
Unifying Execution of Imperative Generators and 
Declarative Specifications

Pengyu Nie1, Marinela Parovic1, Zhiqiang Zang1,

Sarfraz Khurshid1, Aleksandar Milicevic2, Milos Gligoric1

1 The University of Texas at Austin 2 Microsoft

Grant No. 1652517

OOPSLA 2020



Relation of Imperative Code and Contracts

class BST { Node root; }
class Node { int value; Node left, right;}

void add(int x) {
if (root == null) { root = new Node(x); }
Node n = root;
if (n.value == x) { return; } 
else if (n.value < x) {
if (n.left == null) { n.left = new Node(x); } 
else { n = n.left; }

} else if (n.value > x) {
if (n.right = null) { n.right = new Node(x); } 
else { n = n.right; }

}
}

invariants: 
acyclicity: ∀ 𝑛 ∈ Node, 𝑛 ∉ 𝑛 . left|. right +
order_left: ∀ 𝑛′ ∈ 𝑛. left . left|. right ∗, 𝑛′. value < n. value
order_right: ∀ 𝑛′ ∈ 𝑛. right . left|. right ∗, 𝑛′. value > n. value

void add(int x) {
requires: 𝑥 ∉ root . left|. right ∗.value
modifies: ڂ 𝑛. left, 𝑛. right, 𝑛. value | 𝑛 ∈ 𝑁𝑜𝑑𝑒 ∪ root
ensures: 𝑥 ∈ root . left|. right ∗.value

∧ ∀𝑣 ∈ 𝑜𝑙𝑑 root . left|. right ∗.value , 𝑣 ∈ root . left|. right ∗.value
}
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Implementations in imperative languages Contracts in declarative specification languages
e.g., invariants, pre-conditions, side-effects, post-conditions

• prototyping
• mocking
• solving NP-hard problems

SAT-solver



Limitations of Executable Contracts
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• Traditionally written in a declarative specification language unfamiliar to most developers

o Enable writing contracts using general-purpose languages

• Cannot benefit from partial imperative implementation (“all or nothing”: an entire 
method is either executed declaratively or as a regular imperative method)

o Enable fused execution of imperative code and declarative specification for a method

• Executed by translating to SAT formulas which is time-consuming and not scalable

o Enable executing contracts using in-memory state exploration



Our Contributions

2𝐻Language

• Type-safe domain specific language 
for writing declarative specifications 
embedded in plain Java

Evaluation

• Novel benchmark created using random and 
sequence-based test generation to mimic 
realistic execution scenarios

• In-memory search-based solver can be faster
• Using imperative generators speeds up 

execution of contracts

Framework

• Executing contracts as a combination of 
imperative generators and declarative specifications
o Imperative generators offers a flexible and safe way 

to offload work from the solver

• Supporting two constraint solving engines
o SAT-based solver
o In-memory search-based solver (new)

Deuterium
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JVM

Deuterium Workflow
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Imperative Generator

7

invoke
generator
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• Usage: Generates the backbone structure of the solution 
(e.g., the shape of the binary tree), offloading some work 
from the solver

• Flexibility: Users decide whether or not to use a 
generator and what goes into the generator

• Safe: If the generator contains a bug, Deuterium can 
detect it (because post-conditions and invariants must 
hold at the end of the method)

Node genTree(Node[] arr, int low, int high) {
if (high <= low) return null;
Node cur = arr[low];
int mid = (high+low+1)/2;
cur.left = genTree(arr, low+1, mid);
cur.right = genTree(arr, mid, high);
return cur; }



Constraint Solving Engines

• SAT-based solver

• In-memory search-based solver
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SAT-Based Solver
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root = 𝑛0
Node_left = 𝑛0 → 𝑛1 , 𝑛1 → 𝑛3 , 𝑛2 → 𝑛5
Node_right = 𝑛0 → 𝑛2 , 𝑛1 → 𝑛4
Node_old_value = 

𝑛0 → 4 , 𝑛1 → 1 , 𝑛2 → 5 , 𝑛3 → 0 , 𝑛4 → 3
nodes = 𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5
old_nodes = 𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4
x = 2

𝑛0

𝑛1 𝑛2

𝑛3 𝑛4 𝑛5

heap

relational formula

// Side-effects
Node_value = ?
// Post-conditions
nodes.Node_value = old_nodes.Node_old_value + x
// Invariants
∀n in nodes, n ⊈ n.^(Node_left + Node_right)
...

