
JPR: Replaying JPF Traces Using Standard JVM

Kaiyuan Wang, Sarfraz Khurshid, Milos Gligoric
Department of Electrical and Computer Engineering, The University of Texas at Austin

{kaiyuanw,khurshid,gligoric}@utexas.edu

ABSTRACT
Java PathFinder (JPF) is a backtrackable Java Virtual Machine
(JVM), which is implemented in Java and runs on a standard JVM
(e.g., Oracle HotSpot). Thus, a JPF developer can use off-the-
shelf Java debuggers (e.g., jdb) when debugging code that makes
up JPF. JPF explores all non-deterministic executions of a given
target program and monitors for property violations. To facilitate
debugging of the target program, JPF can capture and replay the
execution trace that leads to a property violation. While the
deterministic replay is invaluable, the replay with JPF does not
allow the developer to attach an off-the-shelf Java debugger to
the target program (e.g., step through the application code, set
breakpoints, etc.).

We present a technique, dubbed JPR, to improve the debugging
experience of the JPF captured traces by migrating the JPF traces
to a new format that can be executed using the standard JVM.
JPR annotates each JPF trace, during the capture phase, with ex-
tra data (e.g., instruction index, instruction count, etc.); the an-
notated trace is then used to instrument Java bytecode to enforce
the same execution trace on a standard JVM. JPR is compatible
with various optimizations, e.g., state matching and partial-order
reduction. We evaluated JPR on all multi-threaded Java pro-
grams in the official JPF distribution. Our results show that JPR
successfully replayed all JPF traces on the standard JVM with
reasonable overhead during both recording and replaying.

Keywords
JPF; Debugging; Replay; Execution Traces

1. INTRODUCTION
Multi-threaded programs are notoriously hard to get right. These
programs are frequently afflicted by concurrency bugs, such as
data-races, deadlocks, atomicity violations, etc. Automatically
discovering these types of bugs requires sophisticated static and/or
dynamic program analysis techniques (e.g., [4, 8, 7]).

Java PathFinder (JPF) is an explicit state software model checker
for Java programs [19]. JPF is implemented as a backtrackable
Java Virtual Machine (JVM), which explores (all) non-deterministic
schedules of the given target program while monitoring for viola-
tions of various (user-provided) properties (e.g. deadlocks). If JPF
discovers a property violation, it provides an execution trace that
includes detailed execution information for each thread, as well
as the order in which the threads were scheduled.

To debug a multi-threaded program developers need, in addition
to a technique that discovers a concurrency bug, a technique to
capture and replay the execution trace that exposed the bug [2, 6,
5, 17, 16, 20]. If such capture and replay mechanism is available,

a developer can attach an off-the-shelf debugger during the replay
to inspect the buggy program state.

While JPF can capture and replay an execution trace, it is in-
feasible to debug the trace with an off-the-shelf Java debugger
(e.g., jdb), because JPF does not support the Java Debug Inter-
face [11]. If a developer, working on the target program, attempts
to attach a debugger to the standard JVM that is running JPF
code (recall that JPF itself is implemented in Java), the developer
would be able to step through the code that makes up JPF, set
breakpoints, and inspect variables, but could not easily do so for
the code and state of the target program; the state of the target
program (including the heap) is stored in integer arrays.

We present a technique, dubbed JPR, to improve the debugging
experience of the execution traces (captured by JPF) by migrating
JPF traces to a new format that can be executed using a standard
JVM (e.g., Oracle HotSpot). This allows the application devel-
oper to attach an off-the-shelf debugger during the replay of the
trace on a standard JVM.

JPR captures the thread schedule and the transition points (e.g.,
instruction counts and instruction indexes) via a JPF listener [19],
it uses the captured information to instrument Java bytecode of
the target program (via the instrumentation package [12] and the
ASM bytecode engineering library [1]) to insert scheduling events,
and enforces the execution with a thread scheduler, which is a
separate thread that takes as input the JPF captured execution
trace and enables the execution of one thread at a time.

JPR is similar to an earlier work by Schuppan et al. [17], which
enabled an execution of a JPF trace using a standard JVM. One
of the key differences is the scheduling mechanism. The previous
work modifies the target program, such that each thread, prior to
the end of a transition, notifies the next thread to be executed;
this approach requires modifications to the target program and
substantial modifications to the invocations of wait, notify, and
notifyAll primitives. On the other hand, JPR does not modify
any method invocation, but only inserts schedule events at the
end of each transition; a separate thread is used to enforce the
schedule and enables one thread at a time.

