
Copyright

by

Steven Zhu

2021

Dynamic Generation of Python Bindings

for HPC Kernels

APPROVED BY

SUPERVISING COMMITTEE:

Milos Gligoric, Supervisor

Mattan Erez

Dynamic Generation of Python Bindings

for HPC Kernels

by

Steven Zhu, B.S.E.E

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2021

Dedicated to my mom and grandma.

Acknowledgments

I would like to first thank my thesis advisor, Professor Milos Gligoric,

for his guidance throughout the past year. I could not have completed this

work without his advice and encouragement along the way. His expert feedback

on the subject was invaluable to improving the quality of the thesis.

I also wish to thank Professor Mattan Erez for being the reader for my

thesis and taking time out of his busy schedule to provide valuable feedback.

I would like to thank Ian Henriksen and Arthur Peters for providing

feedback to our approach and suggesting related work, they greatly helped us

understand our position with regards to prior work.

I would also like to thank Nader Al Awar for editing the original draft.

His help has truly elevated the document to the next level.

This project is partially funded by the U.S. Department of Energy, Na-

tional Nuclear Security Administration under Award Number DE-NA0003969

(PSAAP III).

Lastly, I would like to thank my family for providing unconditional

support throughout the thesis and all my years of study. I would not be where

I am today otherwise.

v

Dynamic Generation of Python Bindings

for HPC Kernels

Steven Zhu, M.S.

The University of Texas at Austin, 2021

Supervisor: Milos Gligoric

Traditionally, high performance kernels (HPKs) have been written in

statically typed languages, such as C/C++ and Fortran. A recent trend among

scientists—prototyping applications in dynamic languages such as Python—

created a gap between the applications and existing HPKs. Thus, scientists

have to either reimplement necessary kernels or manually create a connection

layer to leverage existing kernels. Either option requires substantial devel-

opment effort and slows down progress in science. We present a technique,

dubbed WayOut, which automatically generates the entire connection layer

for HPKs invoked from Python and written in C/C++. WayOut performs a

hybrid analysis: it statically analyzes header files to generate Python wrapper

classes and functions, and dynamically generates bindings for those kernels.

By leveraging the type information available at run-time, WayOut generates

only the necessary bindings. We evaluate WayOut by rewriting dozens of

existing examples from C/C++ to Python and leveraging HPKs enabled by

vi

WayOut. Our experiments show the feasibility of our technique, as well as

negligible performance overhead on HPKs performance.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

Chapter 2. Motivation 5

2.1 HPKs . 5

2.2 Binding Generation . 6

Chapter 3. WayOut Overview 9

3.1 Example . 9

3.2 Workflow . 11

3.2.1 Header Files . 12

3.2.2 Python Wrappers . 13

Chapter 4. Design and Implementation 17

4.1 Static Generation . 18

4.2 Dynamic Generation . 20

4.2.1 Wrapper . 21

4.2.2 Binding Generation . 22

4.3 Casting . 26

4.3.1 Explicit Casting . 26

4.3.2 Implicit Casting . 26

4.3.3 Autocasting . 27

viii

4.4 Inheritance . 28

4.5 Operator Overload . 29

4.6 GPU Support . 30

4.7 Integration of Manually Written Bindings 30

Chapter 5. Evaluation 32

5.1 Research Questions . 32

5.2 Experiment Setup . 33

5.3 Binding Generation Effectiveness 33

5.4 Run-time Performance Overhead 35

5.5 Comparison Against Manually Written Bindings 39

5.6 Binding Generation Time . 40

Chapter 6. Limitations and Future Work 43

6.1 Limitations . 43

6.2 Future Work . 44

Chapter 7. Related Work 47

7.1 Binding Frameworks . 47

7.2 Static Binding Generation . 47

7.3 Dynamic Binding Generation 48

7.4 High Performance Python . 49

Chapter 8. Conclusion 51

Bibliography 52

Vita 58

ix

List of Tables

5.1 Performance of generated vs. manually written bindings on CPU. 40

5.2 Performance of generated vs. manually written bindings on GPU. 40

5.3 Bindings build time. 41

x

List of Figures

2.1 An illustration of language bindings. 7

3.1 An example of a kernel (spmv) and data structure declaration
(CrsMatrix) from Kokkos Kernels. 10

3.2 C++ example using a kernel and data structure from Kokkos
Kernels. 11

3.3 An overview of WayOut’s workflow. 12

3.4 Python WayOut example using spmv and CrsMatrix. 13

3.5 Python WayOut example using template args. 15

4.1 Python wrappers generated by WayOut for spmv and CrsMatrix. 19

4.2 Generated C++ templated header for the CrsMatrix class. . . 20

4.3 A flowchart for WayOut’s dynamic generation. 21

4.4 Generated C++ binding code for the SpMV example; each seg-
ment is in a separate file. 25

5.1 Kernel time using WayOut generated bindings vs. original
Kokkos Kernels implementation for multiple input sizes. . . . 37

5.2 Kernel time using WayOut generated bindings vs. original
Thrust implementation for multiple input sizes. 38

xi

Chapter 1

Introduction

Traditionally, high-performance computing (HPC) applications are writ-

ten in statically typed (and low-level) programming languages, such as C/C++

and Fortran [4, 6, 32]. These languages are the de facto standard in the HPC

area due to the excellent performance of the resulting applications.

HPC applications spend most of their execution time in so-called high-

performance kernels (HPKs), such as linear algebra operations and solvers [38],

e.g., SpGEMM, SpMV, and SpTRSV. Over the last several years, the number

of HPKs has been steadily growing and existing HPKs are constantly optimized

and updated to support new hardware platforms (e.g., Nvidia CUDA [22] and

AMD HIP [26]).

Recently, several frameworks were introduced to enable developers to

write performance portable HPKs. Namely, a developer can write an HPK only

once and the framework automatically enables the execution of that HPK on

a variety of hardware platforms (e.g., Intel CPUs, Nvidia GPUs, and AMD

GPUs). Some of the most notable frameworks that support performance porta-

bility include Kokkos [23] and RAJA [16]. These frameworks enable the rapid

development of new HPKs, although they are still based on C/C++.

1

Meanwhile, scientists are transitioning to dynamically typed languages,

such as Python [34], Julia [20], or Lua, for writing their applications. In order

to obtain good performance, scientists have to either: (a) implement HPKs

in their language of choice (using high-performance libraries like Numba [28]

or PyKokkos [8]), or (b) create bindings to existing HPKs implemented in

C/C++ or one of the frameworks that supports performance portability (using

libraries like pybind11 [36]). In either case, substantial work is required [7,

41]. Maintenance of manually written bindings (as HPKs evolve) introduces

additional challenges.

We present WayOut, a novel approach to automatically generating

connection layers for existing (performance portable) HPKs to be used by

Python applications. WayOut is the first approach that combines static and

dynamic program analysis. Specifically, for a given header file, WayOut per-

forms static analysis to create: (1) wrapper classes and functions, i.e., a Python

API provided to scientists that reflect the given header file, and (2) header files

with templated bindings that will be instantiated at run-time. When a Python

application is executed and one of the wrapper functions is invoked, WayOut

intercepts the call, instantiates and generates the bindings for the given types,

and invokes an existing HPK. One of the key insights behind WayOut is that

it postpones binding generation until it has the types needed (which are not

available statically in Python). WayOut also caches generated bindings, so

only the very first invocation of each function (with one set of type arguments)

introduces some overhead; the cache is saved across application runs.

2

We designed WayOut to overcome the limitations of cppyy [31] and

pyximport [17], which target the same task, but take very different approaches.

Unfortunately, neither of the two mentioned approaches could be used to in-

voke existing HPKs from within a Python application. Cppyy depends on

a powerful but immature tool chain, including PyPy [37], an alternative im-

plementation of the Python interpreter, and Cling [42], an interactive C++

interpreter. On the other hand, pyximport does not support dynamic instan-

tiation of templates and thus is unable to instantiate bindings if types are

known only at run-time.

We overcome a set of critical challenges to realize WayOut, including:

(1) the lack of function and method overloading in Python; (2) concurrent

use of multiple template instantiations of the same class; (3) inferring types of

returned objects; and (4) ambiguously typed template arguments.

We evaluate WayOut by automatically generating bindings for Kokkos

Kernels [38], one of the most popular frameworks for HPKs, and Thrust [18], a

powerful template library containing parallel algorithms. We rewrote a number

of existing examples (that use Kokkos Kernels and Thrust) from C/C++ to

Python. Our experiments show the feasibility of our technique, as well as its

negligible performance overhead on HPK performance. In our experiments,

we also show that WayOut does not impact the performance portability of

HPKs: we were able to execute all the examples on both CPUs and GPUs.

