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Abstract—In this paper, we characterize the joint network
capacity region for a licensed broadcast (primary) and ad hoc
cognitive (secondary) network in a heterogeneous environment,
including indoor and outdoor transmissions, under variousspec-
trum (white space) detection techniques. Each technique delivers
a different degree of RF-environment awareness - the more
a device knows about its environment the larger the network
capacity region. To quantify the gains, we develop a simple
stochastic model capturing the interdependency amongst primary
and secondary nodes and compare their joint capacity. Cognitive
devices using the classical signal energy detection methodare
shown to perform poorly due to limitations on detecting primary
transmitters in environments with indoor shadowing. This can
be circumvented through direct use (e.g., database access)of
location information on primary transmitters, or better ye t,
on that of primary receivers. The specific capacity trade-off
between primary and secondary networks depends on white
space detection techniques, resulting in joint network capacity
regions which range from complement convex to linear to
(almost) convex. Our results show that, for example, the gain
of positioning-assisted method over signal energy detection is
76% and the gain of receiver location-aware approach is177%
when the density of primary transmitters is 2× 10−10m−2, the
indoor shadowing level is−10dB, and the fraction of indoor
nodes is0.5. Furthermore we show that if cognitive devices have
positioning information then the secondary network’s capacity
increases monotonically with increased indoor shadowing in the
environment. By contrast for devices relying solely on signal
energy detection the secondary network’s capacity can be non-
monotonic in the indoor shadowing attenuation. These are the
first analytical results quantifying, albeit for simple heteroge-
neous environmental model, the capacity gains one can expect
when cognitive devices leverage additional information.

Index Terms—Cognitive network model, stochastic geometry,
transmission capacity, network capacity region, RF environment
awareness

I. I NTRODUCTION

An irony of the current wireless era is that allocated spec-
trum is substantially underutilized while very little spectrum
is available for new wireless applications. For this reason,
cognitive radio techniques which take advantage of under-
utilized spectrum have received lots of attention [1]–[4].A
cognitive radio in this paper will refer to a wireless transceiver
designed to operate opportunistically in a frequency band
which has been allocated to licensed devices. To allow such
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opportunistic operation, strong requirements are placed on
cognitive devices so as to protect licensed receivers from
interference. Detecting underutilized spectrum or white space,
while protecting licensed receivers, is a challenging task. The
fundamental difficulty in detecting white space isuncertainty
in the environment e.g., noise, shadowing, fading, licensed
receivers’ locations, limited detection capability of wireless
devices, etc. Perhaps the simplest solution to this problem,
explained in more detail later, is to apply a threshold to
the measured licensed transmitter’s signal energy. To avoid
interference to primary receivers, one can make the cognitive
radios very sensitive by reducing their signal energy detection
threshold. However, this results in a large exclusion region
around each primary transmitter, inside which no cognitive
devices are allowed to transmit [5]. The performance of
this simple method is particularly poor when the secondary
devices must contend with uncertainty and heterogeneity,
e.g., inside/outside, environments. Circumventing this problem
requires a fundamentally different approach. Indeed the uncer-
tainty can be significantly reduced if cognitive devices have
more detailed information on their operating environment.We
shall refer to such cognitive devices as RF-environment aware.

In this paper, we will study the interplay between the
transmission capacities of primary and secondary nodes, under
different levels of RF-environment awareness. Our aim is to
quantify the capacity and understand the impact of various
system parameters. In particular three white space detection
methods for secondary nodes are considered and gains are
evaluated in terms of the joint network capacity region.

Related Work. In this paper we explore the capacity of
cognitive wireless networks from spatial perspective. A spatial
model is considered reflecting various physical characteristics
of wireless networks such as signal attenuation, interference,
heterogeneous environment (indoor/outdoor), geographical lo-
cations of nodes. This types of models have been used in
evaluating the capacity ofnetworks.

In [6], and numerous subsequent papers, see survey in [7],
various spatial models have been introduced, where nodes
are randomly distributed on the plane and signal propagating
in space is attenuated based on an attenuation factor and
the propagation distance. However most of this work focuses
on capacity scaling for homogeneous networks. Recent work
by [8], [9], also focuses on scaling laws but for “two net-
works with different access priority" in a cognitive network
context. In their work, primary and secondary networks are
found to have the same capacity scaling lawΘ(

√

n/ logn)
and Θ(

√

m/ logm) wheren andm correspond to the pri-
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mary/secondary receiver densities. While these works capture
the scaling behavior of network capacity, they abstract detailed
interactions and capacity tradeoffs between the two networks,
which in turn are usually quite sensitive to system parameters.
By contrast, [10], [11] study trade-offs in the transmission
capacity, see e.g., [12], for models of coexisting networks
capturing some degree of interaction - their work suggests
capacity tradeoffs are roughly linear. However, in their work,
secondary nodes do not benefit from a cognition function,
so the resulting linear tradeoff seems natural. Without some
type of white space detection function (or overlay approach)
spectrum sharing will be inefficient. Clearly the key practical
question here is understanding and optimizing the capacityof
the system under various white space detection techniques.

There have been numerous efforts towards optimizing pa-
rameter selection in such networks, e.g., transmission power
[13], [14] or primary exclusion zone (equivalently, the signal
energy detection threshold1). The analysis and insights of [5],
[16], are limited due to remaining uncertainties, e.g., noise,
interference, shadowing [17]. To reduce uncertainty, [18]–
[21] have suggested the use of additional information, which
is either obtained on fly or preloaded on cognitive devices.
In these work, cognitive devices can access or have some
form of database with information on the environment, for
instance but not limited to, the geographical information and
availability of spectrum usage opportunities (or the strength
of primary signal) at various locations, the characteristics of
primary devices, usage pattern of licensed bands, statistics of
channel availability, and spectrum sharing policy. The most
effective approach, among these, may be letting the cognitive
devices know the exact locations of primary receivers to be
protected. As long as they are safe from interference, cognitive
devices can operate freely. The work of [22] shows an ap-
proach to detect passive receivers like televisions by detecting
the leakage power of the passive receivers’ oscillators. They
suggested the use of sensors detecting the leakage power and
sending weak beacon like signals indicating their existence to
nearby cognitive devices.

Other techniques have been proposed to help cognitive
devices reduce the chances of mis-detection and false alarm
causing poor utilization of white space. Still, the key question
is how to quantify the relative benefits of these techniques.
The work in [23] attempts to compare the data base access
approach in [19] versus the pure signal energy detection
approach in [5] but their model is limited to asingle pri-
mary transmitter and receiver pair. In a similar setting, [24]
explores the impact of imperfect additional information on
the performance of cognitive radio systems. They showed
via simulations the tradeoff between the resolution of radio
environment information and performance of cognitive radios.
We summarize the key contributions of this paper as follows.

Contributions. First, we provide a simple stochastic model
that captures the inter-dependency between two networks
with multiple primary and secondary nodes with different

1In [15], FCC requires the detection threshold low enough to detect even
weak TV signal as low as -114dBm. In this paper, we study the performance
of cognitive networks under various detection thresholds (or detection radii).
This permits us to evaluate how this parameter impacts network capacity.
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Fig. 1: The joint network capacity region of primary (C1) and sec-
ondary capacity (C2) was shown under−10dB of indoor shadowing
for three different white space detection techniques.50% of STxs
are indoor and remaining50% are outdoor.λr denotes the density
of primary receivers. When the density of primary transmitter is
λp = 2× 10−10, the gain of positioning-assisted technique to signal
energy detection technique is76%, and that of receiver location-
aware technique is177%.

access priorities. The model is rich enough to capture the
impact of heterogeneous indoor or outdoor environment on
secondary nodes’ white space detection techniques. The outage
probabilities and joint network capacity region for primary and
secondary nodes are derived. Second, wequantifythe relative
gains of three different levels of RF-environment awareness
and study the impact of indoor shadowing on their associated
joint network capacity region. We show that capacity trade-
offs between primary and secondary networks depend on white
space detection technique, resulting in joint network capacity
regions which range from complement convex to linear to
(almost) convex, see e.g., Fig.1. Not surprisingly the signal
energy detection approach’s network capacity region is the
smallest, but, perhaps surprisingly, secondary network’scapac-
ity exhibits a non-monotonic behavior in the attenuation asso-
ciated with indoor shadowing. By contrast when secondary
nodes use positioning assisted and receiver location-aware
techniques substantial gains in capacity can be realized, and
their capacity increasesmonotonicallyas indoor shadowing
increases. A final key observation quantified in this paper is
how the capacity gain of knowing primary receivers locations
versus simply knowing the position of primary transmitters,
varies with the density of primary receivers. This suggests
that when a system has a high density of primary receivers,
such detailed information may not be worthwhile, i.e., simpler
cognitive mechanisms may suffice.

Organization This paper is organized as follows. In Section
II, we provide a detailed description of our model, white
space detection techniques, and definitions of the relevant
system parameters. In Section III, evaluation methodologyis
explained with overview of results. In Sections IV to VI,
the outage probabilities of primary and secondary receivers
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under three different sensing techniques are computed. These
outage probabilities are used to find the maximum contention
densities of STxs under an outage constraint in Section VII.In
Section VIII, we define the capacity of primary and secondary
networks and combine them to compute a joint network
capacity region. Section IX concludes the paper.

II. SYSTEM MODEL

A. Indoor Shadowing, Pathloss, and Interference Model

In order to understand the impact of complex heterogenous
environments on cognitive network capacity we shall model
a network where indoor and outdoor nodes coexist. Signals
propagating from the inside to the outside, and vice versa, see,
for simplicity, afixedattenuationψ, where0 ≤ ψ ≤ 1, due to
building walls. We refer to this as a indoor shadowing level.
In practice such losses are highly dependent on a building’s
construction materials - measurements suggest variationsfrom
-40dB to 0dB [25]. Propagation in the environment is captured
using a simple free space pathloss model. That is, if both
the transmitter and receiver are outdoors, or both within the
same building, then, the attenuation factor isd−α, whered is
the distance from the transmitter to the receiver, andα is the
pathloss attenuation factor. If one of them is outdoors while
the other indoors, then the signal is attenuated by an additional
factor ψ associated with the traversing building walls. If the
transmitter and receiver are indoor but in different buildings,
then, a further additional factor ofψ is introduced, giving
a total attenuation ofψ2d−α. Such a model could be made
richer by considering different path loss attenuations in indoors
and outdoors as well as variable indoor shadowing, yet as we
will see in the sequel, analysis is already quite complex, and
perhaps to first order it suffices towards understanding the role
of heterogeneity in the network environment.

