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Abstract—Emerging 5G systems will need to efficiently support
both broadband traffic (eMBB) and ultra-low-latency (URLLC)
traffic. In these systems, time is divided into slots which are
further sub-divided into minislots. From a scheduling perspective,
eMBB resource allocations occur at slot boundaries, whereas to
reduce latency URLLC traffic is pre-emptively overlapped at the
minislot timescale, resulting in selective superposition/puncturing
of eMBB allocations. This approach enables minimal URLLC
latency at a potential rate loss to eMBB traffic.

We study joint eMBB and URLLC schedulers for such systems,
with the dual objectives of maximizing utility for eMBB traffic
while satisfying instantaneous URLLC demands. For a linear
rate loss model (loss to eMBB is linear in the amount of
superposition/puncturing), we derive an optimal joint scheduler.
Somewhat counter-intuitively, our results show that our dual
objectives can be met by an iterative gradient scheduler for eMBB
traffic that anticipates the expected loss from URLLC traffic,
along with an URLLC demand scheduler that is oblivious to
eMBB channel states, utility functions and allocations decisions
of the eMBB scheduler. Next we consider a more general
class of (convex) loss models and study optimal online joint
eMBB/URLLC schedulers within the broad class of channel
state dependent but time-homogeneous policies. We validate the
characteristics and benefits of our schedulers via simulation.

Index Terms—wireless scheduling, URLLC traffic, 5G systems

I. INTRODUCTION

An important requirement for 5G wireless systems is its
ability to efficiently support both broadband and ultra-low-
latency reliable communications. On one hand, broadband traf-
fic – formally, enhanced Mobile Broadband (eMBB) – should
support gigabit per second data rates (with a bandwidth of
several 100 MHz) with moderate latency (a few milliseconds).
On the other hand, Ultra Reliable Low Latency Communi-
cation (URLLC) traffic requires extremely low delays (0.25-
0.3 msec/packet) with very high reliability (99.999%) [1]. To
satisfy these heterogenous requirements, the 3GPP standards
body has proposed an innovative superposition/puncturing
framework for multiplexing URLLC and eMBB traffic in 5G
cellular systems.

The proposed scheduling framework has the following
structure [1]. As with current cellular systems, time is divided
into slots, with proposed one millisecond (msec) slot duration.
Within each slot, eMBB traffic can share the bandwidth
over the time-frequency plane (see Figure 1). The sharing
mechanism can be opportunistic (based on the channel states
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Fig. 1. Illustration of superposition/puncturing approach for multiplexing
eMBB and URLLC: Time is divided into slots, and further subdivided into
minislots. eMBB traffic is scheduled at the beginning of slots (sharing fre-
quency across two eMBB users), whereas URLLC traffic can be dynamically
overlapped (superpose/puncture) at any minislot.

of various users); however, the eMBB shares are decided by
the beginning, and fixed for the duration of a slot1.

URLLC downlink traffic may arrive during an ongoing
eMBB transmission; if tight latency constraints are to be
satisfied, they cannot be queued until the next slot. Instead
each eMBB slot is divided into minislots, each of which has a
0.125 msec duration2. Thus upon arrival URLLC demand can
be immediately scheduled in the next minislot on top of the
ongoing eMBB transmissions. If the Base Station (BS) chooses
non-zero transmission powers for both eMBB and overlapping
URLLC traffic, then this is referred to as superposition. If
eMBB transmissions are allocated zero power when URLLC
traffic is overlapped, then it is referred to as puncturing
of eMBB transmissions. The superposed/punctured URLLC
traffic is sufficiently protected (through coding and HARQ if
necessary) to ensure that it is reliably transmitted. At the end of
an eMBB slot, the BS can signal the eMBB users the locations,
if any, of URLLC superposition/puncturing. The eMBB user
can in turn use this information to decode transmissions, with
some possible loss of rate depending on the amount of URLLC
overlaps. We refer to [1], [2] for additional details.

1The sharing granularity among various eMBB users is at the level of
Resource Blocks (RB), which are small time-frequency rectangles within a
slot. In LTE today, these are (1 msec × 180 KHz), and could be smaller for
5G systems.

2In 3GPP, the formal term for a ‘slot’ is eMBB TTI, and a ‘minislot’ is a
URLLC TTI, where TTI expands to Transmit Time Interval.
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A key problem in this setting is thus the joint scheduling
of eMBB and URLLC traffic over two time-scales. At the
slot boundary, resources are allocated to eMBB users based
on their channel states and utilities, in effect, allocating long
term rates to optimize high-level goals (e.g. utility optimiza-
tion). Meanwhile, at each minislot boundary, the (stochastic)
URLLC demands are overlapped (superposed/punctured) onto
previously allocated eMBB transmissions. Decisions on the
placement of such overlaps across scheduled eMBB user(s)
will impact the rates they will see on that slot. Thus we have a
coupled problem of jointly optimizing the scheduling of eMBB
users on slots with the placement of URLLC demands across
minislots.

A. Main Contributions

This paper is, to our knowledge, the first to formalize and
solve the joint eMBB/URLLC scheduling problem described
above. We consider various models for the eMBB rate loss
associated with URLLC superposition/puncturing, for which
we characterize the associated feasible throughput regions and
online joint scheduling algorithms as detailed below.
(Linear Model): When the rate loss to eMBB is directly
proportional to the fraction of superposed/punctured minislots,
we show that the joint optimal scheduler has a nice decompo-
sition: the stochastic URLLC traffic can be uniform-randomly
scheduled in each minislot, and the eMBB scheduler can be
scheduled via a greedy iterative gradient algorithm the only
accounts for the expected rate loss due to the URLLC traffic.
(Convex Model): For more general models where the rate
loss can be modeled through a convex function, we restrict to
time homogeneous policies. In this setting, we characterize the
capacity region and derive concavity conditions under which
we can derive the effective rate seen by eMBB users (post-
puncturing by URLLC traffic). We then develop a stochastic
approximation algorithm jointly schedules eMBB and URLLC
traffic, and show that it asymptotically maximizes utility for
eMBB users while satisfying URLLC demands.
(Threshold Model): We finally consider a threshold model,
where eMBB traffic is unaffected by puncturing until a thresh-
old; beyond this threshold it suffers complete throughput loss
(a 0-1 rate loss model). We consider two broad classes of
time homogeneous policies, where the URLLC traffic is placed
in minislots proportional to either the eMBB allocated band-
widths (Rate Proportional) or the eMBB thresholds (Threshold
Proportional). We motivate these policies (e.g. minimizes
probability of eMBB loss in any slot) and derive the associated
throughput regions. Finally, we utilize the additional structure
imposed by the RP and TP Placement policies along with the
shape of the threshold loss function and derive fast gradient
algorithms that converge and provably maximize utility.

B. Related Work

Resource allocation, utility maximization and opportunistic
scheduling for downlink wireless systems has intensely studied
for the last two decades, and has had a major impact on cellular
standards. We refer to [3], [4] for a survey of the key results.

