
Unifying Execution of Imperative Generators and
Declarative Specifications

Pengyu Nie1, Marinela Parovic1, Zhiqiang Zang1,

Sarfraz Khurshid1, Aleksandar Milicevic2, Milos Gligoric1

1 The University of Texas at Austin 2 Microsoft

Grant No. 1652517

OOPSLA 2020

Relation of Imperative Code and Contracts

class BST { Node root; }
class Node { int value; Node left, right;}

void add(int x) {
if (root == null) { root = new Node(x); }
Node n = root;
if (n.value == x) { return; }
else if (n.value < x) {
if (n.left == null) { n.left = new Node(x); }
else { n = n.left; }

} else if (n.value > x) {
if (n.right = null) { n.right = new Node(x); }
else { n = n.right; }

}
}

invariants:
acyclicity: ∀ 𝑛 ∈ Node, 𝑛 ∉ 𝑛 . left|. right +
order_left: ∀ 𝑛′ ∈ 𝑛. left . left|. right ∗, 𝑛′. value < n. value
order_right: ∀ 𝑛′ ∈ 𝑛. right . left|. right ∗, 𝑛′. value > n. value

void add(int x) {
requires: 𝑥 ∉ root . left|. right ∗.value
modifies: ڂ 𝑛. left, 𝑛. right, 𝑛. value | 𝑛 ∈ 𝑁𝑜𝑑𝑒 ∪ root
ensures: 𝑥 ∈ root . left|. right ∗.value

∧ ∀𝑣 ∈ 𝑜𝑙𝑑 root . left|. right ∗.value , 𝑣 ∈ root . left|. right ∗.value
}

2

Implementations in imperative languages Contracts in declarative specification languages
e.g., invariants, pre-conditions, side-effects, post-conditions

• prototyping
• mocking
• solving NP-hard problems

SAT-solver

Limitations of Executable Contracts

3

• Traditionally written in a declarative specification language unfamiliar to most developers

o Enable writing contracts using general-purpose languages

• Cannot benefit from partial imperative implementation (“all or nothing”: an entire
method is either executed declaratively or as a regular imperative method)

o Enable fused execution of imperative code and declarative specification for a method

• Executed by translating to SAT formulas which is time-consuming and not scalable

o Enable executing contracts using in-memory state exploration

Our Contributions

2𝐻Language

• Type-safe domain specific language
for writing declarative specifications
embedded in plain Java

Evaluation

• Novel benchmark created using random and
sequence-based test generation to mimic
realistic execution scenarios

• In-memory search-based solver can be faster
• Using imperative generators speeds up

execution of contracts

Framework

• Executing contracts as a combination of
imperative generators and declarative specifications
o Imperative generators offers a flexible and safe way

to offload work from the solver

• Supporting two constraint solving engines
o SAT-based solver
o In-memory search-based solver (new)

Deuterium

4

Our Contributions

2𝐻Language

• Type-safe domain specific language
for writing declarative specifications
embedded in plain Java

Evaluation

• Novel benchmark created using random and
sequence-based test generation to mimic
realistic execution scenarios

• In-memory search-based solver can be faster
• Using imperative generators speeds up

execution of contracts

Framework

• Executing contracts as a combination of
imperative generators and declarative specifications
o Imperative generators offers a flexible and safe way

to offload work from the solver

• Supporting two constraint solving engines
o SAT-based solver
o In-memory search-based solver (new)

Deuterium

5

JVM

Deuterium Workflow

BST.class

generator
bytecode

2𝐻
bytecode

6

check
pre-conditions

1
invoke

generator

2
invoke
solver

3

4

1 5

0 3

initial heap state

x=2

BST.java

generator
source code

2𝐻
source code

javac

3

1 4

0 2 5

after solverafter generator

Imperative Generator

7

invoke
generator

2

4

1 5

0 3

initial heap state

x = 2

• Usage: Generates the backbone structure of the solution
(e.g., the shape of the binary tree), offloading some work
from the solver

