compared with the values in
the last two columns in Table 2.

Our results show that, on average, 24.79% of test methods are run
in case of method-level selection granularity, as opposed to 32.62%
when class-level selection granularity is used, saving 7.83% of exe-
cuted methods. Total execution time, however, is higher—76.05% (of
RetestAll) vs. 56.30%—due to increased overhead associated with
method-level selection. This is not surprising and it matches our

prior findings for Ekstazi [13]). The default for Ekstazi#, hence, is
to use class-level selection granularity.

Table 4: Method Selection with
Smart Checksum

Project m[%] time[%]

Abot 9.25 26.99
DynamicExpresso 30.67 40.56
FCLP 43.17 91.86
FluentValidation 23.42 108.53
JsonFx 25.69 172.46
MoreLinq 26.48 38.48
Nancy 12.79 37.82
NewtonsoftJson 45.63 112.46
OptiKey 5.68 148.74
RequestReduce 7.21 11.31
Stateless 42.78 47.36
Avg. 24.79 76.05

4.3.5 RQ5:What are
the Average Savings in
Test Execution Time
and Number of Tests
for a Large Industrial
Project. Table 5 shows
test execution time for
MSProj (described in
Section 4.1.2) with Ek-
stazi# over 40 revisions.
In all our experiments,
we run tests sequen-
tially to provide stable
measurement.

Table 6 shows the
comparison between
RetestAll and Ekstazi#
on MSProj; we discuss
the second row in the next section. RetestAll in this case simply
uses XUnit to execute all available tests in every revision. Column 3
shows the number of selected tests (i.e., all tests in case of RetestAll).
Column 4 shows time to execute selected tests (i.e., all tests in case
of RetestAll). Based on columns 3 and 4, we can see that Ekstazi#
(compared to RetestAll) reduces the number of executed test meth-
ods by 87.52% and the execution time by 91.05%. (Note that these
two numbers are not shown in any table).

4.3.6 RQ6: How Much Savings can Ekstazi# Provide on Top of the
Module-Level Savings of Concord. Concord supports incremental
and cached builds, so the RetestAll strategy is almost never used in
practice at Microsoft. Hence, here we evaluate whether Ekstazi#
can provide savings over what already comes for free from Concord
(which basically amounts to module-level RTS).

The setup for this experiment is similar to the setup we used
before, with a few important differences. Before building the project
for the first time (i.e., when the oldest revision is selected), we clear
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Figure 2: Selected tests (left), execution time (center), and cumulative time (right) for MSProj

Table 5: Breakdown of Time for MSProj

A[s] I[s] (E+C)[s] Total[s]

Ekstazi# 179.78 267.43 5,112.92 5,560.14

Table 6: Results for MSProj; Last two columns (m[%] and
time[%]) for Ekstazi# are Computed Relative to Concord

#Revs #Sel time[s] m[%] time[%]

RetestAll 40 123,154 62,090.62 N/A N/A
Concord 40 63,039 16,003.72 51.18 25.77
Ekstazi# 40 15,379 5,560.14 24.39 34.74

Concord's cache, so that the experiment starts with a clean state,
and the first build executes everything. When switching between
project revisions, we keep the cache intact. Concord uses the cache
to fetch the results of build tasks whose dependencies didn’t change;
in practice, that means not executing tests whose module-level
dependencies were not modified. After a project revision is built,
we use Concord's analysis tools to determine exactly which test
modules were executed. We pass those test modules to Ekstazi# and
let it instrument them and execute only the affected test classes.

Table 6 shows results for Concord (second row). Column 5 shows
reduction in the number of executed tests methods (Concord com-
pared to RetestAll and Ekstazi# compared to Concord). Ekstazi#
reduces the number of test methods by 75.61% and the execution
time by 65.26% compared to Concord. This result shows that file-
level RTS can be a great addition to modern build systems that
support module-level RTS.

There are a number of reasons why Ekstazi# selects quite fewer
tests. For example, our project contains a utility module (assembly)
consisting of a diverse set of functionalities used across the whole
project (which is a common pattern in software development in
general). For an assembly to make any use of those utilities (even a
single function), that assembly has to declare a dependency on the
whole utilities module. Consequently, whenever the utilities change,
e.g., a new function is added (which tends to happen often), Concord
executes all tests of all dependent modules. Ekstazi#, in contrast,
automatically collects more detailed dependencies (between test
classes and program classes), so it can be significantly more precise
when it comes to selecting tests that are sufficient for ensuring
absence of any regressions. Comparison among RetestAll, Concord,
and Ekstazi# is visualized in Figure 2. On the x-axis we have the
revision number (from older to newer). On the y-axis we have the

number of executed test methods (Figure 2 - left); end-to-end time
for a revision (Figure 2 - center); and cumulative end-to-end time
over revisions (Figure 2 - right).