In this paper, we focus on joint scheduling of URLLC and
eMBB traffic. From an application point of view, there have
been several studies arguing for the need for URLLC services
(e.g. for industrial automation) [5], [6], [7].

With demand of both broadband and low-latency services
growing, there has been rapid developments in the 5G stan-
dardization efforts in 3GPP. Of key relevance to this paper, the
3GPP RAN WG1 has focussed on standardizing slot structure
for eMBB and URLLC, and have been evaluating signaling
and control channels to support superposition and puncturing
in recent meetings [1], [2]. We specifically refer the reader to
Sections 8.1.1.3.4 – 8.1.1.3.6 in [2] for current proposals.

Beyond standards, recent work has focussed on system
level design for such systems (overheads, packet sizes, control
channel structure, etc.) [8], [9], [10]. Of particular note,
[9] argues (based on system level simulation and queueing
models) that statically partitioning bandwidth between eMBB
and URLLC is very inefficient. There have also been several
studies focussing on the physical layer aspects of URLLC
(coding and modulation, fading, link budget) [11], [12]. How-
ever, to the best of our knowledge, our paper is the first to
explore the resource allocation issues for joint scheduling of
URLLC and eMBB traffic.

II. SYSTEM MODEL

Traffic model. We consider a wireless system supporting
a fixed set of backlogged eMBB users U and stationary
URLLC traffic demands. eMBB scheduling decisions are made
across slots while URLLC demands arrive and are immediately
scheduled across minislots. Each eMBB slot has an associated
set of minislots where M = {1, . . . |M|} denotes there
indices. URLLC demands across minislots are modeled as a
independent and identically distributed (i.i.d.) random random
process. We let the random variables (D(m),m ∈ M)
denote the URLLC demands per minislot for a typical eMBB
slot. We let D be a random variable whose distribution is
that of the aggregate URLLC demand per eMBB slot, i.e.,
D ∼

∑
m∈MD(m) with, cumulative distribution function

FD() and mean E[D] = ρ. We assume demands have been
normalized so the maximum URLLC demand per minislot
is f and the maximum aggregate demands per eMBB slot
is f × |M| = 1 i.e., all the frequency-time resources are
occupied. URLLC demands per minislot exceeding the system
capacity are blocked by URLLC scheduler thus D ≤ 1 almost
surely. As mentioned earlier the system is engineered so that
blocked URLLC traffic on a minislot is a rare event, i.e.,
satisfies the desired reliability on such traffic.

Wireless channel variations. The wireless system expe-
riences channel variations each eMBB slot which are mod-
eled as an i.i.d. random process over set of channel states
S = {1, . . . , |S|}. Let S be a random variable modeling
the distribution over the states in a typical eMBB slot with
probability mass function pS(s) = P (S = s) for s ∈ S. For
each channel state s eMBB user u has a known peak capacity
r̂su. The wireless system can choose what proportions of the
frequency-time resources to allocate to each eMBB user on
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each minislot for each channel state. This is modeled by a
matrix φ ∈ Σ where

Σ :=
{
x ∈ R|U|×|M|×|S|+ |∑

u∈U
xsu,m = f, ∀m ∈M, s ∈ S

}
(1)

and where the element φsu,m represents the fraction of re-
sources allocated to user u in mini slot m in channel state
s. We also let φsu =

∑
m∈M φsu,m, i.e., the total resources

allocated to user u in an eMBB slot in channel state s.
Now assuming no superposition/puncturing if the system is in
channel state s and the eMBB scheduler chooses an allocation
φ the rate ru allocated to user u would be given by ru = φsur̂

s
u.

The scheduler is assumed to know the channel state and
can thus exploit such variations opportunistically in allocating
resources to eMBB users. Note that for simplicity, we adopt
a flat-fading model, namely, the rate achieved by an user is
directly proportional to the fraction of bandwidth allocated to
it (the scaling factor is the peak rate of the user for the current
channel state).

Class of joint eMBB/URLLC schedulers. We consider
a class of stationary joint eMBB/URLLC schedulers denoted
by Π satisfying the following properties. A scheduling pol-
icy combines a possibly state dependent eMBB resource
allocation φ per slot with a URLLC demand placement
strategy across minislots. The placement strategy may impact
the eMBB users’ rates since it affects the URLLC superpo-
sition/puncturing loads they will experience. As mentioned
earlier in discussing the traffic model, in order to meet low
latency requirements URLLC traffic demands are scheduled
immediately upon arrival or blocked. The scheduler is assumed
to be causal so it only knows the current (and past) channel
states and achieved rates r̂su,∀, u ∈ U , s ∈ S but does not
know the realization of future channels or URLLC traffic
demands. In making superposition/puncturing decisions across
minislots, the scheduler can use knowledge of the previous
placement decisions that were made. In addition the scheduler
is assumed to know (or can measure over time) the channel
state distribution across eMBB slots and URLLC demand
distributions per minislot i.e., that of D(m), and per eMBB
slot, i.e., D, and thus knows in particular ρ = E[D].

In summary joint scheduling policy π ∈ Π is thus charac-
terized by the following:

• an eMBB resource allocation φπ ∈ Σ where φπ,su,m de-
notes the fraction frequency-time slot resources allocated
to eMBB user u on minislot m when the system is in
state s.

• the distributions of URLLC loads across eMBB re-
sources induced by its URLLC placement strategy, de-
noted by random variables Lπ = (Lπ,su,m|u ∈ U ,m ∈
M, s ∈ S) where Lπ,su,m denotes the URLLC load
superposed/puncturing the resource allocation of user u
on minislot m when the channel is in state s.

The distributions of Lπ,su,m and their associated means lπ,su,m
depend on the joint scheduling policy π, but for all states,
users and minislots satisfy

Lπ,su,m ≤ φπ,su,m almost surely.

In the sequel we let Lπ,su =
∑
m∈M Lπ,su,m, i.e., the aggregate

URLLC traffic superposed/puncturing user u in channel state
s, and denote its mean by lπ,su and note that

Lπ,su ≤ φπ,su almost surely.

We shall also Lπ,s =
∑
u∈U L

π,s
u denote the aggregate

induced load and note that any policy π and any state s we
have that

ρ = E[D] = E[Lπ] = E[
∑
u∈U

Lπ,su ] =
∑
u∈U

lπ,su .

Modeling superposition/puncturing and eMBB capacity
regions. Under a joint scheduling policy π we model the rate
achieved by an eMBB user u in channel state s by a random
variable

Rπ,su = fsu(φπ,su , Lπ,su ) (2)

where the rate allocation function fsu(·, ·) models the impact
of URLLC superposition/puncturing – one would expect it
to be increasing the first argument (the allocated resources)
and decreasing in the second argument (the amount superpo-
sition/puncturing by URLLC traffic). One would also expect
such functions to satisfy

fsu(φsu, l
s
u) = 0

if φsu = lsu, i.e., if superposition/puncturing occurs across all of
an eMBB users resources no data is successfully transmitted,
however, perhaps under the superposition some rate might still
be extracted from the transmission. Also under our system
model we have that

Rπ,su ≤ fsu(φπ,su , 0) = φπ,su r̂su almost surely,

with equality if there is no superposition/puncturing, i.e., when
lsu = 0. We shall rπ,su = E[Rπ,su ] denote the mean rates
achieved by user u in state s under the URLLC superposi-
tion/puncturing distribution induced by scheduling policy π.
Models for Throughput Loss: In the sequel we shall consider
specific forms of superposition/puncturing models: (i) linear,
(ii) convex, and (iii) threshold models.