We evaluated JPR on all multi-threaded examples distributed
with JPF. We measured the overhead to capture additional infor-
mation needed to migrate the JPF trace, as well as the overhead
to replay the execution using a standard JVM. Our results show
that JPR introduces negligible overhead in both phases.

2. BACKGROUND AND EXAMPLE
This section provides a brief background on the key technology
utilized by JPR and illustrates JPR on an example program.

1 class Fork {}
2 class Phi losopher extends Thread {
3 Fork l e f t , r i g h t ;
4 Ph i losopher (S t r i ng name , Fork l e f t , Fork r i gh t) {
5 super (name) ;
6 this . l e f t = l e f t ;
7 this . r i g h t = r i g h t ;
8 }
9 @Override

10 public void run () {
11 // think
12 f i r eEven t (4)
13 synchronized(l e f t) {
14 f i r eEven t (5)
15 synchronized(r i g h t) {
16 // eat
17 }}}}

1 class Din ingPhi l {
2 static int nPhi losophers = 2 ;
3 public static void main (S t r i ng [] args) {
4 i f (args . l ength > 0) {
5 nPhi losophers = In t e ge r . pa r s e In t (args [0]) ;
6 }
7 Fork [] f o r k s = new Fork [nPhi losophers] ;
8 for (int i = 0 ; i < nPhi losophers ; i++) {
9 f o r k s [i] = new Fork () ;

10 }
11 for (int i = 0 ; i < nPhi losophers ; i++) {
12 Phi losopher p = new Phi losopher (
13 ”Phi l ” + i ,
14 f o r k s [i] ,
15 f o r k s [(i + 1) % nPhi losophers]) ;
16 p . s t a r t () ;
17 }}}

Figure 1: Dining Philosophers examples from the official JPF repository

2.1 Java PathFinder
JPF is an explicit-state model checker that implements a back-
trackable Java Virtual Machine (JVM). JPF systematically ex-
ecutes Java programs by exploring all non-deterministic choices
(e.g., thread interleavings). Each execution trace is a sequence
of transitions and each transition is a sequence of bytecode in-
structions (executed by a single thread) that takes the program
from one state to another; each transition ends with an observable
instruction [19].

JPF listeners is an extension mechanism to either observe or mod-
ify a state of a program. JPF listeners are used to implement var-
ious properties that a program should (not) satisfy, e.g., deadlock
detection. Listeners are executed in the same JVM as JPF, which
provides an easy access to the entire program state (e.g., state of
each thread). As described in Section 3.1, we implement a JPF
listener to collect execution traces, including thread schedule for
each trace and transition points. This is the first step towards
enabling the replay of JPF execution traces on standard JVM.

2.2 ASM Bytecode Engineering Library
ASM is an all purpose Java bytecode manipulation and analysis
framework [1]. It can be used to modify existing classes or dynam-
ically create new classes. ASM provides common transformations
and analysis algorithms, which allow to easily assemble custom
complex transformations and code analysis tools.

In this paper, we implement a schedule event injector using the
ASM library. The event injector inserts special “fire” event at
interesting points (e.g., end of transitions) in the target classfiles
according to the extracted JPF execution traces.

2.3 JPR Through An Example
We use a traditional example – dining philosophers – to illustrate
synchronization issues, execution traces, and replay. A group of
philosophers are at a round table with bowls of spaghetti in the
middle. Forks are placed between each pair of adjacent philoso-
phers. Each philosopher must alternately think and eat. However,
a philosopher can only eat spaghetti when holding both (left and
right) forks. Each fork can be held, at any given time, by only one
philosopher. After a philosopher finishes eating, he/she needs to
put down both forks so that the forks become available to others.

Figure 1 shows the source code for the dining philosophers avail-
able in the official JPF source code repository; we ignore the blue
part for now (i.e., fireEvent invocations). For simplicity, we ex-
ecute this program with only two philosophers. Figure 2 shows a
part of the state space exploration if we run JPF against the exam-