This thesis makes the following key contributions:

3

⋆ Design of WayOut, a novel approach for automatically generating a con-

nection layer for existing HPKs to be used in Python applications. Way-

Out uses a hybrid approach—a combination of static and dynamic program

analysis—to instantiate the connection layer.

⋆ Implementation of WayOut for Python. The design of WayOut is modu-

lar and others could use our processing of header files to support connection

layer with other programming languages.

⋆ Evaluation of WayOut by rewriting a number of existing examples from

C/C++ to Python and using existing HPKs from Kokkos Kernels and

Thrust. We chose Kokkos Kernels because it is a popular performance

portable frameworks and it currently has only a few manually written bind-

ings, and we chose Thrust to demonstrate the generality of our approach.

Source code of WayOut is publicly available on GitHub at https://github.

com/EngineeringSoftware/wayout.

4

Chapter 2

Motivation

In this chapter, we provide some background on HPKs (Section 2.1)

and binding generation (Section 2.2), as well as motivation for WayOut.

2.1 HPKs

The usage of hand-optimized HPKs in scientific computing is extremely

common. Typically, these kernels are written using high performance C/C++

frameworks that can exploit parallelism on multi-core processors, such as

OpenMP [35] for CPUs and CUDA [22] for GPUs. More recently, frame-

works such as Kokkos [23] and RAJA [16] build abstractions on top of these

device-specific frameworks to enable performance portability, i.e., code that

is portable across devices while still achieving good performance. As such,

these frameworks are a natural choice for writing high-performance kernels.

Kokkos, for example, is used by numerous applications and packages for large-

scale scientific computing, such as Trilinos [10], LAMMPS [29], Albany [13],

Empire [19], and others.

Kokkos Kernels [38] is a collection of performance portable kernels

written using Kokkos. It includes a large variety of math kernels and data

5

structures commonly used in linear algebra and graph algorithms. One such

example of a linear algebra kernel is the sparse matrix vector multiply kernel,

or SpMV for short. The following code snippet shows how SpMV can be called

in a Kokkos (C++) application, where A is a sparse matrix, alpha and beta

are scalars, and x and y are vectors.

KokkosSparse::spmv("N", alpha, A, x, beta, y);

2.2 Binding Generation

The target audience for these HPKs is largely composed of scientists [10,

38] who need them for simulations and experiments. Frequently, a scientific

application contains many calls to existing HPKs, which take up most of the

execution time. However, these scientists typically do not have formal training

in programming, so using C++, which is notorious for its poor error messages

and complicated build systems, can be a huge deterrent. Instead, the scientists

prefer higher level languages with “batteries included” [34], such as Python.

Several attempts have been made to expose these libraries and kernels

to other languages [8,25,43]. This requires the use of language bindings, which

allow for interoperability between different languages. Figure 2.1 shows a high-

level illustration of language bindings between Python and C++. Numerous

frameworks have been implemented to provide Python bindings to C++ code,

such as Boost.Python [11], pybind11 [36], and SWIG [15]. The following code

snippet shows what a call to SpMV could look like once it has been exposed

to Python through one of the binding frameworks.

6

Python

User Code

C++

HPK

Call
HPK

Return
Result

Language
Bindings

Call
Bindings

Return
Result

Figure 2.1: An illustration of language bindings.

spmv(char_ptr("N"), alpha, A, x, beta, y)

However, manually writing these bindings can be tedious and challeng-

ing. For example, the Python bindings for creating a Kokkos View [7], the

main multi-dimensional data structure in Kokkos, are written in pybind11.

Despite only binding a small part of Kokkos, the total lines of code for these

bindings is over 900, as they make heavy use of C++ macros and compile-time

template instantiation to generate all the different combinations of template

arguments. For Kokkos Views, this includes different data types (int16 t,

int32 t, double, etc.), dimensions (one through eight), memory layouts,

memory spaces, and memory traits. Each combination of these arguments

forms a single template instantiation. The following code snippet shows one

such instantiation.

Kokkos::View<int*, LayoutLeft, HostSpace>;

Besides being hard to write, compiling the bindings takes a large amount

of time (around 6 hours on our machines for a commonly used subset of all

7

combinations) due to the large number of template instantiations that need

to happen. In addition to the time overhead, compilation occasionally runs

out of memory due to the large number of template argument combinations,

meaning that the process will not terminate successfully on some machines.

Prior work on automatic generation of Python bindings for C++ code

[3, 24] extracts library APIs by parsing header files for class and function

declarations. While this simplifies writing the bindings, it requires that the

user manually adds code to instantiate all the needed template arguments since

these frameworks employ static analysis. Furthermore, this does not solve the

compilation issues for large numbers of template instantiations. Therefore,

such an approach would not work well with templated libraries such as Kokkos

Kernels and Thrust.

As a result, we propose generating these bindings dynamically, i.e., on

demand at run-time such that only the necessary template instantiations are

created. This allows types to be passed at run-time, removing the need for

the user to manually add template instantiation. It also reduces the cost of

compilation by compiling bindings only when needed. We show that this can

achieve performance comparable to manually written bindings.

8

Chapter 3

WayOut Overview

In this chapter, we show an example high performance kernel (HPK)

from Kokkos Kernels (Section 3.1), and then use this HPK to demonstrate the

workflow of WayOut (Section 3.2).

We encountered multiple challenges during the design and implemen-

tation of WayOut. We highlight these challenges ⭑ like so, and then outline

our design choices and how we solved these challenges.

3.1 Example

Figure 3.1 shows the function and class signature of the SpMV HPK

spmv (line 4) and CrsMatrix, the sparse matrix data structure it operates on

(line 13). This kernel performs the operation y = beta ∗ y + alpha ∗ A ∗ x.

The template parameters of spmv are used to set the types used in the

kernel at compile-time: AlphaType, BetaType are the scalar types, XVector

and YVector are the vector types, and AMatrix is the sparse matrix type,

which can be set to CrsMatrix in this example. The template arguments

for CrsMatrix are as follows: ScalarType is the type of entries contained in

the matrix, OrdinalType is the type of the matrix index, Device specifies on

9

1 template <class AlphaType, class AMatrix,

2 class XVector, class BetaType,

3 class YVector>

4 void spmv(const char mode[], const AlphaType &alpha,

5 const AMatrix &A, const XVector &x,

6 const BetaType &beta, const YVector &y);

7 /* ... */

8

9 template <class ScalarType, class OrdinalType,

10 class Device, class MemoryTraits = void,

11 class SizeType = typename Kokkos::ViewTraits

12 <OrdinalType *, Device, void, void>::size_type>

13 class CrsMatrix;

14 /* ... */

Figure 3.1: An example of a kernel (spmv) and data structure declaration
(CrsMatrix) from Kokkos Kernels.

which device’s memory (e.g., GPU) the matrix is located in, MemoryTraits

specifies the Kokkos memory access trait to be used (Atomic, RandomAccess,

etc.), and SizeType specifies the type of the row offset.

Figure 3.2 shows an example using spmv and CrsMatrix. To call the

kernel, the user first defines mat t to alias the instantiated CrsMatrix type

(line 3) and instantiates the matrix and vectors (lines 7-10). The CrsMatrix

constructor takes in as arguments the number of rows, columns, and elements,

followed by Views containing the matrix entries, row offsets, and column in-

dices. Views y and x represent the one-dimensional vectors, and their con-

structor specifies the size of the View. The View constructor is templated on

the data type and dimensionality (one-dimensional double in this case). Fi-

nally, the user can call the spmv kernel (as shown on line 12). The arguments

passed to the call are a string specifying the operation mode (no transpose,

10

1 int main() {

2 /* ... */

3 using mat_t = KokkosSparse::CrsMatrix<

4 double, int,

5 Kokkos::DefaultExecutionSpace, void, int>;

6

7 mat_t A = mat_t(numRows, numCols, nnz, val, ptr, in);

8

9 View<double *> y(N);

10 View<double *> x(N);

11

12 KokkosSparse::spmv("N", alpha, A, x, beta, y);

13 }

Figure 3.2: C++ example using a kernel and data structure from Kokkos
Kernels.

transpose, or conjugate transpose), the scalar alpha, the matrix A, the vector

x, the scalar beta, and the vector y. The latter is passed by reference and will

hold the result of the operation upon return from the function.

