On the Naturalness of Hardware Descriptions

Jaeseong Lee, Pengyu Nie, Junyi Jessy Li, Milos Gligoric

The University of Texas at Austin

ESEC/FSE 2020

Partially supported by: GO gle

Motivation: Success of Mining Software Repositories

* Corpora: software artifacts available in open-source repositories
o Code, natural language documentations, pull requests, open issues...

e Observation: code in programming languages is natural (repetitive and predictable)
just like text in natural language

o ICSE’12 On the Naturalness of Software: Java, C
o ICSE’19 Natural Software Revisited: Java, C, C#, JavaScript, Python, Ruby, Scala

* Applications: statistical and learning-based models for code completion, code
repair, code search, code summarization...

* Limitation: existing work and applications have focused almost exclusively on
general-purpose languages

* Unexplored: hardware description languages

Hardware Description Languages (HDLs)

* Usage: describing logic circuits
* Examples: VHDL, Verilog, SystemVerilog
* Key difference: processes are executed in parallel

entity fpgabd _sid _iec 1is
port(...
clk32 : in std_logic;

uart_txd : out std_logic; ...
uart_dcd_out: out std_logic;);
end fpgab4d sid iec;
architecture rtl of fpga64 sid iec is ...
signal cia2_pao: unsigned(7 downto 0); behavior
signal cia2_pbo: unsigned(7 downto 0);
signal vicAddr: unsigned(15 downto 0); ...
begin ...) w
process (c1k32) local signal explicit process

begin ... end process; “‘-~_=__

iec_data o <= cia2 pao(5); <~—-__-‘"“--_‘-
iec_clk o <= cia2 pao(4); *— “-_________
vicAddr(14) <= (not cia2_pao(0));::::::::::::

vicAddr(15) <= (not cia2_pao(1));
end architecture;

concurrent assignment

(implicit process)

executed in parallel

Our Contributions

Corpora

* Mined hardware descriptions repositories corpora from GitHub
e 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

L\

* Conducted the first comparative evaluation of the naturalness of hardware descriptions by building

language models and reporting standard cross entropy measures
 Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against

the naturalness of software written in Java

~

J

Assignment Completion Model

* Designed and implemented deep learning models for predicting the right hand side of concurrent
assignments in VHDL

Our Contributions

Corpora

* Mined hardware descriptions repositories corpora from GitHub
e 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Hardware Descriptions Corpora

* Mine 100 top repositories from GitHub (ranked by the number of stars) for

VHDL, Verilog, SystemVerilog

» Keep only parsable files (using open-source parsers generated using ANTLR)

* Filter out duplicate files

VHDL 100
Verilog 100

SystemVerilog 100

Java Corpora

 Java (Popular): top 10 repositories from GitHub at the time of our study

 Java (Naturalness): 10 repositories from ICSE’12 On the Naturalness of Software

#P I %Dupli . . .

VHDL 13,554 15.5% 11,459 4,759,308 14,572,639 227,117
Verilog 100 7,219 4.8% 6,869 3,433,764 8,238,560 273,893
SystemVerilog 100 2,021 6.5% 1,890 317,886 925,656 28,693
Java (Popular) 10 32,294 3.2% 31,264 6,672,160 23,502,694 387,812

Java (Naturalness) 10 9,886 2.6% 9,630 2,457,854 6,926,953 147,682

Corpora Statistics

350 l 2000
300 1750
550 1500
w 1250
L 200 S
S ¥ 1000
150 i
750
100 500
50 250
0 0
Q\Q\’ \\Oq . \\Oq \é\ éﬂ\
3 < < N &
{@ 3@ R >
& Q &
& > N
S 3 @
\’b
(a) LOC

#Unique Tokens

%) A\
Q‘Q £§OC> K\\ch &«é Qf,)(’)
) 4@ R & N
& Q {
=) o
& 3 &
9 AS o
3

(b) Number of all tokens

250

200

=
U
o

[
[=
o

: 1
v S S > 2
& X° N Na Qe“’%
@ 3@ R 2
<& Q S
< X0
& 0 &P
% A @
NS

(¢) Number of unique tokens

Hardware descriptions in VHDL are more verbose than Verilog
Hardware descriptions in SystemVerilog is shorter
#Tokens and #Unique Tokens are higher in Java repositories than HDL repositories

