
On the Naturalness of Hardware Descriptions

Jaeseong Lee, Pengyu Nie, Junyi Jessy Li, Milos Gligoric

ESEC/FSE 2020

Partially supported by:

Motivation: Success of Mining Software Repositories

• Corpora: software artifacts available in open-source repositories
o Code, natural language documentations, pull requests, open issues...

• Observation: code in programming languages is natural (repetitive and predictable)
just like text in natural language
o ICSE’12 On the Naturalness of Software: Java, C

o ICSE’19 Natural Software Revisited: Java, C, C#, JavaScript, Python, Ruby, Scala

• Applications: statistical and learning-based models for code completion, code
repair, code search, code summarization...

• Limitation: existing work and applications have focused almost exclusively on
general-purpose languages

• Unexplored: hardware description languages

2

entity fpga64_sid_iec is
port(...
clk32 : in std_logic;
uart_txd : out std_logic; ...
uart_dcd_out: out std_logic;);

end fpga64_sid_iec;
architecture rtl of fpga64_sid_iec is ...
signal cia2_pao: unsigned(7 downto 0);
signal cia2_pbo: unsigned(7 downto 0);
signal vicAddr: unsigned(15 downto 0); ...

begin ...
process(clk32)
begin ... end process;
iec_data_o <= cia2_pao(5);
iec_clk_o <= cia2_pao(4);
...
vicAddr(14) <= (not cia2_pao(0));
vicAddr(15) <= (not cia2_pao(1));

end architecture;

Hardware Description Languages (HDLs)
• Usage: describing logic circuits

• Examples: VHDL, Verilog, SystemVerilog

• Key difference: processes are executed in parallel

executed in parallel

from MiSTer-devel/C64_MiSTer

module

interface behavior

local signal explicit process concurrent assignment
(implicit process)

3

Our Contributions

• Mined hardware descriptions repositories corpora from GitHub
• 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Corpora

• Conducted the first comparative evaluation of the naturalness of hardware descriptions by building
language models and reporting standard cross entropy measures

• Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against
the naturalness of software written in Java

Naturalness

• Designed and implemented deep learning models for predicting the right hand side of concurrent
assignments in VHDL

Assignment Completion Model

4

Our Contributions

• Mined hardware descriptions repositories corpora from GitHub
• 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Corpora

• Conducted the first comparative evaluation of the naturalness of hardware descriptions by building
language models and reporting standard cross entropy measures

• Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against
the naturalness of software written in Java

Naturalness

• Designed and implemented deep learning models for predicting the right hand side of concurrent
assignments in VHDL

Assignment Completion Model

5

Hardware Descriptions Corpora

• Mine 100 top repositories from GitHub (ranked by the number of stars) for
VHDL, Verilog, SystemVerilog

• Keep only parsable files (using open-source parsers generated using ANTLR)

• Filter out duplicate files

6

Corpus #Repos
#Parsable

Files
%Duplicate

Files
#Unique Files LOC #Tokens Vocab. Size

VHDL 100 13,554 15.5% 11,459 4,759,308 14,572,639 227,117

Verilog 100 7,219 4.8% 6,869 3,433,764 8,238,560 273,893

SystemVerilog 100 2,021 6.5% 1,890 317,886 925,656 28,693

Java Corpora

• Java (Popular): top 10 repositories from GitHub at the time of our study

• Java (Naturalness): 10 repositories from ICSE’12 On the Naturalness of Software

7

Corpus #Repos
#Parsable

Files
%Duplicate

Files
#Unique Files LOC #Tokens Vocab. Size

VHDL 100 13,554 15.5% 11,459 4,759,308 14,572,639 227,117

Verilog 100 7,219 4.8% 6,869 3,433,764 8,238,560 273,893

SystemVerilog 100 2,021 6.5% 1,890 317,886 925,656 28,693

Java (Popular) 10 32,294 3.2% 31,264 6,672,160 23,502,694 387,812

Java (Naturalness) 10 9,886 2.6% 9,630 2,457,854 6,926,953 147,682

Corpora Statistics

• Hardware descriptions in VHDL are more verbose than Verilog

• Hardware descriptions in SystemVerilog is shorter

• #Tokens and #Unique Tokens are higher in Java repositories than HDL repositories