We rewrite the rate allocation function in (2) as the differ-
ence between the peak throughput and the loss due to URLLC
traffic, and consider functions that can be decomposed as:

fsu(φsu, l
s
u) = r̂suφ

s
u

(
1− hsu

(
lsu
φsu

))
,

where hsu : [0, 1] → [0, 1] is the rate loss function and
captures the relative rate loss due to URLLC overlap on
eMBB allocations. The puncturing models we study now map
directly to structural assumptions on the rate loss function
hsu(·); namely it is a non-decreasing function, and is one of
linear, convex, or threshold as shown in Figure 2.
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Fig. 2. The illustration exhibits the rate loss function for the various models
considered in this paper, linear, convex and threshold.

Linear Model: Under the linear model, the expected rate for
user u in channel state s for policy π is given by

rπ,su = E[fsu(φπ,su , Lπ,su )] = r̂su(φπ,su − lπ,su ),

i.e., hsu(x) = x, and the resulting rate to eMBB users is a linear
function of both the allocated resources and mean induced
URLLC loads. This model is motivated by basic results for
the channel capacity of AWGN channel with erasures, see [13]
for more details. Our system in a given network state can
be approximated as an AWGN channel with erasures, when
the slot sizes are long enough so that the physical layer
error control coding of eMBB users use long code-words.
Further, there is a dedicated control channel through which
the scheduler can signal to the eMBB receiver indicating the
positions of URLLC overlap. Indeed such a control channel
has been proposed in the 3GPP standards [1]. Note that under
this model the rate achieved by a given user depends on the
aggregate superposition/puncturing it experiences, i.e., does
not depend on which minislots and frequency bands it occurs.
We discuss the policies for the linear model in Section III.
Convex Model: In the convex model, the rate loss function
hsu(·) is convex (see Figure 2), and the resulting rate for eMBB
user u in channel state s under policy π is given by

rπ,su = E[fsu(φπ,su , Lπ,su )] = r̂suφ
u
π,s

(
1− E

[
hsu

(
Lπ,su
φπ,su

)])
.

This covers a broad class of models, and is discussed in
Section IV.
Threshold Model: Finally the threshold model is designed
to capture a simplified packet transmission and decoding
process in an eMBB receiver. The data is either received
perfectly or it is lost depending on the amount of superpo-
sition/puncturing. With slight abuse of notation we shall let
hsu also depend on both the relative URLLC load and the
eMBB user allocation, i.e., hsu(x, φsu) = 1(x ≤ tsu(φsu)) where
the threshold in turn is an increasing function tsu() satisfying
and satisfy x ≥ tsu(x) ≥ 0. Such thresholds might reflect
various engineering choices where codes are adapted when
users are allocated more resources, so as to be more robust to
interference/URLLC superposition/puncturing. The resulting
rate for eMBB user u in channel state s and policy π is then
given by

rπ,su = r̂suφ
π,s
u P (Lsπ,u ≤ φπ,su tsu(φπ,su )).

While such a sharp falloff is somewhat extreme, it is never-
theless useful for modeling short codes that are designed to
tolerate a limited amount of interference. In practice one might
expect a smoother fall off, perhaps more akin to the convex
model, e.g., when hybrid ARQ (HARQ) is used. We discuss
polices under the threshold based model in Section V.
Capacity for eMBB traffic: We define the capacity C ⊂ R|U|+

for eMBB traffic as the set of long term rates achievable under
policies in Π. Let cπ = (cπu|u ∈ U) where

cπu =
∑
s∈S

rπ,su pS(s).

Then the capacity is given by

C = {c ∈ R|U|+ | ∃ π ∈ Π such that c ≤ cπ}.

Note that this capacity region depends on the scheduling
policies under consideration as well as the distributions of the
channel states and URLLC demands.
Scheduling objective: URLLC priority and eMBB util-
ity maximization: As mentioned earlier, URLLC traffic is
immediately placed upon arrival, at the minislot scale, i.e,
no queueing is allowed. Thus if demands exceed the system
capacity on a given minislot such traffic is lost. The system
is engineered so that such URLLC overloads are extremely
rare, and thus URLLC traffic can meet extremely low latency
requirements with high reliability. For eMBB traffic we adopt
a utility maximization framework wherein each eMBB user
u has an associated utility function Uu(·) which is a strictly
concave, continuous and differentiable of the average rate cπu
experienced by the user. Our aim is to characterize optimal rate
allocations associated with the utility maximization problem:

max
c
{
∑
u∈U

Uu (cu) | c ∈ C}, (3)

and determine and associated scheduling policy π that will
realize such allocations.

III. LINEAR MODEL FOR SUPERPOSITION/PUNCTURING

As a thought experiment, consider a two-user system,
with users having the same utility function (say square root
function), but i.i.d. (across time and users) channel states.
Suppose that a naive eMBB scheduler ignores channel states
and statically partitions the bandwidth between these users
(symmetry implies half the bandwidth to each user). In this
case, it is clear that an optimal URLLC scheduler needs to
be both channel-state and eMBB aware – at each minislot,
depending on the instantaneous demand and the channel states,
it needs to puncture the two users’ shares of bandwidths
differently. For instance at a certain minislot, if one user has
a really poor channel state, then the URLLC traffic in that
minislot would be mostly loaded onto the frequency resources
occupied by this user (as the total rate loss to eMBB traffic
will be minimal).

In this section, we show a surprising result – if the eMBB
scheduler is intelligent, then the URLLC scheduler can be
oblivious to the channel states, utility functions and the actual
rate allocations of the eMBB scheduler.
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A. Characterization of capacity region

Let us consider the capacity region for a wireless system
based on linear superposition/puncturing model under a re-
stricted class of policies ΠLR that combine feasible eMBB al-
locations φ ∈ Σ with random placement of URLLC demands
across minislots. For any π ∈ ΠLR with eMBB allocation
φπ the mean induced loads for such randomization for each
state s ∈ S and minislot m ∈ M will satisfy lπ,su,m = ρφπ,su,m.
Indeed randomization clearly leads to an induced loads that
are proportional to the eMBB allocations on a per mini-slot
basis, but also per eMBB slot, i.e., lπ,su = ρφπ,su . Thus for our
linear superposition/puncturing model we have that

rπ,su = r̂su(φπ,su − lπ,su ) = r̂suφ
π,s
u (1− ρ).

Hence the overall user rates achieved under such a policy are
given by cπ = (cπu|u ∈ U) where

cπu =
∑
s∈S

r̂suφ
π,s
u (1− ρ)pS(s).