Throughout the paper, the signal to interference plus noise
ratio (SINR) at a receiver, is computed based only on the
dominant interferer, i.e., that which contributes the mostinter-
ference, and a fixed SINR decoding threshold. Thus an outage
corresponds to having at least one interfering node within a
given disc of a fixed radius centered at the receiver. Thein-
terference radiusof a receiver depends on various parameters
including the ambient noise power, interferer’s transmit power,
receiver’s received signal power and the decoding threshold.
This will be discussed in more detail in Section II-E.

B. Primary Network

We shall assume the locations of active primary transmitters
(PTx) follow a Poisson point process (PPP)Πp = {Xj}
with intensity λp on R

2. Here Xj denotes bothj-th PTx
as well as its location. A PTxXj uses a transmit powerρp
and covers a regionb (Xj, dp), whereb (x, r) denotes a disc
centered atx with radiusr anddp is the coverage radius of
a PTx. A primary receiver (PRx) located within the PTxs’
coverage areaB (Πp, dp) ≡ ∪Xj∈Πp

b (Xj , dp), is assumed to
successfully receive the primary signal as long as it does not
see secondary interferers. We letβp denote the decoding SINR
for PTx’s signal andbp = log (1 + βp) be the transmission
rate of PTxs. The locationsΠr of PRxs are assumed to

follow a homogenous PPP conditioned on the coverage area
of the PTxs, thus this is a stationary doubly stochastic process
(or Cox process) with a random intensity measure given by
λr1 {z ∈ B (Πp, dp)} at locationz ∈ R

2, where1 {} denotes
the indicator function, see [26]. A PRxY is interfered by STxs
if there is at least one secondary transmitter (STx) inb (Y, rsp),
wherersp is the interference radius of a PRx with respect to
a STx, determined in Section II-E. We assume that all PTxs
and PRxs are outdoors2. This is a worst case scenario since
indoor PRxs, if any, are better protected from interference. We
refer to (Πp,Πr) as the primary network.

C. Secondary Network

The locations of STxs are also modeled as a PPPΠs on
R

2 but with intensityλs. The locations of indoor secondary
transmitters (iSTx)Πsi are obtained by independent thinning
of Πs with probabilityai. The remaining STxsΠso correspond
to outdoor secondary transmitters (oSTx). ThusΠsi andΠso

are PPP with intensitiesλsi ≡ aiλs and λso ≡ aoλs
respectively, whereao = 1− ai.

We assume STxs use a cognitive function to detect white
space and then contend with each other using a simple
ALOHA protocol, as done in [12], [27], [28]. STxs transmit
at power ρs. Not all STxs in Πsi and Πso are active, so
we will introduce additional processes to denote active STxs.
These are once again Cox processes with non homogenous
intensity given the locations of the primary network{Πp,Πr} .
Specifically, the intensity of active iSTxs at locationz given
{Πp,Πr} is given by

aiλs1 {iSTx at z is active under{Πp,Πr}}

where the indicator function depends on a the white space
detection technique being considered. Techniques, for de-
termining the transmission opportunities for STxs, will be
explained the next section. We assume each STx has an
associated secondary receiver (SRx) randomly located at a
fixed distanceds and both are either indoor or outdoors.3

Note that SRxs can be interfered by unintended STxs or PTxs.
More specifically, an outage may occur at oSRxWo if there
are one or more oSTxs withinb (Wo, r

oo
ss ); or if, there are

one or more iSTxs inb
(

Wo, r
io
ss

)

, whererooss andrioss are the
interference radii of a oSRx with respect to oSTxs and iSTxs
respectively. In generalrooss ≥ rioss since iSTx will offer less
interference to oSRx due to penetration lossψ. Similarly an
iSRx Wi can be interfered by either oSTxs inb

(

Wi, r
oi
ss

)

or
iSTxs in b

(

Wo, r
ii
ss

)

, whereroiss and riiss are the interference
radii of a iSRx with respect to a oSTx and iSTx respectively.
Generallyroiss ≥ riiss holds since iSTx gives less interference
to iSRx due to the strong penetration lossψ2. An oSRxWo is
interfered by PTxs if there exist any PTx inb (Wo, rps), where

2In real world, some PRxs are indoors. However, we only consider outdoor
PRxs in this paper since assuming some portion of PRxs are indoors has
almost no impact on our results. This is because the operations or parameters
of secondary nodes are determined based on/considering only the performance
of outdoor PRxs that are in worse condition than indoor PRxs in terms of
robustness to interference.

3By assuming fixed distanceds between STx and SRx, we do worst case
analysis.
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rps is the interference radius of oSRx with respect to a PTx.
Similarly, a iSRxWi can be interfered by PTxs if there exist
any PTx inb

(

Wi, r
i
ps

)

, whererips is the interference radius of
a iSRx with respect to a PTx. We assume that STxs transmit
with rate bs = log (1 + βs) whereβs is the decoding SINR
threshold for STx’s signal. The various parameters introduced
here will be specified in Section II-E.

D. White Space Detection

Three different methods are considered for detecting trans-
mission opportunities for secondary nodes. They are neither
the worst nor the best, but rather represent the spectrum of pos-
sible approaches exploiting different levels of RF-environment
awareness that STxs could have of the surrounding environ-
ment. Note that in [15] FCC requires cognitive devices to have
both signal energy detection scheme and geo-location/data
base access scheme that corresponds to the first and second
methods in our work. Cognitive devices relying only on the
signal energy detection method can be allowed to be used but
should pass FCC’s much more rigorous test.

Signal Energy Detection Based Cognitive Devices. Signal
energy detection is a simple technique which relies on measur-
ing the PTxs’ signal energy at a STx’s location. If it is belowa
predetermined detection threshold, the STx infers that there is
no PTx in its detection – again modeled as a disc centered at
the STx and a given detection radius. Increasing the threshold
makes the STx only sensitive to PTxs which are close by, i.e.,
the detection radius is a strictly decreasing function of the
threshold. Decreasing the threshold makes the detector more
sensitive, and accordingly the STx will behave conservatively.
Although this approach appears reasonable it has a serious
weakness. A STx which is indoors will see an attenuated signal
from outdoor PTxs, and may conclude there are no nearby
PTxs, and transmit within coverage area of PTxs possibly
producing harmful interference to PRxs. To preclude from
this happening, the detection threshold needs to be set very
conservatively. This point will be discussed further in Section
IV-A where we will quantify the impact of iSTxs on PRx’s
outage probability. In the sequel we let E-STx(E-SRx) denote
STx(SRx) using the signal energy detection method. When
we need to be more specific on node’s location, i.e., indoor or
outdoor, we use E-iSTx(E-iSRx) and E-oSTx(E-oSRx) for an
indoor and an outdoor E-STx(E-SRx) node respectively.

Positioning-assisted Cognitive Devices. A STx using
positioning-assisted detection is aware of the actual loca-
tions of nearby PTxs. We assume that either the device has
preloaded map in its memory or it can access remote database.
The device periodically samples its current location usingits
built-in positioning module and checks if it is safe to transmit
or not. We assume that when STxs are outdoors they use
Global Positioning System(GPS) technology and when they
are indoors they use indoor positioning technology [29] or
infer its location information based on previous history of
location information. Two similar ideas were discussed in
[20], [21]. A cognitive device using this approach knows the
coverage area of PTxs, and so does not have the drawback
of mis-detecting PTxs discussed for the previous method. It

allows both indoor and outdoor STxs to correctly detect the
presence of PTxs or equivalently the regions where STxs are
not allowed to transmit. In fact, this approach is equivalent
to a technique letting a cognitive device know whether it is
indoors or outdoors. The device using the information can
adaptively adjust its signal energy detection threshold soas to
protect primary receivers and to maximize its transmissionop-
portunity. We shall use a similar naming convention, where G-
STx(G-SRx), G-iSTx(G-iSRx) and G-oSTx(G-oSRx) denote
a positioning-assisted STx(SRx), a positioning-assistedindoor
STx(SRxs), and a positioning-assisted outdoor STx(SRx) re-
spectively.

Receiver Location-Aware Cognitive Devices. Lastly sup-
pose cognitive devices can detect the locations of both PTxs
and PRxs. Whether this is implementable depends on the
nature of PRxs. If the PRxs are passive it may not be easy
to detect them. However, even in this case, it may not be
totally impossible if one can detect the leakage power of
receiver’s oscillator, see [22]. [30] shows that this kind of
detecting scheme is implementable and have been used in the
UK to find people watching TV without buying licenses. If
PRxs can send a signal (beacon) to indicate their existence
to nearby STxs, then, it is of course much easier to detect
and protect them. Alternatively the location of PRxs to be
protected could be registered in a database accessible by STxs.
We shall thus suppose STxs are able to detect the presence of
PRxs within a certain radius. This affords cognitive devices
the highest degree of RF-environment awareness. STxs can
now transmit within the coverage of PTxs4 as long as they
do not give harmful interference to PRxs (or equivalently
there are no PRxs close to them). We again adopt a naming
convention, where L-STx(L-SRx), L-iSTx(L-iSRx) and L-
oSTx(L-oSRx) denote a receiver location-aware STx(SRx),
a receiver location-aware indoor STx(SRx), and a receiver
location-aware outdoor STx(SRx) respectively.

