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Abstract—Emerging 5G systems will need to efficiently support

both enhanced mobile broadband traffic (eMBB) and ultra-low-

latency communications (URLLC) traffic. In these systems, time

is divided into slots which are further sub-divided into minislots.

From a scheduling perspective, eMBB resource allocations occur

at slot boundaries, whereas to reduce latency URLLC traffic

is pre-emptively overlapped at the minislot timescale, resulting

in selective superposition/puncturing of eMBB allocations. This

approach enables minimal URLLC latency at a potential rate

loss to eMBB traffic.

We study joint eMBB and URLLC schedulers for such systems,

with the dual objectives of maximizing utility for eMBB traffic

while immediately satisfying URLLC demands. For a linear rate

loss model (loss to eMBB is linear in the amount of URLLC

superposition/puncturing), we derive an optimal joint scheduler.

Somewhat counter-intuitively, our results show that our dual

objectives can be met by an iterative gradient scheduler for

eMBB traffic that anticipates the expected loss from URLLC

traffic, along with an URLLC demand scheduler that is oblivious

to eMBB channel states, utility functions and allocation decisions

of the eMBB scheduler. Next we consider a more general class

of (convex/threshold) loss models and study optimal online joint

eMBB/URLLC schedulers within the broad class of channel state

dependent but minislot-homogeneous policies. A key observation

is that unlike the linear rate loss model, for the convex and

threshold rate loss models, optimal eMBB and URLLC schedul-

ing decisions do not de-couple and joint optimization is necessary

to satisfy the dual objectives. We validate the characteristics and

benefits of our schedulers via simulation.

Index Terms—wireless scheduling, URLLC traffic, 5G systems

I. INTRODUCTION

An important requirement for 5G wireless systems is its
ability to efficiently support both broadband and ultra reliable
low-latency communications. On one hand enhanced Mobile
Broadband (eMBB) might require gigabit per second data
rates (based on a bandwidth of several 100 MHz) and a
moderate latency (a few milliseconds). On the other hand,
Ultra Reliable Low Latency Communication (URLLC) traffic
requires extremely low delays (0.25-0.3 msec/packet) with
very high reliability (99.999%) [1]. To satisfy these heteroge-
nous requirements, the 3GPP standards body has proposed an
innovative superposition/puncturing framework for multiplex-
ing URLLC and eMBB traffic in 5G cellular systems1.

The proposed scheduling framework has the following
structure [1]. As with current cellular systems, time is divided

1An earlier version of this work appears in the Proceedings of IEEE
Infocom 2018, Honolulu, HI, [2].
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Fig. 1. Illustration of superposition/puncturing approach for multiplexing
eMBB and URLLC: Time is divided into slots, and further subdivided into
minislots. eMBB traffic is scheduled at the beginning of slots (sharing fre-
quency across two eMBB users), whereas URLLC traffic can be dynamically
overlapped (superpose/puncture) at any minislot.

into slots, with a proposed one millisecond (msec) slot dura-
tion. Within each slot, eMBB traffic can share the bandwidth
over the time-frequency plane (see Figure 1). The sharing
mechanism can be opportunistic (based on the channel states
of various users); however, the eMBB shares are decided by
the beginning, and fixed for the duration of a slot2. Further
the new framework also allows aggregation of eMBB slots
where transmissions to an eMBB user over consecutive slots
are coded together to achieve better coding gains resulting
from long codewords while reducing overheads due to control
signals. This results in better spectral efficiency as compared
to the OFDMA frame structure of LTE [3].

URLLC downlink packets may arrive during an ongoing
eMBB transmission; if tight latency constraints are to be
satisfied, they cannot be queued until the next slot. Instead
each eMBB slot is divided into minislots, each of which has
a 0.125 msec duration3. Thus upon arrival URLLC packets
can be immediately scheduled in the next minislot on top
of the ongoing eMBB transmissions. If the Base Station
(BS) chooses non-zero transmission powers for both eMBB
and overlapping URLLC traffic, then this is referred to as

2The sharing granularity among various eMBB users is at the level of
Resource Blocks (RB), which are small time-frequency rectangles within a
slot. In LTE today, these are (1 msec ⇥ 180 KHz), and could be smaller for
5G systems.

3In 3GPP, the formal term for a ‘slot’ is eMBB TTI, and a ‘minislot’ is a
URLLC TTI, where TTI expands to Transmit Time Interval.
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superposition. If eMBB transmissions are allocated zero power
when URLLC traffic is overlapped, then it is referred to as
puncturing of eMBB transmissions. To achieve high reliability
URLLC transmissions are by design protected through coding
and HARQ if necessary. At the end of an eMBB slot, the
BS can signal eMBB users the locations, if any, of URLLC
superposition/puncturing. eMBB users can then use this infor-
mation to decode transmissions, with some possible loss of
rate depending on the amount of URLLC overlap. See [1], [4]
for additional details.

A key problem in this setting is the joint scheduling of
eMBB and URLLC traffic over two time-scales. At the slot
boundary, resources are allocated to eMBB users (with pos-
sible aggregation of slots) based on their channel states and
utilities, in effect, allocating long term rates to optimize high-
level goals (e.g. utility optimization). Meanwhile, at each min-
islot boundary, the (stochastic) URLLC demands are placed
onto previously scheduled and ongoing eMBB transmissions.
Decisions on the placement of such overlaps across scheduled
eMBB user(s) will impact the rates they will see on that slot.
Thus we have a coupled problem of jointly optimizing the
scheduling of eMBB users on slots with the placement of
URLLC demands across minislots.

A. Main Contributions
This paper is, to our knowledge, the first to formalize and

solve the joint eMBB/URLLC scheduling problem described
above. We consider various models for the eMBB rate loss
associated with URLLC superposition/puncturing, for which
we characterize the associated feasible throughput regions and
propose online joint scheduling algorithms as detailed below.
Linear Model: When the rate loss to eMBB is directly pro-
portional to the fraction of superposed/punctured minislots, we
show that the joint optimal scheduler has a nice decomposition.
Despite having non-linear utility functions and time-varying
channel states, the stochastic URLLC traffic can be uniform-
randomly placed in each minislot, while the eMBB scheduler
can be scheduled via a greedy iterative gradient algorithm that
only accounts for the expected rate loss due to the URLLC
traffic.
Convex Model: For more general settings where the rate
loss can be modeled by a convex function, the solution does
not have the decomposition property as in the linear model
and hence, the finding the optimal solution is challenging.
Therefore, we restrict to a simpler class of joint scheduling
policies called as minislot-homogeneous joint scheduling poli-
cies where the URLLC placement policy does not change
across the minislots in an eMBB slot. In this setting, we char-
acterize the capacity region and derive concavity conditions
under which we can derive the effective rate seen by eMBB
users (post-puncturing by URLLC traffic). We then develop
a stochastic approximation algorithm which jointly schedules
eMBB and URLLC traffic, and show that it asymptotically
maximizes the utility for eMBB users while satisfying URLLC
demands. We also show that for convex functions which are
homogeneous, minislot-homogeneous joint scheduling poli-

cies are optimal within the larger class of causal and non-
anticipative joint scheduling policies. Further for the convex
loss model, we show that it is better to schedule eMBB users
to share bandwidth (i.e. slice across frequency, see also Fig. 4),
and let each user occupy the entire slot duration to mitigate
rate loss due to URLLC puncturing.
Threshold Model: Finally we consider a loss model, where
eMBB traffic is unaffected by puncturing until a threshold is
reached; beyond this threshold it suffers complete throughput
loss (a 0-1 rate loss model). We consider two broad classes
of minislot homogeneous policies, where the URLLC traffic
is placed in minislots in proportion to the eMBB resource
allocations (Rate Proportional (RP)) or eMBB loss thresholds
(Threshold Proportional (TP)). We motivate these policies (e.g.
TP minimizes the probability of any eMBB loss in an eMBB
slot) and derive the associated throughput regions. Finally,
we utilize the additional structure underlying the RP and TP
Placement policies along with the shape of the threshold loss
function to derive fast gradient algorithms that converge and
provably maximize utility.

B. Related Work
Resource allocation, utility maximization and opportunistic

scheduling for downlink wireless systems have been intensely
studied in the last two decades, and have had a major impact
on cellular standards. We refer to [5], [6] for a survey of the
key results. In this paper, we focus on joint scheduling of
URLLC and eMBB traffic. From an application point of view,
there have been several studies arguing for the need to support
URLLC services (e.g. for industrial automation) [7], [8], [9].

With demand of both broadband and low-latency services
growing, there has been rapid developments in the 5G stan-
dardization efforts in 3GPP. Of key relevance to this paper, the
3GPP RAN WG1 has focused on standardizing slot structure
for eMBB and URLLC, and have been evaluating signaling
and control channels to support superposition and puncturing
in recent meetings [1], [4]. We specifically refer the reader to
Sections 8.1.1.3.4 – 8.1.1.3.6 in [4] for current proposals.

Beyond standards, recent work has focused on system level
design for such systems (overheads, packet sizes, control
channel structure, etc.) [3], [10], [11]. Of particular note,
[10] argues (based on system level simulation and queuing
models) that statically partitioning bandwidth between eMBB
and URLLC is very inefficient. There have also been several
studies focusing on physical layer aspects of URLLC (coding
and modulation, fading, link budget) [12], [13].

Efficient sharing of radio resources between eMBB and
URLLC traffic has been discussed in literature, see [14], [15],
[16]. In [14], the authors have considered joint optimization of
resource allocation for eMBB and URLLC traffic. However,
they do not use puncturing/superposition mechanisms to share
resources. Some works ([15], [16]) use information theoretic
results to obtain expressions for the average eMBB rates
under URLLC puncturing for various decoding schemes for
uplink eMBB traffic punctured/superposed by URLLC users.
However, they do not consider the design of joint scheduling
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algorithms for eMBB and URLLC traffic. To the best of
our knowledge, our paper is the first to explore the resource
allocation issues for joint scheduling of URLLC and eMBB
traffic using puncturing/superposition based mechanisms.