The capacity region associated with policies that use URLLC
randomization is thus given by

CLR = {c ∈ R|U|+ | ∃π ∈ ΠLR s.t. c ≤ cπ}
= {c ∈ R|U|+ | ∃φ ∈ Σ s.t. c ≤ cφ},

where we have used abused notation by using cφ to represent
the throughput achieved by a policy π that uses eMBB
resource allocation φ and randomized URLLC demand place-
ment. Finally note that for any fixed ρ ∈ (0, 1), CLR is a
closed and bounded convex region. This is because an affine
map of a convex region remains convex; hence multiplying the
constraints on the capacity region defined by φ by a constant
(1− ρ) preserves convexity of the rate region.

Theorem 1. For a wireless system under the linear superpo-
sition/puncturing model we have that C = CLR.

The proof is deferred to the Appendix A. In other words
the throughput cπ ∈ C achieved by any feasible policy π ∈ Π
can also be achieved by policy π′, with a possibly different
eMBB resource allocation policy than π but utilizing random
placement of URLLC demands across mini-slots.

B. Utility maximizing joint scheduling

Given the result in Theorem 1 we now restate the utility
maximization problem as optimizing solely over joint schedul-
ing policies that use URLLC random placement policies, as
below.

max
φ∈Σ

∑
u∈U

Uu(cφu )

s.t. cφu =
∑
s∈S

r̂suφ
s
u(1− ρ)pS(s), ∀u ∈ U .

The above optimization problem has a strictly concave cost
function, and convex constraints. Thus, at face-value, it ap-
pears that we can immediately apply the gradient scheduler
introduced in [15], which is an online algorithm that converges

and solves the optimization problem. This intuition is approx-
imately correct, but subject to two modifications.

First, the setting in [15] has deterministic rates in each
channel state. However, in our case, in each channel state,
the rates are stochastic due to i.i.d. puncturing due to URLLC
traffic (which accounts for the (1 − ρ) correction). This can
be easily addressed by modifying the setting in [15]; the finite
state and i.i.d. nature of puncturing implies that the proofs in
[15] hold with minor modifications; we skip the details.

The second issue is somewhat more nuanced. In current
wireless systems (e.g. LTE) and proposals for 5G systems, a
slot is partitioned into a collection of Resource Blocks (RB),
where each RB is a time-frequency rectangle (1 msec × 180
KHz in LTE). Importantly, these RBs can be individually
allocated to different eMBB users. If we now apply the
gradient scheduler in [15] to our setting, the result will be that
all RBs in a slot will be allocated to the same user. While this is
no-doubt asymptotically optimal, it seems intuitive that sharing
RBs across users even within a slot will lead to better short-
term performance. Indeed this intuition has been explored
in the context of iterative MaxWeight algorithms to provide
formal guarantees, see [16], [17]. The high level idea is that
even within a slot, RB allocations are iterative, where future
RB allocation need to account for prior rate allocations even
within the same slot. This is formalized below, where we have
fully described the joint eMBB-URLLC scheduler.

The URLLC scheduler: As explained in the previous
section, the URLLC scheduler places the URLLC traffic
uniformly at random over the minislots.

The eMBB scheduler: Let there be B resource blocks
available for allocation every eMBB slot, indexed by
1, 2, . . . , B. Let Ru(t−1) be the random variable denoting the
average rate received by eMBB user up to eMBB slot t − 1.
In any eMBB slot t we schedule an user u(b) in RB b such
that

u(b) ∈ argmax
{
r̂suU

′

u (rεu (b− 1, t)) , u = 1, 2, . . . ,U
}
, (4)

where rεu (b− 1, t) is an estimate of the average rate received
by eMBB user u till slot t which is iteratively updated as
follows:

rεu (b, t) =


Ru(t− 1), b = 0,

(1− ε) rεu (b− 1, t)

+ε
(
r̂su

1
B (1− ρ)1 (i = u(b))

)
, b 6= 0.

(5)

In the above equation, ε is a small positive value. At the end
of eMBB slot t, the eMBB scheduler receives feedback from
the eMBB receivers indicating the actual rates received by the
eMBB users due to allocations through (5). We denote this rate
received eMBB user u in slot by the random variable Ru(t).
We finally update Ru(t) as follows:

Ru(t) = (1− ε)Ru(t− 1) + εRu(t). (6)

This update is analogous to the gradient algorithm [15] (see
also iterative algorithms in [16], [17]). The optimality proof
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of this algorithm follows (with minor modifications) from the
analysis in [15]; we skip the details.
Remarks: (i) A natural decomposition of the joint
eMBB+URLLC scheduling is now apparent. On one hand,
the eMBB scheduler maximizes utilities based on the expected
channel rates stemming from uniformly random puncturing of
minislots (accounted for through the (1 − ρ) multiplicative
factor), and does so using the iterative gradient scheduler. The
URLLC scheduler, on the other-hand, is completely agnostic
to either the channel state or the actual eMBB allocations and
simply punctures minislots based on the current instantaneous
demand.

(ii) The fact that the URLLC traffic is completely agnostic to
the channel state and eMBB utilities/allocation is surprising.
Intuitively it seems plausible that one could load an eMBB
user with a lower marginal utility with more URLLC traffic,
while protecting a eMBB user with a higher marginal utility
and achieve a better sum utility. Further, it seems reasonable
that eMBB users with a worse channel state (and thus lower
rate) could be loaded with additional URLLC traffic. However,
Theorem. 1 implies that there exists an optimal solution that
is achieved by channel and utility oblivious, uniform loading
of URLLC traffic, thus providing a very simple algorithm for
URLLC scheduling.

IV. CONVEX MODEL – TIME-HOMOGENOUS POLICIES

In this section we shall consider joint scheduling for wire-
less systems for a general superposition/puncturing model.
This is a somewhat complex problem, whence we will fo-
cus our attention on a restricted, but still rich, class of
scheduling policies which we refer to as time-homogeneous
eMBB/URLLC schedulers. We identify a key concavity re-
quirement in Condition 1 (that is satisfied by convex loss
functions) that enables a stochastic approximation approach
for utility maximization.

A. Time-homogeneous eMBB/URLLC Scheduling policies

We shall define time-homogeneous eMBB/URLLC sched-
ulers as follows. First, feasible eMBB allocations φ ∈ Σ
will be restricted such that for any eMBB slot in channel
state s ∈ S allocations are time-homogeneous across minislots
across the slot, i.e., φsu,1 = φsu,m,∀m ∈ M and its overall
allocation for the slot is given by φsu = |M|φsu,1. The set of
time-homogeneous eMBB allocations is thus given by

ΣU :=
{
x ∈ Σ | ∀s ∈ S, u ∈ U , xsu,m = xsu,1 ∀m ∈M

}
.

Second, URLLC demand placement per minislot are done
proportionally to pre-specified weights, and these weights
are assumed to be time-homogeneous across minislots. In
particular such policies are parametrized by a weight matrix
γ ∈ ΣU , where induced load on user u under channel state s
and slot m is given by

Lsu,m =
γsu,m∑

u′∈U γ
s
u′,m

D(m) =
γsu,1
f
D(m).