3.2 Workflow

Figure 3.3 shows WayOut at a high-level; in this section we highlight

the user workflow. There are two main steps to WayOut’s workflow. First,

the user provides the path to the header files or the include directory. Way-

Out then generates a Python API consisting of wrappers for the C++ API,

which was declared in the passed header files. The user can then access the

C++ API using the Python API exposed by the generated wrappers.

11

③

kernel1.hpp, kernel2.hpp...

Parser

Generator

kernel.py

 class1.hpp, class2.hpp...

main.py

 binding1.cpp, binding2.cpp...

Compiler

binding1.so, binding2.so...

Static

Dynamic

enums.so

WayOut

Interface

 Invoke Wayout①

④

Import Call
②

bindings.so

not found

Figure 3.3: An overview of WayOut’s workflow.

3.2.1 Header Files

The first step in using WayOut is passing in the header files containing

the required class and function declarations that together constitute the API

(step 1○ in Figure 3.3).

12

1 if __name__ == "__main__":

2 # assume constructor arguments are initialized

3 mat_t = CrsMatrix(

4 float, int, "Kokkos::DefaultExecutionSpace", None, int)

5 A = mat_t(numRows, numCols, nnz, val, ptr, ind)

6 print("num_elem:", A.nnz())

7

8 y = View("double *")(N)

9 x = View("double *")(N)

10 spmv(char_ptr("N"), alpha, A, x, beta, b)

Figure 3.4: Python WayOut example using spmv and CrsMatrix.

WayOut can then generate a Python wrappers that mirror the C++

API (kernel.py in Figure 3.3).

3.2.2 Python Wrappers

Once the Python wrappers have been generated, they can be imported

(step 2○) and called (step 3○) by the user. Figure 3.4 shows the SpMV example

using the generated wrappers. Similar to the C++ version, we first alias the

matrix type (line 3), and then define the matrix and vectors (lines 5-9). We

call the CrsMatrix class method nnz, which returns the number of entries in

the matrix, to demonstrate how a class method can be called (line 6). Finally,

we call the spmv kernel (line 10).

WayOut generates wrappers for both function and class declarations,

as well as wrappers for public fields and methods, in the original C++ API.

Functions. One Python wrapper function is generated for each C++ func-

tion. An issue that arises here is overloaded functions. ⭑ Python does not

13

allow overloaded functions i.e., redefining a function with a different number

and different types of arguments. To account for this, WayOut instead gen-

erates a single wrapper function with a variable number of arguments for each

unique function name. At run-time, if an overloaded function is used, the cor-

rect instance will be called based on the number and types of the arguments

passed by the user.

Users can call templated functions normally because the template ar-

guments can be deduced from the argument types at run-time in most cases.

⭑ In some cases, these types cannot be deduced, and so have to be explicitly

specified by the user. For example, Figure 3.5 shows a code snippet taken from

a Kokkos Kernels tutorial using CrsMatrix. Instead of calling the construc-

tor directly, it calls the generate structured matrix2D kernel to initialize

the matrix. In C++, this kernel is templated on the type of the matrix to

be initialized. The two arguments are for stencil type and matrix structure.

These arguments do not hint at what the type of the generated matrix should

be, so the users must pass the template argument to WayOut; otherwise,

C++ compilation fails. These arguments can be passed in via the keyword

argument template args.

When the user calls a function, the arguments are passed to the un-

derlying kernels by reference. However, there are cases where a kernel expects

an argument as a pointer. To support this, WayOut provides a simple class

named ptr which the user can use to wrap their object and indicate that the

argument should be passed as a pointer. A similar issue occurs with string

14

1 if __name__ == "__main__":

2 # assume constructor arguments are initialized

3 crsmat_t = CrsMatrix(

4 float, int, "Kokkos::DefaultExecutionSpace", None, int)

5 A = generate_structured_matrix2D(

6 "FD", structure, template_args=[crsmat_t])

Figure 3.5: Python WayOut example using template args.

arguments: some functions require the standard C++ string whereas others

accept character pointers. To support this, Python strings are cast to standard

strings by default, and arguments that are character pointers use the char ptr

wrapper class. Line 10 in Figure 3.4 shows an example of this.

If a function returns a pointer, the default behavior is to treat it as

a reference, i.e., assume that C++ retains ownership of the object. This

means that when the resource is freed, Python would not attempt to garbage

collect the object and assume the C++ run-time would do so. To override this

behavior, the user can set the boolean keyword argument take ownership so

that Python is responsible for freeing memory.

Classes. One wrapper class is generated for each C++ class. The init

method (i.e., the constructor) of the wrapper class is used to pass in template

arguments, creating a type object that can also be used as a type alias (line 3

in Figure 3.4). To create an instance of the class, the user calls the type

object, passing in the constructor arguments to the call method (line 5

in Figure 3.4).

Wrapper classes can accept a variable number of templates to support

15

optional template arguments. Additionally, if the template argument is a

primitive data type (i.e., int, float, etc.), the corresponding Python data

type can be used. If the template argument needs is a class type, it can be

set to a type alias or it can be passed as a string. The latter is useful for

referring to typedefs defined in the header files. For instance, in Kokkos the

DefaultExecutionSpace type is simply a typedef that changes depending on

compile-time flags, but we can still use it as a template argument in Python by

passing it as a string to the class constructor (line 3 in Figure 3.4). This can

also be used to specify pointer types (e.g., double*) for template arguments

(line 8 in Figure 3.4).

Once an object has been created, it can be used like any Python object.

The wrapper class contains all class fields and methods present in the C++

version. Private fields and methods are not accessible. As WayOut supports

inheritance, attributes from the parent class are accessible as well. Any object

returned from a function call will be automatically wrapped using the correct

wrapper class when such a class exists.

Figure 4.1 shows the generated Python wrappers for the SpMV exam-

ple (Figure 3.1). The spmv wrapper is defined on line 1 and the CrsMatrix

wrapper is defined on line 8; the contents of these wrappers are explained in

the next section.

16

Chapter 4

Design and Implementation

In this chapter, we describe our binding generation approach, including

both static and dynamic phases. In the static phase (Section 4.1), WayOut

parses C++ header files to generate Python wrappers and templated bindings.

In the dynamic phase (Section 4.2), WayOut intercepts calls to the Python

wrappers. Then, it instantiates, compiles, and imports the templated bind-

ings based on the types known only at run-time, completing the link between

Python and C++. We then describe the casting mechanisms used to move ar-

guments from Python to C++ and vice versa (Section 4.3). Next, we describe

our techniques to support inheritance (Section 4.4) and operator overloading

(Section 4.5). Finally, we discuss GPU support (Section 4.6) and integration

with manually written bindings (Section 4.7).

There are two highlights to our approach: first, generating Python code

in the form of wrapper classes and functions allows the user to easily use and

potentially modify the generated bindings; second, the lazy approach to bind-

ing instantiation and compilation reduces the otherwise high computational

cost of binding and compiling everything ahead of time. Once a binding has

been compiled, it is cached on the file system for later use.

17

4.1 Static Generation

We use Clang [30] to parse the header files and pybind11 [36] as the

bindings library. We chose pybind11 due to its popularity, flexibility, and ease

of use. Writing bindings using pybind11 involves defining a Python module

object which is used to register classes and functions so that they can be

accessed from Python.

When WayOut is invoked by a user, it uses the Clang Python API

to parse the header files and return the root node of the corresponding Ab-

stract Syntax Tree (AST). WayOut can then extract the API from header

files by traversing the AST recursively to discover classes and functions. One

issue with this approach is that ⭑ Python does not allow function or method

overloading, both of which are used heavily in HPKs, such as Kokkos Kernels,

especially for constructors. To deal with this, WayOut first stores function

names in a set so that only one wrapper function is generated, even if other

overloaded instances exist. Inside the wrapper functions for overloaded func-

tions, WayOut adds code that selects the appropriate overloaded instance at

run-time based on the types of the arguments. These types are extracted from

the arguments using the Python built-in function type().

WayOut then generates Python wrappers mirroring the original C++

API. Figure 4.1 partially shows the generated wrappers for the spmv function

and CrsMatrix class, with the latter also containing wrapper methods for its

C++ class methods.

18

1 def spmv(*args, template_args=None, take_ownership=False):

2 mod,name = generate_func_binding("spmv", "KokkosSparse",

3 args, _includes, template_args, take_ownership)

4 args = [get_handle(arg) for arg in args]

5 res = getattr(mod, name)(*args)

6 return cast_return(res)

7

8 class CrsMatrix:

9 """Compressed sparse row implementation of a sparse matrix."""