• Flexibility: Users decide whether or not to use a
generator and what goes into the generator

• Safe: If the generator contains a bug, Deuterium can
detect it (because post-conditions and invariants must
hold at the end of the method)

Node genTree(Node[] arr, int low, int high) {
if (high <= low) return null;
Node cur = arr[low];
int mid = (high+low+1)/2;
cur.left = genTree(arr, low+1, mid);
cur.right = genTree(arr, mid, high);
return cur; }

Constraint Solving Engines

• SAT-based solver

• In-memory search-based solver

8

3

1 4

0 2 5

invoke
solver

3

SAT-Based Solver

9

root = 𝑛0
Node_left = 𝑛0 → 𝑛1 , 𝑛1 → 𝑛3 , 𝑛2 → 𝑛5
Node_right = 𝑛0 → 𝑛2 , 𝑛1 → 𝑛4
Node_old_value =

𝑛0 → 4 , 𝑛1 → 1 , 𝑛2 → 5 , 𝑛3 → 0 , 𝑛4 → 3
nodes = 𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5
old_nodes = 𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4
x = 2

𝑛0

𝑛1 𝑛2

𝑛3 𝑛4 𝑛5

heap

relational formula

// Side-effects
Node_value = ?
// Post-conditions
nodes.Node_value = old_nodes.Node_old_value + x
// Invariants
∀n in nodes, n ⊈ n.^(Node_left + Node_right)
...

2𝐻
bytecode

specifications

Kodkod SAT-solver

3

1 4

0 2 5

heap

Node_value =
𝑛0 → 3 , 𝑛1 → 1 , 𝑛2 → 4 , 𝑛3 → 0 , 𝑛4 → 2 , 𝑛5 → 5

relational model

Implemented using Squander*, with some optimizations

* A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Unifying Execution of Imperative and Declarative Code. In ICSE’11

In-Memory Search-Based Solver (1/2)

10

2𝐻
bytecode

specifications

𝑛0

𝑛1 𝑛2

𝑛3 𝑛4 𝑛5

heap

can modify: 𝑛0.value, 𝑛1.value, 𝑛2.value, 𝑛3.value, 𝑛4.value, 𝑛5.value
to: 0, 1, 2, 3, 4, 5

search
bound

predicate
repOk

boolean repOk() {
boolean invariants = nodes.all(n->n.checkInvariants());
boolean postconds = nodes.join(n->n.value)
.equals(old_nodes.join(n->n.old_value).union(x)));

return postconds && invariants;
}

0

0 0

0 0 0

repOk ×

0

1 2

3 4 5

repOk ×

3

1 4

0 2 5

repOk✓

Exhaustively explores the search space but does so efficiently by monitoring the
predicate’s executions and pruning large portions of the search space*

* C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on Java Predicates. In ISSTA’02.

In-Memory Search-Based Solver (2/2)

11

predicate
repOk

boolean repOk() {
boolean invariants = nodes.all(n->n.checkInvariants());
boolean postconds = nodes.join(n->n.value)
.equals(old_nodes.join(n->n.old_value).union(x)));

return postconds && invariants;
}

0

1 2

3 4 5

* C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on Java Predicates. In ISSTA’02.

𝒏𝟎.value 𝒏𝟏.value 𝒏𝟐.value 𝒏𝟑.value 𝒏𝟒.value 𝒏𝟓.value

0 1 2 3 4 5

𝑛0

𝑛1 𝑛2

𝑛3 𝑛4 𝑛5

heap

0

2 2

3 4 5

X 2

Exhaustively explores the search space but does so efficiently by monitoring the
predicate’s executions and pruning large portions of the search space*

Our Contributions

2𝐻Language

• Type-safe domain specific language
for writing declarative specifications
embedded in plain Java

Evaluation

• Novel benchmark created using random and
sequence-based test generation to mimic
realistic execution scenarios

