
Mutation Analysis for Coq

Pengyu Nie1

Ahmet Celik1, Karl Palmskog1, Marinela Parovic1,
Emilio Jesús Gallego Arias2, and Milos Gligoric1

ASE 2019

1 2

1 / 24

Program Verification Using Proof Assistants

Verified software: encode program in formalism, write
specifications for functions and prove them

Proof assistants: prove specifications interactively
Coq, HOL4, HOL Light, Isabelle/HOL, Lean, Nuprl, ...

Verified executable systems built using proof assistants are
reaching unprecedented scale

CompCert (C compiler), 8 person years, 120k LOC
seL4 (OS kernel), 25 person years, 200k LOC
Verdi Raft (consensus protocol), 2 person years, 50k LOC

These systems are being deployed

CompCert – embedded systems
seL4 – military autonomous vehicles

2 / 24

An Example of a Verified Function

github.com/uwplse/StructTact

Using Coq proof assistant

Dependency of large verified systems,
including Verdi Raft and Oeuf compiler

From mathcomp Require Import all_ssreflect.

Fixpoint before_func A (f g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

| a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP→ |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Before.v

3 / 24

An Example of a Verified Function

github.com/uwplse/StructTact

Using Coq proof assistant

Dependency of large verified systems,
including Verdi Raft and Oeuf compiler

From mathcomp Require Import all_ssreflect.

Fixpoint before_func A (f g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

| a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP→ |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Before.v

Import

3 / 24

An Example of a Verified Function

github.com/uwplse/StructTact

Using Coq proof assistant

Dependency of large verified systems,
including Verdi Raft and Oeuf compiler

From mathcomp Require Import all_ssreflect.

Fixpoint before_func A (f g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

| a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP→ |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Before.v

Function

3 / 24

An Example of a Verified Function

github.com/uwplse/StructTact

Using Coq proof assistant

Dependency of large verified systems,
including Verdi Raft and Oeuf compiler

From mathcomp Require Import all_ssreflect.

Fixpoint before_func A (f g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

| a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP→ |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Before.v

Specification

3 / 24

An Example of a Verified Function

github.com/uwplse/StructTact

Using Coq proof assistant

Dependency of large verified systems,
including Verdi Raft and Oeuf compiler

From mathcomp Require Import all_ssreflect.

Fixpoint before_func A (f g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

| a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP→ |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Before.v

Proof

3 / 24

Problem: Incomplete and Missing Specifications

StructTact Verdi Raft

incomplete spec

Specifications might not cover the core parts of the function

Some functions might have no specification at all

Usage of such functions could lead to surprises and even bugs

How do we detect incomplete and missing specifications?

4 / 24

Our Contributions

1 Introduce mutation proving for proof assistants libraries

Mutate functions and check if any lemma fails
No lemma fails (live mutant) may indicate incomplete spec
Analogous to mutation testing

2 Implement mutation proving for Coq libraries, mCoq

3 Optimize mCoq with selective and parallel proof checking

4 Quantitatively evaluate mCoq on 12 popular Coq libraries

5 Qualitatively evaluate dozens of live mutants and report
incomplete specifications

5 / 24

Mutation Proving Example, Original Code

From mathcomp Require Import all_ssreflect.

Fixpoint before_func A (f g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

| a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP→ |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Before.v

Proof passes

6 / 24

Mutation Proving Example, Mutated Code

From mathcomp Require Import all_ssreflect.

Fixpoint before_func A (f g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

- | a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

+ | a :: l’ ⇒ (f a == true) || (g a == true && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP→ |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Before.v

Proof still passes → Live mutant → Incomplete specification

7 / 24

Mutation Proving Example, Mutated Code

From mathcomp Require Import all_ssreflect.

Fixpoint before_func A (f g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

- | a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

+ | a :: l’ ⇒ (f a == true) || (g a == true && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP→ |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Before.v

Proof still passes → Live mutant → Incomplete specification

7 / 24

mCoq Architecture and Workflow

QMutator

sexp parser

transformer

.v file

sexp file

CoqSerAPI

sercomp

compser

4 3

1

5

2

Fixpoint..
Lemma..
Proof..
Qed.

sexp1

2

mutants

3

4

live
killed

5

live
killed
live
killed

8 / 24

mCoq Architecture and Workflow

QMutator

sexp parser

transformer

.v file

sexp file

CoqSerAPI

sercomp

compser

4 3

1

5

2

Fixpoint..
Lemma..
Proof..
Qed.

sexp1

2

mutants

3

4

live
killed

5

live
killed
live
killed

8 / 24

mCoq Architecture and Workflow

QMutator

sexp parser

transformer

.v file

sexp file

CoqSerAPI

sercomp

compser

4 3

1

5

2

Fixpoint..
Lemma..
Proof..
Qed.