The eMBB and URLLC allocations are however coupled
together since it must be the case that for all u ∈ U
Lsu,m ≤ φsu,m = φsu,1 almost surely, i.e., one can not induce
more superposition/puncturing on a user than the resources
it has been allocated on that slot. so the following condition
must be satisfied. Thus we must have that for all u ∈M

D(m) ≤ min
u∈U

φsu,1
γsu,1

f.

Note we have assumed that D(m) ≤ f almost surely, thus if
φsu,1
γsu,1
≥ 1 this may not hold.

Assumption 1. We say a system satisfies a (1 − δ) URLLC
sharing factor per minislot if D(m) ≤ f(1− δ) almost surely
for all m ∈M.

Under a (1 − δ) URLLC demand backoff a time-
homogeneous eMBB resource allocation φ and URLLC al-
location γ is will be feasible if for all s ∈ S we have

(1− δ) ≤ min
u∈U

φsu,1
γsu,1

,

which is satisfied as long as (1− δ)γsu,1 ≤ φsu,1 for all u ∈ U .
This motivates the following definition.

Definition 1. Under a (1 − δ) sharing factor, the feasible
time-homogeneous eMBB/URLLC scheduling policies are pa-
rameterized by φ,γ ∈ ΣU such that (1− δ)γ ≤ φ. We shall
denote the set of such policies as follows:

ΠU,δ := {(φ,γ) | φ,γ ∈ ΣU and (1− δ)γ ≤ φ},

where ΠU,δ is a convex set.

B. Characterization of throughput region

In this section we characterize the throughput regions
achievable under time-homogeneous scheduling.

Theorem 2. Under a (1 − δ) sharing factor and time-
homogeneous scheduler π = (φπ,γπ) ∈ ΠU,δ the probability
of induced throughput for user r u ∈ U in channel state s ∈ S
is given by

rπ,su = E[fsu(φπ,su , γπ,su D)],

and the overall user throughputs are given by cπ = (cπu : u ∈
U) where cπu =

∑
u∈U r

π,s
u pS(s).

The proof is available in Appendix B. Based on the above
we can define feasible throughput region constrained to the
time-homogeneous policies in ΠU,δ. First let us define

CU,δ = {c ∈ R|U|+ | ∃π ∈ ΠU,δ s.t. c ≤ cπ}.

We shall let ĈU,δ denote the convex hull of CU,δ. Note that
throughputs rates in the convex hull are achievable through
policies that do time sharing/randomization amongst time-
homogeneous scheduling policies in ΠU,δ.

Condition 1. For all s ∈ S and u ∈ U the functions gsu(, )
given by

gsu(φsu, γ
s
u) = E[fsu(φsu, γ

s
uD)], (7)
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are jointly concave on ΠU,δ.

Lemma 1. Condition 1 is satisfied for systems where super-
position/puncturing of each user is modelled via either a

1) Convex loss function,
2) Threshold loss function with fixed relative thresholds,

i.e., tsu(φsu) = αsu for φ ∈ [0, 1] and the URLLC demand
distribution FD(·) is such that FD( 1

x ) is concave in x
(satisfied by the truncated Pareto distribution).

The proof is available in Appendix B. With this condition
in place, we now describe the throughput region.

Theorem 3. Suppose that Condition 1 holds. then
CU,δ = ĈU,δ, i.e., there is no need to consider
time-sharing/randomization amongst time-homogeneous
eMBB/URLLC policies.

The proof is available in Appendix B. Thus, with time-
homogeneous policies and imposing concavity of from Con-
dition 1, the above result sets up a convex optimization
problem in (φ, γ), i..e, we have a concave cost function with
convex constraints. Thus, by iteratively updating (φ, γ), we
can develop an online algorithm that asymptotically maximizes
utility. Below, we formally develop a stochastic approximation
algorithm to achieve this objective.

C. Stochastic approximation based online algorithm

We first restate the utility maximization problem for time-
homogeneous URLLC/eMBB scheduling policies:

max
φ,γ∈ΠU,δ

∑
u∈U

Uu

(∑
s∈S

pS(s)gsu (φsu, γ
s
u)

)
. (8)

Observe that the objective function consists of a sum of
compositions of non-decreasing concave function (Uu(·)), and
supposing Condition 1 holds, a concave function gsu (·, ·) in
φ and γ. Further, the constraint set is convex. Therefore,
the above problem fits in the framework of standard convex
optimization problems. However, solving the above problem
requires the knowledge of all possible network states and its
probability distribution, resulting in an offline optimization
problem. In this section, we develop a stochastic approxima-
tion based online algorithm to solve the above problem.

Online algorithm: Let Ru(t− 1) be the random variable
denoting the average rate received by eMBB user up to
eMBB slot t − 1. Let s be the network state in slot t.
Define vectors φs := {φsu, | u ∈ U} and γs := {γsu | u ∈ U}.
At the beginning of eMBB slot t, we compute the vectors(
φ̃(t), γ̃(t)

)
as the solution to the following optimization

problem.

max
φs,γs

∑
u∈U

U
′

u

(
Ru(t− 1)

)
gsu(φsu, γ

s
u), (9)

s.t. φs ≥ (1− δ) γs, (10)∑
u∈U

φsu = 1 and
∑
u∈U

γsu = 1, (11)

φs ∈ [0, 1]
|U| and γs ∈ [0, 1]

|U|
. (12)

This optimization problem is a convex optimization problem
and can be solved numerically using standard convex optimiza-
tion techniques. Using

(
φ̃(t), γ̃(t)

)
, we schedule URLLC and

eMBB traffic as follows:
The eMBB scheduler: For notational ease, we fluidize

the bandwidth. Specifically, we assume that the bandwidth of
a resource block is very small when compared to the total
bandwidth available. Hence, the bandwidth can be split into
arbitrary fractions and we allocate φ̃u(t) fraction of the total
bandwidth to eMBB user u.

The URLLC Scheduler: We load different eMBB users
with URLLC traffic according to the vector γ̃(t).

At the end of eMBB slot t, the eMBB scheduler receives
feedback from the eMBB receivers indicating the rates re-
ceived by the eMBB users. Let us denote the rate received
eMBB user u in slot by the random variable Ru(t). We update
Ru(t) as follows:

Ru(t) = (1− εt)Ru(t− 1) + εtRu(t), (13)

where {εt | t = 1, 2, 3, . . .} is a sequence of positive numbers
which satisfy the following (standard) condition:

Condition 2. The averaging sequence {εt} satisfies:
∞∑
t=1

εt =∞ and
∞∑
t=1

ε2t <∞

.

Finally, we state the main result of this section, which is
the optimality of the stochastic approximation based online
algorithm.

Theorem 4. Let r∗ be the optimal average rate vector
received by eMBB users under the solution to the offline
optimization problem. Suppose that Conditions 1 and 2 hold.
Then we have that:

lim
t→∞

R(t) = r∗ almost surely. (14)

The proof is available in the Appendix B.

V. THRESHOLD MODEL AND PLACEMENT POLICIES

In the previous section, we developed a stochastic ap-
proximation algorithm for time-homogeneous policies. This
algorithm iteratively solves an optimization problem described
in (9). This optimization problem jointly optimizes over a
pair of row vectors (φs, γs). While this convex optimization
problem can be solved using standard methods, it could
become computationally challenging as the number of users
scale up.