• In-memory search-based solver can be faster
• Using imperative generators speeds up

execution of contracts

Framework

• Executing contracts as a combination of
imperative generators and declarative specifications
o Imperative generators offers a flexible and safe way

to offload work from the solver

• Supporting two constraint solving engines
o SAT-based solver
o In-memory search-based solver (new)

Deuterium

12

// class Node
Rel<Node> children = D.specField(union(left, right));
D.invariant(

closure(this, n->n.children).notContains(this),
rclosure(left, n->n.children)

.filter(n -> n != null).all(n -> n.value < value),
rclosure(right, n->n.children)

.filter(n -> n != null).all(n -> n.value > value));
// class BST
Rel<Node> nodes =
D.specField(rclosure(root, n->n.children).subtract(null));

void add(int x) {
if (D.specCase(nodes.join(n->n.value).notContains(x))) {

root = genTree(nodes.union(new Node()).toArray(),
0, nodes.size()+1);

D.modifies(Node.class, “value”);
D.ensures(nodes.join(n->n.value)
.equals(old(nodes.join(n->n.value)).union(x))); }

D.exe(this, x); }

Node genTree(Node[] arr, int low, int high) {
if (high <= low) return null;
Node cur = arr[low];
int mid = (high+low+1)/2;
cur.left = genTree(arr, low+1, mid);
cur.right = genTree(arr, mid, high);
return cur; }

2𝐻 Language

13

Imperative generator in Java
• Generate the backbone structure of the solution

Declarative specifications in 2𝐻
• First order relational logic with transitive closures
• Embedded in plain Java
• Type-safe: leveraging generics

Our Contributions

2𝐻Language

• Type-safe domain specific language
for writing declarative specifications
embedded in plain Java

Evaluation

• Novel benchmark created using random and
sequence-based test generation to mimic
realistic execution scenarios

• In-memory search-based solver can be faster
• Using imperative generators speeds up

execution of contracts

Framework

• Executing contracts as a combination of
imperative generators and declarative specifications
o Imperative generators offers a flexible and safe way

to offload work from the solver

• Supporting two constraint solving engines
o SAT-based solver
o In-memory search-based solver (new)

Deuterium

14

Evaluation: Design and Subjects
• Prior work measures the time of executing a contract once

• Our workloads are intended to resemble realistic program traces: executing
sequences of method calls

• Subjects: 12 data structures
o BST, BinomialHeap, FibonacciHeap, TreeMap from JPF*

o LinkedList, TreeMap, TreeSet from JCL (Java Class Library)

o AvlTree, NodeCachingLinkedList, LinkedList, SinglyLinkedList, TreeSet from TACO**

• For each data structure, we write contracts for 3 methods
(add, remove, find) in two ways: fusion of generator + 2𝐻; pure 2𝐻

15

* W. Visser, C. S. Păsăreanu, and R. Pelánek. Test Input Generation for Java Containers using State Matching. In ISSTA’06.
** J. P. Galeotti, N. Rosner, C. G. López Pombo, and M. F. Frias. Analysis of Invariants for Efficient Bounded Verification. In ISSTA’10.

Evaluation: Workloads

16

• Randomly generated workloads
o Use Randoop to generate X tests, X = {100, 200, 500, 1000}

o 3 methods with contracts + constructor + toString

• Systematically generated workloads
o Generate all possible method sequences that lead to

unique heap state up to X method calls, X = {1, 2, ..., 50}

o 2 methods with contracts (add, remove)

public void exampleRandomWorkload1() {
BST bst0 = new BST();
boolean boolean2 = bst.remove(0);
boolean boolean4 = bst.find(100);
String str5 = bst.toString();
assertTrue(boolean2 == false);
assertTrue(boolean4 == false);
assertTrue(str5.equals(“”));

}

public void exampleSystematicWorkload1() {
BST bst = new BST();
bst.add(0);
bst.remove(0); }

public void exampleSystematicWorkload2() {
BST bst = new BST();
bst.add(0);
bst.add(1); }

public void exampleSystematicWorkload3() {
BST bst = new BST();
bst.add(0);
bst.remove(1); }