#Tokens and #Unique Tokens are smaller in SystemVerilog than VHDL and Verilog

Our Contributions

o \7turainess N
* Conducted the first comparative evaluation of the naturalness of hardware descriptions by building
language models and reporting standard cross entropy measures
 Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against
N the naturalness of software written in Java Y,

Naturalness: Methodology

* Following the methodology used in ICSE’12 On the Naturalness of Software
1.
2.
3.

Randomly partition the corpus into 10 equally sized folds

Train a language model on 9 folds, and apply it on the remaining fold

Compute the/average cross entropy as a measurement of the naturalness

n-gram language model, n ={1,...,10}

P(D) = P(wr")

Q

3

P(w;|wi™)

P(Wllwl n+1

\

Ccross entropy

H(D) = -

(D)

——log, P(D)

» next slide

Naturalness: Repository Level vs. Language Level

Repository level (ICSE’12 On the Naturalness of Software)
o Consider each repository as a (mini) corpus and
compute its naturalness
o Report the average among all repositories

Language level (ICSE’19 Natural Software Revisited)
o Consider all repositories of one programming
language as a single corpus

Accounts for variabilities across
different repositories

Measures the regularity of each
language as a whole

Naturalness: Analysis (1/2)

lower cross entropy = higher naturalness

9 Language 9 A\ Language
a4\
—#— VHDL S —H— VHDL
8 -¥~- Verilog 8 \‘\ —-¥~- Verilog
g SystemVerilog) ‘\\ g~ SystemVerilog
--#=- Java (Popular) SO —#-- Java (Popular)
7 =A=: Java (Naturalness) 7 \\\ —A- Java (Naturalness)
> > :
o S
=6 56
c [
L (I}
2 5 2 5
o °
@] O
4 . 4
T ekt it i
3 — 3
2 2
2 4 6 8 10 2 4 6 8 10
n n
(a) Repository level (b) Language level

* Cross entropy monotonically drops as n increases

* The decline of cross entropy saturates at around 4-grams for hardware

descriptions (similar to ICSE’12 On the Naturalness of Software)

12

lower cross entropy = higher naturalness

Naturalness: Analysis (2/2) 9 .

=¥= Verilog

g+ SystemVerilog
--#-- Java (Popular)

7 \\\-\ —A- Java (Naturalness)

[«)}

* Comparisons of cross entropies of different corpora:

Cross Entropy

w

o Repository level, lower n: \
VHDL = Verilog =~ SystemVerilog < Java(Popular) = Java(Naturalness) ;
o Repository level, higher n: ,

VHDL = Java(Popular) < Verilog = SystemVerilog = Java(Naturalness)

o Language level:
VHDL < SystemVerilog = Java(Popular) = Java(Naturalness) < Verilog

* Hardware descriptions show clear properties of naturalness R\

(o)}

(]

Cross Entropy

* VHDL code has the highest naturalness among the 3 HDLs,
and is higher than that of Java software at the repository level .

(b) Language level

13

Our Contributions

Assignment Completion Model

Designed and implemented deep learning models for predicting the right hand side of concurrent
assignments in VHDL

14

Assignment Completion: Task

entity fpga64 sid_iec is m
port(...

clk32 : in std_logic;

uart_txd : out std_logic; ...
uart_dcd_out: out std_logic;);
end fpgab64d sid iec;
architecture rtl of fpga64 sid iec is ...
signal cia2 pao: unsigned(7 downto 0); local 5|gnal epr|C|t process concurrent assignment
signal cia2_pbo: unsigned(7 downto 0);
signal vicAddr: unsigned(15 downto 0); ...
begin ...
process(clk32)
begin ... end process;
iec_data o <= cia2 pao(5);
iec_clk o <= cia2 pao(4);

(implicit process)

