
Verifying Finality for Blockchain Systems

Verifying Finality for Blockchain Systems

Karl Palmskog∗ Milos Gligoric∗ Lucas Peña† Grigore Roşu†

∗The University of Texas at Austin
†University of Illinois at Urbana-Champaign

Joint work with Brandon Moore at Runtime Verification, Inc.

1 / 27

Verifying Finality for Blockchain Systems

Ethereum

“a decentralized platform that runs smart contracts”

accounts with balances instead of unspent transactions

contracts execute in virtual machine on participating nodes

2 / 27

Verifying Finality for Blockchain Systems

Blockchain Forks and Revisions

“a blockchain diverges into two potential paths forward”

accidental or intentional

could be used by adversaries to control transactions

Fixpoint sprefixb (s1 s2 : seq block) :=

if s2 is y :: s2’ then

if s1 is x :: s1’ then (x == y) && (sprefixb s1’ s2’) else true

else false.

Definition fork (bc1 bc2 : seq block) :=

~~[|| sprefixb bc1 bc2, sprefixb bc2 bc1 | bc1 == bc2].

3 / 27

Verifying Finality for Blockchain Systems

Casper Finality

Buterin & Griffith, Casper the Friendly Finality Gadget, 2017

overlay on top of an existing blockchain system

“select[s] a unique chain which represents the canonical
transactions of the ledger”

protects against long-range revisions and crashes (assuming
> 2/3 honest participants)

4 / 27

Verifying Finality for Blockchain Systems

Background

5 / 27

Verifying Finality for Blockchain Systems

Background

5 / 27

Verifying Finality for Blockchain Systems

Background, Continued

6 / 27

Verifying Finality for Blockchain Systems

Casper Protocol Coq Formalization Goals

1 key claims in paper (following previous Isabelle/HOL models)

2 integration with blockchain model in Coq (Toychain)

7 / 27

Verifying Finality for Blockchain Systems

Key Casper Notions

Validators and Votes

Validators deposit cryptocurrency (stake) and can then vote for
blocks. With enough votes, a block becomes finalized. Validators
who vote incorrectly get their deposits slashed.

Accountable Safety

Blocks in different block tree forks cannot both be finalized if more
than 2/3 of validators by deposit behave honestly.

Plausible Liveness

Regardless of what has happened before, it is always possible to
continue to finalize blocks when more than 2/3 of validators by
deposit follow the protocol.

8 / 27

Verifying Finality for Blockchain Systems

Key Casper Notions

Validators and Votes

Validators deposit cryptocurrency (stake) and can then vote for
blocks. With enough votes, a block becomes finalized. Validators
who vote incorrectly get their deposits slashed.

Accountable Safety

Blocks in different block tree forks cannot both be finalized if more
than 2/3 of validators by deposit behave honestly.

Plausible Liveness

Regardless of what has happened before, it is always possible to
continue to finalize blocks when more than 2/3 of validators by
deposit follow the protocol.

8 / 27

Verifying Finality for Blockchain Systems

Key Casper Notions

Validators and Votes

Validators deposit cryptocurrency (stake) and can then vote for
blocks. With enough votes, a block becomes finalized. Validators
who vote incorrectly get their deposits slashed.

Accountable Safety

Blocks in different block tree forks cannot both be finalized if more
than 2/3 of validators by deposit behave honestly.

Plausible Liveness

Regardless of what has happened before, it is always possible to
continue to finalize blocks when more than 2/3 of validators by
deposit follow the protocol.

8 / 27

Verifying Finality for Blockchain Systems

Isabelle/HOL models and proofs by Hirai

On Older Casper Designs

DynamicValidatorSet.thy is about two-message Casper
(older) with a dynamic validator set (more realistic), and
proves accountable safety (not plausible liveness).

Casper.thy is about two-message Casper (older) with a
static validator set (unrealistic), and proves accountable safety
(not plausible liveness).

MinimumAlgo.thy is about two-message Casper (older) with
a dynamic validator set, and proves accountable safety and
plausible liveness.

9 / 27

Verifying Finality for Blockchain Systems

Isabelle/HOL models and proofs by Hirai

On Newer Casper Designs

DynamicValidatorSetOneMessage.thy is about
one-message Casper (newer) with a dynamic validator set
(more realistic), and proves accountable safety (not plausible
liveness).

CasperOneMessage.thy is about one-message Casper
(newer) with a static validator set (unrealistic), and proves
accountable safety (not plausible liveness).