41

Thd1:DiningPhil.java
monitorenter: 4

42

Thd1:DiningPhil.java
monitorenter: 9

43

Thd1:DiningPhil.java
directcallreturn: 2

Thd2:DiningPhil.java
monitorenter: 4

44

Thd2:DiningPhil.java
directcallreturn: 2

45

46

Thd1:DiningPhil.java
monitorexit: 11

Thd2:DiningPhil.java
monitorenter: 9

47

Thd1:DiningPhil.java
directcallreturn: 2

Thd2:DiningPhil.java
monitorenter: 9

48

Thd2:DiningPhil.java
directcallreturn: 2

49

Thd1:DiningPhil.java
monitorexit: 19

50

Thd1:DiningPhil.java
directcallreturn: 2

Thd2:DiningPhil.java
directcallreturn: 2

51

Thd2:DiningPhil.java
directcallreturn: 2

52

Thd1:DiningPhil.java
directcallreturn: 2

53:gov.nasa.jpf.vm.NotDeadlockedProperty

Figure 2: Part of JPF state space graph for DiningPhil

ple. Each rectangle represents a transition and each circle repre-
sents a program state. The circle (at the very bottom) highlighted
in green denotes termination, and the diamond node highlighted
in red denotes a state which violates the JPF built-in properties.
The second line in each transition shows the bytecode instruction

1 // Sta rt o f Main . . .
2 // Sta rt o f Thread Phi l 0 .
3 Phi losopher , run ()V, monitorenter , 4 , Phi l 0 ,1 ,4 // f i r eEven t (4)
4 // Sta rt o f Thread Phi l 1 .
5 Phi losopher , run ()V, monitorenter , 4 , Phi l 1 ,1 ,4 // f i r eEven t (4)
6 Phi losopher , run ()V, monitorenter , 9 , Phi l 0 ,1 ,5 // f i r eEven t (5)
7 Phi losopher , run ()V, monitorenter , 9 , Phi l 1 ,1 ,5 // f i r eEven t (5)

Figure 3: Part of Dining Philosophers deadlock schedule

which leads to a choice generator (potential context switch point,
but not the instruction to be executed next). The first line in each
transition gives the current executing thread and the source file
of that bytecode instruction. JPF explores five paths according
to the state space graph and only one of the execution paths leads
to a deadlock. The deadlock happens when both Phil0 and Phil1
have started and entered the synchronized(left) block but can-
not enter the synchronized(right) block. We configured JPF to
use state matching and partial order reduction, which impacted
the shape of the explored state space.

Our customized listener extracts scheduling information for each
execution path and saves it to a file. We collect the first in-
struction in each transition and the number of times it has been
executed on the current path before leading to the transition. Our
schedule injector uses these transition information to insert “fire”
events before each bytecode instruction that leads to a transition.
These fire events block threads, which are then enabled (one at
a time) by the thread scheduler. The thread scheduler enables a
thread when all threads are blocked.

Figure 3 shows a part of the schedule that leads to a deadlock.
Each line contains information about the first instruction in a
transition, obtained from Figure 2. Each line includes the follow-
ing information:

ClassName, MethodName, InstructionMnemonic, InstructionIn-
dex, ThreadName, NumOfExecutedTimes, EventId

where ClassName and MethodName are the class and method (name
+ signature) the bytecode instruction belongs to. Instruction-

Mnemonic is a mnemonic of the bytecode instruction (e.g., moni-
torenter). InstructionIndex is the offset of the instruction in
the current method. ThreadName is the name of a thread that exe-
cutes the instruction; we assume that each thread is given a unique
name that is constant across several runs. NumOfExecutedTimes

is the total number of times the instruction (uniquely identified
with the class name, method name and index) has been executed
on the current execution path. We use this information to enforce
orders of instructions if some of them are executed multiple times
in a single run (e.g. in a for/while loop). EventId is the unique
id assigned to the bytecode instruction. For example, the moni-

torenter instruction at index 4 (class: Philosopher; method:
run) represents synchronized(left) and monitorenter (same
class and method) at index 9 represents synchronized(right).

To reproduce the deadlock in Figure 2 on a standard JVM, JPR
inserts an invocation to the “fire” event before each monitorenter

instruction according to the schedule in Figure 3. Note that we
insert these invocations on the bytecode level, although we show
these calls in the source code in Figure 1. Each thread will block
at the fire event when the instruction is executed the appropri-
ate number of times based on the recorded schedule. Our thread
scheduler iterates over each line in the captured trace and un-
blocks only the relevant thread until no more events are available
in the trace. In our running example, Phil0 first starts and blocks
at fireEvent(4) (line 3 in Figure 3), then Phil1 starts and blocks

Figure 4: JPR overview

at fireEvent(4) (line 5). Both threads are blocked before syn-

chronized(left). Our thread scheduler then enables Phil0, be-
cause that is the next event in the captured trace. Phil0 tries to
grab its left lock and blocks again at fireEvent(5) (line 6). The
thread scheduler then enables Phil1. Phil1 tries to grab its left
lock and blocks again at fireEvent(5) (line 7). At this point, our
scheduler detects that no thread is alive and throws an instance
of the DeadlockException type.