II. SYSTEM MODEL

Traffic model: We consider a wireless system supporting
a fixed set U of backlogged eMBB users and a stationary
process of URLLC demands. eMBB scheduling decisions are
made across slots while URLLC demands arrive and are
immediately scheduled in the next minislot. In this section we
shall consider the case where eMBB all users receive resources
for slots without using slot aggregation even though more
flexible resource allocations which can possibly include slot
aggregation and splitting are proposed in 5G standards [3]. We
shall justify this choice in Sec. IV-E. Each eMBB slot has an
associated set of minislots where the set M = {1, . . . |M|}

denotes their indices. URLLC demands across minislots are
modeled as an independent and identically distributed (i.i.d.)
random process. We let the random variables (D(m),m 2 M)
denote the URLLC demands per minislot for a typical eMBB
slot and let D be a random variable whose distribution is
that of the aggregate URLLC demand per eMBB slot, i.e.,
D ⇠

P
m2M

D(m) with, cumulative distribution function
FD(·) and mean E[D] = ⇢. We assume demands have been
normalized so the maximum URLLC demand per minislot
is f and the maximum aggregate demands per eMBB slot
is f ⇥ |M| = 1 i.e., all the frequency-time resources are
occupied. URLLC demands per minislot exceeding the system
capacity are blocked by URLLC scheduler thus D  1 almost
surely. The system is engineered so that blocked URLLC
traffic on a minislot is a rare event, i.e., satisfies the desired
reliability on such traffic.

Wireless channel variations: The wireless system experi-
ences channel variations each eMBB slot which are modeled
as an i.i.d. random process over a set of channel states
S = {1, . . . , |S|}. Let S be a random variable modeling
the distribution over the states in a typical eMBB slot with
probability mass function pS(s) = P (S = s) for s 2 S. For
each channel state s eMBB user u has a known peak rate
r̂s
u
. The wireless system can choose what proportions of the

frequency-time resources to allocate to each eMBB user on
each minislot for each channel state. This is modeled by a
matrix � 2 ⌃ where

⌃ :=
n
� 2 R|U|⇥|M|⇥|S|

+ |

X

u2U

�s

u,m
= f, 8m 2 M, s 2 S

)
(1)

and where the element �s

u,m
represents the fraction of re-

sources allocated to user u in mini slot m in channel state
s. We also let �s

u
=
P

m2M
�s

u,m
, i.e., the total resources

allocated to user u in an eMBB slot in channel state s.
Now assuming no superposition/puncturing if the system is in
channel state s and the eMBB scheduler chooses an allocation

� the rate ru allocated to user u would be given by ru = �s

u
r̂s
u
.

The scheduler is assumed to know the channel state and
can thus opportunistically exploit such variations in allocating
resources to eMBB users. Note that for simplicity, we adopt
a flat-fading model, namely, the rate achieved by an user is
directly proportional to the fraction of bandwidth allocated to
it (the scaling factor is the peak rate of the user for the current
channel state).

Class of joint eMBB/URLLC schedulers: We consider
a class of stationary joint eMBB/URLLC schedulers denoted
by ⇧ satisfying the following properties. A scheduling policy
combines a possibly state dependent eMBB resource allo-
cation matrix � per slot with a URLLC demand placement
strategy across minislots. The placement strategy may impact
the eMBB users’ rates since it affects the URLLC superpo-
sition/puncturing loads they will experience. As mentioned
earlier in discussing the traffic model, in order to meet low
latency requirements URLLC traffic demands are scheduled
immediately upon arrival or blocked. The scheduler is assumed
to be causal so it only knows the current (and past) channel
states and peak rates r̂s

u
for all u 2 U and s 2 S but does

not know the realization of future channels or URLLC traffic
demands. In making superposition/puncturing decisions across
minislots, the scheduler can use knowledge of the previous
placement decisions that were made. In addition the scheduler
is assumed to know (or able measure over time) the channel
state distribution across eMBB slots and URLLC demand
distributions per minislot i.e., that of D(m), and per eMBB
slot, i.e., D, and thus in particular knows ⇢ = E[D].

In summary a joint scheduling policy ⇡ 2 ⇧ is thus
characterized by the following:

• an eMBB resource allocation �⇡
2 ⌃ where �⇡,s

u,m

denotes the fraction of frequency-time slot resources
allocated to eMBB user u on minislot m when the system
is in state s.

• the distributions of URLLC loads across eMBB re-
sources induced by its URLLC placement strategy, de-
noted by random variables L⇡ = (L⇡,s

u,m
|u 2 U ,m 2

M, s 2 S) where L⇡,s

u,m
denotes the URLLC load

superposed/puncturing the resource allocation of user u
on minislot m when the channel is in state s.

The distributions of L⇡,s

u,m
and their associated means l

⇡,s

u,m

depend on the joint scheduling policy ⇡, but for all states,
users and minislots satisfy

L⇡,s

u,m
 �⇡,s

u,m
almost surely.

In the sequel we let L⇡,s

u
=
P

m2M
L⇡,s

u,m
, i.e., the aggregate

URLLC traffic superposed/puncturing user u in channel state
s, and denote its mean by l

⇡,s

u
and note that

L⇡,s

u
 �⇡,s

u
almost surely.

We also let L⇡,s :=
P

u2U
L⇡,s

u
denote the aggregate induced

load and note that any policy ⇡ and for any state s we have
that

⇢ = E[D] = E[L⇡,s] = E[
X

u2U

L⇡,s

u
] =

X

u2U

l
⇡,s

u
.
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Fig. 2. The illustration exhibits the rate loss function for the various models
considered in this paper, linear, convex and threshold.

Modeling superposition/puncturing and eMBB capacity

regions: Under a joint scheduling policy ⇡ we model the rate
achieved by an eMBB user u in channel state s by a random
variable

R⇡,s

u
= fs

u
(�⇡,s

u
, L⇡,s

u
), (2)

where the rate allocation function fs

u
(·, ·) models the impact

of URLLC superposition/puncturing – one would expect it to
be increasing in the first argument (the allocated resources)
and decreasing in the second argument (the amount superpo-
sition/puncturing by URLLC traffic). Under our system model
we have that

R⇡,s

u
 fs

u
(�⇡,s

u
, 0) = �⇡,s

u
r̂s
u

almost surely,

with equality if there is no superposition/puncturing, i.e., when
ls
u
= 0. Let r⇡,s

u
= E[R⇡,s

u
] denote the mean rates achieved by

user u in state s under the URLLC superposition/puncturing
distribution induced by scheduling policy ⇡.
Models for Throughput Loss: In the sequel we shall consider
specific forms of superposition/puncturing loss models: (i)
linear, (ii) convex, and (iii) threshold models.

We rewrite the rate allocation function in (2) as the differ-
ence between the peak throughput and the loss due to URLLC
traffic, and consider functions that can be decomposed as:

fs

u
(�s

u
, ls

u
) = r̂s

u
�s

u

✓
1� hs

u

✓
L⇡,s

u

�s
u

◆◆
,

where hs

u
: [0, 1] ! [0, 1] is the rate loss function and

captures the relative rate loss due to URLLC overlap on
eMBB allocations. The puncturing models we study now map
directly to structural assumptions on the rate loss function
hs

u
(·); namely it is a non-decreasing function, and is one of

linear, convex, or threshold as shown in Figure 2.
Linear Model: Under the linear model, the expected rate for
user u in channel state s for policy ⇡ is given by

r⇡,s
u

= E[fs

u
(�⇡,s

u
, L⇡,s

u
)] = r̂s

u
(�⇡,s

u
� l

⇡,s

u
),

i.e., hs

u
(x) = x, and the resulting rate to eMBB users is a linear

function of both the allocated resources and mean induced
URLLC loads. This model is motivated by basic results for
the channel capacity of AWGN channel with erasures, see [17]
for more details. Our system in a given network state can

be approximated as an AWGN channel with erasures, when
the slot sizes are long enough so that the physical layer
error control coding of eMBB users use long code-words.
Further, there is a dedicated control channel through which
the scheduler can signal to the eMBB receiver indicating the
positions of URLLC overlap. Indeed such a control channel
has been proposed in the 3GPP standards [1]. Note that
under this model the rate achieved by a given user depends
on the aggregate superposition/puncturing it experiences, i.e.,
does not depend on which minislots and frequency bands it
occurs. We discuss scheduling policies for linear loss models
in Section III.
Convex Model: In the convex model, the rate loss function
hs

u
(·) is convex (see Figure 2), and the resulting rate for eMBB

user u in channel state s under policy ⇡ is given by

r⇡,s
u

= E[fs

u
(�⇡,s

u
, L⇡,s

u
)] = r̂s

u
�⇡,s

u

✓
1� E


hs

u

✓
L⇡,s

u

�⇡,s

u

◆�◆
.

This covers a broad class of models, and is discussed in
Section IV.
Threshold Model: Finally the threshold model is designed to
capture a simplified packet transmission and decoding process
in an eMBB receiver. The data is either received perfectly or it
is lost depending on the amount of superposition/puncturing.
With slight abuse of notation we shall let hs

u
also depend on

both the relative URLLC load and the eMBB user allocation,
i.e., hs

u
(x) = 1(x � ts

u
(�s

u
)) where the threshold in turn is

an increasing function ts
u
(·) satisfying x � ts

u
(x) � 0. Such

thresholds might reflect various engineering choices where
codes are adapted when users are allocated more resources,
so as to be more robust to interference/URLLC superposi-
tion/puncturing. The resulting rate for eMBB user u in channel
state s and policy ⇡ is then given by

r⇡,s
u

= r̂s
u
�⇡,s

u
P (L⇡,s

u
 �⇡,s

u
ts
u
(�⇡,s

u
)).

While such a sharp falloff is somewhat extreme, it is never-
theless useful for modeling short codes that are designed to
tolerate a limited amount of interference. In practice one might
expect a smoother fall off, perhaps more akin to the convex
model, e.g., when hybrid ARQ (HARQ) is used. We discuss
polices under the threshold based model in Section V.
Capacity set for eMBB traffic: We define the capacity set
C ⇢ R|U|

+ for eMBB traffic as the set of long term rates
achievable under policies in ⇧. Let c⇡ = (c⇡

u
|u 2 U) where

c⇡
u
=
X

s2S

r⇡,s
u

pS(s).

Then the capacity is given by

C = {c 2 R|U|

+ | 9 ⇡ 2 ⇧ such that c  c⇡}.