10 _namespace = "KokkosSparse"

11 def __init__(self, *template_args, _handle=None):

12 self._handle = _handle

13 self._cpp_name = _handle._cpp_type if _handle else \

14 register_class("CrsMatrix", self._namespace, template_args)

15 def __call__(self, *args):

16 if self._handle:

17 if hasattr(self, ’__cpp_call__’):

18 return self.__cpp_call__(*args)

19 raise RuntimeError(

20 "Error: can’t call constructor on instance!")

21 mod,name = generate_constructor(self._cpp_name, args, _includes)

22 args = [get_handle(arg) for arg in args]

23 inst = _copy.copy(self)

24 inst._handle = getattr(mod, name)(*args)

25 return inst

26 def nnz(self, *args, take_ownership=False):

27 """//! The number of stored entries in the sparse matrix."""

28 mod,name = generate_class_func_binding(self, "nnz", args,

29 _includes, take_ownership)

30 args = [get_handle(arg) for arg in args]

31 res = getattr(mod, name)(self._handle, *args)

32 return cast_return(res)

33 """/* ... */"""

Figure 4.1: Python wrappers generated by WayOut for spmv and CrsMatrix.

In addition to Python wrappers, WayOut generates a C++ header

file for each class encountered during AST traversal. Figure 4.2 shows the

header generated for the CrsMatrix class. The header file contains a function

templated on T, where T is the type to be registered via pybind11. The function

19

1 #include <pybind11/pybind11.h>

2 #include <KokkosSparse_CrsMatrix.hpp>

3 template <class T>

4 void generate_class(pybind11::module &_mod,

5 const char *name, const char *cpp_type) {

6 pybind11::class_<T> _class(_mod, name);

7 _class.def_property_readonly_static("_cpp_type",

8 [cpp_type](const pybind11::object&) {

9 return cpp_type;

10 });

11 _class.def_readwrite("graph", &T::graph);

12 _class.def_readwrite("values", &T::values);

13 /* ... */

14 }

Figure 4.2: Generated C++ templated header for the CrsMatrix class.

registers the type T with pybind11, as well as all the class fields. Since all

instances of a templated class have the same members, the header file can

be reused by different instantiations of the templated class at run-time e.g.,

CrsMatrix<double,...> or CrsMatrix<int,...>.

4.2 Dynamic Generation

At run-time, the user imports and calls the generated Python wrappers.

Figure 4.3 shows the workflow of dynamic generation. Internally, the wrappers

check to see if the corresponding binding module exists based on the wrapper

argument types. If not, they invoke WayOut to generate a C++ source file,

WayOut then compiles the C++ source into a shared object file (or simply

DSO) that can be imported and used by the wrapper. Later calls to the same

wrappers will reuse the existing DSO if the types are unchanged.

20

Interface

Generator

invoke wrapper

No

Yes
module

imported?

Yes

Nomodule exists?

invoke binding using
module

import module

Yes

No

return type
registered?

constructors and
functionsclass registration

wrapper type

compile module

generate class
registration bindings

generate function
bindings

Figure 4.3: A flowchart for WayOut’s dynamic generation.

4.2.1 Wrapper

In Figure 4.1, the spmv wrapper calls the WayOut function

generate function binding (line 2) to generate the function binding. This

call captures information such as function name ("spmv") and namespace

("KokkosSparse") which are needed to uniquely identify the C++ function

21

that needs to be bound. This is needed in combination with the arguments and

optionally the template arguments to generate a hash that uniquely identifies

the binding instantiation. Similarly, the methods of CrsMatrix call WayOut

to generate instantiated bindings.

The generate functions check to see if a module matching the hash

has been imported. If so, it simply returns the module object containing

the function. If the module has not been imported, WayOut attempts to

import it from the file system. If the corresponding DSO does not exist, then

WayOut generates the binding instantiation source code for the function.

4.2.2 Binding Generation

There are two main types of binding. One is for registering classes so

pybind11 knows how to cast an object between Python and C++, and the

other is for binding an instantiated templated function. Note that we treat

class constructors and methods as if they’re standalone functions. For class

registration, the binding source code first includes the class header (shown in

Figure 4.2) generated during the static phase and uses it to register classes. For

function bindings, WayOut generates intermediate C++ functions that cast

arguments from Python types to the corresponding C++ types and internally

call the API function.

Figure 4.4 shows examples for both types of bindings. Each segment

resides in a separate C++ source file but we compile it into one figure for read-

ability. The first segment shows an instance of class registration binding while

22

the rest of the segment shows examples of intermediate functions generated

for constructors, class methods, and standalone functions respectively.

During class registration, a Python module object is first created using

the PYBIND11 MODULE macro (line 4). The first argument is the name of the

kernel which is set to the unique hash corresponding to that instantiation.

The second argument is a handle to the module object that is used to register

functions for that module. Then, the class is registered in pybind11 (line 5).

WayOut defines an intermediate function for each method (lines 15, 26,

and 35) which accepts as input an argument of type pybind11::args contain-

ing a list of arguments. We use auto for the return type of the intermedi-

ate functions and rely on the compiler to determine it from the argument

types. Each intermediate function is registered with pybind11 again using the

PYBIND11 MODULE macro, though it is not shown in the figure.

Each intermediate function explicitly casts each argument to its corre-

sponding C++ type (e.g., lines 16-17) and then calls the C++ API function.

The first function calls the CrsMatrix constructor (line 19), the second func-

tion calls the nnz class method (line 30), and the third function calls the

standalone spmv function (line 39).

The bindings are then compiled into object files. Intuitively, WayOut

would then link the files containing all the instantiations into one single DSO

file and import it. Whenever a new instantiation is generated and linked,

WayOut would reload the DSO. However, this will not work because ⭑

23

Python does not provide support for dynamically reloading DSOs unless their

reference count reaches zero and they are garbage collected. Waiting for the

garbage collector to run is unreliable. Our solution is to generate a separate

DSO for each template instantiation of every class and function. This has

the added benefit of avoiding the extra linking overhead when new bindings

are generated. It also allows WayOut to elegantly support overloading and

templates by separating them into different modules and avoiding re-definition

errors in Python, since each combination of arguments would correspond to a

different module.

The generated Python wrapper can then access and call functions reg-

istered in the module using the built-in getattr function (Figure 4.1, lines 5,

24, and 31). Note that there is an additional step of processing the argument

for the case where it’s a wrapper class, since the internal handle needs to be

passed rather than the wrapper object (line 4).

24

1 /*==*/

2 /* generated binding code for registering CrsMatrix */

3 #include "CrsMatrix.hpp"

4 PYBIND11_MODULE(f_f8ee838d9c3174dc82a, k) {

5 generate_class<KokkosSparse::CrsMatrix<

6 double, int,

7 Kokkos::DefaultExecutionSpace, void, int>>(

8 k, "f_f8ee838d9c3174dc82a",

9 "KokkosSparse::CrsMatrix<double,int,"

10 "Kokkos::DefaultExecutionSpace,void,int>");

11 }

12

13 /*==*/

14 /* generated binding code for CrsMatrix constructor */

15 auto func(pybind11::args args) {

16 auto a0 = args[0].cast<std::string>();

17 auto a1 = args[1].cast<int>();

18 /* ... */

19 return new KokkosSparse::CrsMatrix<double, int,

20 Kokkos::DefaultExecutionSpace, void, int>

21 {a0, a1, a2, a3, a4, a5, a6};

22 }

23

24 /*==*/

25 /* generated binding code for nnz method of CrsMatrix */

26 auto func(pybind11::args args) {

27 auto &a0 = args[0].cast<

28 KokkosSparse::CrsMatrix<double, int,

29 Kokkos::DefaultExecutionSpace, void, int> &>();

30 return a0.nnz();

31 }

32

33 /*==*/

34 /* generated binding code for spmv */

35 auto func(pybind11::args args) {

36 auto a0 = args[0].cast<std::string>();

37 auto a1 = args[1].cast<double>();

38 /* ... */

39 return KokkosSparse::spmv(a0.c_str(), a1, a2, a3, a4, a5);

40 }

Figure 4.4: Generated C++ binding code for the SpMV example; each segment
is in a separate file.

25

4.3 Casting

When the user calls a bound function (such as spmv in Figure 3.4,

line 10), WayOut casts the passed arguments from types that are valid in

Python to types that are valid in C++. Once control returns to the Python

side, the returned binding object is also casted to the correct wrapper class.