10 / 27

Verifying Finality for Blockchain Systems

Translating Between Proof Assistants

I was able to port many [HOL Light] proofs that I did not
understand: despite the huge differences between the two
proof languages, it was usually possible to guess what
had to be proved from the HOL Light text, along with
many key reasoning steps. Isabelle’s automation was
generally able to fill the gaps.

—L.C. Paulson, Formalising Mathematics In Simple Type Theory

11 / 27

Verifying Finality for Blockchain Systems

Translating Between Proof Assistants, Continued

“[J]ust like the hammers for other systems,
[CoqHammer] works very well for essentially first-order
logic goals and becomes much less effective with other
features of the logics [...]”

—L. Czajka & C. Kaliszyk, Hammer for Coq, 2018

12 / 27

Verifying Finality for Blockchain Systems

Translating Between Proof Assistants, Continued

From CasperOneMessage.thy:

text {* We use first -order modeling as much as possible.

This allows to reduce the size of the model , and also the

size of the proofs [...] *}

13 / 27

Verifying Finality for Blockchain Systems

Isabelle/HOL to Coq via CoqHammer and MathComp

locale byz_quorums =

fixes member_1 :: "’n ⇒ ’q1 ⇒ bool" (infix "∈1" 50)

-- "Membership in 2/3 set"

and member_2 :: "’n ⇒ ’q2 ⇒ bool" (infix "∈2" 50)

-- "Membership in 1/3 set"

assumes "
∧

q1 q2 . ∃ q3 . ∀ n . n ∈2 q3−→ n ∈1 q1 ∧ n ∈1 q2"

Variables quorum_1 quorum_2 : {set {set V}}.

Hypothesis qs : ∀ q1 q2, q1 ∈ quorum_1 → q2 ∈ quorum_1 →
∃ q3, q3 ∈ quorum_2 ∧ q3 ⊆ q1 ∧ q3 ⊆ q2.

14 / 27

Verifying Finality for Blockchain Systems

Definitions

record (’n,’h)st = vote_msg :: "’n ⇒ ’h ⇒ nat ⇒ nat ⇒ bool"

locale casper = byz_quorums +

fixes

hash_parent :: "’h ⇒ ’h ⇒ bool" (infix "←" 50)

fixes

genesis :: ’h

assumes

"
∧

h1 h2 . h1 ← h2=⇒ h1 6= h2"

and "
∧

h1 h2 h3 . 〈 h2 ← h1; h3 ← h1 〉=⇒ h2 = h3"

Record st := { vote_msg : Validator → Hash → nat → nat → bool }.

Variable hash_parent : rel Hash.

Notation "h1 ← h2" := (hash_parent h1 h2) (at level 50).

Variable genesis : Hash.

Hypothesis hash_at_most_one_parent : ∀ h1 h2 h3,

(h2 ← h1) → (h3 ← h1) → h2 = h3.

15 / 27

Verifying Finality for Blockchain Systems

Definitions, Continued

definition justified_link

where

"justified_link s q parent pre new now ≡
(∀ n. n ∈1 q−→ vote_msg s n new now pre) ∧
nth_ancestor (now - pre) parent new ∧
now > pre"

Definition justified_link s q parent pre new now :=

q ∈ quorum_1 ∧ (∀ n, n ∈ q → vote_msg s n new now pre) ∧
nth_ancestor (now - pre) parent new ∧
now > pre.

16 / 27

Verifying Finality for Blockchain Systems

Lemmas and Induction Proofs

lemma non_equal_case_ind:

assumes "justified s h1 v1"

assumes "finalized s q2 h2 v2 xa"

assumes "¬ h2←∗ h1"

assumes "h1 6= h2"

assumes "v1 > v2"

shows "one_third_slashed s"

using assms proof

(induct "v1 - v2" arbitrary: h1 v1 rule:less_induct)

Lemma non_equal_case_ind : ∀ s h1 v1 q2 h2 v2 xa,

justified s h1 v1 →
finalized s q2 h2 v2 xa →
h2 </~* h1 →
h1 6= h2 →
v1 > v2 →
one_third_slashed s.

17 / 27

Verifying Finality for Blockchain Systems

Lemmas and Induction Proofs, Continued

From mathcomp Require Import all_ssreflect.

Section StrongInductionLtn.

Variable P : nat → Prop.

Hypothesis IH : ∀ m, (∀ n, n < m → P n) → P m.

Lemma P0 : P 0.

Lemma pred_increasing : ∀ (n m : nat), n <= m → n.-1 <= m.-1.

Local Lemma strong_induction_all : ∀ n, (∀ m, m <= n → P m).