E. System Model Parameters

Below we derive many of the above mentioned model
parameters, from those specified as a part of system design
and requirements, e.g.,ρp, ρs, βp and βs. We let ip denote
the maximum tolerable interference at the edge of PTx’s
coverage area.ip is a design parameter that corresponds to a
performance margin which makes receivers robust to a certain
amount of interference, so we assume this value is given and
fixed. This, and the successful reception condition for PRx,
determine the coverage rangedp of a PTx. That is, under
maximum interference, the received SINR of a PRx at distance
d whered < dp from its nearest PTx should be larger than
the decoding SINR thresholdβp, which defines the coverage
range of a PTx as

dp ≡ sup

{

d > 0|
ρpd

−α

η + ip
> βp

}

=

(

ρp
(η + ip)βp

)
1
α

,

4According to the current rule by FCC, cognitive devices are not allowed
to operate inside the coverage of primary transmitter. But,in this paper, by
allowing it we study how much capacity improvement we can expect if we
can overcome the current limitation.
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where η denotes the noise power. By consideringip in
computingdp, we do a worst case analysis.

Next we determine the smallest allowable distancersp(d)
between an oSTx and a PRx, given the latter is a distance
d from its nearest PTx. Ensuring successful reception means
that:

rsp(d) ≡ inf

{

r > 0|
ρpd

−α

η + ρsr−α
> βp

}

= ρ
1
α
s

(

ρp
dαβp

− η

)− 1
α

.

(1)
We will call rsp (d) thePRx’s interference radius with respect
to an oSTx. The PRx’s interference radius with respect to an
iSTx is similarly given by

risp (d) ≡ inf

{

r > 0|
ρpd

−α

η + ψρsr−α
> βp

}

= ψ
1
α rsp(d).

Note thatrsp (d) and risp (d) are strictly increasing functions
of d. Indeed, as the PRx gets further away from its nearest
PTx, the PRx is increasingly vulnerable to interference, and
so the above radii increase. In the sequel we will occasionally
omit the dependency ofrsp andrisp on d.

Next we determine the maximum tolerable interference of
a SRxis. A SRx a distanceds away from its STx can decode
the signal from the STx, if the received SINR is larger than
βs; this gives the following requirement

is ≡ sup

{

i > 0|
ρsd

−α
s

η + i
> βs

}

=
ρsd

−α
s

βs
− η. (2)

In turn anoSRx’s interference radius w.r.t. a PTx, rps can be
determined by ensuring the interference from its nearest PTx
does not exceedis, i.e.,

rps ≡ inf
{

r > 0|ρpr
−α + η ≤ is

}

=

(

ρp
is − η

)
1
α

. (3)

Similarly, the iSRx’s interference radius w.r.t. a PTxrips
follows by including the additional indoor shadowing levelψ
that the indoor SRx would see:

rips ≡ inf
{

r > 0|ψρpr
−α + η ≤ is

}

= ψ
1
α rps. (4)

There are four different types of SRx’s interference radii
related to STxs. TheoSRx’s interference radius w.r.t. an oSTx
rooss is computed as follows. For an oSRx to receive its oSTx’s
signal without outage, the noise plus interference from its
nearest interfering oSTx to the oSRx should not exceed the
tolerable interferenceρsr−α + η ≤ is, giving

rooss ≡ inf
{

r > 0|ρsr
−α + η ≤ is

}

=

(

ρs
is − η

)
1
α

.

TheoSRx’s interference radius w.r.t. an iSTxrioss is determined
by the interference conditionψρsr−α + η ≤ is, which gives

rioss ≡ inf
{

r > 0|ψρsr
−α + η ≤ is

}

= ψ
1
α rooss .

The iSRx’s interference radius w.r.t. an oSTxroiss is determined
by the interference conditionψρsr−α + η ≤ is, giving

roiss ≡ inf
{

r > 0|ψρsr
−α + η < is

}

= ψ
1
α rooss .

The iSRx’s interference radius w.r.t. an iSTxin a differ-

ρp Transmit power of PTx

ρs Transmit power of STx

βp Decoding SINR of PRx

βs Decoding SINR of SRx

dp Coverage range radius of PTx

ip Maximum tolerable interference of PRx

at the edge of PTx coverage

is Max tolerable interference of a SRx

at distanceds from its STx

rE
d

Detection radius of E-oSTx

rL
d

Detection radius of L-oSTx

rps Interference radius of oSRx w.r.t. PTx

rips Interference radius of iSRx w.r.t. PTx

rooss Interference radius of oSRx w.r.t. oSTx

rioss Interference radius of oSRx w.r.t. iSTx

roiss Interference radius of iSRx w.r.t. oSTx

riiss Interference radius of iSRx w.r.t. iSTx

rd Detection radius (baseline)

rsp(d) Interference radius of a PRx w.r.t. to oSTx

risp(d) Interference radius of a PRx w.r.t. to iSTx

rEi
d

Detection radius of E-iSTx

rLi
d

Detection radius of L-iSTx

α Pathloss attenuation factor

ai Fraction of indoor STxs

ao Fraction of outdoor STxs(= 1− ai)

λs Density of STxs

ψ Indoor shadowing level

λp Density of PTxs

η Noise power

TABLE I: Summary of Parameters

ent buildingriiss is determined by the interference condition
ψ2ρsr

−α + η ≤ is, giving

riiss ≡ inf
{

r > 0|ψ2ρsr
−α + η ≤ is

}

= ψ
2
α rooss .

A STx usingsignal energy detection, E-STx, ensures there
are no PTxs close by, i.e., within itsdetection radiusrd, so as
to indirectly protect PRxs. The baseline detection radius used
for E-oSTx is defined as

rd ≡ max {dp + rsp(dp), ds + rps} . (5)

The first term in the maximum ensures that the STx is
far enough so as to not harm PRx which is at the edge,
i.e., a distancedp, from its associated PTx. Thus STx’s can
send only if they are outside the PTxs’ coverage area plus
an additional guard zone. The second term corresponds to
minimum distance a SRx must be from a PTx,rps plus
the SRx’s fixed distanceds from its associated STx. If the
secondary network includes indoor STx then protecting PRxs
requires increasing the detection radius torEd ≡ ψ− 1

α rd, We
discuss this in more detail in the sequel along with modelingof
detection radii for the two other white space detection methods
to be considered.

F. Preliminary Definitions

In this section, we define some further notations used
throughout the paper. Let|A| denote the area of a setA ⊂ R

2.
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Let ‖x− y‖ denote the distance betweenx and y in R
2.

We define a setK (x, rx; y, ry) ≡ b (y, ry) \b (x, rx) in R
2.

Let L{Q}(λs) ≡ E
[

e−λsQ
]

be the Laplace transform of a
random variableQ. For simplicity we letqoom = π (rooss )

2, qiom =

π
(

rioss
)2

, qoim = π
(

roiss
)2

, qiim = π
(

riiss
)2

, qom = aiq
io
m + aoq

oo
m

and qim = aiq
ii
m + aoq

io
m. For a givenx ∈ R

2 and PPPΠ,
x /∈ B (Π, r) andΠ∩ b (x, r) = ∅ will denote the same event.

G. Parameter Set

Throughout the paper, we use the following representative
parameters to compute the system model parameters defined in
Section II-E:α = 3, η = No×20×106, ip = 5η, ρp = 100W,
ρs = 1mW, βp = 10, βs = 1.4, whereNo = −174dBm is an
noise power spectral density. Some of the resulting computed
system parameters are as follows:dp = 27560m, is = 7.14×
10−7, ds = 10m, rps = 519m, androoss = 11.18m. See [16],
[31], [32] for some realistic parameter values. and [33] for
parameter selection.

H. Weaknesses of Model

Our model has several weaknesses. First, our channel
model accounts for pathloss attenuation and indoor/outdoor
shadowing factor only. Fading is not considered. Second, our
interference model does not account for the additive nature
of interference. Indeed as mentioned earlier, we assume that
outages are caused solely by the dominant interferer. This
choice is driven mathematical simplicity, yet for spatially
distributed nodes, this has been proven as a fairly good model
[6], [34], [35]. Moreover, it turns out that outage probability
computed with this simple disk model corresponds to the lower
bound of outage computed considering shot noise interference,
and it has been shown that the lower bound is asymptotically
tight, see [12], [28]. Third, the location of primary transmitters
is modeled as PPP. Clearly this is not likely to be true in
practice for any type of designed infrastructure. Still this
provides a simple caricature of the spatial variability onemight
see in such deployments. Finally, we assume STxs transmit in
Aloha fashion, this again is assumed for tractability, following
[12], [27], [28], [36]. Some of our results could perhaps be
extended to account for clustering in PTxs and/or STxs, yet
via a non-homogenous point process but from now it seems
reasonable to focus on understanding the homogenous case.

III. C OMPUTING JOINTNETWORK CAPACITY REGION

ROADMAP AND OVERVIEW OF RESULTS

A. Computing a Joint Network Capacity Region Roadmap

Our goal is to compare thejoint network capacity re-
gion Λ = {(C1, C2)|(C1, C2) are achievable}, i.e., the set
of achievable primary and secondary capacity pairs(C1, C2),
under the three white space detection techniques. The notion
of joint network capacity region studied in this paper is
different from the classical one in information theory [37]
in at least three ways. First, a primary network’sbroadcast
coverage capacityC1 is defined as the average number of bits
that can be successfully received by potential receivers per
second per square meter per Hertz. Since the primary network

operates in the broadcast mode this is simply proportional to
transmission ratebp times the fraction of covered area. The
covered area depends on the density of primary transmitters
λp and potentially also on secondary nodes’ behavior if it
fails to protect the primary network. Second, the secondary
network’s transmission capacityC2 is the average number
of successfully transmitted bits per second per square meter
per Hertz subject to anǫ-outage constraint summed over
indoor and outdoor transmissions. This is similar to the notion
introduced in [12], [27], except that in a cognitive network
context, the secondary nodes’ transmission capacity depends
on the density of primary nodes, fractions of indoor/outdoor
secondary nodes, the environment, e.g., path loss and indoor
shadowing as well as the white space detection technique
being used. Third, a pair(C1, C2) is “achievable" if there
exists a density of primary and secondary nodes such that the
average spatial capacity of both the primary and secondary
network is (C1, C2). Note thatC1 and C2 correspond to
averages computed over an ensemble of Poisson distributed
primary and secondary nodes under our system models. The
mathematical definition of the joint network capacity region
will be given in Section VIII.