• #Tokens and #Unique Tokens are smaller in SystemVerilog than VHDL and Verilog

8

Our Contributions

• Mined hardware descriptions repositories corpora from GitHub
• 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Corpora

• Conducted the first comparative evaluation of the naturalness of hardware descriptions by building
language models and reporting standard cross entropy measures

• Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against
the naturalness of software written in Java

Naturalness

• Designed and implemented deep learning models for predicting the right hand side of concurrent
assignments in VHDL

Assignment Completion Model

9

Naturalness: Methodology

• Following the methodology used in ICSE’12 On the Naturalness of Software

1. Randomly partition the corpus into 10 equally sized folds

2. Train a language model on 9 folds, and apply it on the remaining fold

3. Compute the average cross entropy as a measurement of the naturalness

10

n-gram language model, n = {1,...,10}

𝑃 𝒟 = 𝑃 𝑤1
𝑚 =ෑ

𝑖=1

𝑚

𝑃 𝑤𝑖 𝑤1
𝑖−1

≈ෑ

𝑖=1

𝑚

𝑃 𝑤𝑖 𝑤𝑖−𝑛+1
𝑖−1

cross entropy

𝐻 𝒟 = −
1

len 𝒟
log2 𝑃 𝒟

next slide

Naturalness: Repository Level vs. Language Level

11

• Repository level (ICSE’12 On the Naturalness of Software)
o Consider each repository as a (mini) corpus and

compute its naturalness
o Report the average among all repositories

• Language level (ICSE’19 Natural Software Revisited)
o Consider all repositories of one programming

language as a single corpus

Accounts for variabilities across
different repositories

Measures the regularity of each
language as a whole

Naturalness: Analysis (1/2)

• Cross entropy monotonically drops as n increases

• The decline of cross entropy saturates at around 4-grams for hardware
descriptions (similar to ICSE’12 On the Naturalness of Software)

12

lower cross entropy = higher naturalness

Naturalness: Analysis (2/2)

• Comparisons of cross entropies of different corpora:
o Repository level, lower n:

VHDL ≈ Verilog ≈ SystemVerilog < Java(Popular) ≈ Java(Naturalness)

o Repository level, higher n:
VHDL ≈ Java(Popular) < Verilog ≈ SystemVerilog ≈ Java(Naturalness)

o Language level:
VHDL < SystemVerilog ≈ Java(Popular) ≈ Java(Naturalness) < Verilog

• Hardware descriptions show clear properties of naturalness

• VHDL code has the highest naturalness among the 3 HDLs,
and is higher than that of Java software at the repository level

13

lower cross entropy = higher naturalness

Our Contributions

• Mined hardware descriptions repositories corpora from GitHub
• 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Corpora

• Conducted the first comparative evaluation of the naturalness of hardware descriptions by building
language models and reporting standard cross entropy measures

• Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against
the naturalness of software written in Java

Naturalness

• Designed and implemented deep learning models for predicting the right hand side of concurrent
assignments in VHDL

Assignment Completion Model

14

entity fpga64_sid_iec is
port(...
clk32 : in std_logic;
uart_txd : out std_logic; ...
uart_dcd_out: out std_logic;);

end fpga64_sid_iec;
architecture rtl of fpga64_sid_iec is ...
signal cia2_pao: unsigned(7 downto 0);
signal cia2_pbo: unsigned(7 downto 0);
signal vicAddr: unsigned(15 downto 0); ...

begin ...
process(clk32)
begin ... end process;
iec_data_o <= cia2_pao(5);
iec_clk_o <= cia2_pao(4);
...
vicAddr(14) <= (not cia2_pao(0));
vicAddr(15) <= (not cia2_pao(1));

end architecture;

Assignment Completion: Task

executed in parallel

from MiSTer-devel/C64_MiSTer

module

interface behavior

local signal explicit process concurrent assignment
(implicit process)