3. TECHNIQUE
This section presents the details behind JPR, which captures JPF
execution traces and replays those traces on a standard JVM. Fig-
ure 4 gives the high-level overview of our tool. The blue area shows
the scope of our tool. The yellow areas show the existing tools.
We implemented the green areas to capture and replay the exe-
cution traces. The input to JPR is a compiled Java program; the
compiled program should either have a main method or include a
test method written in the JUnit style. The following subsections
describe the key components of JPR.

3.1 Schedule Generator
JPR runs the given target program on top of JPF and captures
the execution traces with a custom listener. The listener inter-
nally builds a state space graph during the exploration; once the
exploration is finished, the listener traverses the graph and writes
each execution trace into a separate file. Note that we can eas-
ily configure JPR to capture only execution traces that lead to a
property violation.

JPR builds on the idea that knowing the first instruction in each
transition, and the thread that executes the instruction, is suffi-
cient to replay the trace. Thus, JPR inserts one fire event prior to
each instruction that starts a new transition. Our technique cur-
rently creates schedules that enforce the execution of one thread
at a time (which closely follows the way in which JPF explores the
state space); we leave it for our future work to explore generating
schedules that allow the execution of independent transitions by
multiple threads simultaneously.

There are three ways in which a trace may end during the JPF
exploration. First, all threads successfully finish the execution.
In this case, no special instructions are needed in the generated
trace. Second, there was a state matching [19]. In this case, the
generated trace includes a special flag, which will be interpreted
by our thread scheduler (Section 3.4). Third, there was a property
violation. In this case, the generated trace includes a fire event
before the next instruction executed by each thread. This blocks
the threads at the point when a property is going to be violated.

To avoid generating unnecessary scheduling events, we only con-
sider instructions that belongs to user-given classes and ignore
instructions from the standard Java library. Furthermore, when

JPF finishes the exploration, JPR detects and removes duplicate
generated traces. (Note that JPF explores a substantial number
of duplicate traces despite various optimizations.)

3.2 Event Injector
The Event Injector takes as input the set of generated traces (in
the previous step) and instruments bytecode of the target pro-
gram; we modify the original class file as shown in Figure 4. For
each entry in the generated trace, the Event Injector finds the
name of the class, the name of the method, and the index of
the bytecode instruction. Next, it locates the classfile that corre-
sponds to the class in the event and inserts a “fire” event in the
method at appropriate index (before the instruction). The argu-
ment to the fire event is the unique instruction id; each instruction
that starts at least one transition is assigned a unique id by JPR.

3.3 Sleep Remover
The Sleep Remover replaces Thread.sleep(long) method invo-
cation with the POP2 bytecode instruction. Since we are enforc-
ing the thread execution, sleeps (or any other timed delays) have
no impact on the schedule and therefore can be safely ignored.
Note that we need to insert a bytecode instruction to remove the
arguments that were intended for the sleep method invocation.
In addition to sleep, we also modify timed wait invocations in
a similar way. It is interesting that removing sleeps may result
in an execution that is faster than non-enforced execution with
sleeps [10] as we will illustrate in our evaluation.

3.4 Thread Scheduler
Finally, JPR runs the instrumented target program on a standard
JVM. The instrumented code will spawn, when the instrumented
classes are loaded, a thread scheduler, which is implemented as a
daemon thread.

The Thread Scheduler ensures that only one thread is enabled at
any given time. The Thread Scheduler loads one of the gener-
ated execution traces and enables the next thread as specified
in the trace when all threads are blocked. If all threads are
blocked and the next event in the trace is a special flag to indicate
that state-matching was encountered during JPF exploration, the
Thread Scheduler simply invokes System.exit(0). If all threads
are blocked, then the Thread Scheduler reports a deadlock prop-
erty violation (by throwing the DeadlockException). Finally, if
any of the threads throws an unexpected exception, then the ap-
plication terminates with a property violation.

4. EVALUATION
In this section, we present our initial evaluation of JPR. Specif-
ically, we evaluated JPR using all multi-threaded programs that
are available in the official JPF distribution, as well as a couple
of test cases from the Apache Commons Collections project.