In this section, we shall restrict our attention to a threshold
model for superposition/puncturing, and look at policies that
impose structural conditions on the puncturing matrix γ.
We will show that the resulting class of policies have nice
theoretical properties that lead to simpler online algorithms
(solving (4), which is an one-dimensional search).

We consider two types of structural conditions on the
puncturing matrix γ, resource proportional and threshold
proportional placement policies, described below.
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(i) Resource Proportional (RP) Placement: The first is based
on allocating URLLC demands in proportion to eMBB user
slot allocations, i.e., γsu = φsu. We refer to this as Resource
Proportional (RP) Placement and denote such policies by

ΠRP,δ := {(φ,γ) ∈ ΠU,δ | γ = φ},

and define the associated achievable throughput region

CRP,δ = {c ∈ R|U|+ | ∃π ∈ ΠRP,δ s.t. c ≤ cπ}.

The motivation for RP Placement comes from the optimality
of random placement for the linear model in Section III.
Observe that if puncturing occurs uniformly randomly, then
the expected number of punctures is directly proportional to
the fraction of bandwidth allocated to an eMBB user. Thus,
RP Placement has the interpretation of a determinized version
of the policy we previously studied with linear loss functions.
(ii) Threshold Proportional (TP) Placement: The second
policy allocates URLLC demands in proportion to the eMBB
users associated loss thresholds so as to avoid losses,

γsu =
φsut

s
u(φsu)∑

u′∈U φ
s
u′tsu′(φsu′)

.

We refer to this as Threshold Proportional (TP) Placement and
denote such policies by

ΠTP,δ :=

{(φ,γ) ∈ ΠU,δ | γsu =
φsut

s
u(φsu)∑

u′∈U φ
s
u′tsu′(φsu′)

∀s ∈ S, u ∈ U}.

The associated achievable throughput region is denoted

CTP,δ = {c ∈ R|U|+ | ∃π ∈ ΠTP,δ s.t. c ≤ cπ}.

The following theorem provides a formal motivation for TP
Placement,. The main takeaway here is that the probability
of any loss in an eMBB slot under TP Placement policy is a
lower bound over all other strategies.

Theorem 5. Consider a system with (1 − δ) sharing factor.
Consider a joint scheduling policy based on the TP URLLC
placement i.e, π = (φπ,γπ) ∈ ΠTP,δ. Then π achieves
the minimum probability of eMBB loss amongst all joint
scheduling policies using the same eMBB resource allocation
φπ.

The proofs (along with characterizations of the capacity
region for RP and TP Placement policies) are available in
Appendix C.

A. Online scheduling for RP and TP Placement

In this section, we consider online algorithms that imple-
ment the RP and TP Placement policies. While the stochas-
tic approximation algorithm developed in Section IV-C can
clearly be used, the additional structure imposed by the RP
and TP Placement policies, and the shape of the threshold
loss function (discussed below) can result in much simpler
algorithms (with optimality guarantees).

We consider the case where tsu(φ) is a (state dependent but
φ independent) constant, i.e., tsu(φ) = αs, where αs ∈ (0, 1).
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Fig. 3. Sum utility as a function of URLLC load ρ for the optimal and TP
Placement policies under threshold model (δ = 0.1).

Intuitively, this means that eMBB traffic which has a higher
share of the bandwidth is more resilient to losses (e.g. through
coding over larger fraction of resources). Then, by substituting
this loss function in (25) and (28) (where we also use the fact
that

∑
u∈U φ

s
u = 1), we have that

rπ,su = r̂suφ
s
uFD(αs).

Comparing with the development in Section III-B, we observe
that the cost and constraints are identical if FD(αs) replaces
(1 − ρ). Note that a small difference is that FD(αs) is state
and user dependent, whereas (1 − ρ) does not depend on
either; however, it is easy to see that the development in
Section III-B immediately generalizes to this setting. Hence,
we can interpret FD(αs) as the state and user dependent
average rate loss due to puncturing via the RP or TP Placement
policies.

We can now employ the rate-based iterative gradient sched-
uler developed in Section III-B (by replacing (1 − ρ) in (5)
by a user-dependent FD(αs)), and the theoretical guarantees
directly carry over. As this algorithm only minimizes over
users at each slot in (4), this is easier to implement when
compared to the stochastic approximation algorithm developed
in Section IV-C.

VI. SIMULATIONS

We consider a system with a total of 100 RBs avail-
able per eMBB slot, with 8 minislots per eMBB slot. In
an eMBB slot, r̂su for an eMBB user is drawn from the
finite set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}Mbps with
equal probability and i.i.d. across users and slots. Our system
consists of 20 users, and with 100 channel states (all equally
likely). The (20 users × 100 states) rate matrix is one-time
synthesized by independently and uniformly sampling a rate
from the finite rate set for each matrix element.

We first consider a threshold model with αs = 0.3 for
50% of eMBB states and αs = 0.7 for the rest. We use the
utility function Uu(r) = log(r) + 6.5 for all eMBB users,
where r is measured in Mbps (constant added to ensure non-
negativity of the sum utility). URLLC load in an eMBB slot
(D) is generated form the truncated Pareto distribution with
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Fig. 5. Log-scale plot of the probability that URLLC traffic is delayed by
more than two minislots (0.25 msec) for various values of δ.

tail exponent η = 2. We compare the optimal policy (stochastic
approximation algorithm, see Section IV-C) with that from
the TP Placement policy (the simpler gradient algorithm in
Section V-A). In this case, as the threshold functions are (state-
dependent) constants, the RP and TP Placement policies are
the same. As we can see in Figure 3, the TP Placement policy
tracks the optimal policy very well.

In Figure 5, we study the trade-off between achieving a
higher eMBB utility and lowering the mean delay of URLLC
traffic for different values of the sharing factor 1−δ. Figure 5
plots the corresponding probability that the URLLC traffic
delay exceeds two minislots (0.125×2 = 0.25 msec). To study
this trade-off we generate URLLC arrivals in each minislot
from an uniform distribution between [0, 1/8] (recall there are
8 minislots). In each minislot, we can serve at most 1−δ

8 units
of URLLC traffic. If the URLLC load in a given minislot is
more than 1−δ

8 , the remaining URLLC traffic is queued and
served in the next minislot on a FCFS basis. For the eMBB
users we use a convex model with hsu(s) = eκu(x−1) where
κu determines the sensitivity of an eMBB user to an URLLC
load. We have chosen κ = 0.2 for 50 % of the users and
κ = 0.7 for the rest. We also set ∀u Uu(x) = log(x) + 4.2
(constant added to ensure positive sum utility). In summary,
a larger value of δ limits the amount of URLLC traffic than
can be served in a minislot. However, a larger δ enlarges the
constraint set ΠU,δ in the eMBB utility maximization problem,

and hence we get higher eMBB utility.