15

entity fpga64_sid_iec is
port(...
clk32 : in std_logic;
uart_txd : out std_logic; ...
uart_dcd_out: out std_logic;);

end fpga64_sid_iec;
architecture rtl of fpga64_sid_iec is ...
signal cia2_pao: unsigned(7 downto 0);
signal cia2_pbo: unsigned(7 downto 0);
signal vicAddr: unsigned(15 downto 0); ...

begin ...
process(clk32)
begin ... end process;
iec_data_o <= cia2_pao(5);
iec_clk_o <= cia2_pao(4);
...
vicAddr(14) <= (not cia2_pao(0));
vicAddr(15) <= (not cia2_pao(1));

end architecture;

Assignment Completion: Task

from MiSTer-devel/C64_MiSTer

module

interface behavior

local signal explicit process concurrent assignment
(implicit process)

16

?

• Given the left hand side of a concurrent assignment,
predict the value on the right hand side to be assigned

Neural Model Architecture

• Underlying framework: sequence-to-sequence architecture
o Encodes a sequence into a deep representation, and predicts a target sequence

• Novel architectures to capture HDL-specific characteristics
1. Multi-source architectures to encode more previous assignments context

2. Utilizing the types of signals

3. Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

17

LHS encoder RHS decoder (not cia2 pao (1))vic addr (15)

Base architecture: S2S

Our Architecture (1/3)

• Multi-source architectures to encode more previous assignments context

18

LHS encoder RHS decoder (not cia2 pao (1))vic addr (15)

vic addr (14) <= (not cia2 pao (0)) ;

uart dcd out <= cia2 pbo (4) ;

uart ri out <= cia2 pbo (3) ;

uart dtr <= cia2 pbo (2) ;

uart rts <= cia2 pbo (1) ;

previous assignment
encoder #1

previous assignment
encoder #2

previous assignment
encoder #3

previous assignment
encoder #4

previous assignment
encoder #5

fully connected layer
+LeakyReLU

Base architecture: S2S

2 inputs: S2S+PA(1)

6 inputs: S2S+PA(1-5)

vic addr (15)

vic addr (14) <= (not cia2 pao (0)) ;

Our Architecture (2/3)

• Utilizing the types of signals
o 14 types: 13 popular types + <T> representing all other types

o Encode each type as a one-hot embedding

o Concatenate type embeddings to word embeddings

19

LHS encoder RHS decoder (not cia2 pao (1))

previous assignment
encoder #1

fully connected layer
+LeakyReLU

subtoken vic addr (15)
type unsigned unsigned 0 0 0

subtoken vic ... cia pao (0) ;
type unsigned ... unsigned unsigned 0 0 0 0

2 inputs, without type: S2S+PA(1)

2 inputs, with type: S2S+PA(1)+Type

Our Architecture (3/3)

• Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

20

vic addr (15)

vic addr (14) <= (not cia2 pao (0)) ;

uart dcd out <= cia2 pbo (4) ;

uart ri out <= cia2 pbo (3) ;

uart dtr <= cia2 pbo (2) ;

uart rts <= cia2 pbo (1) ;

LHS

1st PA

2nd PA

3rd PA

4th PA

5th PA

executed in parallel their order should not matter in the model

expected RHS: (not cia2 pao (1))

Our Architecture (3/3)

• Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

21

vic addr (15)

vic addr (14) <= (not cia2 pao (0)) ;

uart dcd out <= cia2 pbo (4) ;

uart ri out <= cia2 pbo (3) ;

uart dtr <= cia2 pbo (2) ;

uart rts <= cia2 pbo (1) ;

LHS

1st PA

2nd PA

3rd PA

4th PA

5th PA

executed in parallel their order should not matter in the model

S2S-PA(1-5)+Type

expected RHS: (not cia2 pao (1))

Our Architecture (3/3)

• Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

22

vic addr (15)

vic addr (14) <= (not cia2 pao (0)) ;

uart dcd out <= cia2 pbo (4) ;

uart ri out <= cia2 pbo (3) ;

uart dtr <= cia2 pbo (2) ;

uart rts <= cia2 pbo (1) ;