WayOut uses three forms of casting: explicit, implicit, and autocasting.

4.3.1 Explicit Casting

As mentioned previously, intermediate functions accept as input a list

of arguments (args). Explicit casting refers to calling the pybind11 cast

method on elements of args to convert them into types that can be used in

C++, storing them in local variables (Figure 4.4, lines 16-17). These variables

can then be passed to the C++ function call.

The type to be cast to is passed as a template argument. Since the

binding instantiation is generated at run-time, these types are chosen based

on the types of the passed arguments. This form of casting works fine if the

argument is a primitive (e.g., int). However, if the argument type is one of the

wrapper classes (e.g. CrsMatrix), an additional implicit cast may be required.

4.3.2 Implicit Casting

In heavily templated classes, it is common for objects with slightly

different template instantiations to be semantically equivalent. For instance,

the Kokkos View object has an execution space template argument, which

26

can either be of type Device or MemorySpace, both of which are interchange-

able. In the SpMV example, spmv can accept both Kokkos::View<double *,

HostSpace> and Kokkos::View<double *, Device<OpenMP, HostSpace> for

its View arguments, even if they are different types, because Kokkos internally

implements implicit casting between the two.

In order for pybind11’s cast to work properly on non-primitive types,

WayOut must use the type that was obtained during class registration, as

that is the type that pybind11 recognizes. Otherwise, cast throws an excep-

tion for an illegal cast.

In some cases, different parts of a C++ API depend on different tem-

plate instantiations of the same class, even if they are semantically equivalent.

⭑ This is a challenge for WayOut since it uses pybind11 to cast objects to

the exact type needed by functions, which will result in an exception if there is

any difference in types.

To solve this, WayOut caches information about the C++ type of a

binding object by adding an extra cpp type field during class registration.

This extra field is a string set to the fully qualified C++ type name. Therefore,

during the binding generation process, WayOut can use this stored name to

cast the argument to the appropriate type.

4.3.3 Autocasting

⭑ When an object is returned from a function, pybind11 does not cast

it to one of WayOut’s wrapper classes, so it cannot be used to access the

27

fields and methods. Ideally, the functions would return objects of the same

type as the generated wrapper class.

WayOut therefore wraps these objects in the appropriate wrapper

class so the class fields and methods can still be accessed normally (Fig-

ure 4.1, line 6). To do so, WayOut first checks if the returned object has

the cpp type field. If not, then the returned object is a primitive and no

casting is needed. Otherwise, WayOut initializes a wrapper object using the

binding object as the handle.

Additional complications occur when the return type has not been reg-

istered with pybind11. For example, assume the user calls a function that

returns a matrix type that has not been instantiated before. To solve this,

we also generate dummy functions which return empty instances of the return

type. When a module is imported, WayOut also calls the dummy function.

If the class is not registered, a TypeError will be thrown by pybind11, which

we catch and parse to extract the class that needs to be registered. Since

this only needs to be done once when a module is imported, the overhead is

minimal and guarantees that all return types are registered.

4.4 Inheritance

Inheritance is a commonly used feature in C++ to facilitate code reuse.

While it is not used much in Kokkos Kernels, Thrust [18] extensively utilizes

inheritance in its various structures. WayOut supports inheritance during

the static phase, where the name of the parent can be extracted from the

28

AST. Then, since Python also supports inheritance, we can naturally emulate

the C++ inheritance relationship by having the Python wrapper class of a

C++ child class inherit from the Python wrapper class of the parent.

Additional care must be taken for classes that inherit using type-

defs defined in another class. For instance, the iterator adaptor class in

Thrust inherits from iterator adaptor base::type, i.e., a typedef named

type defined within the iterator adaptor base class, which resolves to the

iterator facade class. To solve this, during the parsing stage WayOut

identifies all typedefs in a class and defines them as attributes of the wrap-

per class. These attributes are wrapped in try-except blocks in the event

the header files for classes they refer to were not included. Finally, while

parsing the parent name, we can correctly inherit from the attribute (e.g.,

iterator adaptor base.type).

4.5 Operator Overload

Operator overloading is another commonly used C++ feature to sup-

port additional functionality, such as using the [] operator to access elements

in a data structure. WayOut support operator overloading by treating them

as class methods, with the caveat that the method name is mapped to the cor-

responding Python magic method name (e.g., operator[] to setitem and

getitem). Since WayOut already use the call magic method for in-

voking the constructor, we map the C++ call operator to cpp call method

which is invoked when a class instance is called (e.g., Figure 4.1 line 17). Then,

29

in the generated intermediate C++ functions, the operator is invoked instead

of an API function. WayOut currently supports the addition, subtraction,

bracket, call, and dereference operators, though more can be easily added.

4.6 GPU Support

As most HPKs support heterogeneous systems, it is important for Way-

Out to support GPUs as well. Code that runs on GPUs (e.g., CUDA or HIP)

typically cannot be compiled using a regular C++ compiler, such as g++ or

Clang. Instead, it needs to be compiled with a specific compiler (e.g., NVCC

for CUDA). This is easy to do in WayOut, as the only modification needed is

to switch to the right compiler. Additionally, since one of the main targets of

our work is Kokkos, the kernel interface does not change when running with

a GPU, so no further modifications to WayOut are needed.

4.7 Integration of Manually Written Bindings

There are instances where it is still beneficial to use manually written

bindings for convenience reasons. For instance, the Kokkos View object is a

general purpose n-dimensional data structure. It overloads the parentheses

operator for reading and modifying data instead of the commonly used square

brackets (e.g., int x = view(1);). This does not work well with pybind11

since the parentheses operator returns a reference to a primitive, which py-

bind11 handles by passing by value to Python, meaning that modification of

the contents is not possible. However, Kokkos does have Python bindings

30

(manually written) for Views [7]. These bindings leverage a pybind11 fea-

ture that allows the Python buffer protocol [1] to be implemented for the raw

data buffer contained in Views, which allows the internal data to be accessed

normally from Python. Since they are implemented using pybind11, these

bindings can be used seamlessly with WayOut.

31

Chapter 5

Evaluation

In this section, we describe research questions used to evaluate Way-

Out (Section 5.1) and the experimental setup (Section 5.2). Then, we answer

each research question and present the respective results (sections 5.3-5.6).

5.1 Research Questions

We evaluate WayOut by answering the following research questions:

RQ1. How effective is WayOut at generating bindings for Kokkos Kernels

and CUDA Thrust?

RQ2. What is the run-time performance overhead of the bindings generated

by WayOut?

RQ3. How does the run-time performance of the automatically generated

bindings compare to handwritten bindings?

RQ4. What is the time needed to generate the bindings?

32

5.2 Experiment Setup

We ran all experiments on an Ubuntu 18.04 machine with a 6-core Intel Core

i7-8700 3.20GHz CPU and 64GB of RAM, and an Nvidia GeForce 1080 GPU

with 8GB of memory. We used Python 3.8.5, GCC 7.5, OpenMP 4.5, and

CUDA 10.2. We used Kokkos 3.1.01, and Kokkos Kernels from the “develop”

branch (commit 62985984). Finally, we used Thrust 1.12.0.

All data presented are averaged over 3 runs and the Thrust subjects

were run for 100 iterations.

5.3 Binding Generation Effectiveness

RQ1: How effective is WayOut at generating bindings for Kokkos Kernels

and CUDA Thrust?

Using WayOut, we automatically generated bindings for all the ker-

nels in the Kokkos Kernels framework. We verified that WayOut is able to

run all 39 kernels present in the Kokkos Kernels wiki, as well as the sparse

matrix container CrsMatrix and numerous other helper functions used for

memory allocation and initialization.

We then ported existing C++ programs that use these kernels to Python.

Specifically, we implemented 7 applications from the official Kokkos reposi-

tory [2] in Python:

• CGSolve: Implements a conjugate gradient algorithm for solving sys-

tems of linear equations of the form Ax = b.

33

• CGSolve SpILUKprecond: Similar to CGSolve, but uses precondi-

tioning for faster convergence.

• GaussSeidel: Implements the Gauss-Seidel method for solving a system

of linear equations.

• GraphColoring: Assigns colors to elements of a graph such that no

neighboring nodes have the same color.

• InnerProduct: Calculates the inner product of the form ⟨y, A ∗ x⟩ =

y
T ∗ A ∗ x.

• SpGEMM: Implements sparse matrix-matrix multiplication in two phases:

symbolic followed by numeric, with a kernel for each phase.

• SpILUK: Implements sparse k-level incomplete LU factorization.