VII. CONCLUSION

In this paper, we have developed a framework and al-
gorithms for joint scheduling of URLLC (low latency) and
eMBB (broadband) traffic in emerging 5G systems. Our
setting considers recent proposals where URLLC traffic is
dynamically multiplexed through puncturing/superposition of
eMBB traffic. Our results show that this joint problem has
structural properties that enable clean decompositions, and
corresponding algorithms with theoretical guarantees.
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APPENDIX

A. Proofs from Section III

Theorem 1. For a wireless system under the linear superpo-
sition/puncturing model we have that C = CLR.

Proof. Clearly since ΠLR ⊂ Π we have that CLR ⊂ C
Now consider any policy π ∈ Π with eMBB user allocations

φπ and URLLC loads lπ and associated long term throughput
is cπ given by

cπu =
∑
s∈S

r̂su(φπ,su − lπ,su )pS(s).

Let us define a π′ based on π to have per mini-slot eMBB
user allocations given by

φπ
′,s
u,m =

φπ,su − lπ,su∑
u′∈U φ

π,s
u′ − lπ,su′

f =
φsu − lπ,su

1− ρ
f,

for s ∈ S, u ∈ U and m ∈ M. Since induced mean loads
on an eMBB user can not exceed its allocation we have that
φπ ≥ lπ so the above allocations are positive. Note also that
this allocation is not mini-slot dependent, but normalized so
that per mini-slot they sum to f and over the whole eMBB
slot sum to 1, i.e., φπ

′ ∈ Σ. Thus for such an allocation we
have that

φπ
′,s
u =

φsu − lπ,su
1− ρ

.

Also suppose that π′ uses randomized URLLC placement
across mini-slots which induces mean URLLC loads propor-
tional to the allocations, i.e., lπ

′,s
u = ρφπ

′,s
u . It follows that

φπ
′,s
u − lπ

′,s
u = φπ

′,s
u − ρφπ

′,s
u

= (1− ρ)φπ
′,s
u

= φπ,su − lπ,su ,

and so cπ,su = cπ
′,s
u for all s ∈ S and u ∈ U . Thus for any

policy π there is a policy π′ which uses randomized URLLC
placement and achieves the same long term throughputs. It
follows that C ⊂ CLR and so C = CLR.

B. Proofs from Section IV

Theorem 2. Under a (1 − δ) sharing factor and time-
homogeneous scheduler π = (φπ,γπ) ∈ ΠU,δ the probability
of induced throughput for user r u ∈ U in channel state s ∈ S
is given by

rπ,su = E[fsu(φπ,su , γπ,su D)].

and the overall user throughputs are given by cπ = (cπu : u ∈
U) where cπu =

∑
u∈U r

π,s
u pS(s).

Proof. Under a policy π = (φπ,γπ) ∈ ΠU,δ we have that
the induced loads are given by

Lπ,su,m =
γπ,su,1

f
D(m),

so we have that

Lπ,su =
∑
u∈U

Lπ,su,m =
γπ,su,1

f

∑
u∈U

D(m) =
γπ,su,1

f
D = γπ,su D.

where the last equality follows from the uniformity of URLLC
splits and normalization it follows that

rπ,su = E[fsu(φπ,su , Lπ,su )] = E[fsu(φπ,su , γπ,su D)].

Lemma 1. Condition 1 is satisfied for systems where super-
position/puncturing of each user is modelled via either a

1) convex loss function,
2) threshold-based loss function with fixed relative thresh-

olds, i.e., tsu(φsu) = αsu for φ ∈ [0.1] and the URLLC
demand distribution FD is such that FD( 1

x ) is concave
in x (satisfied by the truncated Pareto distribution).

Proof. Recall that convex loss functions are specified as
follows

fsu(φsu, l
s
u) = r̂suφ

s
u(1− hsu(

lsu
φsu

)),

with hsu : [0, 1] → [0, 1] a convex increasing function. For
time-homogenous policies we have defined

gsu(φsu, γ
s
u) = E[fsu(φsu, γ

s
uD)]

= r̂suE[φsu − φsuhsu(
γsu
φsu
D)].

Recall that convex function h() one can define a function
l(φ, γ) = φh( γφ ) known as the perspective of h() which is
known to be jointly convex in its arguments. It follows that
φ − φh( γφ ) is jointly concave, and so is gsu() since it is a
weighted aggregation of jointly concave functions.

For threshold-based loss functions where tsu(φsu) = αsu we
have that

gsu(φsu, γ
s
u) = E[fsu(φsu, γ

s
uD)]

= r̂suφ
π,s
u P (γsuD ≤ φπ,su αus )

= r̂suφ
π,s
u FD(

φπ,su αus
γsu

).

Now using the same result on the perspective functions of
variables the result follows. The truncated Pareto case can be
easily verified by taking derivatives.

Theorem 3. Suppose that Condition 1 holds. then CU,δ = ĈU,δ,
i.e., there is no need to consider time-sharing/randomization
amongst time-homogeneous eMBB/URLLC policies.
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Proof. Clearly CU,δ ⊂ CU,δ. We will show that c ∈ ĈU,δ then
their exists π = (φπ,γπ) ∈ ΠU,δ such that c ≤ cπ from
which it follows that CU,δ ⊂ CU,δ.

Suppose c ∈ ĈU,δ , then it can be represented as a convex
combination of policies ΠU,δ , in each channel state. For
example suppose for simplicity that for that in channel state
s ∈ S we have that λ ∈ [0, 1] one time shares between two
policies π1 and π2 to achieve throughputs for u ∈ U given
by

rsu = λrπ1,s
u + (1− λ)rπ2,s

u .

Consider u we have

rsu = λrπ1,s
u + (1− λ)rπ2,s

u

= λgsu(φπ1,s
u , γπ1,s

u ) + (1− λ)gsu(φπ2,s
u , γπ2,s

u )

≤ gsu(λφπ1,s
u + (1− λ)φπ2,s

u , λγπ1,s
u + (1− λ)φγ2,su )

= gsu(φπ,su , γπ,su ),

where φπ,su = λφπ1,s
u + (1 − λ)φπ2,s

u and γπ,su = λγπ1,s
u +

(1− λ)γπ2,s
u . Clearly φπ,γπ as given above correspond to a

policy π such that π ∈ ΠU,δ since the set is convex. It also
follows that rsu ≤ rπ,su , so csu ≤ cπ,su and so c ≤ cπ.

Theorem 4. Let r∗ be the optimal average rate vector received
by eMBB users under the solution to the offline optimization
problem. Suppose that Conditions 1 and 2 hold. Then we have
that:

lim
t→∞

R(t) = r∗ almost surely. (15)

The proof requires intermediate lemmas, de-
tailed below. For the ease of exposition, let us
define U(r) :=

∑
u∈U Uu(ru) and ∇U (r) :=[

∂U1(x)
∂x

∣∣∣
x1=r1

, ∂U2(x)
∂x

∣∣∣
x2=r2

, . . . , ∂U1(x)
∂x

∣∣∣
rx|U|=|U|

]T
. First we

have the following important lemma regarding the stochastic
approximation algorithm.