The computation of the joint network capacity region in-
volves three steps. First determining the outage probabilities
for primary and secondary (indoor/outdoor) nodes. This is car-
ried out for each white space detection technique in Sections
IV–VI. Second, for a fixed intensity of primaries nodesλp
determining the optimal intensity of secondary transmissions
λǫs which meets the outage constraintǫ, see Section VII. Third,
computing the joint network capacity region by varying the
possible intensity of primary nodes see in Section VIII. Prior
to doing so, we discuss some of the key obtained results.

B. Overview of Results

Fig.1 exhibits representative joint network capacity regions
for the cognitive network under the three white space detection
mechanisms considered, while Fig.2 exhibits the geometry
underlying these results. As expected the capacity is en-
hanced when secondary nodes have a higher degree of RF-
environment awareness.

In the signal energy sensing scenario the detection radius
must be set conservatively because indoor STx can not prop-
erly infer the location of PTxs and thus protect PRxs. As
shown in Fig.2a E-oSTx nodes can only operate if they are
outside this larger radiusrEd , while because of the indoor
shadowing E-iSTx can operate outside the (‘correct’) radius
rd. As exhibited in Fig.1 the joint network capacity region
for this scenario is surprisingly complement convex. Note it is
tempting to think time sharing would convexify the network
capacity region, yet this does not make sense in the scenario
of interest, i.e., where a pre-installed broadcasting network’s
licensed spectrum is being opportunistically used by an ad hoc
cognitive network.

The positioning-assisted white space detection technique
solves this problem since all G-STxs are made directly aware
of the coverage area of PTxs. Fig.2b shows a typical realization
of the two networks, where both G-iSTxs and G-oSTx can
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(a) Signal energy detection method: indoor en-
vironment causes interference attenuation, which
makes E-iSTxs feel attenuated interference power.
Thus, conservative(large) detection radiusrE

d
is

required.

(b) Positioning-assisted method: both G-iSTx and
G-oSTx have the same detection radiusrd, which
allow them fully utilize white space.

(c) Receiver location-aware method: as long as
not giving interference to PRxs, L-STxs can op-
erate even inside the coverage of PTxs. L-STxs
are not allowed to transmit inside the PRx’s
interference region (circle around each PRx).

Fig. 2: A typical realization of primary and secondary networks under three white space detection methods is shown. Shaded region denotes
the coverage of PTxs with radiusdp.

operate outside coverage area of PTxs. The joint network
capacity region is shown to be roughly linear in this case,
see Fig.1.

Last, if STxs are aware of primary receivers’ locations one
obtains substantial capacity improvements. Indeed, depending
on the locations of PRxs, L-STxs can opportunistically trans-
mit within the coverage area of PTxs, so the capacity gains
now depend on the density of primary receivers, see Fig.1.
Fig.2c, exhibits the geometry underlying this scenario. The
small discs around each PRx denote its interference region
w.r.t. a L-oSTx5. To protect PRxs no L-oSTx should reside
in such discs. The radii of these discs are defined in (1) as
rsp(d) which is strictly increasing function of distanced to its
nearest PTx. Perhaps counterintuitively, L-STxs located closer
to PTxs are more likely to transmit than L-STxs far from them.
Also surprisingly, it turns out that this phenomenon is helpful
in increasing secondary capacity whenλp is high, this can
be seen in Fig.1, where the receiver location aware capacity
region forλr = 10−4 exhibits a non monotonic behavior on
the right hand side.

IV. PERFORMANCE OFSIGNAL ENERGY DETECTION

TECHNIQUE

In this section, we evaluate the outage probability of a
PRx and E-oSRx. We will first show that if an indoor
STx chose its detection radiusrd (or equivalently detection
threshold) naively, this can negatively impact PRxs. For nota-
tional simplicity, letΠ′

so andΠ′
si be Cox processes denoting

active (or transmitting) E-oSTxs and E-iSTxs with intensi-
ties aoλs1 {z /∈ B (Πp, rd)} and aiλs1

{

z /∈ B
(

Πp, r
i
d

)}

at
z ∈ R

2 respectively and, whererid ≡ ψ
1
α rd.

A. Outage Probability of Primary Receivers

Suppose we set the detection threshold, sayId, of E-STxs
such thatρpr−α > Id for r < rd. Then, E-oSTxs would detect
any PTxs withinrd and would not interfere PRxs that are at

5We can also draw its interference region w.r.t. a L-iSTx, butit is omitted
for simplicity.

the edge of the PTxs’ coverage area. However, E-iSTx can
only detect PTxs withinrid, which potentially makes them
mis-detect PTxs betweenrid and rd. To show the negative
impact of this parameter choice, we shall compute the outage
probability of a PRx as a function of distanced to its nearest
PTx.

Theorem 1. (Conditional Outage Probability of PRx with E-
STxs) For givenλp, λs, anddp, a PRxY ’s outage probability
given it is a distanced away from its nearest PTxX is given
by

P p
out(d, λs) = 1−1{d < dp}L{aoL1(d,Π

(2)
p )+aiL2(d,Π

(2)
p )}

(λs) ,

(6)
whereΠ(2)

p = {Πp ∩ b (Y, d)} ∪ {X},
L1(d,Π) =

∫

K(X,rd;Y,rsp)
1 {z /∈ B (Π, rd)} dz, and

L2(d,Π) =
∫

K(X,ri
d
;Y,risp)

1{z /∈ B
(

Π, rid
)

}dz.

Proof is given in Appendix A. Note that geometrically
L1(d,Π

(2)
p ) =

∫

K(X,rd;Y,rsp)
1{z /∈ B(Π(2), rd)}dz is an

area ofK(X, rd;Y, rsp) which is not covered by the Boolean
processB

(

Π(2), rd
)

and a similar interpretation applies to

L2(d,Π
(2)
p ). L1(d,Π

(2)
p ) can be viewed as a random variable

with finite support since it depends on the random process
Π

(2)
p . Note that this area measures the amount of potential

interferers. Thus, a larger area implies that the PRxY is more
likely to be interfered with. To compute the above Laplace
transformL

{aoL1(d,Π
(2)
p )+aiL2(d,Π

(2)
p )}

(λs), we need to know

the distributions of two random variablesL1(d,Π
(2)
p ) and

L2(d,Π
(2)
p ), but these are difficult to compute. So, we will

compute upper and lower bounds on these quantities. Here
we shall use the following result to compute bounds of the
transform of such non-negative random variables, it follows
from simple results on convex ordering for random variables.
Proof is given in [38].

Lemma 2. (Bounding non-negative random variables) Sup-
poseX is a random variable with bounded support[0, p] and
meanE [X ]. Then,E [φ (X)] ≤ φ (0) − E[X]

p
(φ (0)− φ (p))

for all convex functionφ.
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The following corollary gives lower bounds onP p
out(d) ob-

tained using Lemma 2, while the upper bound is obtained
using Jensen’s inequality.

Corollary 3. For d < dp, upper and lower bounds of a PRx’s
conditional outage probability are given by:

P p,u
out (d, λs) = 1− exp{−λs(aol1 + ail2)}, and

P p,l
out(d, λs) =

aol1 + ail2
aol1m + ail2m

(1− e−λs(aol1m+ail2m)),

where l1 = E[L1(d,Π
(2)
p )], l2 = E[L2(d,Π

(2)
p )], l1m =

|K(X, rd;Y, rsp)| and l2m = |K(X, rid;Y, r
i
sp)|.

In the sequel, we omit proofs of remaining corollaries giving
such bounds since all of them can be proved using the
same machinery. Note thatl1 = E[L1(d,Π

(2)
p )] and l2 =

E[L2(d,Π
(2)
p )] can be computed through numerical integration

as follows:

l1 =

∫

K(X,rd;Y,rsp)

P (z /∈ B(Π(2)
p , rd))dz

=

∫

K(X,rd;Y,rsp)

exp{−λp|K(X, d; z, rd)|}dz,

l2 =

∫

K(X,rd;Y,risp)

P (z /∈ B(Π(2)
p , rid))dz

=

∫

K(X,rd;Y,risp)

exp{−λp|K(X, d; z, rid)|}dz.

Fig.3a shows the outage probability of a PRx as a function
of d to its nearest PTx whenao = 1, i.e., when there are no
E-iSTx. One PTx at the origin is considered. In this case, we
have a coveragedp = 27559m, and the detection radiusrd
is set todp + rsp(dp) after considering guard band of width
rsp(dp). As expected, the outage probability is zero ford < dp
and non-zero otherwise. However if there exist indoor nodes
(i.e.,ai > 0) with ψ = −10dB, we have a significant increase
in the outage probability as shown in Fig.3b. Sincerid < rd,
the attenuated signal from the PTx makes E-iSTxs betweenrid
and rd mis-detect the PTx and allows them to transmit even
inside the coverage area of the PTx. This becomes increasingly
severe ifψ gets stronger(or smaller). These two figures clearly
show how poorly selected detection radii of STxs can give
harmful interference to PRxs. To prevent this, one has to set
the detection thresholdconservativelyso that all the E-iSTxs
atd < dp detect the PTx. We reconsider the outage probability
calculation under a more conservative detection radius choice
in next section.