Note that this capacity region depends on the scheduling
policies under consideration as well as the distributions of the
channel states and URLLC demands.
Scheduling objective: URLLC priority and eMBB utility

maximization: As mentioned earlier, URLLC traffic is im-
mediately scheduled upon arrival, in the next minislot, i.e,
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no queuing is allowed. Thus if demands exceed the system
capacity on a given minislot traffic would be lost. However,
we assume that the system has been engineered so that
such URLLC overloads are extremely rare, and thus URLLC
traffic can meet extremely low latency requirements with high
reliability4. For eMBB traffic we adopt a utility maximization
framework wherein each eMBB user u has an associated utility
function Uu(·) which is a strictly concave, continuous and
differentiable of the average rate c⇡

u
experienced by the user.

Our aim is to characterize optimal rate allocations associated
with the utility maximization problem:

max
c

{

X

u2U

Uu (cu) | c 2 C}, (3)

and determine a scheduling policy ⇡ that will realize such
allocations.

III. LINEAR MODEL FOR SUPERPOSITION/PUNCTURING

In any state s, the optimal joint eMBB/URLLC scheduler
may either 1) protect the user with the lower channel rate
by placing less URLLC traffic into its frequency resources to
ensure fairness or 2) opportunistically place URLLC traffic
so that the user with a better channel gets a higher rate
to improve the overall system throughput. The solution for
any state is complex function of network states and their
distribution and user utility functions and in general, eMBB
scheduling and URLLC puncturing may be dependent. In this
section, we show a surprising result – despite having non-
linear utility functions, if the loss functions are linear and the
eMBB scheduler is intelligent (i.e., takes into the degradation
of rates due to puncturing), then the URLLC scheduler can be
oblivious to the channel states, utility functions and the actual
rate allocations of the eMBB scheduler.

A. Characterization of capacity region
Let us consider the capacity region for a wireless system

based on linear superposition/puncturing model under a re-
stricted class of policies ⇧LR that combine feasible eMBB
allocations � 2 ⌃ with random placement of URLLC de-
mands uniformly over the bandwidth across minislots. Note
that the notation LR stands for linear loss model (L) with
random (R) placement of URLLC traffic. For any ⇡ 2 ⇧LR

with eMBB allocation �⇡ the mean induced loads under such
randomization for each state s 2 S and minislot m 2 M

will satisfy l
⇡,s

u,m
= ⇢�⇡,s

u,m
. Indeed randomization clearly

leads to an induced loads that are proportional to the eMBB
allocations on a per mini-slot basis, but also per eMBB slot,
i.e., l

⇡,s

u
= ⇢�⇡,s

u
. Thus for our linear loss model we have that

r⇡,s
u

= r̂s
u
(�⇡,s

u
� l

⇡,s

u
) = r̂s

u
�⇡,s

u
(1� ⇢).

Hence the overall user rates achieved under such a policy are
given by c⇡ = (c⇡

u
|u 2 U) where

c⇡
u
=
X

s2S

r̂s
u
�⇡,s

u
(1� ⇢)pS(s).

4Note that since we allow URLLC traffic in the entire system bandwidth,
such overload events are very rare.

The capacity region associated with policies that use URLLC
uniformly randomized placement is thus given by

C
LR = {c 2 R|U|

+ | 9⇡ 2 ⇧LR s.t. c  c⇡}

= {c 2 R|U|

+ | 9� 2 ⌃ s.t. c  c�},

where we have abused notation by using c� to represent the
throughput achieved under policy ⇡ that uses eMBB resource
allocation � and uniformly randomized URLLC demand
placement. Finally note that for any fixed ⇢ 2 (0, 1), CLR is a
closed and bounded convex region. This is because an affine
map of a convex region remains convex; hence multiplying the
constraints on the capacity region defined by � by a constant
(1� ⇢) preserves convexity of the rate region.

Theorem 1. For a wireless system under the linear superpo-
sition/puncturing loss model we have that C = C

LR.

The proof is deferred to the Appendix A. In other words
the throughput c⇡ 2 C achieved by any feasible policy ⇡ 2 ⇧
can also be achieved by policy ⇡0, with a possibly different
eMBB resource allocation policy than ⇡ but utilizing uniform
random placement of URLLC demands across mini-slots.

B. Utility maximizing joint scheduling
Given the result in Theorem 1 we now restate the utility

maximization problem as optimizing solely over joint schedul-
ing policies that use URLLC random placement policies, as
follows:

max
�2⌃

X

u2U

Uu(c
�
u
),

s.t. c�
u
=
X

s2S

r̂s
u
�s

u
(1� ⇢)pS(s), 8u 2 U .

The above optimization problem has a strictly concave cost
function and convex constraints. Thus, at face-value, it appears
that we can apply the gradient scheduler introduced in [18],
which is an online algorithm designed to converge to the
solution of similar optimization problem. This observation is
approximately correct, but subject to two modifications.

First, the setting in [18] has deterministic rates in each
channel state. However, in our case, in each channel state,
the rates are stochastic due to puncturing by URLLC traffic
(this results in the (1 � ⇢) correction). This can be easily
addressed by modifying the setting in [18]; the finite state and
i.i.d. nature of puncturing implies that the proofs in [18] hold
with minor modifications; we skip the details.

The second issue is somewhat more nuanced. In current
wireless systems (e.g. LTE) and proposals for 5G systems, a
slot is partitioned into a collection of Resource Blocks (RB),
where each RB is a time-frequency rectangle (1 msec ⇥ 180
KHz in LTE). Importantly, these RBs can be individually
allocated to different eMBB users. If we now apply the
gradient scheduler in [18] to our setting, the result will be that
all RBs in a slot will be allocated to the same user. While this is
no-doubt asymptotically optimal, it seems intuitive that sharing
RBs across users even within a slot will lead to better short-
term performance. Indeed this intuition has been explored
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in the context of iterative MaxWeight algorithms to provide
formal guarantees, see [19], [20]. The high level idea is that
even within a slot, RB allocations are done iteratively, where
future RB allocations need to account for prior rate allocations
even within the same slot. This is formalized below, where we
describe our proposed joint eMBB-URLLC scheduler.

The URLLC scheduler: As explained in the previous
section, the URLLC scheduler places the URLLC traffic
uniformly at random in each minislot.

The eMBB scheduler: Let there be B resource blocks
available for allocation every eMBB slot, indexed by
1, 2, . . . , B. Let Ru(t�1) be the random variable denoting the
average rate received by eMBB user up to eMBB slot t � 1.
Let ru(t�1) be a realization of Ru(t�1). In any eMBB slot
t we schedule an user u(b) in RB b such that

u(b) 2 argmax
n
r̂s
u
U

0

u
(r✏

u
(b� 1, t)) , u = 1, 2, . . . ,U

o
, (4)

where r✏
u
(b� 1, t) is an estimate of the average rate received

by eMBB user u till slot t which is iteratively updated as
follows:

r✏
u
(b, t) =

8
><

>:

ru(t� 1), b = 0,

(1� ✏) r✏
u
(b� 1, t)

+✏
�
r̂s
u

1
B
(1� ⇢) (i = u(b))

�
, b 6= 0.

(5)

In the above equation, ✏ is a small positive value. At the end
of eMBB slot t, the eMBB scheduler receives feedback from
the eMBB receivers indicating the actual rates received by the
eMBB users due to allocations. We denote the rate received
eMBB user u in slot by the random variable Ru(t) and its
realization by ru(t). We finally update ru(t) as follows:

ru(t) = (1� ✏) ru(t� 1) + ✏ru(t). (6)

This scheduler and update equations are analogous to the
gradient algorithm [18] (see also iterative algorithms in [19],
[20]). The optimality proof of this algorithm follows (with
minor modifications) from the analysis in [18]; we skip the
details.
Remarks: (i) A natural decomposition of the joint
eMBB+URLLC scheduling is now apparent. On one hand,
the eMBB scheduler maximizes utilities based on the expected
channel rates stemming from uniform random puncturing of
minislots (accounted for through the (1 � ⇢) multiplicative
factor), and does so using the iterative gradient scheduler. The
URLLC scheduler, on the other-hand, is completely agnostic
to either the channel state or the actual eMBB allocations and
simply punctures minislots based on the current instantaneous
demand.

(ii) The fact that the URLLC traffic placement is completely
agnostic to the channel state and eMBB utilities/allocation
is surprising. Intuitively it seems plausible that one could
puncture an eMBB user with a lower marginal utility with
more URLLC traffic, while protecting an eMBB user with
a higher marginal utility and achieve a better sum utility.
Further, it seems reasonable that eMBB users with a worse
channel state (and thus lower rate) could be loaded with

additional URLLC traffic. However, Theorem. 1 implies that
there exists an optimal solution that is achieved by channel and
utility oblivious and uniform random URLLC placement, thus
providing a very simple algorithm for URLLC scheduling.

(iii) We remark that the optimality of random puncturing
for linear loss models depends critically on the use of an op-
portunistic scheduler for eMBB traffic.To see this, consider a
simple system with two symmetric eMBB users each with two
possible channel states. The associated channel rates are either
{2, 4} packets/slot with equal probability, and independent
across users and time slots. Suppose that we use a static (non-
opportunistic) scheduler, which equally splits channel access
between the users. It is easy to calculate that the rate to each
user is then 1.5 packets/slot. Next suppose that the URLLC
load is 50%, and that this traffic randomly punctures eMBB
users. Then from symmetry, it follows that the rate per eMBB
user is 0.75 packets/slot. In contrast, suppose that puncturing
is opportunistic, where the user with the currently lower rate
is punctured whenever possible (opportunistic puncturing of
the currently worse eMBB user), a straightforward calculation
shows that the rate to each eMBB user is 0.875 packets/slot,
which is a strict improvement over random puncturing. At a
high-level, this follows because opportunistic eMBB schedul-
ing operates on the Pareto frontier of two-user capacity re-
gion, and consequently there is no residual opportunistic to
be obtained by puncturing. However, with non-opportunistic
scheduling, the system is not pushed to the boundary; thus,
opportunistic puncturing can extract additional throughput for
eMBB users.