2𝐻
bytecode

specifications

Kodkod SAT-solver
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heap

Node_value = 
𝑛0 → 3 , 𝑛1 → 1 , 𝑛2 → 4 , 𝑛3 → 0 , 𝑛4 → 2 , 𝑛5 → 5

relational model

Implemented using Squander*, with some optimizations

* A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Unifying Execution of Imperative and Declarative Code. In ICSE’11



In-Memory Search-Based Solver (1/2)
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2𝐻
bytecode
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heap

can modify: 𝑛0.value, 𝑛1.value, 𝑛2.value, 𝑛3.value, 𝑛4.value, 𝑛5.value
to: 0, 1, 2, 3, 4, 5

search 
bound

predicate
repOk

boolean repOk() {
boolean invariants = nodes.all(n->n.checkInvariants());
boolean postconds = nodes.join(n->n.value)
.equals(old_nodes.join(n->n.old_value).union(x)));

return postconds && invariants;
}
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Exhaustively explores the search space but does so efficiently by monitoring the 
predicate’s executions and pruning large portions of the search space*

* C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on Java Predicates. In ISSTA’02.



In-Memory Search-Based Solver (2/2)
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predicate
repOk

boolean repOk() {
boolean invariants = nodes.all(n->n.checkInvariants());
boolean postconds = nodes.join(n->n.value)
.equals(old_nodes.join(n->n.old_value).union(x)));

return postconds && invariants;
}
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3 4 5

* C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on Java Predicates. In ISSTA’02.
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// class Node
Rel<Node> children = D.specField(union(left, right));
D.invariant(

closure(this, n->n.children).notContains(this),
rclosure(left, n->n.children)

.filter(n -> n != null).all(n -> n.value < value),
rclosure(right, n->n.children)

.filter(n -> n != null).all(n -> n.value > value));
// class BST
Rel<Node> nodes = 
D.specField(rclosure(root, n->n.children).subtract(null));

void add(int x) {
if (D.specCase(nodes.join(n->n.value).notContains(x))) {

root = genTree(nodes.union(new Node()).toArray(), 
0, nodes.size()+1);

D.modifies(Node.class, “value”);
D.ensures(nodes.join(n->n.value)
.equals(old(nodes.join(n->n.value)).union(x))); }

D.exe(this, x); }

Node genTree(Node[] arr, int low, int high) {
if (high <= low) return null;
Node cur = arr[low];
int mid = (high+low+1)/2;
cur.left = genTree(arr, low+1, mid);
cur.right = genTree(arr, mid, high);
return cur; }

2𝐻 Language
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Imperative generator in Java
• Generate the backbone structure of the solution

Declarative specifications in 2𝐻
• First order relational logic with transitive closures
• Embedded in plain Java
• Type-safe: leveraging generics
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Evaluation: Design and Subjects
• Prior work measures the time of executing a contract once

• Our workloads are intended to resemble realistic program traces: executing 
sequences of method calls

• Subjects: 12 data structures
o BST, BinomialHeap, FibonacciHeap, TreeMap from JPF*

o LinkedList, TreeMap, TreeSet from JCL (Java Class Library)

o AvlTree, NodeCachingLinkedList, LinkedList, SinglyLinkedList, TreeSet from TACO**

• For each data structure, we write contracts for 3 methods 
(add, remove, find) in two ways: fusion of generator + 2𝐻; pure 2𝐻
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*   W. Visser, C. S. Păsăreanu, and R. Pelánek. Test Input Generation for Java Containers using State Matching. In ISSTA’06.
** J. P. Galeotti, N. Rosner, C. G. López Pombo, and M. F. Frias. Analysis of Invariants for Efficient Bounded Verification. In ISSTA’10.