We also need Python bindings for Kokkos Views as they appear frequently in

our test subjects and in Kokkos Kernels. In our subjects, we used both the

manually written Python bindings and bindings automatically generated by

WayOut. As mentioned before, Views use the C++ parentheses operator

to modify data, meaning that they cannot be directly modified in Python

using the automatically generated bindings, so we implement only four of our

subjects using the latter.

To demonstrate the generality of our approach, we also generated bind-

ings for kernels in the Thrust library. We ported 7 examples from the official

Thrust repository [9] to Python and made them use our bindings:

34

• histogram: Calculates sparse and dense histograms of an array.

• mode: Calculates the mode of an array.

• saxpy: Calculates the SAXPY of the form Y = aX + Y .

• set operations: Performs operation on sets such as merge, union, in-

tersection, difference, and symmetric difference.

• sort: Sorts an array.

• sparse: Calculates the sum of two sparse vectors.

• sum: Calculate the sum of an array.

In summary, WayOut was able to generate bindings to Kokkos Kernels

and Thrust; we successfully used the generated bindings in examples that we

ported from C++ to Python.

5.4 Run-time Performance Overhead

RQ2: What is the run-time performance overhead of the bindings generated by

WayOut?

Figures 5.1 and 5.2 show plots of computation time (y-axis) vs. input

data size (x-axis) for our various subjects from Kokkos Kernels and Thrust,

respectively. For WayOut, we show computation time after the bindings

have been instantiated and compiled for all types that occur in each subject.

We show binding generation time in RQ4. The time shown does not include

35

time spent to initialize the subject, because most of the subjects initialize

the arrays in a sequential for loop, which dominates the runtime at higher

sizes. Therefore, including them would lead to comparing Python versus C++

performance rather than the overhead of the generated bindings.

For most subjects, the Python WayOut implementation can achieve

comparable performance to the original C++ implementation.

For the CGSolve subject (Figure 5.1a), we observe overhead that scales

with the size of the input data. The reason for this overhead is that this

subject runs most of its computations in a loop that calls the kernel internally.

It also computes a square root in Python using the standard library function

math.sqrt(). The number of iterations of this while loop scales with the size

of the input data, increasing the number of calls to math.sqrt(), which in

turn increases the total time taken compared to the C++ implementation.

We also observe a noticeable performance difference for the set operations

subject (Figure 5.2d). This is because the subject invokes various functions

that each allocates a result vector and calls a different set operation (e.g.,

merge, union). In C++, the result vector is allocated on the stack so freeing

resources on function return is efficient. When the result vector is allocated

from Python using the bindings, the object must be allocated on the heap

so Python can take ownership of the object to properly manage the memory.

Both heap allocation and Python’s memory management system introduce

overhead. Indeed, based on our debugging of the performance difference, al-

most all of the extra time comes from the allocation of the result vectors.

36

210 211 212 213 214 215

Size

0

5

10

15

20

Ti
m
e
[
]

(a) CGSolve

WayOut (OpenMP)
Kokko (OpenMP)
WayOut (CUDA)
Kokko (CUDA)

215 216 217 218 219 220
Size

0

20

40

60

80

100

Ti
m
e
[s
]

(b) CGSolve_S(ILUK()econ

WayOut (O(enMP)
Kokkos (O(enMP)
WayOut (CUDA)
Kokkos (CUDA)

219 220 221 222 223 224
Size

0

10

20

30

40

Ti
m
e
[s
]

(c) GaussSeidel

WayOut (OpenMP)
K kk s (OpenMP)
WayOut (CUDA)
K kk s (CUDA)

220 221 222 223 224 225

Size

0

2

4

6

8

10

Ti
m

e
[s

]
(d) GraphCo oring

Wa)O(t (OpenMP)
Kokkos (OpenMP)
Wa)O(t (CUDA)
Kokkos (CUDA)

225 226 227 228 229 230
Size

0

50

100

150

200

Ti
m
e

[s
]

(e) InnerProduct

WayOut (OpenMP)
Kokkos (OpenMP)
WayOut (CUDA)
Kokkos (CUDA)

221 222 223 224 225 226
Size

0

2

4

6

8

Ti
m
e
[s
]

(f) SpGEMM

WayOut (Ope MP)
Kokkos (Ope MP)
WayOut (CUDA)
Kokkos (CUDA)

216 217 218 219 220 221
Size

0

2

4

6

8

10

Ti
m
e
[s
]

(g) SpILUK

WayOut (Ope MP)
Kokkos (Ope MP)
WayOut (CUDA)
Kokkos (CUDA)

Figure 5.1: Kernel time using WayOut generated bindings vs. original
Kokkos Kernels implementation for multiple input sizes.

37

221 222 223 224 225 226

Size

0

25

50

75

100

125

150

Ti
m

e
[s

]

(a) histog am

WayOut (OpenMP)
Th ust (OpenMP)
WayOut (CUDA)
Th ust (CUDA)

221 222 223 224 225 226
Size

0

20

40

60

80

Ti
m
e
[s
]

(b) mode

WayOut (O enMP)
Thrust (O enMP)
WayOut (CUDA)
Thrust (CUDA)

223 224 225 226 227 228

Size

0
10
20
30
40
50
60
70
80

Ti
m

e
[s

]

(c) saxpy

WayOut (OpenMP)
Th ust (OpenMP)
WayOut (CUDA)
Th ust (CUDA)

221 222 223 224 225 226
Size

0

20

40

60

80

Ti
m
e
[s
]

(d) set_o erations

WayOut (O enMP)
Thrust (O enMP)
WayOut (CUDA)
Thrust (CUDA)

222 223 224 225 226 227

Size

0

20

40

60

80

100

120

Ti
m

e
[s

]

(e) so t

WayOut (OpenMP)
Th ust (OpenMP)
WayOut (CUDA)
Th ust (CUDA)

220 221 222 223 224 225

Size

0
10
20
30
40
50
60
70
80

Ti
m

e
[s

]

(f) spa se

WayOut (OpenMP)
Th ust (OpenMP)
WayOut (CUDA)
Th ust (CUDA)

225 226 227 228 229 230
Size

0
2
4
6
8

10
12
14
16

Ti
m
e
[s
]

(g) sum

WayOut (O enMP)
Thrust (O enMP)
WayOut (CUDA)
Thrust (CUDA)

Figure 5.2: Kernel time using WayOut generated bindings vs. original Thrust
implementation for multiple input sizes.

38

Therefore, we conclude it is fair to say that the overhead we observe in

the two outliers are from using Python vs. C++ rather than from WayOut.

In summary, bindings generated by WayOut introduce minimal over-

head on performance.

5.5 Comparison Against Manually Written Bindings

RQ3: How does the run-time performance of the automatically generated bind-

ings compare to manually written bindings?

To evaluate the performance difference between generated and man-

ually written bindings, we compare the manually written Python bindings

provided in the Kokkos repository for the View class against the generated

binding by WayOut. Tables 5.1 and 5.2 show the performance of generated

bindings versus handwritten ones for CPU and GPU respectively. The first

column shows the name of the subject. The second column shows the size of

the input data. The rest of the table shows computation time for both the

manually written and automatically generated bindings, as well as the ratio

of generated time to manual time.

The results show that the performance of the bindings generated by

WayOut matches the performance of the manually written bindings across

all subjects. This was expected, as both sets of bindings use pybind11, and

WayOut only generates an additional lightweight Python wrapper which has

minimal performance overhead.

39

Table 5.1: Performance of generated vs. manually written bindings on CPU.

Subject Size OpenMP Time [s]

Manual Generated Ratio

CGSolve SpILUKprecond 2
20

99.14 102.49 1.03

GaussSeidel 2
24

43.09 43.33 1.01

InnerProduct 2
30

31.65 31.62 1.00

SpILUK 2
21

3.18 3.12 0.98

Table 5.2: Performance of generated vs. manually written bindings on GPU.

Subject Size CUDA Time [s]

Manual Generated Ratio

CGSolve SpILUKprecond 2
20

99.14 102.49 1.03

GaussSeidel 2
24

43.09 43.33 1.01

InnerProduct 2
30

31.65 31.62 1.00

SpILUK 2
21

3.18 3.12 0.98

5.6 Binding Generation Time

RQ4: What is the time needed to generate the bindings?

Table 5.3 shows the average time taken to automatically generate the

bindings for each library. The first column shows the name of the subject.

The second column shows the number of bound functions used. The third

column shows the number of modules generated (i.e., DSOs that instantiate

the classes and functions). The fourth column shows the time taken during the

static phase. The last two columns show the time taken during the dynamic

phase for g++ and NVCC respectively.