IV. CONVEX MODEL – MINISLOT-HOMOGENOUS
POLICIES

In this section we shall consider joint scheduling for wire-
less systems for convex superposition/puncturing loss models.
This is a somewhat complex problem, whence we will focus
our attention on a restricted, but still rich, class of schedul-
ing policies which we refer to as minislot-homogeneous
eMBB/URLLC schedulers. We identify a key concavity re-
quirement in Assumption 2 (that is satisfied by convex loss
functions) that enables a stochastic approximation approach
for utility maximizing scheduling.

A. Minislot-homogeneous eMBB/URLLC Scheduling policies
We shall define minislot-homogeneous eMBB/URLLC

schedulers as follows. First, feasible eMBB allocations � 2 ⌃
will be restricted such that for any eMBB slot in channel state
s 2 S allocations are minislot-homogeneous across minislots
in an eMBB slot, i.e., �s

u,1 = �s

u,m
, 8m 2 M and its overall

allocation for the slot is given by �s

u
= |M|�s

u,1. The set of
minislot-homogeneous eMBB allocations is thus given by

⌃H :=
�
� 2 ⌃ | u 2 U , �s

u,m
= �s

u,1 8m 2 M, 8s 2 S
 
.

Second, URLLC demand placements per minislot are done
proportionally based on pre-specified weights, and these
weights are assumed to be time-homogeneous across minislots.
In particular such policies are parametrized by a weight matrix
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� 2 ⌃H , where the induced load on user u under channel state
s and slot m is given by

Ls

u,m
=

�s

u,mP
u02U

�s

u0,m

D(m) =
�s

u,1

f
D(m).

We shall call �s

u,1 the URLLC placement factor for eMBB user
u in state s. The eMBB and URLLC allocations are coupled
together since it must be the case that for all u 2 U Ls

u,m


�s

u,m
= �s

u,1 almost surely, i.e., one can not induce more
superposition/puncturing load on a user than the resources it
has been allocated on that slot. So the following condition
must be satisfied. For all m 2 M we have that

D(m)  min
u2U

�s

u,1

�s

u,1

f, almost surely.

Recall that f denotes the maximum URLLC load per minislot
so D(m)  f almost surely, thus if �

s

u,1

�
s

u,1
� 1 the above

condition will always hold. Yet if �s

u,1 � �s

u,1 for all u, then
we have that �s

u,1 = �s

u,1, i.e., there is not flexibility to exploit
careful placement of URLLC demands. Hence, we introduce
the following assumption:

Assumption 1. We say the system has a (1 � �) URLLC
sharing factor per minislot if D(m)  f(1� �) almost surely
for all m 2 M, where � 2 (0, 1).

For any � the above assumption implies that the peak
URLLC demand in an eMBB slot can be at most 1 � �
which is lower than maximum possible value of one. Such
an assumption is reasonable as we consider shared resources
which are engineered to meet the peak URLLC loads while
also serving eMBB traffic. Under a (1 � �) URLLC sharing
factor a minislot-homogeneous eMBB resource allocation �
and URLLC allocation � is will be feasible if for all s 2 S

we have
(1� �)  min

u2U

�s

u,1

�s

u,1

,

which is satisfied as long as (1� �)�s

u,1  �s

u,1 for all u 2 U .
This motivates the following definition:

Definition 1. For a system with a (1 � �) sharing factor,
the feasible minislot-homogeneous eMBB/URLLC scheduling
policies are parameterized by �,� 2 ⌃H such that (1��)� 

�. We shall denote the set of such policies as follows:

⇧H,� := {(�,�) | �,� 2 ⌃H and (1� �)�  �},

where ⇧H,� is a convex set.

B. Characterization of the throughput region
In this section we characterize the throughput regions

achievable under time-homogeneous scheduling.

Theorem 2. For a system with a (1 � �) sharing factor and
minislot-homogeneous scheduler ⇡ = (�⇡,�⇡) 2 ⇧H,� the
average induced throughput for user u 2 U in channel state
s 2 S is given by

r⇡,s

u
= E[fs

u
(�⇡,s

u
, �⇡,s

u
D)],

and the overall average user throughputs are given by c⇡ =
(c⇡

u
| u 2 U) where c⇡

u
=
P

s2S
r⇡,s

u
pS(s).

The proof is included in Appendix B. Based on the above
we can define feasible throughput region constrained to the
time-homogeneous policies in ⇧H,�. First let us define

C
H,� = {c 2 R|U|

+ | 9⇡ 2 ⇧H,� s.t. c  c⇡}

and let ĈH,� denote the convex hull of C
H,�. Note that rates

in the convex hull are achievable through policies that do
time sharing/randomization amongst minislot-homogeneous
scheduling policies in ⇧H,�.

Assumption 2. For all s 2 S and u 2 U the functions gs
u
(, )

given by
gs
u
(�s

u
, �s

u
) = E[fs

u
(�s

u
, �s

u
D)], (7)

are jointly concave on ⇧H,�.

Lemma 1. Assumption 2 is satisfied for systems where super-
position/puncturing of each user is modelled via either a

1) Convex loss function or
2) Threshold loss function with fixed relative thresholds,

i.e., ts
u
(�s

u
) = ↵s

u
for � 2 [0, 1] and the URLLC demand

distribution FD(·) is such that FD( 1
x
) is concave in x

(satisfied by the truncated Pareto distribution).

The proof is included in Appendix C. With this condition
in place, we now describe the throughput region.

Theorem 3. Under Assumption 2 we have that CH,� = Ĉ
H,� .

The proof is available in the Appendix D. The above
theorem implies that we do not have to consider time-
sharing/randomization amongst minislot-homogeneous joint
scheduling policies. Thus, with minislot-homogeneous policies
and under the concavity of g⇡,s

u
(·, ·) from Assumption 2, the

above result sets up a convex optimization problem in (�,�),
i..e, we have a concave cost function with convex constraints.
Thus, by iteratively updating (�,�), we can develop an online
scheduling algorithm that asymptotically maximizes eMBB
users’ utility. This is descried next.

C. Stochastic approximation based online algorithm

We first restate the utility maximization problem for
minislot-homogeneous URLLC/eMBB scheduling policies:

max
�,�2⇧U,�

X

u2U

Uu

 
X

s2S

pS(s)g
s

u
(�s

u
, �s

u
)

!
. (8)

Observe that the objective function is concave because it
consists of a sum of compositions of non-decreasing concave
functions (Uu(·)), and concave functions (gs

u
(·, ·)) in � and

� (if Assumption 2 holds). Further, the constraint set is
convex. Therefore, the above problem fits in the framework
of standard convex optimization problems. However, solving
the above problem requires knowledge of all possible network
states and their probability distribution, resulting in an offline
optimization problem. In this section, we develop a stochastic
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approximation based online algorithm to solve the above
problem.

Online algorithm: Let R(t � 1) :=�
R1(t� 1), R2(t� 1), . . . , Ru(t� 1), . . . , R|U|(t� 1)

�

be the random vector denoting the average rates received by
eMBB users up to eMBB slot t�1 under our online algorithm.
Let r(t � 1) denote a realization of R(t � 1). Let s be the
network state in slot t. Define vectors �s := (�s

u
, | u 2 U)

and �s := (�s

u
| u 2 U). At the beginning of eMBB slot t, we

compute vectors
⇣
�̃(t), �̃(t)

⌘
as the solution to the following

optimization problem:

max
�s,�s

X

u2U

U
0

u
(ru(t� 1)) gs

u
(�s

u
, �s

u
), (9)

s.t. �s
� (1� �)�s, (10)

X

u2U

�s

u
= 1 and

X

u2U

�s

u
= 1, (11)

�s
2 [0, 1]|U| and �s

2 [0, 1]|U| . (12)

This optimization problem is a convex optimization problem
and can be solved numerically using standard convex optimiza-
tion techniques. Using

⇣
�̃(t), �̃(t)

⌘
, we schedule URLLC and

eMBB traffic as follows:
The eMBB scheduler: For notational ease, we fluidize

the bandwidth. Specifically, we assume that the bandwidth of
a resource block is very small when compared to the total
bandwidth available. Hence, the bandwidth can be split into
arbitrary fractions and we allocate fraction �̃u(t) of the total
bandwidth to eMBB user u.

The URLLC Scheduler: We load different eMBB users
with URLLC traffic according to the vector �̃(t).

At the end of eMBB slot t, the eMBB scheduler receives
feedback from the eMBB receivers indicating the rates re-
ceived by the eMBB users. Let us denote the rate received
eMBB user u in the slot by the random variable Ru(t). We
update Ru(t) as follows:

Ru(t) = (1� ✏t)Ru(t� 1) + ✏tRu(t), (13)

where {✏t | t = 1, 2, 3, . . .} is a sequence of positive numbers
which satisfy the following (standard) assumption:

Assumption 3. The averaging sequence {✏t} satisfies:
1X

t=1

✏t = 1 and
1X

t=1

✏2
t
< 1.

Finally, we state the main result of this section, which is
the optimality of the stochastic approximation based online
algorithm.

Theorem 4. Let r⇤ be the optimal average rate vector
received by eMBB users under the solution to the offline
optimization problem. Suppose that Assumptions 3 and 2 hold,
then we have that:

lim
t!1

R(t) = r⇤ almost surely. (14)

The proof is available in the Appendix E.

D. Optimality of Minislot-Homogeneous Policies
In the previous section we restricted ourselves to minislot-

homogeneous policies. In this section will justify this choice.
Let us consider a generalization of minislot-homogeneous
policies where the URLLC placement in each minislot can
depend on the history of URLLC arrivals prior to that minislot.
Such a policy will obviously perform better than minislot-
homogeneous URLLC placement policies since in a minislot-
homogeneous policy we decide the URLLC placement at
the beginning of an eMBB slot based on the expected loss
due to puncturing/superposition and do not adapt it based on
the realization of URLLC demands per minislot. However,
finding an optimal scheduling policy under this generalization
can be computationally expensive as compared to minislot-
homogeneous policies which are attractive due to their simplic-
ity. In this section we identify conditions under which minislot-
homogeneous URLLC placement polices perform as well as
the general class of causal and minislot-dependent policies.
These terms are defined below.

Definition 2. A scheduler is said to be causal if at the begin-
ning of a mini-slot m the scheduler knows the realizations of
D(1), D(2), . . . , D(m� 1) and is unaware of the realizations
of D(m), D(m+ 1), . . . , D(|M|).