Table 1 shows our experiment results. The “Subject” column lists
all subjects used in the experiment. The “Total” column shows
the total number of execution traces generated by the JPF lis-
tener. The “Unique” column shows the unique number of sched-
ules out of “Total”. The “Failed” column shows the number of
schedules that violates a property (including assertion failures).
The “JVM” column shows the time to execute a subject on Or-
acle’s JVM without enforcing the thread schedule. The “JPF”
column shows the time to run the subject on top of JPF with-
out our listener. The “Generator” column represents the time to
generate all schedules without duplicates. The “Injector” column
shows the time to inject fire events, i.e., to instrument bytecode.

The “TestAll” column shows the time to replay all unique traces
with our Thread Scheduler on Oracle’s JVM.

We run all experiments on a Intel(R) Core(TM) i7-4870HQ CPU
@ 2.5GHz with 16GB of RAM, running OS X El Capitan and
Java 1.8.0 121.

The official JPF distribution comes with several multi-threaded
subjects, including BoundedBuffer, DiningPhil, OldClassic and
Racer. The rest of the subjects used in our study include test
cases from Apache Commons Collections used in prior work on
multi-threaded testing [10]. The name for these subjects in the
table consists of the test class name and test method name.

As shown in Table 1, the total numbers of execution traces for JPF
examples are all less than or equal to 5 and every generated trace
is unique. For subjects taken from Apache Collections, the total
numbers of execution traces are larger (from 22 to 28). Less than
half of the traces for Apache tests are duplicates. JPF reports
a property violation (either a deadlock or an exception) for each
of the JPF examples. No violation of properties is reported for
Apache Collections tests.

For all the multi-threaded programs from the JPF distribution,
the execution time on Oracle JVM is mostly less than 1 second.
However, BoundedBuffer and OldClassic never terminate and
their execution will always end up with deadlocks. Racer invokes
Thread.sleep(1000), therefore, it takes slightly more time than
1 second to complete. For JPF subjects, the JPF execution time
is always less than 1 second. For Apache Collections tests, the
JPF execution time is a slightly over 1 second. With our schedule
generator listener, the JPF execution slightly increases.

In all cases, the Event Injector takes almost constant time to insert
fire events in the bytecode. This is mainly because the number of
unique schedules in our subjects is small. We do not list the sleep
remover time because it is negligible compared to other steps.

The time to replay all thread schedules on the Oracle’s JVM is
less than 1 second for each JPF subject. For Apache tests, it takes
about 3 seconds to replay. Although replay may introduce some
overhead (due to the Thread Scheduler and sequential execution),
this is not a concern in the envisioned use cases when a developer
is trying to replay and debug the target program.

We use the exploration with no listener as a baseline to compute
the slowdown for the schedule generator. We found that on av-
erage our schedule generator slows down JPF execution with a
factor of 1.08. We also compared the average replay time for each
schedule with the time to run the program without our thread
scheduler. BoundedBuffer and OldClassic are excluded because
we do not have the baseline (due to the deadlock). Interestingly,
our replay engine is, on average, faster than running Oracle JVM
with a factor of 0.93 because Racer invokes Thread.sleep and
we safely remove that invocation (Section 3.3). To validate JPR,
we manually checked all schedule replays and found that they are
consistent with JPF explorations.

5. RELATED WORK
There is a vast amount of work on model checking and record
and replay; here, we only mention a few projects that are closely
related. Pan and Linton [15] record and replay the values of
shared objects at each access. LeBlanc and Mellor Crummey
implemented a scheme that records the order of accesses based
on version counters in Instant Replay [13]. Tai et. al. [18] use

Table 1: Numbers of Execution Traces and Execution Time

Subject
#Traces Time [s]

Total Unique Failed JVM JPF Generator Injector TestAll

BoundedBuffer 1 1 1 - 0.542 0.629 0.132 0.175

DiningPhil 5 5 1 0.099 0.531 0.563 0.127 0.617

OldClassic 5 5 1 - 0.514 0.538 0.139 0.630

Racer 4 4 1 1.104 0.492 0.504 0.130 0.431

TestBlockingBuffer-testGetWithAdd 22 14 0 0.209 1.279 1.390 0.138 3.070

TestBlockingBuffer-testGetWithAddAll 25 15 0 0.198 1.298 1.417 0.129 3.293

TestBlockingBuffer-testRemoveWithAdd 25 15 0 0.216 1.280 1.395 0.132 3.262

TestBlockingBuffer-testRemoveWithAddAll 28 16 0 0.211 1.318 1.448 0.157 3.573

a source-to-source transformation of an Ada program to replay a
sequence of synchronization events. Their scheme assumes that
shared variables are protected appropriately. Netzer [14] presents
an algorithm that reduces the amount of data generated by these
approaches. Choi et. al. [3] presents DejaVu which modifies JVM
and assigns a global order to all “critical events” for determinis-
tic replay. Huang et. al. [9] proposed LEAP, a local order based
replay tool that reduces run-time overhead compared to global
order based replay tools.