B. Outage Probability for Primary Receiver with STxs using
a Conservative Detection Threshold

In order to properly protect PRxs in the coverage area
of PTxs, we shall make all STxs use the detection radius
rEd ≡ ψ− 1

α rd, where rd is the desired minimum detection
radius defined in (5). Note that E-oSTxs usingrEd can detect all
PTxs in their detection radiusrEd , but E-iSTxs usingrEd only
detect PTxs in an effective detection radius ofψ

1
α rEd = rd

since E-iSTxs are indoor and see attenuated PTx power. They

see the PTxs’ appear further away than their actual locations.
So, considering this effect, E-STxs must use a conservative
detection radiusrEd .

Accordingly, letΠE
so and ΠE

si be Cox processes denoting
active E-oSTxs and E-iSTxs that would arise given these new
detection radii with intensitiesaoλs1

{

z /∈ B
(

Πp, r
E
d

)}

and
aiλs1

{

z /∈ B
(

Πp, r
Ei
d

)}

at z ∈ R
2 respectively. Note that

E-STxs no longer transmit inside the coverage area of the
PTxs due to this new detection threshold. However, as a side
effect this will make E-oSTx less likely to be active since
they need to detect a larger PTx free area to be active. We
update Theorem 1 and Corollary 3 by replacingrd with rEd
andrid with rEi

d ≡ ψ
1
α rEd , to obtain Theorem 4 and Corollary

5 respectively. Fig.8b shows the updated results from Fig.8a.
Note that due to conservative detection radius there are no
E-STxs insideb(X, rd) that can harm PRxs.

Theorem 4. (Outage Probability of PRx with E-STxs with
conservative detection radius) For a PRxY at a distanced
from its nearest PTx, we have an outage probability

P pE
out(d, λs) = 1− 1{d < dp}L{aoL3(d,Π

(2)
p )+aiL4(d,Π

(2)
p )}

(λs)

whereL3(d,Π) =
∫

K(X,rE
d
;Y,rsp)

1{z /∈ B(Π, rEd )}dz, and

L4(d,Π) =
∫

K(X,rEi
d

;Y,risp)
1{z /∈ B(Π, rEi

d )}dz.

This outage probability can be upper and lower bounded as
follows.

Corollary 5. For d < dp, upper and lower bounds on a PRx’s
conditional outage probability are given by:

P pE,u
out (d, λs) = 1− exp{−λs(aol3 + ail4)} and

P pE,l
out (d, λs) =

aol3 + ail4
aol3m + ail4m

(1− e−λs(aol3m+ail4m)),

where l3 = E[L3(d,Π
(2)
p )], l4 = E[L4(d,Π

(2)
p )], l3m =

∣

∣K(X, rEd ;Y, rsp)
∣

∣ and l4m =
∣

∣K(X, rEi
d ;Y, risp)

∣

∣.

Again l3 and l4 can be computed numerically, see [38]. The
outage probability of a PRx with E-STxs having conservative
detection radiusrEd is the same as that in Fig.3a. Due to the in-
creased detection radius, now PRxs are free from interference
from E-STxs.

Next we compute the fraction of area ofR
2 where potential

PRxs can successfully receive PTxs’ transmissionPE
c (λp) =

1−E[P pE
out(D,λs)]. Note that primary network’s broadcasting

coverage capacity is directly proportional to this quantity.
We take the expectation ofP pE

out(D,λs) w.r.t. the random
variableD denoting the distance of a PRx6 to its nearest
PTx; it can be shown to have a distribution functionFD(x) =
1− exp

{

−λpπx2
}

. So, we have

E[P pE
out(D,λs)] =

∫ dp

0

P pE
out(d, λs)dFD(x) + e−λpπd

2
p . (7)

C. Outage Probability of Outdoor Secondary Receiver

In this section, we consider the outage probabilityP soE
out of

a typical E-oSRx denoted here byWo. This is a conditional

6As discussed in Section III-A, here PRxY doe not necessarily belong to
Πr.
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(a) If there is no indoor nodes (i.e.,ψ = 0), settingrd = dp + rsp(dp) is
enough to protect PRxs from STxs’ interference. Note that PRx’s outage
is zero ford < dp.
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(b) If there exist 50% of indoor nodes (ai = 0.5) with ψ = −10dB, they
mis-detect the existence of nearby PTx and start transmitting even when
they are inside the coverage i.e., whend < dp. It causes severe increase
of PRx’s outage probability.

Fig. 3: Impact of STxs’ interference to outage probability of PRx at distanced to its nearest PTx

outage probability conditioned on the existence of an active
E-oSTxZo transmitting to an E-oSRxWo as shown in Fig.9.
Note thatZo is not necessarily the nearest E-oSTx to theWo.
This can be viewed as a worst case analysis since we fix
‖Wo − Zo‖ to be ds. For the E-oSTxZo to be active, there
should be no PTxs within the E-oSTx’s detection area; so, we
condition on the eventZo /∈ B

(

Πp, r
E
d

)

and‖Wo − Zo‖ = ds.
Note that interference from other E-STxs can cause an outage
at the the E-oSRxWo. In the following therefore, we capture
the impact from PTxs, E-oSTxs, and E-iSTxs on the outage
of a typical E-oSRxWo.

Theorem 6. (Conditional Outage Probability of E-oSRx): For
given λp and λs, the conditional outage probability of a E-
oSRx whose associated transmitter E-oSTx is a distanceds
away is given by

P soE
out (λs) = 1− L

{aoQ(rooss ,Π
(3)
p ,rE

d
)+aiQ(rioss,Π

(3)
p ,rEi

d
)}
(λs),

whereΠ(3)
p = Πp ∩ b(Zo, rEd ) ∪ b(Wo, rps) andQ (r,Π, t) ≡

∫

b(Wo,r)
1 {z /∈ B (Π, t)} dz.

Proof is given in Appendix B. We can again provide upper and
lower bounds onP soE

out which can be computed numerically
[38] as follows.

Corollary 7. For givenλp andλs, the upper and lower bounds
of a E-oSRx’s outage probability whose active associated E-
oSTx is a distanceds away are given as follows:

P soE,u
out (λs) =1− exp {−λsq

o
E} and

P soE,l
out (λs) =

qoE
qom

(1− exp {−λsq
o
m}) ,

where qooE = Ep[Q(rooss ,Π
(3)
p , rEd )], qioE =

Ep[Q(rioss,Π
(3)
p , rEi

d )], qoE = aoq
oo
E + aiq

io
E , and qom is

defined in Section II-F.

Similarly, it is straightforward to computeP siE
out (λs) the outage

probability of a typical E-iSRx. We omit it due to space
limitations.

Fig.4 showsP soE
out (λs) andP siE

out (λs) the outage probabili-
ties of a typical E-oSRx and E-iSRx respectively. They were
evaluated underψ = −10dB. As λs increases, both E-oSRxs
and E-iSRxs are getting more interference from neighboring
E-oSTxs and E-iSTxs, which accordingly increase the outage
probabilities. Note that E-iSRxs get less interference, due to
indoor shadowing, than E-oSRxs, so they see better (lower)
outage probability.

Remark 8. We note that E-iSTx’s having smaller outage
probability than that of E-oSTx is phenomenon that occurs
even under other white space detection techniques in Section
V and VI as long asψ < 1. This lessens our burden on
computing outage probabilities since we only care about the
worst case outage probability. In fact, the maximum contention
density of STxs under an outage constraint, which is computed
in Section VII, is driven by the worst case outage probability.
So, in the sequel, we will focus only on the outage probability
for a typical outdoor nodes.

V. PERFORMANCE OFPOSITIONING-ASSISTEDTECHNIQUE

In this section, we evaluate the outage probabilities of a
PRx, G-oSRx and G-iSTx. We assume a G-STx can access its
exact location relative to PTxs using a geographic positioning
module and determine whether to transmit or not. A G-
STx can only transmit if it is outside of PTxs’ coverage
area. This is equivalent to G-STxs that are able to detect
PTxs within a rangerd. We define following two processes
ΠG

so and ΠG
si, denoting active G-oSTxs and G-iSTxs with

densitiesaoλs1 {z /∈ B (Πp, rd)} andaiλs1 {z /∈ B (Πp, rd)}
at z ∈ R

2 respectively. The machinery used to find outage
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Fig. 4: The outage probability of a typical E-oSTx and E-iSTxare
shown. The gap between outage probability of E-oSTx and thatof
E-iSTx comes from the attenuated interference from outsideto E-
iSTxs.

probabilities is similar to that used earlier for the densities of
these two processes.

A. Outage Probability of Primary Receiver

Since G-STxs are at least a distancerd away from PRxs,
they can not give harmful interference to PRxs. Thus, we have
a simple result for the outage probability of a PRx.

Fact 9. The outage probability of PRx with G-STxs is given
as P pG

out(d) = 1 − 1 {d < dp} whered is the distance to its
nearest PTx, and the fraction ofR2 where potential PRxs
can successfully receive PTxs’ signal is given byPG

c (λp) =

1− E[P pG
out(D)] = 1− exp

{

−λpπd2p
}

.

B. Outage Probability of Outdoor Secondary Receiver

In this section, we compute the outage probabilityP soG
out

of a typical G-oSRxWo. This is a conditional outage prob-
ability conditioned on the existence of an active G-oSTx
Zo transmitting to the G-oSRxWo. Note that Zo is not
necessarily the nearest G-oSTx to theWo. This is the worst
case outage probability since we fix‖Wo − Zo‖ to ds. For
the G-oSTxZo to be active, there should be no PTxs within
the G-oSTx’s detection area; so, we condition on the event
Zo /∈ B (Πp, rd) and ‖Wo − Zo‖ = ds. Interference from
other G-oSTxs and G-iSTxs to the G-oSRxWo can cause the
outage. The following theorem captures the impact of both
PTxs, G-oSTxs, and G-iSTxs, on the outage of a typical G-
oSRxWo; a proof is given in the Appendix C.