The results show that WayOut has acceptable execution time. The

largest cause of performance overhead in either phase is caused by calling the

40

Table 5.3: Bindings build time.

Subject Kernels Modules Static
Phase [s]

Dynamic Phase
(g++) [s]

Dynamic Phase
(NVCC) [s]

CGSolve 7 12 3.43 32.13 82.93

CGSolve SpILUKprecond 23 35 5.94 96.17 248.01

GaussSeidel 8 15 5.77 43.17 111.63

GraphColoring 11 17 5.13 51.29 130.21

InnerProduct 2 2 3.05 7.59 26.28

SpGEMM 7 12 4.37 33.23 85.83

SpILUK 18 28 5.31 76.49 196.39

histogram 13 34 4.21 98.84 281.24

mode 10 28 4.15 81.86 230.83

saxpy 6 17 3.52 49.41 139.40

set operations 11 17 3.68 49.50 144.43

sort 5 12 3.61 34.79 98.36

sparse 9 33 3.81 96.60 273.38

sum 4 11 3.50 31.92 90.87

C++ compiler. The time taken during the static phase is mostly caused by

compiling the enums DSO file and does not vary greatly across subjects. The

time taken during the dynamic phase varies depending on the number of mod-

ules generated and the compiler used. More kernel calls with different types

results in more template instantiations, and therefore more modules generated.

For example, the CGSolve SpILUKprecond subject has the largest dynamic

phase execution time (among the Kokkos subjects), as it calls 23 functions and

generates 35 modules, more than any other subject. Additionally, compiling

with NVCC is slower as it compiles code using both a host compiler and a

device compiler.

41

It is important to note that the execution time shown here only occurs

once, when the bindings are instantiated for the first time. Later calls of kernels

with the same types, and even later runs of the same application would not

incur this overhead as the modules are cached on the filesystem.

WayOut is also considerably faster than the approach used in the

Kokkos View bindings [7], which is a purely static approach (manually config-

ured) that instantiates all combinations of types during compilation. On our

machine, compiling those bindings takes over 6 hours, and runs out of memory

on another machine.

42

Chapter 6

Limitations and Future Work

In this chapter, we describe some limitations of WayOut, as well as

potential future work.

6.1 Limitations

C++ allows passing arguments and returning values by value, pointer,

or reference. Python always passes primitives by value and objects by refer-

ence. As such, the Python API generated by WayOut will not always exactly

match the functionality of the C++ API: primitives are always passed and re-

turned by value, and objects are always passed by reference or pointer. Way-

Out allows passing pointers with ptr and character pointers with char ptr.

Another limitation of WayOut is that the generated wrappers may

not be very “Pythonic”. For example, while ptr and char ptr are practical

solutions to pointer arguments, such constructs will be unfamiliar to Python

programmers, who have no C/C++ background. Additionally, the generated

wrappers do not make use of certain Python features such as keyword argu-

ments (i.e., **kwargs) and dynamic typing.

It would be possible to make the generated APIs more Pythonic by

43

adding another layer of abstraction on top of the wrappers generated by Way-

Out. Currently, this would require additional effort from the user, although

we plan to explore a way to automate this step in future work.

Many of the kernels in Thrust accepts a functor in order for the user

to define kernel behavior. WayOut does not support those kernels because

such an approach would require translating Python code to C++; an earlier

work, PyKokkos [12], supports translation from Python to C++. However,

since the goal of WayOut is to access existing HPKs where the behavior is

generally defined, this is a minor limitation.

Finally, we primarily focused on Kokkos and Thrust in our evaluation.

We chose Kokkos because it is a popular performance portability framework

with a substantial number of kernels, and Thrust is among the most popular

libraries for CUDA.

6.2 Future Work

We currently implement a subset of operator overloads, which can easily

be expanded. We are also limited to operators defined within a class. Operator

overloaded outside a class definition can be supported by parsing the AST to

determine the class it should be defined under.

As discussed in section 4.7, pybind11 supports implementing the Python

buffer protocol to allow regions of memory to be natively accessed from Python.

This greatly boosts performance and allows operations such as creating a

44

NumPy array from the memory region. While at the moment we can only

take advantage of this feature through manually written bindings, a promis-

ing direction to investigate is automatically implementing the buffer protocol

using information extracted from the analysis of the C++ code.

At the moment, the user must manually list all the header files that are

included by other headers when running WayOut (i.e., files to be parsed).

For instance, <Kokkos Core.hpp> includes <Kokkos View.hpp>. Normally in

C++ simply including the former would grant access to classes and methods

defined in the latter, but WayOut requires the latter to be included explicitly

to generate the corresponding wrapper classes. While we investigated parsing

header files recursively, ultimately they end up including too many unused

header files, many of which are used for implementation and unnecessary to

the user API. These extraneous classes and methods drastically clutter up

the generated Python wrapper file so we opted to require the user to explic-

itly include each individual header file instead. In our experience, this is a

worthy trade off as in most cases only a few extra header files need to be

included. Future work could investigate leveraging dynamic analysis to only

include header files that are actually used in the user code to only generate

the necessary wrappers.

Currently, all wrappers are included in a single Python file and can

become unreadable as the number of header files included increases. Further-

more, this effectively flattens all namespaces and can potentially lead to name

collision. A potential solution is to generate a file system hierarchy that mirrors

45

the C++ namespace. This can also solve the previous limitation of recursively

including header files by distributing the wrappers over many files. Addition-

ally, functions and classes used for implementation are usually defined in their

own namespace, therefore they can simply be ignored by the user under this

scheme that we plan to support in the future.

Finally, WayOut currently only supports using Make to build the bind-

ings. This is sufficiently general to support arbitrary C++ libraries by speci-

fying the appropriate flags, but many libraries prefer to use CMake as the build

system. Therefore, it would be beneficial to somehow implement support for

choosing a build system.

46

Chapter 7

Related Work

In this chapter, we describe closely related work on (1) binding frame-

works, (2) static binding generation, (3) dynamic binding generation, and

(4) high performance Python.

7.1 Binding Frameworks

Boost.Python [11], pybind11 [36], SWIG [15], and pyximport [17] are

frameworks that allow binding C or C++ code so that it can be called from

Python. Typically, these frameworks require that the user specify the C++

interface to be bound using some form of domain-specific language or config-

uration file. WayOut only asks the user for the header files containing the

class and function declarations, and automatically generates the bindings with

no extra effort from the user.

7.2 Static Binding Generation

CFFI [21] is a Python library that can import C code using C-like dec-

larations and generate the necessary bindings in a C file. However, it does

not support C++ and requires the user to manually declare the interface.

47

AutoWIG [24] is a Python package that statically generates Python bindings

of C++ code. AutoWIG provides a Python API to pass in header files and

then generates bindings using Boost.Python. Additionally, the user has to

provide a header file that contains all the needed template instantiations for

templated classes and functions. Afterwards, the user must compile the gener-

ated bindings. Similarly, Binder [3] statically parses header files to obtain all

classes and functions. As with AutoWIG, the desired template instantiations

must be explicitly used or specified in the header files. In contrast to Au-

toWIG, it is meant to be used entirely through the command-line. WayOut

is more flexible and more Pythonic through its dynamic analysis: templates

are only instantiated at run-time through types passed to automatically gen-

erated Python wrapper classes. The user does not have to specify all the types

that they want to use ahead of time.

7.3 Dynamic Binding Generation

Cppyy [31] dynamically generates bindings to C++ libraries. It uses

Cling [42], a C++ interpreter based on Clang and LLVM, to generate C++

code that instantiates and calls classes and functions included in header files,

and then binds that code to enable accessing it from Python. The definitions

of those classes and functions are loaded at run-time by dynamically linking

a shared object library. This presents a problem for libraries such as Kokkos

Kernels, which currently can only be compiled to a static library. WayOut

provides the flexibility of linking a static library during compilation, instead

48

of exclusively requiring shared object libraries as cppyy does. Additionally,

WayOut’s use of pybind11 to interface between Python and C++ allows the

user to manually write bindings for some classes to make them more Pythonic

if desired. This is not possible with cppyy as there is no user interface for

manually writing bindings.

Furthermore, the dependence on Cling also limits supported libraries to

features supported by Cling. For instance, it does not have support for thread

level storage symbol relocation, which is used in the shared object for Kokkos

and prevented us from using Kokkos with cppyy. Another example is CUDA

support. Since WayOut invokes a compiler to compile shared objects, it has

flexibility of choosing NVCC rather than g++ as the compiler, whereas Cling

support for CUDA is still experimental to our knowledge.