6. CONCLUSION
We presented JPR, a technique to enable replaying of JPF traces
on a standard JVM. JPR records transition points for each trace
explored by JPF, and it uses the recorded data to instrument
bytecode of the target program to insert flags to indicate the be-
ginning of a transition or a property violation. When executed on
a standard JVM, the instrumented program sends notifications to
a thread scheduler than enables one thread at a time (when all
threads are blocked) to enforce the original trace. We evaluated
JPR with all multi-threaded programs that are available in the
JPF distribution, as well as several tests from the Apache Com-
mons Collection project. Our results showed that we were able to
successfully replay the JPF traces with reasonable overhead.

Acknowledgments
We thank the fellow students of EE 382V (Software Evolution) at
The University of Texas at Austin for discussions on the material
presented in this paper. This research was partially supported
by the US National Science Foundation under Grants Nos. CNS-
1239498, CCF-1319688, and CCF-1652517.

7. REFERENCES
[1] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code

manipulation tool to implement adaptable systems. In In

Adaptable and extensible component systems, 2002.

[2] J.-D. Choi and H. Srinivasan. Deterministic replay of Java
multithreaded applications. In SIGMETRICS Symposium

on Parallel and Distributed Tools, pages 48–59, 1998.

[3] J.-D. Choi and H. Srinivasan. Deterministic replay of java
multithreaded applications. In Proceedings of the

SIGMETRICS Symposium on Parallel and Distributed

Tools, pages 48–59, 1998.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[5] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur. Framework for testing multi-threaded Java programs.
Concurrency and Computation: Practice and Experience,
pages 485–499, 2003.

[6] A. Georges, M. Christiaens, M. Ronsse, and
K. De Bosschere. JaRec: A record/replay system for
multi-threaded Java applications. In Parallel Computing:

Grids and Applications, pages 125–146. 2002.

[7] P. Godefroid. Model checking for programming languages
using VeriSoft. In Symposium on Principles of Programming

Languages, pages 174–186, 1997.

[8] G. Holzmann. The Spin Model Checker: Primer and

Reference Manual. Addison-Wesley Professional, first
edition, 2003.

[9] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight
deterministic multi-processor replay of concurrent Java
programs. In International Symposium on Foundations of

Software Engineering, pages 207–216, 2010.

[10] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and
D. Marinov. Improved multithreaded unit testing. In
International Symposium on Foundations of Software

Engineering, pages 223–233, 2011.

[11] Java Debug Interface, 2017. http://docs.oracle.com/
javase/7/docs/jdk/api/jpda/jdi/index.html.

[12] Java Tool Interface, 2017. https://docs.oracle.com/
javase/8/docs/technotes/guides/jvmti/index.html.

[13] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE Trans.

Comput., pages 471–482, 1987.

[14] R. H. B. Netzer. Optimal tracing and replay for debugging
shared-memory parallel programs. In Workshop on Parallel

and Distributed Debugging, pages 1–11, 1993.

[15] D. Z. Pan and M. A. Linton. Supporting reverse execution
for parallel programs. In Workshop on Parallel and

Distributed Debugging, pages 124–129, 1988.

[16] D. A. Popescu, E. D. Tirsa, M. I. Andreica, and V. Cristea.
An application-assisted checkpoint-restart mechanism for
Java applications. In International Symposium on Parallel

and Distributed Computing, pages 190–197, 2013.

[17] V. Schuppan, M. Baur, and A. Biere. JVM independent
replay in Java. Electron. Notes Theor. Comput. Sci., pages
85–104, 2005.

[18] K.-C. Tai, R. H. Carver, and E. E. Obaid. Debugging
concurrent ada programs by deterministic execution. IEEE
Trans. Softw. Eng., pages 45–63, 1991.

[19] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. Automated Software Engineering,
pages 203–232, 2003.

[20] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient
checkpointing of Java software using context-sensitive
capture and replay. In International Symposium on

Foundations of Software Engineering, pages 85–94, 2007.