Definition 3. A scheduling policy is said to be minislot-
dependent if the URLLC placement policy can vary with the
minislot index m and previous URLLC demands in the eMBB
slot.

The decision variables in a causal and minislot-dependent
joint scheduling policy ⇡ can be described as follows:

1) At the beginning of an eMBB slot, the scheduler chooses
�⇡,s

u
, u 2 U such that
X

u2U

�⇡,s

u
= 1 and �⇡,s

u
2 [0, 1] 8u 2 U . (15)

2) In each mini-slot m, the total puncturing placed on
eMBB user u is given by �⇡,s

u,m

�
d(1:m�1)

�
Dm, where

�⇡,s

u,m
(·) characterizes the URLLC placement in min-

islot m as function of the previously seen URLLC
demands D(1:m�1) := (D(1), D(2), . . . , D(m� 1)).
Let d(1:m�1) is a realization of D(1:m�1). For any
m and d(1:m�1), �⇡,s

u,m

�
d(1:m�1)

�
has to satisfy the

following constraints.
X

u2U

�s,⇡

u,m
(d(1:m�1)) = 1, (16)

�s,⇡

u,m
(d(1:m�1)) 

�⇡,s

u

|M| (1� �)
8u 2 U , (17)

�s,⇡

u,m
(d(1:m�1)) 2 [0, 1] 8u 2 U . (18)

Observe that the URLLC placement factor for causal and
minislot-dependent scheduling policy is not just dependent on
the user and network state but it also depends on the mini-slot
index and past URLLC demands.

Let ⇧̃ be the set of all causal and mini-slot dependent
scheduling policies. In our online algorithm (9), for any
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eMBB slot t, we find the policy which solves the following
optimization problem with non-negative weights wu.

OP1 : max
⇡2⇧̃

:
X

u2U

wug
⇡,s

u
(�⇡,s

u
,�⇡,s

u
) , (19)

where s is the current network state, �⇡,s

u
:=⇣

�⇡,s

u,1 (·) , �
⇡,s

u,2 (·) , . . . , �
⇡,s

u,|M|
(·)
⌘

is the vector of URLLC
placement factors of all minislots (with slight abuse of
notation) and g⇡,s

u
(·, ·) is the average rate experienced by

eMBB user u under policy ⇡. g⇡,s
u

(·, ·) is given by the
following expression:

g⇡,s
u

(�⇡,s

u
,�⇡,s

u
) :=

rs
u
�⇡,s

u
E
"
1� hs

u

 P
|M|

m=1 �
⇡,s

u,m

�
D(1:m�1)

�
Dm

�⇡,s

u

!#
, (20)

where the expectation is computed with respect to the joint
distribution of D(1), D(2), . . ., D(|M|). One can formu-
late the above optimization problem as a Markov Decision
Problem (MDP), however the state space for such an MDP
is prohibitively large. Furthermore we note that minislot-
homogeneous policies are attractive in terms of it compu-
tational complexity. In general, one cannot expect optimal
minislot-homogeneous policies to perform as well as optimal
minislot dependent policies, however, if we restrict ourselves
to convex homogeneous loss functions, then we can show that
minislot-homogeneous policies are in fact optimal over ⇧̃.

Definition 4. A loss function hs

u
(·) is said to be homogeneous

if there exists a real number p such that 8 x 2 [0, 1] and  � 0
we have that

hs

u
(x) = phs

u
(x). (21)

Even with this restriction we can model useful loss functions
which could possibly be user and network state dependent.
Some examples are given below.

1) Linear: hs

u
(x) = ks

u
(x), where ks

u
� 0.

2) Monomial: hs

u
(x) = ks

u
(x)q where ks

u
� 0 and q � 1.

Our main result on the optimality of minislot-homogeneous
policies is proved in Appendix F and stated next.

Theorem 5. If the support of URLLC demands D is a finite
discrete set and eMBB loss functions are homogeneous and
convex, then there exists an optimal solution (�s,⇤,�s,⇤ (·)) for
OP1 with a minislot-homogeneous URLLC placement policy
�s,⇤.

E. Optimal eMBB Slot Slicing

In Section II we have used uniform slot sizes for eMBB
users, i.e. the allocated minislots to all users span the en-
tire width of the slot (see Figure 4; henceforth referred to
as frequency slices). However, new proposals allow greater
flexibility in slot allocation, e.g., the capability to choose
different slices over both time and frequency for different
eMBB users [1]. In this section we will show that while
it is possible to slice eMBB users’ resources flexibly, it is

Fig. 3. Time Slices: In this configuration, eMBB users share resources over
time in an eMBB slot.

Fig. 4. Frequency Slices: In this configuration, eMBB users homogeneously
share frequency in an eMBB slot.

preferable to slice frequency (see 4) than time from the point
of view of puncturing losses for convex loss functions.

The essence of the discussion can be captured by comparing
the two resource allocation configurations shown in Figures 3
and 4. In Configuration 1 (time slices), eMBB user 1 is
allocated the entire frequency band for a subset of m1 minis-
lots. Similarly eMBB user 2 is allocated the entire frequency
band for its subset of m2 minislots. The network state s is
assumed to be the same for the entire m1+m2 minislots. This
implies that the loss functions of eMBB users (hs

u
(·)) do not

change throughout the m1+m2 minislots. In Configuration 2
(frequency slices) we allocate an eMBB user 1 a fraction �1

of the bandwidth for a duration of m1 +m2 minislots, where
�1 := m1

m1+m2
and similarly for eMBB user 2. Note that the

total resources allocated to eMBB users, which is represented
by the area allocated in the time-frequency plane is same in
both configurations.

In Configuration 1, the total puncturing observed by eMBB
user 1 is given by

P
m1

m=1 D(m) and similarly for eMBB
user 2. Whereas in Configuration 2, under uniform URLLC
placement, the total puncturing observed by eMBB user 1
is given by

P
m1+m2

m=1 �1D(m). Note that the mean total
puncturing is same in both the configurations.

The main result of this section is given below:
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Theorem 6. Under the assumption of i.i.d. URLLC demands5

(D(m), m = 1, 2, . . . ,m1 + m2) and convex loss functions
(hs

u
(·)), for any eMBB user, e.g., eMBB user 1, we have that

E
"
hs

1

 
m1X

m=1

D(m)

!#
� E

"
hs

1

 
m1+m2X

m=1

�1D(m)

!#
. (22)

Proof of this result is given in Appendix G.
Remarks: The above theorem shows that the expected loss

suffered by an eMBB user due to URLLC puncturing in
Configuration 1 (time slicing) is higher than in Configuration 2
(frequency slicing). This implies that it is preferable for eMBB
users to spread their resource allocation over time from the
perspective of reducing their loss due to puncturing. The
underlying reason is that Configuration 2 results in smaller
variability in the total puncturing even though both the con-
figurations have the same mean total puncturing. Since the
loss functions are convex, a lower variability leads to a lower
expected loss. Finally, for more complex (rectangular) slices,
we can now apply Thm. 6 iteratively and show that using
frequency slices with appropriate scaling of the bandwidth
allocation results in a higher average rate for eMBB users.

V. THRESHOLD MODEL AND PLACEMENT POLICIES

In the previous section, we developed a stochastic approx-
imation based algorithm for minislot-homogeneous policies.
This algorithm iteratively solves the optimization problem
given in (9). This optimization problem jointly optimizes over
a pair of row vectors (�s,�s). While this convex optimization
problem can be solved using standard methods, it could
become computationally challenging as the number of users
increases.

In this section, we shall restrict our attention to a threshold
model for superposition/puncturing, and look at policies that
impose structural conditions on the puncturing matrix �.
We will show that the resulting class of policies have nice
theoretical properties that lead to simpler online algorithms
(solving (4), which is an one-dimensional search).

We consider two types of structural conditions on �:
(i) Resource Proportional (RP) Placement: The first is based
on allocating URLLC demands in proportion to eMBB user
slot allocations, i.e., �s

u
= �s

u
. We refer to this as Resource

Proportional (RP) Placement and denote such policies by

⇧RP,� := {(�,�) 2 ⇧H,�
| � = �},

and define the associated achievable throughput region

C
RP,� = {c 2 R|U|

+ | 9⇡ 2 ⇧RP,� s.t. c  c⇡}.

The motivation for RP Placement comes from the optimality
of random placement for the linear model in Section III.
Observe that if puncturing occurs uniformly randomly, then
the expected number of punctures is directly proportional to
the fraction of bandwidth allocated to an eMBB user. Thus,
RP Placement can be viewed as a determinized version of the

5This result can be extended to exchangeable URLLC demands. We use
i.i.d. assumption to maintain consistency with other sections.

random placement strategy which ensures that the proportions
of puncturing satisfy resource proportional ratios.
(ii) Threshold Proportional (TP) Placement: The second
policy allocates URLLC demands in proportion to the eMBB
users associated loss thresholds so as to avoid losses,

�s

u
=

�s

u
ts
u
(�s

u
)P

u02U
�s

u0tsu0(�s

u0)
.

We refer to this as Threshold Proportional (TP) Placement and
denote such policies by

⇧TP,� :=

{(�,�) 2 ⇧H,�
| �s

u
=

�s

u
ts
u
(�s

u
)P

u02U
�s

u0tsu0(�s

u0)
8s 2 S, u 2 U}.

The associated achievable throughput region is denoted

C
TP,� = {c 2 R|U|

+ | 9⇡ 2 ⇧TP,� s.t. c  c⇡}.

First we state a corollary to Theorem 2 which characterizes
the rates under different URLLC placement policies for sys-
tems having threshold loss model for superposition/puncturing.

Corollary 1. Under a (1 � �) sharing factor and time-
homogeneous scheduler ⇡ = (�⇡,�⇡) 2 ⇧H,� the probability
of induced eMBB loss for user u 2 U in channel state s 2 S

is given by

✏⇡,s

u
= 1� FD(

�⇡,s

u
ts
u
(�⇡,s

u
)

�⇡,s

u

).

where FD denotes the cumulative distribution function of the
URLLC demands on a typical eMBB slot. Then the associated
user throughput is given by

r⇡,s

u
= r̂s

u
�⇡,s

u
FD(

�⇡,s

u
ts
u
(�⇡,s

u
)

�⇡,s

u

).

and the overall user throughputs are given by c⇡ = (c⇡
u
: u 2

U) where

c⇡
u
=
X

u2U

r̂s
u
�s

u
FD(

�⇡,s

u
ts
u
(�⇡,s

u
)

�⇡,s

u

)pS(s).