sexp1

2

mutants

3

4

live
killed

5

live
killed
live
killed

8 / 24

mCoq Architecture and Workflow

QMutator

sexp parser

transformer

.v file

sexp file

CoqSerAPI

sercomp

compser

4 3

1

5

2

Fixpoint..
Lemma..
Proof..
Qed.

sexp1

2

mutants

3

4

live
killed

5

live
killed
live
killed

8 / 24

mCoq Architecture and Workflow

QMutator

sexp parser

transformer

.v file

sexp file

CoqSerAPI

sercomp

compser

4 3

1

5

2

Fixpoint..
Lemma..
Proof..
Qed.

sexp1

2

mutants

3

4

live
killed

5

live
killed
live
killed

8 / 24

mCoq Components (1): Serialization and Deserialization

SerAPI extended OCaml library supporting full
(de)serialization of Coq code

sercomp command-line SerAPI-based OCaml program which
takes Coq .v file and outputs lists of sexps

compser command-line SerAPI-based program which takes
lists of sexps and performs proof checking with Coq

9 / 24

mCoq Components (2): QMutator and Runner

QMutator sexp transformation library in Java that performs
mutations given mutation operator and location

Runner driver program in Java and bash to orchestrate
components and compute mutation scores

10 / 24

Mutation Operators

Inspired by our experience (17 years cumulative) and mutation
operators for functional languages

Category Name Description
GIB Reorder branches in if-else expression
GIC Reverse constructor order in inductive typeGeneral
GME Replace exp in the 2nd match case with 1st case exp
LRH Replace list with head singleton list
LRT Replace list with its tail
LRE Replace list with empty list
LAR Reorder arguments to the list append operator
LAF Replace list append expression with first argument

Lists

LAS Replace list append expression with second argument
NPM Replace plus with minus
NZO Replace zero with one
NSZ Replace successor constructor with zero

Numbers

NSA Replace successor constructor with its argument
BFT Replace false with true

Booleans
BTF Replace true with false

11 / 24

Mutation Procedure Simplified

Require: G – Dependency Graph
Require: rG – Reverse Dependency Graph
Require: op – Mutation operator
Require: sVFs – Topologically sorted .v files
Require: v – Set of visited .v files
Require: vF – .v file

1: procedure checkOpVFile(G , rG , op, sVFs, v , vF)
2: sF ← sercomp(vF)
3: mc ← countMutationLocations(sF , op)
4: mi ← 0
5: while mi < mc do
6: mSF ← mutate(sF , op,mi)
7: checkOpSexpFile(G , rG , sVFs, v , vF ,mSF)
8: mi ← mi + 1
9: end while

10: revertFile(vF)
11: end procedure

12 / 24

Optimizations and mCoq Modes

Default Simple mode, checks every file sequentially

RDeps Advanced mode which checks only affected files and
caches proof checking for unmodified files

ParMutant Like RDeps, but checks each mutant in parallel

6-RDeps Organizes operators into six groups, and runs each
group in parallel using RDeps

More optimizations and modes in the paper

13 / 24

Optimizations and mCoq Modes

Default Simple mode, checks every file sequentially

RDeps Advanced mode which checks only affected files and
caches proof checking for unmodified files

ParMutant Like RDeps, but checks each mutant in parallel

6-RDeps Organizes operators into six groups, and runs each
group in parallel using RDeps

More optimizations and modes in the paper

13 / 24

Evaluation: Research Questions

RQ1 What is the number of mutants of libraries and what are
their mutation scores?

RQ2 What is the cost of mutation proving in terms of execution
time and what are benefits of optimizations?

RQ3 Why are some mutants (not) killed?

RQ4 How does mutation proving compare to dependency analysis
for finding incomplete and missing specifications?

14 / 24

Evaluation: Subjects and Environment

Library #Files Spec. LOC Pr. LOC
ATBR 42 4123 5567
FCSL PCM 12 2939 2851
Flocq 29 5955 18044
Huffman 26 1878 4011
MathComp 89 37520 46040
PrettyParsing 14 1221 705
Bin. Rat. Numbers 37 5500 29541
Quicksort Compl. 36 2617 6202
Stalmarck 38 3552 7698
Coq-std++ 43 6882 6852
StructTact 19 2008 2333
TLC 49 13217 7802
Avg. 36.16 7284.33 11470.50
Total 434 87412 137646

6-core Intel Core
i7-8700 CPU @
3.20GHz

64GB of RAM

Ubuntu 18.04.1

#parallel processes
≤ #CPU cores.