7.4 High Performance Python

PyKokkos [8, 12] is a framework for writing performance portable ker-

nels in Python. The user writes kernels in a small, statically typed subset

of Python, which PyKokkos then translates to C++ (Kokkos) to obtain bet-

ter performance. Numba [28] is a Python JIT compiler based on LLVM.

Cython [17] adds C-like language extensions to Python to improve perfor-

mance. WayOut is not meant for writing kernels. WayOut provides access

to pre-existing, hand-tuned high-performance kernels.

NumPy [25] and SciPy [43] both contain data structures and kernels

used in scientific computing. A significant part of both libraries is implemented

49

in C and C++, which is then manually wrapped so it can be accessed from

Python. WayOut attempts to automatically generate bindings and wrappers

to simplify interoperating between Python and C++.

50

Chapter 8

Conclusion

We present WayOut, a technique for automatically generating Python

bindings for C++ code, specifically high-performance kernels. WayOut com-

bines static and dynamic analysis in order to reconcile Python’s dynamic na-

ture with C++’s static typing, and is able to support heavily templated classes

and functions. We implement WayOut by building Python and C++ code

generators that produce a connection layer between the two languages. Our

evaluation shows that WayOut is effective for generating the connection layer

for Kokkos Kernels and CUDA Thrust. Moreover, the generated connection

layer introduces minimal run-time performance overhead. Additionally, Way-

Out can generate bindings at an acceptable performance cost, making it more

feasible than manually written and statically generated bindings. We believe

that WayOut will enable faster development of scientific applications by pro-

viding a necessary connections between high-level languages frequently used

by scientists and existing high performance kernels written in C++.

51

Bibliography

[1] PEP 3118 – revising the buffer protocol. https://www.python.org/

dev/peps/pep-3118, 2006.

[2] Kokkos Tutorials. https://github.com/kokkos/kokkos-tutorials,

2015.

[3] Binder. https://github.com/RosettaCommons/binder, 2016.

[4] ExaMiniMD. https://github.com/ECP-copa/ExaMiniMD, 2017.

[5] PyCLIF. https://github.com/google/clif, 2017.

[6] Cabana. https://github.com/ECP-copa/Cabana, 2018.

[7] kokkos-python. https://github.com/kokkos/kokkos-python, 2020.

[8] PyKokkos. https://github.com/kokkos/pykokkos, 2021.

[9] Thrust. https://github.com/NVIDIA/thrust, 2021.

[10] Trilinos. https://trilinos.github.io, 2021.

[11] David Abrahams and Ralf W. Grosse-Kunstleve. Building hybrid systems

with Boost.Python. The C/C++ Users Journal, 21, 2003.

52

[12] Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric. A per-

formance portability framework for Python. In International Conference

on Supercomputing, 2021. To appear.

[13] Albany multiphysics code. http://snlcomputation.github.io/Albany,

2020.

[14] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing

locality and independence with logical regions. In International Confer-

ence on High Performance Computing, Networking, Storage and Analysis,

pages 1–11, 2012.

[15] D.M. Beazley. Automated scientific software scripting with SWIG. Fu-

ture Generation Computer Systems, 19(5):599–609, 2003.

[16] David A. Beckingsale, Jason Burmark, Rich Hornung, Holger Jones, William

Killian, Adam J. Kunen, Olga Pearce, Peter Robinson, Brian S. Ryujin,

and Thomas RW Scogland. RAJA: Portable performance for large-scale

scientific applications. In Workshop on Performance, Portability and

Productivity in HPC, pages 71–81, 2019.

[17] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre

Seljebotn, and Kurt Smith. Cython: The best of both worlds. In Com-

puting in Science and Engineering, pages 31–39, 2011.

[18] Nathan Bell and Jared Hoberock. Chapter 26 - Thrust: A productivity-

oriented library for CUDA. In GPU Computing Gems Jade Edition, pages

53

359–371. 2012.

[19] Matthew Tyler Bettencourt and Sidney Shields. EMPIRE: Sandia’s next

generation plasma tool. Technical report, Sandia National Lab.(SNL-

NM), Albuquerque, NM (United States), 2019.

[20] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia:

A fresh approach to numerical computing. SIAM Review, 59(1):65–98,

2017.

[21] CFFI documentation. https://cffi.readthedocs.io/en/latest/, 2012.

[22] CUDA Zone. https://developer.nvidia.com/cuda-zone, 2020.

[23] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos:

Enabling manycore performance portability through polymorphic mem-

ory access patterns. Journal of Parallel and Distributed Computing,

74(12):3202–3216, 2014.

[24] Pierre Fernique and Christophe Pradal. AutoWIG: Automatic generation

of Python bindings for C++ libraries. PeerJ Computer Science, 4, 04

2018.

[25] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-

mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor,

Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan

Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern-

ndez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gerard-Marchant,

54

Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph

Gohlke, and Travis E. Oliphant. Array programming with NumPy. Na-

ture, 585(7825):357–362, 2020.

[26] HIP Programming Guide. https://rocmdocs.amd.com/en/latest/index.

html, 2021.

[27] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A portable con-

current object oriented system based on C++. In Conference on Object-

Oriented Programming Systems, Languages, and Applications, pages 91–

108, 1993.

[28] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-

based Python JIT compiler. In Workshop on the LLVM Compiler Infras-

tructure in HPC, pages 1–6, 2015.

[29] LAMMPS molecular dynamics simulator. https://lammps.sandia.

gov, 2020.

[30] Chris Lattner and Vikram Adve. LLVM: A compilation framework for

lifelong program analysis & transformation. In International Symposium

on Code Generation and Optimization, pages 75–86, 2004.

[31] Wim T.L.P Lavrijsen and Aditi Dutta. High-performance Python-C++

bindings with PyPy and Cling. In Workshop on Python for High-

Performance and Scientific Computing (PyHPC), page 27–35, 2016.

55

[32] D. Lebrun-Grandié, A. Prokopenko, B. Turcksin, and S. R. Slattery. Ar-

borX: A performance portable geometric search library. Transactions on

Mathematical Software, 47(1):1–15, 2020.

[33] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Criss-

man Loomis. CuPy: A NumPy-compatible library for NVIDIA GPU

calculations. In Workshop on Machine Learning Systems (LearningSys),

2017.

[34] T. E. Oliphant. Python for scientific computing. Computing in Science

and Engineering, 9(3):10–20, 2007.

[35] OpenMP. https://www.openmp.org, 2020.

[36] pybind11 documentation. https://pybind11.readthedocs.io/en/stable/

intro.html, 2020.

[37] PyPy. https://www.pypy.org, 2021.

[38] Sivasankaran Rajamanickam, Seher Acer, Luc Berger-Vergiat, Vinh Dang,

Nathan Ellingwood, Evan Harvey, Brian Kelley, Christian R. Trott, Jeremiah

Wilke, and Ichitaro Yamazaki. Kokkos Kernels: Performance portable

sparse/dense linear algebra and graph kernels. https://arxiv.org/

abs/2103.11991, 2021.

[39] Boris Schling. The Boost C++ Libraries. 2011.

56

[40] SIP documentation. https://www.riverbankcomputing.com/static/

Docs/sip, 2021.

[41] E. Slaughter and A. Aiken. Pygion: Flexible, scalable task-based paral-

lelism with Python. In Parallel Applications Workshop, Alternatives To

MPI, pages 58–72, 2019.

[42] V. Vassilev, Ph. Canal, A. Naumann, L. Moneta, and P. Russo. Cling

– the new interactive interpreter for ROOT 6. In Journal of Physics:

Conference Series, pages 52–71, 2012.

[43] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-

ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,

Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.

Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,

Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perk-

told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,

Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-

bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms

for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

57

Vita

Steven Zhu was born in Xinhui, China on 30 October 1997, the son

of Dexin Zhang and Xueqing Zhu. He moved with his family to Bedford,

Texas in 2010 and graduated from Lawrence D. Bell High School in May of

2016. He attended The University of Texas at Austin from 2016-2019 as an

undergraduate and was accepted into the Master’s Program at UT Austin

in 2019. He is currently studying to graduate with a Master of Science in

Computer Engineering.

Permanent address: 908 Forest Glen Dr
Bedford, Texas 76021

This thesis was typeset with LATEX
†

by the author.

†
LATEX is a document preparation system developed by Leslie Lamport as a special

version of Donald Knuth’s TEX Program.

58