The following two corollaries are direct consequences of
Corollary 1 and Theorem 3 restricted to RP and TP Placement
strategies, and characterize the capacity regions under the two
policies.

Corollary 2. Consider a wireless system with full sharing
factor and time-homogeneous scheduler based on the RP
URLLC Placement policy ⇡ = (�⇡,�⇡) 2 ⇧RP,�. Then
any eMBB resource allocation � combined with a RP URLLC
demand placement policy, � = � is feasible. The probability
of loss for user u 2 U in channel state s 2 S is given by

✏⇡,s

u
= 1� FD(ts

u
(�⇡,s

u
)),

with associated user throughput

r⇡,s

u
= r̂s

u
�s

u
FD(ts

u
(�⇡,s

u
)). (23)
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Further if for all s 2 S and u 2 U the functions gs
u
(, ) given

by

gs
u
(�s

u
) = �s

u
FD(ts

u
(�⇡,s

u
)), (24)

are concave then C
RP,� = Ĉ

RP,�.

Corollary 3. Under a (1 � �) sharing factor and jointly
uniform scheduler based on the TP URLLC Placement policy
⇡ = (�⇡,�⇡) 2 ⇧TP,�, the probability of induced eMBB loss
user u 2 U in channel state s 2 S is given by

✏⇡,s

u
= 1� FD(

X

u2U

�⇡,s

u
ts
u
(�⇡,s

u
)), (25)

with associated user throughput

r⇡,s

u
= r̂s

u
�s

u
FD(

X

u2U

�⇡,s

u
ts
u
(�⇡,s

u
)). (26)

Further if for all s 2 S and u 2 U the functions gs
u
(, ) given

by

gs
u
(�s

u
, �s

u
) = �s

u
FD(

X

u2U

�⇡,s

u
ts
u
(�⇡,s

u
)), (27)

are jointly concave then C
TP,� = Ĉ

TP,�.

The following theorem provides a formal motivation for TP
Placement. The main takeaway here is that the probability
of any loss in an eMBB slot under TP Placement policy is
a lower bound for all other strategies. Note that minimizing
the probability of any eMBB loss is not same as minimizing
eMBB rate loss.

Theorem 7. Consider a system with (1 � �) sharing factor.
Consider a joint scheduling policy based on the TP URLLC
placement i.e, ⇡ = (�⇡,�⇡) 2 ⇧TP,�. Then ⇡ achieves
the minimum probability of any eMBB loss amongst all joint
scheduling policies using the same eMBB resource allocation
�⇡.

The proof is included in Appendix H.
Next we consider online algorithms that implement the RP

and TP Placement policies. While the stochastic approximation
algorithm developed in Section IV-C can clearly be used, the
additional structure imposed by the RP and TP Placement poli-
cies, and the shape of the threshold loss function (discussed
below) can result in much simpler algorithms (with optimality
guarantees).

We consider the case where ts
u
(�) is a (state dependent but

� independent) constant, i.e., ts
u
(�) = ↵s, where ↵s

2 (0, 1).
Intuitively, this means that eMBB traffic which has a higher
share of the bandwidth is more resilient to losses (e.g. through
coding over larger fraction of resources). Then, by substituting
this loss function in (23) and (26) (where we also use the fact
that

P
u2U

�s

u
= 1), we have that

r⇡,s

u
= r̂s

u
�s

u
FD(↵s).

Comparing with the development in Section III-B, we observe
that the cost and constraints are identical if FD(↵s) replaces
(1 � ⇢). Note that a small difference is that FD(↵s) is

state dependent, whereas (1 � ⇢) does not depend on the
state; however, it is easy to see that the development in
Section III-B immediately generalizes to this setting. Hence,
we can interpret FD(↵s) as the state dependent average rate
loss due to puncturing via the RP or TP Placement policies.

We can now employ the rate-based iterative gradient sched-
uler developed in Section III-B (by replacing (1 � ⇢) in (5)
by a user-dependent FD(↵s)), and the theoretical guarantees
directly carry over. As this algorithm only minimizes over
users at each slot in (4), this is easier to implement when
compared to the stochastic approximation algorithm developed
in Section IV-C.

VI. SIMULATIONS

We consider a system with a total of 100 RBs available
per eMBB slot, and with 8 minislots per eMBB slot. In an
eMBB slot, r̂s

u
for an eMBB user is drawn from the finite

set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Mbps according to a probability
distribution and i.i.d. across users and slots. Our system
consists of 20 users, and with 100 channel states (all equally
likely). The (20 users ⇥ 100 states) rate matrix is one-time
synthesized by independently and uniformly sampling a rate
from the finite rate set for each matrix element. For 10 eMBB
users, we have chosen the probability distribution such that the
average rate is 7 Mbps. For the rest, probability distribution is
such that the average rate is 3 Mbps. This models two classes
of users, one class with higher link rates which can tolerate
a higher amount of puncturing and the other with lower link
rates which can tolerate lesser amount of puncturing. This is
reasonable as a user with a higher channel rate can code more
robustly and protect its transmissions from URLLC puncturing
more than a user with a lower channel rate. In this spirit we
shall call users with 7 Mbps average rates as ‘robust’ users
and users with 3 Mbps average rates as ‘sensitive’ users. We
use the utility function Uu(r) = log (r) for all users.

We first show that joint scheduling is necessary to preserve
eMBB throughputs. To that end we benchmark our optimal
online algorithm (stochastic approximation algorithm, see Sec-
tion IV-C) for convex loss functions with a scheme which
performs standard gradient based scheduling for eMBB users
and Resource Proportional (RP) URLLC placement. Note that
for convex loss functions, RP placement strategy does not
take into account the eMBB user’s sensitivity to delays. For
users with average rate 7 Mbps, we use the loss function
hs

u
(x) = x2. For users with average rate 3 Mpbs, we use

the following loss function:

hs

u
(x) =

(�
x

0.7

�2
, if x  0.7,

0, if 0.7 < x  1.
(28)

URLLC demands in a minislot is drawn from a binomial
distribution which can take values 0 with p and 1��

8 with
probability 1 � p. Note that this ensures that peak URLLC
load in an eMBB slot is less than or equal to 1� �.

In Fig. 5, we compare the average sum utility under our
optimal joint scheduler and the RP based policy as a function
of the URLLC load. As the load increases, RP performs
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Fig. 5. Sum utility as a function of URLLC load ⇢ for the optimal and RP
policies under convex model � = 0.3.

poorly. To understand this phenomenon in detail, we have
plotted the average rates of robust and sensitive users under
the two policies in Fig. 6. As we increase the URLLC load, the
average eMBB rates of both sensitive and robust users decrease
rapidly. For example, when ⇢ = 0.4, RP has 15 % lower
throughput for robust users and almost similar performance
for sensitive users as compared to optimal algorithm. Further
as we increase ⇢ to 0.6, the throughput of robust and sensitive
users in RP decrease by 35 % and 26 %, respectively.

Sensitive users are the most affected by URLLC puncturing.
When the RP URLLC placement policy is combined with the
standard gradient based algorithm for eMBB users, it allocates
more resources to sensitive users because they have higher
marginal utility. Since sensitive users receive more bandwidth,
under the RP URLLC placement strategy they receive more
puncturing. This will lead to even more allocation of resources
to sensitive users and this process continues until robust
users have similar marginal utilities (due to reduced rates) as
sensitive users. Hence, the robust users are resource starved.
As we increase the URLLC load further, sensitive users receive
even more URLLC puncturing and neither the robust nor
sensitive users get good average rates when compared to
the optimal joint scheduler. This shows that we require joint
scheduling of eMBB and URLLC to exploit the heterogeneity
in sensitivities to URLLC puncturing in maximizing eMBB
utilities.

Next we consider a threshold based loss model with ↵s =
0.3 for 50% of eMBB states and ↵s = 0.7 for the rest.
We use the utility function Uu(r) = log(r) + 6.5 for all
eMBB users, where r is measured in Mbps (constant added
to ensure non-negativity of the sum utility). URLLC load
in an eMBB slot (D) is generated based on the truncated
Pareto distribution with tail exponent ⌘ = 2. We compare
the optimal policy (stochastic approximation algorithm, see
Section IV-C) with that from the TP Placement policy (the
simpler gradient algorithm in Section V). In this case, since
the threshold functions are (state-dependent) constants, the RP
and TP Placement policies are the same. As we can see in
Figure 7, unlike the convex loss model the RP/TP Placement
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Fig. 6. Average rates as a function of URLLC load ⇢ for the optimal and RP
policies under convex model � = 0.3.
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Fig. 7. Sum utility as a function of URLLC load ⇢ for the optimal and TP
Placement policies under threshold model (� = 0.1).

policy tracks the optimal policy very well.
In Figure 9, we study the trade-off between achieving a

higher eMBB utility and lowering the mean delay of URLLC
traffic for different values of the sharing factor 1� �. Figure 9
plots the corresponding probability that the URLLC traffic
delay exceeds two minislots (0.125⇥2 = 0.25 msec). To study
this trade-off we generate URLLC arrivals in each minislot
from an uniform distribution between [0, 1/8] (recall there are
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Fig. 8. Sum utility and mean URLLC delay as a function of �.
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Fig. 9. Log-scale plot of the probability that URLLC traffic is delayed by
more than two minislots (0.25 msec) for various values of �.

8 minislots). In each minislot, we can serve at most 1��

8 units
of URLLC traffic. If the URLLC load in a given minislot is
more than 1��

8 , the remaining URLLC traffic is queued and
served in the next minislot on a FCFS basis. For the eMBB
users we use a convex model with hs

u
(x) = eu(x�1) where

u determines the sensitivity of an eMBB user to an URLLC
load. We have chosen  = 0.2 for 50 % of the users and
 = 0.7 for the rest. We also set 8u Uu(x) = log(x) + 4.2
(constant added to ensure positive sum utility). In summary,
a larger value of � limits the amount of URLLC traffic than
can be served in a minislot. However, a larger � enlarges the
constraint set ⇧H,� in the eMBB utility maximization problem,
and hence we get higher eMBB utility.