Evaluation: Workloads
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• Randomly generated workloads
o Use Randoop to generate X tests, X = {100, 200, 500, 1000}

o 3 methods with contracts + constructor + toString

• Systematically generated workloads
o Generate all possible method sequences that lead to 

unique heap state up to X method calls, X = {1, 2, ..., 50}

o 2 methods with contracts (add, remove)

public void exampleRandomWorkload1() {
BST bst0 = new BST();
boolean boolean2 = bst.remove(0);
boolean boolean4 = bst.find(100);
String str5 = bst.toString();
assertTrue(boolean2 == false);
assertTrue(boolean4 == false);
assertTrue(str5.equals(“”));

}

public void exampleSystematicWorkload1() {
BST bst = new BST();
bst.add(0);
bst.remove(0); }

public void exampleSystematicWorkload2() {
BST bst = new BST();
bst.add(0);
bst.add(1); }

public void exampleSystematicWorkload3() {
BST bst = new BST();
bst.add(0);
bst.remove(1); }



Evaluation: Framework Configurations
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Configuration Contract Style Solver

Gen+SAT+CP+PI
Fusion of Generator + 2𝐻

SAT-based with both CP and PI

Gen+Search+FGM Search-based with FGM

NoGen+SAT (Squander)

Pure 2𝐻

SAT-based

NoGen+SAT+CP SAT-based with CP

NoGen+SAT+PI SAT-based with PI

NoGen+SAT+CP+PI SAT-based with both CP and PI

NoGen+Search Search-based

NoGen+Search+FGM Search-based with FGM

Optimizations to solvers (see paper):
• CP: cache parsing
• PI: performance improvement
• FGM: fine grained modifies



Evaluation: Research Questions and Setup

• Research questions
o RQ1: Compare the execution speed of in-memory search-based solver vs. SAT-based solver?

o RQ2: Compare the execution speed of fusion of generator + 2𝐻 vs. pure 2𝐻?

o RQ3: What are the benefits obtained by Deuterium’s optimizations to SAT-based solver?

o RQ4: How succinct are the contracts written in Deuterium?

• Setup
o Repeat all experiments three times and report average values

o Each run has a timeout of 30 minutes
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see paper →



RQ1: Search-Based vs. SAT-Based Solver

• Search-based solver can be faster than SAT-based solver

• However, SAT-based solver scales better when the search space is large
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#Tests Max 
Heap Size

Gen+SAT+CP+PI
[ms]

Gen+Search+FGM
[ms]

NoGen+SAT+CP+PI
[ms]

NoGen+Search+FGM
[ms]

100 2.8 8,869 595 9,120 646

200 3.9 20,020 662 20,198 21,127

500 5.0 57,268 916 58,295 >30min

1,000 5.2 126,555 1,672 133,753 >30min

Randomly generated workloads, average of 12 data structures



RQ2: Fusion of Generator + 2𝐻 vs. Pure 2𝐻

• Using generator can substantially improve the performance of executing 
contracts for both solvers by reducing the search space
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RQ2: Fusion of Generator + 2𝐻 vs. Pure 2𝐻

• Gen+SAT+CP+PI scales for method 
sequences that are 5-20 method 
calls longer than NoGen+SAT+CP+PI
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Systematically generated workloads
x-axis: Sequence Length = Max Heap Size



More Content in the Paper

• Detailed explanation of 2𝐻 language

• Evaluation results for RQ1 & RQ2 per data structure

• RQ3: benefits obtained by Deuterium’s optimizations to SAT-based solver

• RQ4: succinctness of the contracts written in Deuterium

• Discussion of Deuterium’s limitations
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Conclusions
https://github.com/EngineeringSoftware/deuterium

Pengyu Nie <pynie@utexas.edu>

https://github.com/EngineeringSoftware/deuterium