15 / 24

https://github.com/coq-community/atbr
https://github.com/imdea-software/fcsl-pcm
https://gitlab.inria.fr/flocq/flocq
https://github.com/coq-community/huffman
https://github.com/math-comp/math-comp
https://github.com/wilcoxjay/PrettyParsing
https://github.com/coq-community/qarith-stern-brocot
https://github.com/coq-contribs/quicksort-complexity
https://github.com/coq-community/stalmarck
https://gitlab.mpi-sws.org/iris/stdpp
https://github.com/uwplse/StructTact
https://gitlab.inria.fr/charguer/tlc

RQ1: Metrics

RQ1 What is the number of mutants of libraries and what are
their mutation scores?

Live Mutants mutants that pass all proof checking

Killed Mutants mutants that cause a failing proof of any lemma

Mutation Score percentage of killed mutants out of all mutants

16 / 24

RQ1: Number of Mutants

Library Total Killed Live
ATBR 355 335 20
FCSL PCM 115 112 3
Flocq 382 349 33
Huffman 369 366 3
MathComp 1037 1025 12
PrettyParsing 282 235 47
Bin. Rat. Numbers 365 352 13
Quicksort Compl. 681 637 44
Stalmarck 565 526 39
Coq-std++ 564 515 49
StructTact 104 100 4
TLC 400 306 94

Avg. 434.91 404.83 30.08
Total 5219 4858 361

17 / 24

RQ1: Mutation Scores

Library Score
ATBR 95.44
FCSL PCM 99.11
Flocq 93.31
Huffman 99.18
MathComp 98.84
PrettyParsing 83.33
Bin. Rat. Numbers 97.23
Quicksort Compl. 93.81
Stalmarck 93.26
Coq-std++ 91.63
StructTact 96.15
TLC 76.88

Avg. 93.18

Most have high mutation scores

Proof code is brittle
Specifications highly coupled to
functions and datatypes

Although mutation scores are high,
each library has some live mutants

18 / 24

RQ2: Mutation Cost

RQ2 What is the cost of mutation proving in terms of execution
time and what are benefits of optimizations?

Execution Time in Seconds
Library Default RDeps ParMutant 6-RDeps
ATBR 2157.68 1760.27 596.21 755.40
FCSL PCM 153.22 150.88 53.33 109.51
Flocq 725.82 547.06 156.63 199.02
Huffman 188.64 185.70 62.46 72.38
MathComp 9962.99 8480.79 4053.67 3943.05
PrettyParsing 278.56 216.98 66.06 90.21
Bin. Rat. Numbers 1022.61 925.50 264.85 578.94
Quicksort Compl. 1594.66 1064.64 362.38 553.53
Stalmarck 805.84 498.01 192.78 230.62
Coq-std++ 3187.80 2597.54 776.77 1137.16
StructTact 55.90 41.62 18.84 19.35
TLC 3128.85 1739.27 519.59 693.88
Avg. 1938.54 1517.35 593.63 698.58
Total 23262.57 18208.26 7123.57 8383.05

ParMutant mode saves 70% time compared to Default mode

19 / 24

RQ3: Qualitative Analysis Procedure

RQ3 Why are some mutants (not) killed?

Goal Inspect 10% or more of all live mutants for each operator, and
10% or more of all live mutants for each library

1 Randomly choose 5% mutants to inspect from the set of all
live mutants

2 Inspect all MathComp mutants

3 Reach the goal by sampling from underrepresented subsets

20 / 24

RQ3: Live Mutants Taxonomy

We manually inspected 74 live mutants (out of 361), which we
labeled with one of:

UnderspecifiedDef: The live mutant pinpoints a definition
which lacks lemmas for certain cases (33 mutants)

DanglingDef: The live mutant pinpoints a definition that has
no associated lemma (30 mutants)

SemanticallyEq: The live mutant is semantically equivalent to
the original library (11 mutants)

21 / 24

RQ3: MathComp Live LRT Mutant

Fixpoint merge_sort_push (s1 : list T) (ss : list (list T)) :=

match ss with

| [::] :: ss’ | [::] as ss’ ⇒ s1 :: ss’

| s2 :: ss’ ⇒
- [::] :: merge_sort_push (merge s1 s2) ss’

+ merge_sort_push (merge s1 s2) ss’

end.

UnderspecifiedDef

Time complexity: O(n log n) to O(n2)

The key but unstated invariant of ss is that its ith item has
size 2i if it is not empty, so that merge sort push only
performs perfectly balanced merges [...] without the [::]

placeholder the MathComp sort becomes two element-wise
insertion sort.