Theorem 10. (Conditional Outage Probability of G-oSRx) For
a givenλp andλs, the conditional outage probability of a G-
oSRx at a distanceds from its active associated G-oSTx is
given by

P soG
out (λs) = 1− L

{aoQ(rooss ,Π
(4)
p ,rd)+aiQ(rioss,Π

(4)
p ,rd)}

(λs),

whereΠ(4)
p = Πp ∩ b(Zo, rd) ∪ b(Wo, rps) andQ (r,Π, t) ≡

∫

b(Wo,r)
1 {z /∈ B (Π, t)} dz.

Corollary 11. For given λp and λs, the upper and lower
bounds of a G-oSRx’s outage probability are given as follows:

P soG,u
out (λs) =1− exp {−λsq

o
G} , and

P soG,l
out (λs) =

qoG
qom

(1− exp {−λsq
o
m})

whereqooG = Ep[Q(rooss ,Π
(4)
p , rd)], qioG = Ep[Q(rioss,Π

(4)
p , rd)]

and qoG = aoq
oo
G + aiq

io
G .

The value ofqooG and qioG can be computed numerically, see
[38]. We omit the computation ofP siG

out the outage probability
of a typical G-iSRx.

VI. PERFORMANCE OFRECEIVER LOCATION-AWARE

TECHNIQUE

In this section, we consider the outage probabilities of a
PRx and L-oSRx. Since L-STxs can detect the exact location
of PRxs, they are allowed to transmit even if they lie within
the coverage area of PTxs as long as neighboring PRxs are
not harmed. We will set the detection radius for L-oSTx to
rLd = ds + rps, which accordingly determines the effective
detection radius of L-iSTx asrLid = ψ

1
α rLd . Note that this

choice will ensure that L-STx protect its L-SRxs from hidden
PTxs. Note that we haverLd ≪ rEd , i.e., since we can detect
and protect nearby PRxs directlyrLd does not need to be as
large as before.

A. Outage Probability of Primary Receiver

Since L-STxs do not give any harmful interference to PRxs,
the outage probability of a PRx is given as follows:

Fact 12. The outage probability of a PRx with L-STxs is given
asP pL

out(d) = 1 − 1 {d ≤ dp} . And the fraction ofR2 where
potential PRxs can successfully receive STxs’ signal is given
asPL

c (λp) = 1− E[P pL
out(D)] = 1− exp

{

−λpπd2p
}

.

B. Outage Probability of Secondary Receiver

In this section, we consider the outage probability of L-
SRxs. As before, we focus on the outage probability of L-
oSRxP soL

out since it is higher than that of L-iSRxs. Note that
L-oSTxs are allowed to transmit inside the coverage area of
PTx, which makesP soL

out for nodes inside the coverage area
different than that of those which are outside. If an active L-
oSRx is located within the coverage area of PTxs, then it is
likely to have fewer potential interferers than an L-oSRx that
is outside the coverage area. Indeed PRxs inside the coverage
will suppress the activity of potential interferers L-STxs. By
contrast there are no PRxs outside the coverage area, so L-
oSRxs in this region are likely to see more interferers. To
make this formal, we first define two subsetsCo andNo of R
distinguishing two regions for L-oSRxs in terms of its distance
to its nearest PTxd. If d ∈ Co ≡ [rps + ds, so), the L-oSRx
is inside the PTx’s coverage, while ifd ∈ No ≡ [so,∞),
then it is outside. We haveCo exclude(0, rps+ds) because if
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d ∈ (0, rps + ds), then the L-SRx will see an outage because
it is too close to the PTx, i.e., this region is not of interest.
The valueso is a conservatively selected boundary for the
coverage area which is similar todp but smaller thandp. 7

In the sequel, when we compute the outage probability of a
L-oSRx at distanced to its nearest PTx, we will suppose that
if d ∈ N≀ its associated L-oSTx and its potential secondary
interferers see no surrounding PRxs (λr = 0) that they can
interfere with, while if d ∈ Co, then the L-oSTx and its
potential secondary interferers will see a non-zero uniform
density of PRxs (λr > 0) they can interfere with. Note that
introducing two setsNo andCo is a simplification since at the
vicinity of dp, there is a region where the density of PRx is
non-uniform. By treating this intermediate region as outside
of coverage, we simplify our computation. Also note that this
is a conservative approximation since the computed outage
probability under this assumption is higher than actual outage
probability. Further details on the selection ofso are explained
in [38]. Using a similar argument for L-iSTx we can decide
Ci = [rips + ds, si), andNi = [si,∞), wheresi is the unique
solution of si + roiss + risp (dp) = dp. Above observation is
summarized as following fact.

Fact 13. Let P soL
out (d) be the conditional outage probability

of a L-oSRx at a distanced to its nearest PTx. Then, we have
P soL
out (x) ≤ P soL

out (y) for anyx ∈ Co and y ∈ No .

This implies that fewer contending L-oSTxs are allowed
outside of PTx’s coverage area than inside. Since our focus is
on the worst case, we only compute the outage probability of
L-oSTxs inNo.

Before computing the outage probability, we letΠL
so

and ΠL
si denote Cox processes modeling L-oSTxs and L-

iSTxs with densitiesao1 {To(z,Πr)} 1
{

z /∈ B(Πp, r
L
d )
}

and
ai1 {Ti(z,Πr)} 1

{

z /∈ B(Πp, r
Li
d )

}

at z ∈ R
2 respectively,

whereTo(z,Πr) is an event defined as

To (z,Πr) ≡

{

L-oSTx atz does not detect PRxs inΠr

that it could potentially interfere with

}

.

Note that 1 {To (z,Πr)} is a random variable which is a
function of z ∈ R

2 andΠr. If the distance betweenz and
its nearest PTx belongs toNo, we have1 {To (z,Πr)} = 1
with probability 1. Also the eventTi (z,Πr) can be defined
in similar way and we have1 {Ti (z,Πr)} = 1 for z whose
distance to its nearest PTx belongs toNi. Then, the outage
probability of a L-oSRx distanced ∈ No away from its nearest
PTx is given in the following theorem, which is proven in the
Appendix D.

Theorem 14. (Conditional Outage Probability of L-oSRx) For
givenλp andλs, the outage probability of a L-oSRx a distance
d ∈ No away from its nearest PTx is given as follows:

P soL
out (d, λs) = 1− L

{aoQ(rooss ,Π
(5)
p ,rL

d
)+aiQ(rioss,Π

(5)
p ,rLi

d
)}
(λs)

whereΠ(5)
p = Πp ∩ b(Zo, rLd ) ∪ b(Wo, so), andQ (r,Π, t) ≡

∫

b(Wo,r)
1 {z /∈ B (Π, t)} dz.

7Specifically,so is the unique solution ofso + rooss + rsp(dp) = dp, see
[38] for further detail.

We provide the upper and lower bounds ofP soL
out (d).

Corollary 15. For givenλp andλs, upper and lower bounds
on the outage probability of a L-oSRx a distanced ∈ No away
from its nearest PTx are given as

P soL,u
out (d, λs) =1− exp {−λsq

o
L} and (8)

P soL,l
out (d, λs) =

qoL
qom

(1− exp {−λsq
o
m}) , (9)

where qoL = aoq
oo
L + aiq

io
L , qooL = E[Q(rooss ,Π

(5)
p , rLd )] and

qioL = E[Q(rioss,Π
(5)
p , rLid )].

qooL andqioL can be computed numerically, see [38].

Fact 16. Note that ford ∈ No, we haveqooL = qoom , and
qioL = qiom, sinceqoom and qiom are constants, consequently the
upper and lower bounds ofP soL

out are not affected byd asP soE
out

andP soG
out aren’t.

Using a similar approach, we can also compute the outage
probability of L-iSRxP siL

out (d).

VII. M AXIMUM CONTENTION DENSITY FORSECONDARY

NODES GIVENǫ-OUTAGE CONSTRAINT

In this section, we will find the maximum contention
densities of STxs for each white space detection technique
under anǫ-outage constraint where0 < ǫ < 1 and ǫ = 1− ǫ.
This density maximizes the number of concurrent active STxs
while keeping the outage probability of SRxs belowǫ for a
givenλp andao. In the process, we will take the minimum of
the outdoor and indoor contention densities, because we need
to satisfy the outage constraint for both indoor and outdoor
nodes.

A. Density for E-STx

Given outage probabilitiesP soE
out (λs) and P siE

out (λs) ob-
tained for E-oSRx and E-iSRx respectively, the maximum
contention density for E-SRxs which guaranteesP soE

out (λs) ≤ ǫ
and P siE

out (λs) ≤ ǫ is defined asλǫEs ≡ min
{

λǫEso , λ
ǫE
si

}

,
where we haveλǫEso ≡ max

{

λs|P
soE
out (λs) ≤ ǫ

}

and λǫEsi ≡
max

{

λs|P siE
out (λs) ≤ ǫ

}

. We note that since interference is
attenuated indoor, we can showλǫEso ≤ λǫEsi , and accordingly
we haveλǫEs = λǫEso . Upper and lower bounds onλǫEso are given
as follows:

λǫE,u
so ≡max

{

λs|P
soE,l
out (λs) ≤ ǫ

}

= −
1

qom
log

(

1−
qom
qoE
ǫ

)

,

λǫE,l
so ≡max

{

λs|P
soE,u
out (λs) ≤ ǫ

}

= −
log ǫ

qoE
.

Note thatλǫEs is a function ofλp.

B. Density for G-STx

For the given outage probabilitiesP soG
out (λs) andP siG

out (λs)
obtained for G-oSRx and G-iSRx respectively, the max-
imum contention density for G-STxs which guarantees
P soG
out (λs) ≤ ǫ and P siG

out (λs) ≤ ǫ is given by λǫGs ≡
min

{

λǫGso , λ
ǫG
si

}

whereλǫGso ≡ max
{

λs|P soG
out (λs) ≤ ǫ

}

and
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λǫGsi ≡ max
{

λs|P siG
out (λs) ≤ ǫ

}

. Analogously with the previ-
ous case, we can show thatλǫGso ≤ λǫGsi , and accordingly we
haveλǫGs = λǫGso . Upper and lower bounds ofλǫGso are given
by

λǫG,u
so ≡max

{

λs|P
soG,l
out (λs) ≤ ǫ

}

= −
1

qom
log

(

1−
qom
qoG
ǫ

)

,

λǫG,l
so ≡max

{

λs|P
soG,u
out (λs) ≤ ǫ

}

= −
log ǫ

qoG
.