5 THREATS TO VALIDITY
External: Our results may not generalize to projects not used in
this study. To mitigate this threat, we extensively searched various
repository hosting services for open-source C# projects. These
projects varied in size, number of tests, testing framework, and
domain of application. Additionally, we evaluated Ekstazi# on a
large Microsoft’s project.

We ran experiments for each group of projects (open-source
vs. Microsoft) on a single machine. The results could show different
savings on another platform. Tomitigate this threat, we run a subset
of projects on different hardware and observed similar savings.
Internal: Our implementation of Ekstazi# may contain bugs. We
have written a number of unit tests for Ekstazi#, which are similar
to those of Ekstazi, to increase our confidence in the correctness of
the implementation and its safety.
Construct: We have used 20 revisions per project (40 for MSProj);
the results could be different if we used longer sequences of revi-
sions or if we used a different window of revisions. Our experience
has shown that extending the sequences of revisions was not feasi-
ble for most of the projects due to missing dependencies for older
project versions [31] or due to changes in testing frameworks.

Although many RTS techniques have been proposed [8, 9, 33],
we compare only class and method selection granularity. To the best
of our knowledge, no other RTS technique has been implemented
in a publicly available tool for C#.

6 RELATEDWORK
RTS techniques: Most closely related tool is Ekstazi [12, 13] that
we extensively discussed throughout the paper. Other related tools
are those that dynamically collect test dependencies on statements,
methods [4, 34], or files (but require that each test is run in a sepa-
rate VM) [3]. Several tools collect test dependencies statically. For
example, Ren et al. [21] developed Chianti, a tool that statically
analyzes source code and collects dependencies on methods. Kung
et al. [17] proposed static RTS based on the class firewall, i.e., stat-
ically computed set of classes that may be affected by changes.
Recently, other researchers have evaluated class firewall approach
for Java [18] and C# [19]. Orso et al. [20] combined class firewall
with method dependencies. Skoglund and Runeson evaluated the
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class firewall approach [26] and combined it with dynamic class
dependencies. Later they showed that computing the class fire-
wall is not necessary if dependencies on classes are dynamically
collected [27]. We are the first to implement Ekstazi for .NET.
RTS in industry: Zheng et al. [35] proposed a black-box RTS
technique to identify changes in API of the given components and
evaluated the technique on one component at ABB. Elbaum et al. [7]
demonstrated benefits of (static) RTS on several Google projects.
Herzig et al. [16] introduced THEO, an RTS technique based on a
cost model. Our goal was to implement an existing RTS technique
for .NET and report our experience. Furthermore, we have studied
a dynamic RTS technique. Based on prior work, Ekstazi is safer
and more precise than static approaches [18] and, as shown in this
paper, more precise than techniques that analyze entire modules.
Other work on regression testing: Many other techniques have
been proposed to improve regression testing. Test-case prioritiza-
tion techniques reorder tests to identify failing tests faster [23, 33].
For example, Srivastava and Thiagarajan [28] introduced Echelon
at Microsoft; Echelon orders tests based on the basic block coverage
(i.e., tests that cover more basic blocks are run first). Test suite re-
duction techniques identify redundant tests that should be removed
from the test suite [22, 33]. While our work focuses on RTS, our
infrastructure could be a base for test-case prioritization and test
suite reduction techniques that are based on coverage.
Build systems: Many existing build systems: Make [15], Cloud-
Make [5], CloudBuild [11], and Bazel [1] compute dependencies
statically. This leads to overapproximation, i.e. a build target may
not depend on all specified dependencies. In such cases the build
target will be triggered even if an unrelated file gets modified; these
build targets are considered underutilized. Vakilian et al. [32] aim
to address underutilization by searching for an optimal repartition-
ing of build targets. Furthermore, to improve the build utilization
Erdweg et al. [10] proposed Pluto, a build system with dynamic
dependencies. Ekstazi# is more precise then build systems that stat-
ically compute dependencies, and those that do it dynamically have
not yet made breakthrough to the commercial usage, even if they
did our tool would still be more effective since it collects dependen-
cies on a level of classes or methods that are part of a bigger file
(DLL or EXE) that encompasses many classes and methods.

7 CONCLUSION
We presented Ekstazi#, a tool for regression test selection that
implements the Ekstazi technique (originally for JVM) for .NET.
We discussed challenges faced due to the underlying differences
between JVM and .NET. We evaluated Ekstazi# on 11 open-source
projects and one large project at Microsoft. Our results showed that
Ekstazi# can substantially reduce the test execution time, evenwhen
compared to a module-level RTS technique, which is supported by
modern build systems. In conclusion, Ekstazi# is a robust tool that
would be a valuable addition to any modern build system and any
project with long test execution.
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