—Georges Gonthier

22 / 24

Impact on the Community

Reported several incomplete or missing specifications, e.g., in
StructTact and MathComp

Improved SerAPI, and sercomp and compser already
integrated

Improved serialization support in Coq which has been merged
to 8.10.0 release

Discovered a serious bug in Coq related to proof processing
using mCoq. We reported this bug and it was immediately
fixed by the developers

23 / 24

Conclusion

Technique for mutation proving for proof assistant libraries

Coq tool, mCoq, implementing technique and optimizations

Extensive quantitative and qualitative evaluation

mCoq finds incomplete/missing specs

Impact on the Coq community (e.g., SerAPI)

Contact us: http://cozy.ece.utexas.edu/mcoq

Our other work: https://proofengineering.org

24 / 24

http://cozy.ece.utexas.edu/mcoq
https://proofengineering.org

Backup Slides After This Point

Why Not Mutating Coq on Syntax Level

Extensibility and flexibility of the syntax is a serious obstacle

Coq supports defining powerful custom notations over existing
specifications

Coq’s parser can be extended with large grammars at any
point in a source file by loading plugins

Our Working Analogy: Proofs ∼ Tests

tests are “partial functional specifications” of programs

proofs represent many, usually an infinite number of, tests

Fixpoint app {A} (l m:list A)

:= match l with

| [] ⇒ m

| a :: l’ ⇒ a :: app l’ m

end.

1. Coq function

Lemma assoc: ∀ A(l m n:list A),

app l(app m n) = app(app l m) n.

Proof.

induction l; intros; auto.

simpl; rewrite IHl; auto.

Qed.

2. Coq lemma

let test_app_assoc ctxt =

assert_equal

(app [1] (app [2] [3]))

(app (app [1] [2]) [3])

3. OCaml test

Example Verified Function, Strong Lemma Added

Fixpoint before_func A (f : A → bool) (g : A → bool) (l : list A) : bool :=

match l with

| [::] ⇒ false

| a :: l’ ⇒ (f a == true) || (g a == false && before_func A f g l’)

end.

Lemma before_func_app : ∀ A (f g : A → bool) (l l’ : list A),

before_func A f g l → before_func A f g (l ++ l’).

Proof.

intros;induction l⇒ /=; intuition; move/orP: H; case; [by move/eqP → |].

by move/andP⇒ [H1 H2]; rewrite H1 /=; apply/orP; right; apply IHl.

Qed.

Lemma before_func_antisym : ∀ A f g l,

(∀ x, f x == true → g x == true → ⊥) →
before_func A f g l → before_func A g f l → ⊥ .

Proof.

move ⇒ A f g; elim ⇒ //= a l IH Hfg.

case/orP ⇒ Hf; case/orP ⇒ Hg ⇒ //=; first by eauto.

- by move/andP: Hg Hf ⇒ [Hfa Hb]; move/eqP: Hfa → .

- by move/andP: Hf Hg ⇒ [Hfa Hb]; move/eqP: Hfa → .

- by move/andP: Hf ⇒ [Hfa Hb]; move/andP: Hg ⇒ [Hga Hb’]; eauto.

Qed.

RQ4: Comparison to Dependency Analysis

RQ4 How does mutation proving compare to dependency analysis
for finding incomplete and missing specifications?

compared to grep-based baseline (“do names occur in source
files?”)

compared to term dependency extraction (“do names occur in
elaborated terms?”)

conclusion: baseline is useless, term dependency lists are noisy

See paper for details!

RQ1: Outliers

Library Score
ATBR 95.44
FCSL PCM 99.11
Flocq 93.31
Huffman 99.18
MathComp 98.84
PrettyParsing 83.33
Bin. Rat. Numbers 97.23
Quicksort Compl. 93.81
Stalmarck 93.26
Coq-std++ 91.63
StructTact 96.15
TLC 76.88

Avg. 93.18

Outliers with lower mutation scores

TLC: specifications are put in
another library
PrettyParsing: many functions
describe how prettification is done,
but no specification for them

RQ3: Flocq Live GIB Mutant

Definition Bplus op_nan m x y :=

match x,y with

| B754_infinity sx, B754_infinity sy ⇒
- if Bool.eqb sx sy then x else build_nan (plus_nan x y)

+ if Bool.eqb sx sy then build_nan (plus_nan x y) else x

UnderspecifiedDef

Bplus lemmas rule out infinite cases through guards

Same problem with Bminus function

Limitations and Future Work

Design more mutation operators specialized for each library

Scope of mutation is limited to definitions. This is analogy to
mutation testing where mutation is limited to production code
rather than test code

Equivalence filtering uses syntactical equality, other equalities
such as convertibility could be used

Alternative mutation approaches during elaboration phase