—

executed in parallel

vicAddr(14) <= (not cia2_pao(0));
vicAddr(15) <= (not cia2_pao(1));

T e TR from MiSTer-devel/C64_MiSTer

15

Assignment Completion: Task

* Given the left hand side of a concurrent assignment,
predict the value on the right hand side to be assigned

entity fpga64 sid_iec is
port(...
clk32 : in std_logic;
uart_txd : out std_logic;

v v
uart_dcd_out: out std_logic;); m $
v v

end fpgab64d sid iec;
architecture rtl of fpga64 sid iec is ...
signal cia2_pao: unsigned(7 downto 0); m 0 elfe
signal cia2_pbo: unsigned(7 downto 0);
signal vicAddr: unsigned(15 downto 0); ...
begin ...
process(clk32)
begin ... end process;
iec_data o <= cia2 pao(5);
iec_clk o <= cia2 pao(4);

concurrent assignment

(implicit process)

vicAddr(14) <= (not cia2 pao(9));

T e TR from MiSTer-devel/C64_MiSTer

16

Neural Model Architecture

* Underlying framework: sequence-to-sequence architecture
o Encodes a sequence into a deep representation, and predicts a target sequence

* Novel architectures to capture HDL-specific characteristics
1. Multi-source architectures to encode more previous assignments context
2. Utilizing the types of signals
3. Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

Base architecture: S2S

vicaddr (15) LHS encoder > RHS decoder (not cia2 pao (1))

17

Our Architecture (1/3)

* Multi-source architectures to encode more previous assignments context

previous assignment

uart rts <= cia2 pbo (1) ;
encoder #5

previous assignment

uart dtr <=cia2 pbo (2);
encoder #4

previous assignment

encoder #3 6 inputs: S25+PA(1-5)

previous assignment

encoder #2 2 inputs: S25+PA(1)

previous assignment
encoder #1

vicaddr (15) LHS encoder RHS decoder (not cia2 pao (|1))

fully connected layer
+LeakyRelLU

uart ri out <= cia2 pbo (3);

uart dcd out <=cia2 pbo (4);

vic addr (14) <=|(not cia2 pao (|0])) | Base architecture: S2S

ik

18

Our Architecture (2/3)

std_logic_vector 44377
» Utilizing the types of signals e ————

. in std_logic_vector [N
o 14 types: 13 popular types + <T> representing all other types tdolu?std_lo;ic-:j:j

. out std_logic_vector 6705
o Encode each type as a one-hot embedding in std_logic M6434
o Concatenate type embeddings to word embeddings std_ulogic [1164

unsigned [j1381
boolean [547
signed (447
inout std_logic_vector 400
inout std_logic 297

Type

BT vic .. cia TR G MRl previous assignment out startaddr_array_type 179
BT unsigned ... unsigned unsigned 0 0 0 O encoder #1 Frequency

[subtoken [V addr (15)

unsigned unsigned 0 0 O LHS encoder

RHS decoder (notcia2 pao (1))

fully connected layer
+LeakyRelLU

2 inputs, without type: S25+PA(1)
2 inputs, with type: S25+PA(1)+Type

19

Our Architecture (3/3)

* Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

uart rts <= cia2 pbo (1) ;

uart dtr <= cia2 pbo (2);

uart ri out <= cia2 pbo (3); executed in parallel — their order should not matter in the model

uart dcd out <=cia2 pbo (4);

vicaddr (14) <=(notcia2 pao (0));

vicaddr (15)| LHS

expected RHS: (not cia2 pao (1))

20

Our Architecture (3/3)

* Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

executed in parallel —— their order should not matter in the model

uartrts<=cia2 pbo(1);| sthPA Q

uart dtr <=cia2 pbo (2);| 4th PA

uart ri out <=cia2 pbo (3);| 3rd PA s S2S-PA(1-5)+Type

uart ded out <=cia2 pbo (4);| 2nd PA

vicaddr (14)<=(notcia2 pao(0));| 1stPA

vicaddr (15)| LHS

expected RHS: (not cia2 pao (1))