Theorem strong_induction_ltn : ∀ n, P n.

End StrongInductionLtn.

18 / 27

Verifying Finality for Blockchain Systems

Accountable Safety

Definition finalization_fork s :=

∃ h1 h2 q1 q2 v1 v2 c1 c2,

finalized s q1 h1 v1 c1 ∧
finalized s q2 h2 v2 c2 ∧
h2 </~* h1 ∧ h1 </~* h2 ∧ h1 6= h2.

(* validators mustn’t double vote or vote in same span *)

Definition slashed s n : Prop :=

slashed_dbl_vote s n ∨ slashed_surround s n.

Definition quorum_slashed s :=

∃ q, q ∈ quorum_2 ∧ ∀ n, n ∈ q → slashed s n.

Theorem accountable_safety : ∀ s,

finalization_fork s → quorum_slashed s.

19 / 27

Verifying Finality for Blockchain Systems

Plausible Liveness

Isabelle/HOL proofs only for old Casper (two message types)

recent Casper removed all slashing conditions which depended
on the state of the chain when vote was made

one of these conditions was essential to the proof

details in our tech report!

20 / 27

Verifying Finality for Blockchain Systems

Connecting Model to Paper Claims

Variables (T : finType) (d : T → nat) (x y z : nat).

Definition gdset n : {set {set T}} :=

[set s in powerset [set: T] | \sum_(t in s) (d t) >= n].

Lemma gt_dset_in : ∀ n (s : {set T}),

\sum_(t in s) (d t) >= n = (s ∈ gdset n).

Local Notation bot := (((x * \sum_(t : T) (d t)) %/ y).+1).

Local Notation top := (((z * \sum_(t : T) (d t)) %/ y).+1).

Hypothesis constr : bot + \sum_(t : T) (d t) <= 2 * top.

Lemma d_bot_top_intersection :

∀ q1 q2, q1 ∈ gdset top → q2 ∈ gdset top →
∃ q3, q3 ∈ gdset bot ∧ q3 ⊆ q1 ∧ q3 ⊆ q2.

21 / 27

Verifying Finality for Blockchain Systems

Connecting Models to Paper Claims, Continued

Lemma constr_thirds : ∀ n, (n %/ 3).+1 + n <= 2 * (2 * n %/ 3).+1.

Variables (Validator : finType) (deposit : Validator → nat).

Definition deposits := \sum_(v : Validator) (deposit v).

Definition deposit_bot := gdset deposit (deposits %/ 3).+1.

Definition deposit_top := gdset deposit ((2 * deposits) %/ 3).+1.

Lemma Validators_deposit_constr_thirds :

((1 * deposits) %/ 3).+1 + deposits <= 2 * ((2 * deposits) %/ 3).+1.

Proof. by rewrite mul1n; apply: constr_thirds. Qed.

Lemma deposit_bot_top_validator_intersection :

∀ q1 q2, q1 ∈ deposit_top → q2 ∈ deposit_top →
∃ q3, q3 ∈ deposit_bot ∧ q3 ⊆ q1 ∧ q3 ⊆ q2.

22 / 27

Verifying Finality for Blockchain Systems

Instantiating Block Hashes via Toychain

Definition Blocktree := union_map Hash Block.

Definition hash_parent (bt : Blocktree) : rel Hash :=

[rel x y | (x ∈ dom bt) && if find y bt is Some b

then parent_hash b == x else false].

23 / 27

Verifying Finality for Blockchain Systems

Current and Future Work

dynamic validator sets

validator deposits and slashes

capturing beacon chain and shards chains explicitly

24 / 27

Verifying Finality for Blockchain Systems

Translation Experience

All existing proof translation techniques work by
emulating one calculus within another at the level of
primitive inferences. Could proofs instead be translated
at the level of a mathematical argument?

—L.C. Paulson, Formalising Mathematics In Simple Type Theory

25 / 27

Verifying Finality for Blockchain Systems

Coq/Ssreflect and MathComp Experience

definitions more important than proof language

library of blockchain data structures would be useful

missed omega tactic, but see MathComp issue #251

using bigops was hard at first, but paid off

26 / 27

Verifying Finality for Blockchain Systems

Conclusion

Casper verification is WIP; future depends on Ethereum foundation
goals and decisions

Contact me: palmskog@utexas.edu, https://setoid.com

Coq proofs and tech report:
https://github.com/runtimeverification/casper-proofs

Isabelle/HOL proofs: https://github.com/palmskog/pos

Tech report has more details, e.g., on plausible liveness

27 / 27