VII. CONCLUSION

In this paper, we have developed a framework and al-
gorithms for joint scheduling of URLLC (low latency) and
eMBB (broadband) traffic in emerging 5G systems. Our
setting considers recent proposals where URLLC traffic is
dynamically multiplexed through puncturing/superposition of
eMBB traffic. Our results show that this joint problem has
structural properties that enable clean decompositions, and
corresponding algorithms with theoretical guarantees.
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APPENDIX

A. Proof of Theorem 1

Clearly since ⇧LR
⇢ ⇧ we have that CLR

⇢ C

Now consider any policy ⇡ 2 ⇧ with eMBB user allocations
�⇡ and URLLC loads l

⇡

and associated long term throughput
is c⇡ given by

c⇡
u
=
X

s2S

r̂s
u
(�⇡,s

u
� l

⇡,s

u
)pS(s).

Let us define a ⇡0 based on ⇡ to have per minislot eMBB
user allocations given by

�⇡
0
,s

u,m
=

�⇡,s

u
� l

⇡,s

uP
u02U

�⇡,s

u0 � l⇡,s
u0

f =
�s

u
� l

⇡,s

u

1� ⇢
f,

for s 2 S, u 2 U and m 2 M. Since induced mean loads
on an eMBB user can not exceed its allocation we have that
�⇡

� l
⇡

so the above allocations are positive. Note also that
this allocation is not minislot dependent, but normalized so
that per minislot they sum to f and over the whole eMBB
slot sum to 1, i.e., �⇡

0

2 ⌃. Thus for such an allocation we
have that

�⇡
0
,s

u
=

�s

u
� l

⇡,s

u

1� ⇢
.

Also suppose that ⇡0 uses randomized URLLC placement
across minislots which induces mean URLLC loads propor-
tional to the allocations, i.e., l

⇡
0
,s

u
= ⇢�⇡

0
,s

u
. It follows that

�⇡
0
,s

u
� l

⇡
0
,s

u
= �⇡

0
,s

u
� ⇢�⇡

0
,s

u

= (1� ⇢)�⇡
0
,s

u

= �⇡,s

u
� l

⇡,s

u
,

and so c⇡,s
u

= c⇡
0
,s

u
for all s 2 S and u 2 U . Thus for any

policy ⇡ there is a policy ⇡0 which uses randomized URLLC
placement and achieves the same long term throughputs. It
follows that C ⇢ C

LR and so C = C
LR.

B. Proof of Theorem 2

Under a policy ⇡ = (�⇡,�⇡) 2 ⇧H,� we have that the
induced loads are given by

L⇡,s

u,m
=

�⇡,s

u,1

f
D(m),

so we have that

L⇡,s

u
=
X

u2U

L⇡,s

u,m
=

�⇡,s

u,1

f

X

u2U

D(m) =
�⇡,s

u,1

f
D = �⇡,s

u
D.

where the last equality follows from the uniformity of URLLC
splits and normalization it follows that

r⇡,s

u
= E[fs

u
(�⇡,s

u
, L⇡,s

u
)] = E[fs

u
(�⇡,s

u
, �⇡,s

u
D)].

C. Proof of Lemma 1

Recall that convex loss functions are specified as follows

fs

u
(�s

u
, ls

u
) = r̂s

u
�s

u
(1� hs

u

✓
ls
u

�s
u

◆
),

with hs

u
: [0, 1] ! [0, 1] a convex increasing function. For

time-homogenous policies we have defined

gs
u
(�s

u
, �s

u
) = E[fs

u
(�s

u
, �s

u
D)]

= r̂s
u
E[�s

u
� �s

u
hs

u
(
�s

u

�s
u

D)].

Recall that convex function h(·) one can define a function
l(�, �) = �h( �

�
) known as the perspective of h(·) which is

known to be jointly convex in its arguments. It follows that
� � �h( �

�
) is jointly concave, and so is gs

u
(·) since it is a

weighted aggregation of jointly concave functions.
For threshold-based loss functions where ts

u
(�s

u
) = ↵s

u
we

have that

gs
u
(�s

u
, �s

u
) = E[fs

u
(�s

u
, �s

u
D)]

= r̂s
u
�⇡,s

u
P (�s

u
D  �⇡,s

u
↵u

s
)

= r̂s
u
�⇡,s

u
FD(

�⇡,s

u
↵u

s

�s
u

).

Now using the same result on the perspective functions of
variables the result follows. The truncated Pareto case can be
easily verified by taking derivatives.

D. Proof of Theorem 3

Clearly C
H,�

⇢ Ĉ
H,�. We will show that c 2 Ĉ

H,� then their
exists ⇡ = (�⇡,�⇡) 2 ⇧H,� such that c  c⇡ from which it
follows that CH,�

⇢ C
H,�.

Suppose c 2 Ĉ
H,� , then it can be represented as a convex

combination of policies ⇧H,� , in each channel state. For
example suppose for simplicity that for that in channel state
s 2 S we have that � 2 [0, 1] one time shares between two
policies ⇡1 and ⇡2 to achieve throughputs for u 2 U given
by

rs
u
= �r⇡1,s

u
+ (1� �)r⇡2,s

u
.

Consider u we have

rs
u
= �r⇡1,s

u
+ (1� �)r⇡2,s

u

= �gs
u
(�⇡1,s

u
, �⇡1,s

u
) + (1� �)gs

u
(�⇡2,s

u
, �⇡2,s

u
)

 gs
u
(��⇡1,s

u
+ (1� �)�⇡2,s

u
, ��⇡1,s

u
+ (1� �)��2,s

u
)

= gs
u
(�⇡,s

u
, �⇡,s

u
),

where �⇡,s

u
= ��⇡1,s

u
+ (1 � �)�⇡2,s

u
and �⇡,s

u
= ��⇡1,s

u
+

(1� �)�⇡2,s
u

. Clearly �⇡,�⇡ as given above correspond to a
policy ⇡ such that ⇡ 2 ⇧H,� since the set is convex. It also
follows that rs

u
 r⇡,s

u
, so cs

u
 c⇡,s

u
and so c  c⇡.
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E. Proof of Theorem 4
The proof requires intermediate lemmas, de-

tailed below. For the ease of exposition, let us
define U(r) :=

P
u2U

Uu(ru) and rU (r) :=✓
@U1(x)

@x

���
x1=r1

, @U2(x)
@x

���
x2=r2

, . . . , @U1(x)
@x

���
x|U|=r|U|

◆T

.

First we have the following important lemma regarding the
stochastic approximation algorithm.

Lemma 2. R(t) =
�
R1(t), R2(t), . . . , R|U|

�T is an unbiased
estimator of argmax:

c2CH,�

rU
�
R(t)

�T
c, i.e.,

E [R(t)] = argmax:
c2CH,�

rU
�
R(t)

�T
c. (29)

Proof. Based on the definition of C
H,� we can re-write

max:
c2CH,�

rU
�
R(t)

�T
c as follows:

max
�,�

X

u2U

U
0

u

�
Ru(t)

�
 
X

s2S

pS(s)g
s

u
(�s

u
, �s

u
)

!
, (30)

s.t. � � (1� �)�, (31)
�, � 2 ⇧H,�. (32)

Observe that the above optimization problem can be solved
separately for each network state s 2 S . The de-coupled
problem for any state s is same as the optimization problem (9)
in our online algorithm. With a slight abuse of notation, let⇣
�̃(s), �̃(s)

⌘
be the optimal solution to the online problem

when S(t) = s. Conditioned on S(t) = s, we have that:

E [Ru(t) | S(t) = s] = E
h
fs

u

⇣
�̃s

u
, �̃s

u
D
⌘
| S(t) = s

i

= gs
u

⇣
�̃s

u
, �̃s

u

⌘
8u 2 U . (33)

Computing E [E [Ru(t) | S(t)]] gives the desired result (29).

The main intuition behind the proof of optimality is that
for large t, the trajectories of R(t) can be approximated by
the solution to the following differential equation in x(t) with
continuous time t:

dx(t)

dt
= argmax:

c2CH,�

rU (x(t))T c� x(t). (34)

Let us define q(x) := argmax:
c2CH,�

rU (x)T c. To show the

optimality of our online algorithm, we shall also require the
following result on the above differential equation.

Lemma 3. The differential equation (34) is globally asymp-
totically stable. Furthermore, for any initial condition x(0) 2
CH,� , we have that limt!1 x(t) = r⇤.

Proof. To prove this lemma it is enough to show that there
exists a Lyapunov function L(x(t)) such that it has a negative
drift when x(t) 6= r⇤ and has zero drift when x(t) = r⇤.
Define L(x) = U(r⇤) � U(x). Observe that under our
assumption of strictly concave Uu(·), the offline optimization

problem is guaranteed to have an unique optimal solution,
which is r⇤. Therefore, 8x 2 CH,� and x 6= r⇤ L(x) > 0.
Next we will compute the drift of L(x(t)) with respect to
time.

dL(x(t))

dt
= �rU (x(t))T

dx(t)

dt
, (35)

= �q (x(t)) +rU (x(t))T x(t), (36)
< 0 8x(t) 6= r⇤. (37)

To get inequality (37), first observe that from the definition
of q(x(t)) and (36), we get that dL(x(t))

dt
 0. However,

we have to show that this inequality is strict for x(t) 6= r⇤.
Observe that q(x) = x is a necessary and sufficient condition
for optimality of the offline optimization problem, see [21] for
more details. From strict concavity of the utility functions, we
have an unique optimal point r⇤. Therefore, dL(x(t))

dt
< 0 for

x(t) 6= r⇤ and dL(x(t))
dt

= 0 at x(t) = r⇤.

To conclude the proof, Lemmas 2 and 3 along with the
condition 3 satisfy all the conditions necessary to apply The-
orem 2.1 in Chapter 5, [22] which states that R(t) converges
to r⇤ almost surely.

F. Proof of Theorem 5
The proof has the following two steps.
1) We shall first consider a hypothetical non-casual sce-

nario and show that there exists an optimal joint schedul-
ing policy with minislot-homogeneous URLLC place-
ment policy which in general is a function of the
aggregate URLLC load in an eMBB slot. We then upper
bound the optimal value of OP1 by the solution to a
hypothetical non-causal scenario described in the sequel.