21

Our Architecture (3/3)

* Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

uart rts <=

uart dtr <=

uart ri out <=

uart dcd out <=

rhs 5

cia2 pbo (1)

Ths,
cia2 pbo(2)

rhss
cia2 pbo(3)

T‘hSz
cia2 pbo (4)

~ .

rhs;

vicaddr (14) <=|(not cia2 pao (0))}

’

vicaddr (15)

expected RHS: (not cia2 pao (1))

executed in parallel —— their order should not matter in the model

S2S-PA(5)+Type

S2S-PA(4)+Type

S2S-PA(3)+Type

S2S-PA(2)+Type

S2S-PA(1)+Type

o5 (cs)

04 (C4)

03 (c3)

0, (c3)

S25+PA(Ensemb-1-5)+Type

Ensembler

Regression Model

0, (c1)

22

Dataset

» Extract all concurrent assignments from our VHDL corpus
 Split to training, development, and testing sets with a ratio of 80%:10%:10%

1. Random shuffle all files
Take enough files to obtain ~10% assignments for the testing set

2.
3. Take enough files to obtain ~10% assignments for the development set
4. Assignments from other files (~¥80%) go into the training set

| Statistic | Al | Taining | Development | _ Testing

49 982 39,986 4,998 4,998
Avg. LHS length 4.10 4.11 4.06 4.10
Avg. RHS length 8.55 8.56 8.51 8.51

Evaluation: Baselines and Models

* Rule-based baseline
o Copy the RHS of the 1st PA

* Language model baseline
o RNN language model using LHS + 1st PA as context: RNNLM+PA(1)
o Not good at handling long context: RNNLM+PA(1) is better than RNNLM+PA(1-5)

* Sequence-to-sequence models
o Base architecture: 525
o 2 inputs: S25+PA(1)
o 2 inputs with type: S25+PA(1)+Type
o 6 inputs with type: S25+PA(1-5)+Type
o Ensemble model: S25+PA(Ensemb-1-5)+Type

Evaluation: Metrics

 Compute the similarity between the predicted RHS vs. human-written RHS for each
data in testing set, and report the average scores

e Similarity measurements:

o xMatch: exactly match = 100%, otherwise = 0%
len({i|pred[i]=tgt[i]})
max(len(pred),len(tgt))
o BLEU: range 0-100, calculates the percentage of n-grams in the predicted RHS that also appear in
human-written RHS, averaging across n € {1,2,3,4} and using a brevity penalty to eliminate the
impact of the number of subtokens predicted

o Acc: subtoken level accuracy =

Evaluation: Key Results (1/2)

Rule-based Baseline 29.4 38.1
RNNLM+PA(1) 18.0 22.0 3.2
S2S+PA(Ensemb-1-5)+Type 37.3 48.0 19.1

* The best model is the model that ensembles multi-source
sequence-to-sequence models for 5 previous assignments
with utilizing types of signals

Evaluation: Key Results (2/2)

T Wodel | Bleu | AcDd | swatch

S2S+PA(Ensemb-1-5)+Type 37.3 48.0 19.1
S2S+PA(1-5)+Type 24.4 28.2 11.4
S2S+PA(1)+Type 25.8 30.4 14.1
S2S+PA(1) 25.4 30.0 14.4
S2S 19.6 21.9 12.3

* Using more previous assignment context and type embedding
improved the performance over the base architecture (S2S)

* Ensembling handles the previous assighment context more
effectively than only using multi-source architecture

Conclusions

Corpora

* Mined hardware descriptions repositories corpora from GitHub
e 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

o \7turainess N
* Conducted the first comparative evaluation of the naturalness of hardware descriptions by building
language models and reporting standard cross entropy measures
 Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against
N the naturalness of software written in Java Y,

Assignment Completion Model

* Designed and implemented deep learning models for predicting the right hand side of concurrent
assignments in VHDL

https://github.com/EngineeringSoftware/hdlp
Pengyu Nie <pynie@utexas.edu>

28

https://github.com/EngineeringSoftware/hdlp