Lemma 2. R(t) =
[
R1(t), R2(t), . . . , R|U|

]T
is an unbiased

estimator of argmax:
c∈CU,δ

∇U
(
R(t)

)T
c, i.e.,

E [R(t)] = argmax:
c∈CU,δ

∇U
(
R(t)

)T
c. (16)

Proof. Based on the definition of CU,δ we can re-write
max:
c∈CU,δ

∇U
(
R(t)

)T
c as follows:

max
φ,γ

∑
u∈U

U
′

u

(
Ru(t)

)(∑
s∈S

pS(s)gsu (φsu, γ
s
u)

)
(17)

s.t. φ ≥ (1− δ)γ, (18)

φ, γ ∈ ΠU,δ. (19)

Observe that the above optimization problem can be solved
separately for each network state s ∈ S . The de-coupled
problem for any state s is same as the optimization problem (9)
in our online algorithm. With a slight abuse of notation, let

(
φ̃(s), γ̃(s)

)
be the optimal solution to the online problem

when S(t) = s. Conditioned on S(t) = s, we have that:

E [Ru(t) | S(t) = s] = E
[
fsu

(
φ̃su, γ̃

s
uD
)
| S(t) = s

]
= gsu

(
φ̃su, γ̃

s
u

)
∀u ∈ U . (20)

Computing E [E [Ru(t) | S(t)]] gives the desired result (16).

The main intuition behind the proof of optimality is that
for large t, the trajectories of R(t) can be approximated by
the solution to the following differential equation in x(t) with
continuous time t:

dx(t)

dt
= argmax:

c∈CU,δ
∇U (x(t))

T
c− x(t). (21)

Let us define q(x) := argmax:
c∈CU,δ

∇U (x)
T
c. To show the

optimality of our online algorithm, we shall also require the
following result on the above differential equation.

Lemma 3. The differential equation (21) is globally asymp-
totically stable. Furthermore, for any initial condition x(0) ∈
CU,δ , we have that limt→∞ x(t) = r∗.

Proof. To prove this lemma it is enough to show that there
exists a Lyapunov function L(x(t)) such that it has a negative
drift when x(t) 6= r∗ and has zero drift when x(t) = r∗.
Define L(x) = U(r∗) − U(x). Observe that under our
assumption of strictly concave Uu(·), the offline optimization
problem is guaranteed to have an unique optimal solution,
which is r∗. Therefore, ∀x ∈ CU,δ and x 6= r∗ L(x) > 0.
Next we will compute the drift of L(x(t)) with respect to
time.

dL(x(t))

dt
= −∇U (x(t))

T dx(t)

dt
, (22)

= −q (x(t)) +∇U (x(t))
T
x(t), (23)

< 0 ∀x(t) 6= r∗. (24)

To get inequality (24), first observe that from the definition
of q(x(t)) and (23), we get that dL(x(t))

dt ≤ 0. However,
we have to show that this inequality is strict for x(t) 6= r∗.
Observe that q(x) = x is a necessary and sufficient condition
for optimality of the offline optimization problem, see [18] for
more details. From strict concavity of the utility functions, we
have an unique optimal point r∗. Therefore, dL(x(t))

dt < 0 for
x(t) 6= r∗ and dL(x(t))

dt = 0 at x(t) = r∗.

To conclude the proof, Lemmas 2 and 3 along with the
condition 2 satisfy all the conditions necessary to apply The-
orem 2.1 in Chapter 5, [19] which states that R(t) converges
to r∗ almost surely.

C. Proofs and Additional Results from Section V

First we state is a corollary to Theorem 2 for systems having
threshold model for superposition/puncturing.
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Corollary 1. Under a (1 − δ) sharing factor and time-
homogeneous scheduler π = (φπ,γπ) ∈ ΠU,δ the probability
of induced eMBB loss for user u ∈ U in channel state s ∈ S
is given by

επ,su = 1− FD(
φπ,su tsu(φπ,su )

γπ,su
).

where FD denotes the cumulative distribution function of the
URLLC demands on a typical eMBB slot. Then the associated
user throughput is given by

rπ,su = r̂suφ
π,s
u FD(

φπ,su tsu(φπ,su )

γπ,su
).

and the overall user throughputs are given by cπ = (cπu : u ∈
U) where

cπu =
∑
u∈U

r̂suφ
s
uFD(

φπ,su tsu(φπ,su )

γπ,su
)pS(s).

The following two corollaries are direct consequences of
Corollary 1 and Theorem 3 restricted to RP and TP Placement
strategies, and characterize the throughput regions under these
policies.

Corollary 2. Consider a wireless system with full sharing
factor and time-homogeneous scheduler based on the RP
URLLC Placement policy π = (φπ,γπ) ∈ ΠRP,δ. Then
any eMBB resource allocation φ combined with a RP URLLC
demand placement policy, γ = φ is feasible. The probability
of loss for user u ∈ U in channel state s ∈ S is given by

επ,su = 1− FD(tsu(φπ,su )),

with associated user throughput

rπ,su = r̂suφ
s
uFD(tsu(φπ,su )). (25)

Further if for all s ∈ S and u ∈ U the functions gsu(, ) given
by

gsu(φsu) = φsuFD(tsu(φπ,su )), (26)

are concave then CRP,δ = ĈRP,δ.

Corollary 3. Under a (1 − δ) sharing factor and jointly
uniform scheduler based on the TP URLLC Placement policy
π = (φπ,γπ) ∈ ΠTP,δ, the probability of induced eMBB loss
user u ∈ U in channel state s ∈ S is given by

επ,su = 1− FD(
∑
u∈U

φπ,su tsu(φπ,su )), (27)

with associated user throughput

rπ,su = r̂suφ
s
uFD(

∑
u∈U

φπ,su tsu(φπ,su )). (28)

Further if for all s ∈ S and u ∈ U the functions gsu(, ) given
by

gsu(φsu, γ
s
u) = φsuFD(

∑
u∈U

φπ,su tsu(φπ,su )), (29)

are jointly concave then CTP,δ = ĈTP,δ.

Finally, using the above corollary, we show the optimality
of TP Placement with respect to probability of loss on a
given eMBB slot.

Theorem 5. Consider a system with (1 − δ) sharing factor.
Consider a joint scheduling policy based on the TP URLLC
Placement i.e, π = (φπ,γπ) ∈ ΠTP,δ. Then π achieves
the minimum probability of eMBB loss amongst all joint
scheduling policies using the same eMBB resource allocation
φπ.

Proof. Clearly the probability of loss depends on the minislot
demands and the users thresholds. If one relaxes the sequential
constraint on URLLC allocations, one can consider aggregat-
ing the the minislot demands and pooling together the users
superposition/puncturing thresholds. The probability of loss
for this relaxed system is simply the probability the demand
exceeds the size of the superposition/puncturing pool, i.e., The
probability of loss under the pooled resources is given by

P (D ≥
∑
u∈U

φsut
s
u(φsu)).

This is clearly a lower bound for any placement policy.
Note however that the threshold proportional strategy meets
this bound from Corollary 3 (see Equation 27) so it indeed
minimizes the probability of loss on a given eMBB slot.
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