Note thatλǫGs is a function ofλp.

C. Density for L-STx

Note that in Section VI, we found the outage proba-
bility for a L-oSRx as a function of its distanced from
its closest PTx, so the corresponding contention density
will be also a function ofd. For the outage probabilities
P soL
out (λs) and P siL

out (λs) obtained for L-oSRx and L-iSRx
respectively, the maximum contention densityλǫLs is defined
as λǫLs ≡ min

{

mind∈Co∪No
λǫLso (d) ,mind∈Ci∪Ni

λǫLsi (d)
}

,
whereλǫLso (d) ≡ max

{

λs|P soL
out (d, λs) ≤ ǫ

}

and λǫLsi (d) ≡
max

{

λs|P siL
out (d, λs) ≤ ǫ

}

. Fact 13 implies thatλǫLso (x) ≥
λǫLso (y) for x ∈ Co andy ∈ No, andλǫLsi (x) ≥ λǫLsi (y) for x ∈
Ci andy ∈ Ni. It follows once again thatλǫLso (d) ≤ λǫLsi (d).
By Fact 16, it turns out thatλǫLs = λǫLso is not a function ofd.
Upper and lower bounds ofλǫLso are defined as

λǫL,uso ≡max
{

λs|P
soL,l
out (λs) ≤ ǫ

}

= −
1

qom
log

(

1−
qom
qoL
ǫ

)

,

λǫL,lso ≡max
{

λs|P
soL,u
out (λs) ≤ ǫ

}

= −
log ǫ

qoL
.

Note thatλǫLs is a function ofλp.

VIII. J OINT NETWORK CAPACITY REGION

In this section, we define and compute the capacity of
primary and secondary networks using the outage probability
and contention densities computed in the previous sections.
This will enable us to compute the joint network capacity
region exhibiting trade-offs between the two networks.

A. Broadcast Coverage Capacity of Primary Network

The capacity of the primary network coexisting with E-STxs
is defined as the mean number of bits that can be successfully
received by potential PRxs per second per meter square per
Hertz. It is given asbp times the fraction of effectively covered
area by PTxs in (7) as follows:

CE
1 (λp, ψ) = bpP

E
c

(

λp, λ
ǫE
s , ψ

)

.

Similarly, the capacity of primary network with G-STxs and
L-STxs can be computed usingPG

c andPL
c , they are denoted

CG
1 andCL

1 respectively.

B. Transmission Capacity of Secondary Network

The notion of capacity for secondary network, which we
adopt from [12], [27], is the transmission capacity measuring
the average number of successfully transmitted bits per square
meter per Hertz.

Transmission Capacity of Secondary Network with E-
STxs: For given λp and ao, the capacity of a secondary
network with E-STxs is defined as the sum of outdoor and
indoor transmission capacitiesCEo

2 andCEi
2 :

CE
2 (λp, ψ, ao) = CEo

2 + CEi
2

= bsaoλ
ǫE
s PEo

tx ǭ+ bsaiλ
ǫE
s PEi

tx ǭ,

where PEo
tx = exp{−λpπ(r

E
d )

2} and PEi
tx =

exp{−λpπ(rEi
d )2} are the transmission probabilities of

a typical E-oSTx and E-iSTx respectively. Recall that for an
E-oSTx (E-iSTx) to transmit it should detect the absence of
PTxs in its corresponding detection region. A larger detection
radius is good to protect PRxs and its intended SRx but
reduces exponentially its transmission opportunity. Notethat
λǫEs is also a function ofλp.

Transmission Capacity of Secondary Network with G-
STxs: For a givenλp and ao, the capacity of a secondary
network with G-STxs is defined as the sum of outdoor and
indoor transmission capacitiesCGo

2 andCGi
2 respectively:

CG
2 (λp, ψ, ao) = CGo

2 + CGi
2

= bsaoλ
ǫG
s PGo

tx ǭ + bsaiλ
ǫG
s PGi

tx ǭ,

where PGo
tx = exp

{

−λpπr2d
}

and PGi
tx = exp

{

−λpπr2d
}

are the transmission probabilities of G-oSTx and G-iSTx
respectively. Note thatλǫGs is a function ofλp.

Transmission Capacity of Secondary Network with L-
STxs: For a givenλp, λr, andao, the capacity of a secondary
network with L-STxs is defined as the expected value of the
sum of two transmission capacities:

CL
2 (λp, λr, ψ, ao) = CL

2 = E
[

CLo
2 (D) + CLi

2 (D)
]

,

where CLo
2 (D) ≡ bsaoλ

ǫL
s P

Lo
tx (D) ǭ and CLi

2 (D) ≡
bsaiλ

ǫL
s P

Li
tx (D) ǭ are the conditional capacities of a L-oSRx

and a L-iSRx when they are located at distanceD from its
nearest PTx. Note thatλǫLs is not a function ofD. The expected
value can be computed as follows:

E
[

CLo
2 (D)

]

=
∑

A∈{C0,N0}

E
[

CLo
2 (D) |D ∈ A

]

P (D ∈ A)

= bsaoλ
ǫL
s ǭ

∑

A∈{C0,N0}

E
[

PLo
tx (D) |D ∈ A

]

P (D ∈ A)

= bsaoλ
ǫL
s ǭ

(

PLoc
tx P (D ∈ Co) + PLon

tx P (D ∈ No)
)

,

Similarly, we have

E[CLi
2 (D)] = bsaiλ

ǫL
s ǭ(P

Lic
tx P (D ∈ Ci) + PLin

tx P (D ∈ Ni)),

where, PLoc
tx , PLon

tx , PLic
tx and PLin

tx are conditional trans-
mission probabilities of L-oSTx whend ∈ Co and d ∈ No

and that of L-iSTx whend ∈ Ci and d ∈ Ni respectively.
They are computed asPLoc

tx = E[exp{−λrπr
2
sp(D)}|D ∈

Co], and PLic
tx = E[exp{−λrπ(risp(D))2}|D ∈ Ci] and

PLon
tx = PLin

tx = 1. These can be numerically computed since
distribution ofD is known. And, it is straightforward to find
P (D ∈ Co), P (D ∈ No), P (D ∈ Ci) andP (D ∈ Ni).
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C. Joint Network Capacity Region

We define the joint network capacity region when secondary
nodes using simple signal energy detection method as the
set of achievable capacities for the primary and secondary
networks, which is given as

ΛE (ψ, ao) ≡ { (x, y) ∈ R
2| ∃λp ≥ 0, s.t.

x = CE
1 (λp, ψ, ao) , 0 ≤ y ≤ CE

2 (λp, ψ, ao)}.

The joint network capacity regions for positioning-assisted and
receiver location-aware techniques are denoted asΛG (ψ, ao)
and ΛL (λr, ψ, ao) respectively, that are similarly defined.
Note that we have lower and upper bounds on the contention
density rather than an exact value, so we get the lower (inner)
and upper (outer) bounds on the capacity and joint network
capacity region by replacingλǫEs with λǫE,u

s or λǫE,l
s . This also

applies to other cases. In Figs.7-9, we only draw the lower
bounds of joint network capacity regions since upper bounds
are almost on top of associated lower bounds. In all cases
ǫ = 0.1 was used.

Impact of indoor shadowing (signal energy detection
technique): Let us consider the impact of indoor shadowing
on the joint network capacity region of two networks under the
signal energy detection method. Fig.5a shows the joint network
capacity regions under various values of indoor shadowingψ.
We make following interesting observations. If the primary
network is sparse, in the regime with relatively lowC1, as
the shadowing level increases (i.e.,ψ decreases), the capacity
C2 increases, further increases ofψ eventually decreaseC2,
that isC2(λp, ψ) has its maximum value at someψ∗ which
is the function ofC1. While if the primary network is dense,
there is not much change in capacity. This can be explained in
following ways. As the level of indoor shadowing increases,
the E-oSRxs receive less interference from E-STxs, which
decreases the outage probability of E-oSRx and eventually
leads to an higher contention density. It contributes to capacity
as a gain. But simultaneously we also have aloss, which
comes from the decreasing transmission probability causedby
over-conservatively increasing detection radius. It discourages
the transmission attempts of E-oSTxs and have a negative
impact on capacity. The capacity increases if the increase
of contention density dominates the decrease of transmission
probability. And, the capacity decreases otherwise. Consider
increasing shadowing level, then, the point that the loss dom-
inates the gain comes late as the primary network gets sparse
since the more sparse the primary network is, the more E-
oSTxs it can accommodate. So, capacityC2 in sparse network
has its maximum at a certainψ value. While, in dense network,
both the gain and loss are comparable and are balanced so
there is not much change in capacity.

Impact of indoor shadowing (positioning-assisted tech-
nique): We consider the impact of indoor shadowing on the
joint network capacity region under positioning method, see
Fig.5b. In this case, the joint network capacity region strictly
increases as shadowing level increases. This is explained as
follows. Recall that the detection performance of the position-
ing assisted method is not affected by indoor shadowing, so
they can correctly detect the existence of PTxs within their
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(a) joint network capacity regions under the signal energy detection method
were shown for various values of indoor shadowing levelψ. If ψ = 0dB,
then the we have roughly linear tradeoff. As the shadowing level increases
(asψ decreases), network capacity region increases but after a certain point,
it decreases.
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(b) Joint network capacity regions under the positioning-assisted method
were shown for various values of indoor shadowing levelψ. The network
capacity region increases strictly inψ for all C1 as the shadowing level
increases.