2) Secondly, under Assumption 4 on the loss functions,
we show that there exists an URLLC placement policy
policy which is minislot-homogeneous but independent
of the aggregate URLLC load for the hypothetical non-
causal scenario. We then conclude that there exists an
optimal minislot-homogeneous joint sceduling policy for
OP1 as an upper bound for its value is attained by a
minislot-homogeneous joint scheduling policy.

The two steps are elaborated next.
1) Hypothetical non-causal scenario: First let us describe

the non-causal scenario. At the beginning of each eMBB
slot, first the scheduler chooses �⇡,s. Next the total URLLC
demand in each minislot is revealed, i.e., the realizations of
D(1), D(2), . . . , D(|M|) are revealed. Therefore, this setting
is not causal as it assumes knowledge about future URLLC
demand realizations. In general the URLLC placement under
the non-causal setting is dependent on the minislot index m
and D(1:|M|). With slight abuse of notation, we shall denote it
by �s

u,m

�
D(1:|M|)

�
. The joint scheduling policy has to satisfy

the constraints (15), (16), and (17). We have the following
lemma on the non-causal setting.

Lemma 4. There exists an optimal minislot-homogeneous pol-
icy for the non-casual setting such that the URLLC placement
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depends only on the total URLLC demand in an eMBB slot,
i.e.,

P
|M|

m=1 Dm.

Proof. Let
⇣
�̃⇡, �̃⇡,s (·)

⌘
be the decision variables un-

der an optimal joint scheduling policy ⇡ in the non-
causal setting. Let d(1), d(2), . . . , d(|M|) be realizations of
D(1), D(2), . . . , D(|M|) such that

P
|M|

m=1 d(m) = d. Define
the following:

⌫s
u
:=

P
|M|

m=1 �̃
⇡,s

u,m

�
d(1:|M|)

�
d(m)

d
. (38)

Note that with the definition of ⌫s
u

, the total puncturing
experienced by an eMBB user u in an eMBB slot is
⌫s
u
d. From this one can construct an equivalent minislot-

homogeneous URLLC placement policy. For all minislots,
use ⌫s as the URLLC placement factor. This satisfies the
constraints (15), (16), and (17). In general ⌫s could depend
on d(1), d(2), . . . , d(|M|). However, we will show that the
optimal solution depends only on the sum

P
|M|

m=1 dm.
Let d0(1), d0(2), . . . , d0(|M|) be such that

P
|M|

m=1 d
0

m
= d

and there exists an m such that d0(m) 6= d(m). Define the
following:

⌫0s
u
:=

P
|M|

m=1 �̃
⇡,s

u,m

�
d0(1:|M|)

�
d0
m

d
. (39)

Therefore, the total puncturing observed by ⌫0s
u
d. Observe

that ⌫0s is also a feasible URLLC policy for the case when
the URLLC demand realizations are d(1), d(2), . . . , d(|M|).
Similarly ⌫s is also a feasible URLLC placement policy
for the case with d0(1), d0(2), . . . , d0(|M|). Therefore, the
optimal solution has to be independent of the realizations
of D(1), D(2), . . . , D(|M|) and depends only on the sumP

|M|

m=1 Dm.

Therefore, we shall restrict ourselves to minislot-
homogeneous policies in the non-causal setting with the
URLLC placement as a function of the total URLLC demand
for that eMBB slot. With slight abuse of notation we shall
denote a URLLC placement policy in this setting by �s

u
(·)

with the only argument as the total URLLC demand in that
eMBB slot. This procedure is formally described next.

1) At the beginning of an eMBB slot, the joint scheduler
chooses �⇡,s

u
, u 2 U such that

X

u2U

�⇡,s

u
= 1 and �⇡,s

u
2 [0, 1] 8u. (40)

2) The total URLLC demand D =
P

|M|

m=1 D(m) in that
eMBB slot is revealed.

3) For an URLLC demand of D, �⇡,s

u
(D) is chosen such

that
X

u2U

�⇡,s

u
(D) = 1, and �⇡,s

u
(D) 2 [0, 1] . (41)

Let us denote the feasible policies for this hypothetical non-
causal scenario by ⇧†. (�⇡,s,�⇡,s) is chosen as the solution
to the following optimization problem.

OP2 : max
⇡2⇧†

:
X

u2U

wug
⇡,s

u
(�⇡,s

u
, �⇡,s

u
(·)) , (42)

where g⇡,s
u

(�⇡,s

u
, �⇡,s

u
(·)) = rs

u
�⇡,s

u
E
h
1� hs

u

⇣
�
⇡,s

u
(D)D

�
⇡,s

u

⌘i
.

We have the following important lemma which states that the
optimal value under the non-causal scenario is an upper bound
to the optimal value under the causal and minislot-dependent
policy.

Lemma 5.

max
⇡2⇧†

:
X

u2U

wug
⇡,s

u
(�⇡,s

u
, �⇡,s

u
(·))

� max
⇡2⇧̃

:
X

u2U

wug
⇡,s

u
(�⇡,s

u
,�⇡,s

u
) . (43)

Proof. This directly follows from the proof of Lemma 4 where
we have shown that any URLLC placement factor �⇡,s

u
can be

transformed into a minislot-homogeneous policy which depend
only on the total URLLC demand in an eMBB slot, and hence,
any feasible solution for OP1 is a feasible solution for OP2.

2) Existence of an optimal solution independent of the value
of D: In general the optimal URLLC placement policy under
OP2 may depend on the total URLLC demand in an eMBB
slot. However, under the Assumption 4 it is independent of the
total URLLC demand. This is stated formally in the following
lemma.

Lemma 6. Under Assumption 4, there exists an optimal so-
lution (�⇤,s,�⇤,s (·)) for OP2 with URLLC placement policy
(�⇤,s (·)) independent of D.

Proof. If (�⇤,s,�⇤,s (·)) is an optimal solution to OP2, then
�⇤,s (·) must also be an optimal solution to the following
optimization problem in �s :=

⇣
�s

1(·), �
s

2(·), . . . , �
s

|U|
(·)
⌘

.

max
�s

X

u2U

wug
s

u
(�⇤,s

u
, �s

u
(·)), (44)

s.t. �⇤,s

u
� (1� �) �s

u
(d) 8u, d, (45)

X

u2U

�s

u
(d) = 1 and �s

u
(d) 2 [0, 1] 8u, d. (46)

(47)

For any d and u, from the K.K.T. conditions for the above
optimization problem, we have that

�wur
s

u
dphs

0

u

✓
�⇤,s

u
(d)

�⇤,s

u

◆
+�(d)+⌘u(d)�⌫u(d)��u(d) = 0.

(48)
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where hs
0

u
(x) = dh

s

u
(y)

dy

���
y=x

,�(d) is an arbitrary constant
(function of d) and ⌘u(d), ⌫u(d) and �u(d) are constants such
that

�u(d) (�
⇤,s

u
(d)� �⇤,s

u
(1� �)) = 0 and �u(d) � 0 8u,

(49)
⌘u(d)�

⇤,s

u
(d) = 0 and ⌘u(d) � 0 8u,

(50)
⌫u(d) (1� �⇤,s

u
(d)) = 0 and ⌫u(d) � 0 8u.

(51)

Note that we have used the fact that for a homogeneous loss
functions hs

0

u
(dx) = dphs

0

u
(x). For any d̃ 6= d, if we choose

�(d̃) = �(d) d̃
p

dp , ⌘u(d̃) = ⌘u(d)
d̃
p

dp , ⌫u(d̃) = ⌫u(d)
d̃
p

dp , and
�u(d̃) = �u(d)

d̃
p

dp , then from (48) �⇤,s

u
(d) and �⇤,s

u
satisfy the

K.K.T. condition for d̃

�wur
s

u
d̃phs

0

✓
�⇤,s

u
(d)

�⇤,s

u

◆
+�(d̃)+⌘u(d̃)�⌫u(d̃)��u(d̃) = 0.

(52)
Hence, �⇤,s

u
(d) and �s

u
are optimal for d̃ too. Hence, we have a

constructed an optimal solution with URLLC placement policy
independent of D.

We have shown in Lemma 6 that there exists an optimal
policy (�⇤,s,�⇤,s) which is a minislot-homogeneous policy
and independent of the realization of D. In Lemma 5, we
have also shown that the optimal value of OP2 is an upper
bound for OP1. Hence, there exists a minislot-homogeneous
policy which achieves an upper bound for OP1. Therefore,
there exists a minislot-homogeneous policy which is optimal
for OP1.

G. Proof of Theorem 6

Let Sk be the set of all subsets with k elements chosen from
the set {1, 2, . . . ,m1 +m2}. For example, if m1+m2 = 3 and
k = 2, then Sk = {{1, 2} , {2, 3} , {1, 3}}. Note that |Sk| =�
|M|

k

�
. Using the above definitions, we can re-write the R.H.S.

of (22) as follows:

E
"
hs

1

 
m1+m2X

m=1

�1D(m)

!#

= E

2

4hs

1

0

@ 1�
m1+m2

m1

�
X

q2Sm1

 
X

m2q

D(m)

!1

A

3

5 . (53)

Using the above expression one can apply Jensen’s inequality
on the R.H.S. of (22), we have that

E
"
hs

1

 
m1+m2X

m=1

�1D(m)

!#


1�

m1+m2

m1

�
X

q2Sm1

E
"
hs

1

 
X

m2q

D(m)

!#
. (54)

Since Dm’s are i.i.d. the R.H.S. of the above expression is
same as the L.H.S. of (22). Hence, proved.

H. Proof of Theorem 7
Clearly the probability of loss depends on the minislot

demands and the users thresholds. If one relaxes the sequential
constraint on URLLC allocations, one can consider aggregat-
ing the the minislot demands and pooling together the users
superposition/puncturing thresholds. The probability of loss
for this relaxed system is simply the probability the demand
exceeds the size of the superposition/puncturing pool, i.e., The
probability of loss under the pooled resources is given by

P (D �

X

u2U

�s

u
ts
u
(�s

u
)).

This is clearly a lower bound for any placement policy. Note
however that the threshold proportional strategy meets this
bound from Corollary 3 (see Equation (25)) so it indeed
minimizes the probability of loss on a given eMBB slot.
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