Evaluation: Framework Configurations

17

Configuration Contract Style Solver

Gen+SAT+CP+PI
Fusion of Generator + 2𝐻

SAT-based with both CP and PI

Gen+Search+FGM Search-based with FGM

NoGen+SAT (Squander)

Pure 2𝐻

SAT-based

NoGen+SAT+CP SAT-based with CP

NoGen+SAT+PI SAT-based with PI

NoGen+SAT+CP+PI SAT-based with both CP and PI

NoGen+Search Search-based

NoGen+Search+FGM Search-based with FGM

Optimizations to solvers (see paper):
• CP: cache parsing
• PI: performance improvement
• FGM: fine grained modifies

Evaluation: Research Questions and Setup

• Research questions
o RQ1: Compare the execution speed of in-memory search-based solver vs. SAT-based solver?

o RQ2: Compare the execution speed of fusion of generator + 2𝐻 vs. pure 2𝐻?

o RQ3: What are the benefits obtained by Deuterium’s optimizations to SAT-based solver?

o RQ4: How succinct are the contracts written in Deuterium?

• Setup
o Repeat all experiments three times and report average values

o Each run has a timeout of 30 minutes

18

see paper →

RQ1: Search-Based vs. SAT-Based Solver

• Search-based solver can be faster than SAT-based solver

• However, SAT-based solver scales better when the search space is large

19

#Tests Max
Heap Size

Gen+SAT+CP+PI
[ms]

Gen+Search+FGM
[ms]

NoGen+SAT+CP+PI
[ms]

NoGen+Search+FGM
[ms]

100 2.8 8,869 595 9,120 646

200 3.9 20,020 662 20,198 21,127

500 5.0 57,268 916 58,295 >30min

1,000 5.2 126,555 1,672 133,753 >30min

Randomly generated workloads, average of 12 data structures

RQ2: Fusion of Generator + 2𝐻 vs. Pure 2𝐻

• Using generator can substantially improve the performance of executing
contracts for both solvers by reducing the search space

20

#Tests Max
Heap Size

Gen+SAT+CP+PI
[ms]

Gen+Search+FGM
[ms]

NoGen+SAT+CP+PI
[ms]

NoGen+Search+FGM
[ms]

100 2.8 8,869 595 9,120 646

200 3.9 20,020 662 20,198 21,127

500 5.0 57,268 916 58,295 >30min

1,000 5.2 126,555 1,672 133,753 >30min

Randomly generated workloads, average of 12 data structures

RQ2: Fusion of Generator + 2𝐻 vs. Pure 2𝐻

• Gen+SAT+CP+PI scales for method
sequences that are 5-20 method
calls longer than NoGen+SAT+CP+PI

21

Systematically generated workloads
x-axis: Sequence Length = Max Heap Size

More Content in the Paper

• Detailed explanation of 2𝐻 language

• Evaluation results for RQ1 & RQ2 per data structure

• RQ3: benefits obtained by Deuterium’s optimizations to SAT-based solver

• RQ4: succinctness of the contracts written in Deuterium

• Discussion of Deuterium’s limitations

22

2𝐻Language

• Type-safe domain specific language
for writing declarative specifications
embedded in plain Java

Evaluation

• Novel benchmark created using random and
sequence-based test generation to mimic
realistic execution scenarios

• In-memory search-based solver can be faster
• Using imperative generators speeds up

execution of contracts

Framework

• Executing contracts as a combination of
imperative generators and declarative specifications
o Imperative generators offers a flexible and safe way

to offload work from the solver

• Supporting two constraint solving engines
o SAT-based solver
o In-memory search-based solver (new)

Deuterium

23

Conclusions
https://github.com/EngineeringSoftware/deuterium

Pengyu Nie <pynie@utexas.edu>

https://github.com/EngineeringSoftware/deuterium