LHS

1st PA

2nd PA

3rd PA

4th PA

5th PA

S2S-PA(1)+Type

S2S-PA(2)+Type

S2S-PA(3)+Type

S2S-PA(4)+Type

S2S-PA(5)+Type

Ensembler
Regression Model

S2S+PA(Ensemb-1-5)+Type

𝑜5 c5

𝑜4 c4

𝑜3 c3

𝑜2 c2

𝑜1 c1
𝑜1 𝑜2 𝑜3 𝑜4 𝑜5 𝑟ℎ𝑠1 𝑟ℎ𝑠2 𝑟ℎ𝑠3 𝑟ℎ𝑠4 𝑟ℎ𝑠5

expected RHS: (not cia2 pao (1))

𝑟ℎ𝑠1

𝑟ℎ𝑠2

𝑟ℎ𝑠3

𝑟ℎ𝑠4

𝑟ℎ𝑠5
executed in parallel their order should not matter in the model

Dataset

Statistic All Training Development Testing

#Assignments 49,982 39,986 4,998 4,998

Avg. LHS length 4.10 4.11 4.06 4.10

Avg. RHS length 8.55 8.56 8.51 8.51

23

• Extract all concurrent assignments from our VHDL corpus

• Split to training, development, and testing sets with a ratio of 80%:10%:10%
1. Random shuffle all files

2. Take enough files to obtain ~10% assignments for the testing set

3. Take enough files to obtain ~10% assignments for the development set

4. Assignments from other files (~80%) go into the training set

Evaluation: Baselines and Models

• Rule-based baseline
o Copy the RHS of the 1st PA

• Language model baseline
o RNN language model using LHS + 1st PA as context: RNNLM+PA(1)

o Not good at handling long context: RNNLM+PA(1) is better than RNNLM+PA(1-5)

• Sequence-to-sequence models
o Base architecture: S2S

o 2 inputs: S2S+PA(1)

o 2 inputs with type: S2S+PA(1)+Type

o 6 inputs with type: S2S+PA(1-5)+Type

o Ensemble model: S2S+PA(Ensemb-1-5)+Type

24

Evaluation: Metrics

• Compute the similarity between the predicted RHS vs. human-written RHS for each
data in testing set, and report the average scores

• Similarity measurements:
o xMatch: exactly match = 100%, otherwise = 0%

o Acc: subtoken level accuracy =
len 𝑖|𝑝𝑟𝑒𝑑 𝑖 =𝑡𝑔𝑡 𝑖

max len 𝑝𝑟𝑒𝑑 ,len 𝑡𝑔𝑡

o BLEU: range 0-100, calculates the percentage of n-grams in the predicted RHS that also appear in
human-written RHS, averaging across n ∈ 1,2,3,4 and using a brevity penalty to eliminate the
impact of the number of subtokens predicted

25

Evaluation: Key Results (1/2)

• The best model is the model that ensembles multi-source
sequence-to-sequence models for 5 previous assignments
with utilizing types of signals

26

Model BLEU Acc [%] xMatch [%]

Rule-based Baseline 29.4 38.1 8.8

RNNLM+PA(1) 18.0 22.0 8.2

S2S+PA(Ensemb-1-5)+Type 37.3 48.0 19.1

Evaluation: Key Results (2/2)

• Using more previous assignment context and type embedding
improved the performance over the base architecture (S2S)

• Ensembling handles the previous assignment context more
effectively than only using multi-source architecture

27

Model BLEU Acc [%] xMatch [%]

S2S+PA(Ensemb-1-5)+Type 37.3 48.0 19.1

S2S+PA(1-5)+Type 24.4 28.2 11.4

S2S+PA(1)+Type 25.8 30.4 14.1

S2S+PA(1) 25.4 30.0 14.4

S2S 19.6 21.9 12.3

• Mined hardware descriptions repositories corpora from GitHub
• 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Corpora

• Conducted the first comparative evaluation of the naturalness of hardware descriptions by building
language models and reporting standard cross entropy measures

• Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against
the naturalness of software written in Java

Naturalness

• Designed and implemented deep learning models for predicting the right hand side of concurrent
assignments in VHDL

Assignment Completion Model

28

Conclusions

https://github.com/EngineeringSoftware/hdlp
Pengyu Nie <pynie@utexas.edu>

https://github.com/EngineeringSoftware/hdlp