Fig. 5: Joint network capacity regions of signal energy detection
method (left) and positioning-assisted method (right) under various
indoor shadowing levelψ with fixed ao = 0.5. The numbers
above/below markers in graphs denote the density of PTxsλp at
the collection of markers with the similarC1 values.

detection radiusrd. Thus, there is no loss in transmission
probability. However, the level of interference from other
nodes is affected by the indoor shadowing levelψ. It turns
out that there is onlygain without loss as compared to
signal energy detection case. In fact, as the shadowing level
increases, G-oSRxs get less interference from G-iSRxs due to
strong attenuation, which eventually allows a higher maximum
contention density. Thus, we have onlygain, which results in
a strict increase ofC2 with ψ for all C1. The actualgain of
indoor shadowingdepends on the level of indoor shadowing,
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e.g. whenψ = −10dB, the gain (compared toψ = 0dB case)
is approximately66% and whenψ = −20dB, the gain is
roughly 200%. If ψ → −∞dB, then, the G-SRxs are free
from interference from G-iSRxs and the their performance
is constrained by their self interference from G-oSTxs to G-
oSRxs.

Impact of indoor shadowing (receiver location-aware
technique): Fig.6a shows the joint network capacity region
of the receiver location-aware method underλr = 10−4m−2.
Due to the receiver detection function, more L-STxs can be
active (even inside the coverage). This significantly increases
the joint network capacity region. The same argument on
decreased interference and resulting increased maximum den-
sity applies here. One interesting observation is that there
exists a regime where both primary and secondary capacity
increases together. This happens when the density of PTxs is
very high. In this case L-STxs are more likely to succeed in
their transmissions, since L-STxs close to PTxs require smaller
region to be PRx free. Recall that those PRxs close to PTxs
are receiving strong signals from PTxs, so it is hard for L-
STxs to harm them. This allows a larger number of L-STxs
be active close to PTxs than at the edge of the PTxs’ coverage
area. Fig.2c depicts this situation.

Note, however, that a further increase inλp forces C2

to 0. This happens because onceλp is large enough the
entire R

2 plane is covered byB(Πp, dp) and C1 reaches
its limit 3.5. Further increases inλp increase the region
B(Πp, r

Li
d ) = ∪X∈Πp

b(X, rLid ) where no L-STxs are allowed
to transmit. Note thatrLid ≪ dp and STxs can potentially
interfere with PRxs if they are located insideB(Πp, r

Li
d ).

This reduces white space available to L-STxs, and accordingly
C2 eventually reaches 0. Thegain of shadowingdepends on
the level of indoor shadowing, e.g. whenψ = −10dB gain
(compared toψ = 0dB case) is approximately66% and when
ψ = −20dB, the gain is roughly200%. As ψ → −∞dB,
interference from indoor devices to outdoor devices decreases,
and the secondary capacity is limited by the self interference
of L-oSTxs. The joint network capacity region is also affected
by the density of primary receiverλr as shown in Fig.6b .
If λr = 0, then, the activity of L-STxs are hardly affected
except the extreme case whenC1 ∼ 3.5. As λr increases,
L-STxs lose their transmission opportunities and accordingly
secondary capacity decreases. Ifλr is very high, e.g, more
than 10−2, then, almost no L-STxs are allowed to transmit
inside PTxs’ coverage area. The joint network capacity region
of this case is equivalent to that of the positioning-assisted
technique. Thus, the capacity trade-off is almost linear.

Impact of the Fraction of Indoor Nodes:The fraction of
indoor nodesai = 1− ao has a direct impact on capacity. Let
us consider how the joint network capacity region changes as
a function ofao. Fig.7a-7b show the joint network capacity
region for two extreme situations, whereao = 1 andao = 0
respectively. The case whereao = 0.5 was shown in Fig.1.
The indoor shadowing levelψ is fixed to−10dB. The shapes
of network capacity regions forao = 1 and ao = 0.5 are
similar to each other but the network capacity region for
ao = 0 is larger than that forao = 1. In Fig.7a, we have
E-oSTxs using a very conservative detection radius, which
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were shown for various values of indoor shadowing levelψ andλr = 10−4 .
Increasing indoor shadowing increases the joint network capacity region. For
fixed ψ, the shape of joint network capacity region depends on the density
of PRxs (see right figure).
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Fig. 6: Joint network capacity regions under receiver location-aware
technique. The numbers above markers in graphs denotes the density
of PTxsλp at the collection of markers with the similarC1 values.

makes them inefficiently utilize white space8. As the portion
of indoor nodesai increases (orao decreases), iSTxs make
less interference and oSTxs’ outage probability decreases,
which eventually allows a higher maximum contention density.
C2 increases and accordingly joint network capacity region
is extended. At the other extreme with no outdoor nodes
(ao = 0), we have the same joint network capacity region

8Note that if an operator knows that there is no L-iSTxs at all,then
they don’t need to use conservative detection radii. Caseao = 1 should
be understood as the case where we have extremely small number of E-
iSTxs while most are E-oSTxs. Their detection radii are set conservatively
considering the E-iSTxs.
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in Fig.1.

Fig. 7: Joint network capacity region under variousao with ψ =
−10dB. Caseao = 0.5 is shown in Fig.1.

for signal energy detection technique and positioning-assisted
technique since there no longer are E-oSTxs which use white
spectrum inefficiently. Note that the overall network capacity
region is again significantly increased as compared to the
case whereao = 1. When ao = 0.5, as shown in Fig.1,
the gain of positioning-assisted technique to signal energy
detection technique is76% and that of receiver location-aware
technique is177% whenλp = 2 × 10−10m−2. This gain can
be increased further in denser primary networks. From the
above two observations, we conclude that indoor shadowing,
which is a source of uncertainty from signal energy detection
point of view, can increase the capacity of cognitive networks.
If cognitive devices can access some knowledge on their
environment or additional information they can best utilize
the shadowing to improve network capacity.

IX. CONCLUSION

In this paper, we havequantifiedthe gain of three different
white space detection techniques with varying degrees of
RF-environment awareness under an indoor shadowing envi-
ronment. Using a simple stochastic geometric model where
primary and secondary nodes were modeled as Poisson point
processes, we derived the joint network capacity region of two
networks. It turned out that when ad hoc cognitive networks
used the signal energy detection method, indoor shadowing
was a source of uncertainty that could either increase or de-
crease the capacity of networks. However, if secondary devices
had a little bit of knowledge of the environment (shadowing),
then, the shadowing became the source of “hidden" capacity,
i.e., they were able to achieve a significantly higher capacity in
a shadowing environment. We noted that the receiver location-
aware white space detection technique was by far the most
promising way of detecting and filling spatial white space,
while positioning-assisted technique, which still results in a
large improvement over signal energy detection scheme, was
inferior than receiver location-aware technique. Our results
showed that enabling cognitive devices to be aware of the
locations of the PRxs will lead to significant performance
gains depending on the density of PRx’s. We further note
that this framework can be extended to evaluate advanced
cognitive radio techniques requiring even more knowledge
such as primary users’ messages as shown in [39], [40].
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APPENDIX A
PROOF OFTHEOREM 1

Proof: We define following for notational simplicity:

K1 ≡ K (X, rd;Y, rsp(d)) ,

K2 ≡ K
(

X, rid;Y, r
i
sp(d)

)

,

A ≡ {Y not interfered by active E-STxs}

=
{

Y /∈ B (Π′
so, rsp) , Y /∈ B

(

Π′
si, r

i
sp

)}

, and

B ≡ {‖X − Y ‖ = d} .

Suppose that a PRxY is located a distanced ≤ dp from its
nearest PTxX as shown in Fig.8a. Conditioning on this event
means that there are no PTxs withinb (Y, d); this is exhibited
as a shaded disc in Fig. 8a. The PRxY can be interfered by
potential E-oSTxs inK1 and E-iSTxs inK2. Note, however,
that not all E-STxs inK1 andK2 are active since to be active
they require a PTx free area around them. For example, in
Fig.8a, an E-oSTxz requires the regionb (z, rd) be PTx free.
Similarly, an E-iSTxz requires the regionb

(

z, rid
)

be PTx
free. So, the conditional outage probability given the eventB is
given byP p

out(d) = P (Y fails to receive|B) = 1−P (A|B),
whereP (A|B) is computed as follows:

P (A|B)
a
= E[P (A|BΠp)|B]
b
= E

[

P (Y /∈ B (Π′
so, rsp) |BΠp)×

P
(

Y /∈ B
(

Π′
si, r

i
sp

)

|BΠp

)

|B
]

c
= E

[

exp
{

−

∫

K1

λso1{z /∈ B(Π(2)
p , rd)}dz

}

×

exp
{

−

∫

K2

λsi1{z /∈ B(Π(2)
p , rid)}dz

}

|B
]

d
= E

[

exp{−λs(aoL1(d,Π
(2)
p ) + aiL2(d,Π

(2)
p ))}

]

In
a
=, we conditioned onΠp, since eventA depends

on Πp (note that Π′
so and Π′

si are processes de-

pending on Πp). In
b
=, we used the fact that the

events {Y /∈ B (Π′
so, rsp)} = {Π′

so ∩ b(Y, rsp) = ∅} and
{

Y /∈ B
(

Π′
si, r

i
sp

)}

=
{

Π′
si ∩ b(Y, r

i
sp) = ∅

}

are condition-
ally independent givenΠp. In other words, for given primary
transmitters’ locations, the locations of active indoor nodes
and outdoor nodes are independent. In

c
=, the two outage

probabilities are given as the void probabilities of random
areas which should not be covered by PTx processΠ

(2)
p out

of K1 and K2 respectively. For simplicity we defineΠ(2)
p

as Πp conditioned onB. In
d
=, the expectationE is w.r.t.

to a new conditioned random processΠ(2)
p , so we remove

conditioning. Ifd > dp, the PRx is out of PTx coverage area,
soP p

out (d) = 0.

APPENDIX B
PROOF OFTHEOREM 6

Proof: Suppose that an E-oSTxZo detects the
absence of PTxs in its detection rangeb

(

Zo, r
E
d

)

as
shown in Fig.9. ConsiderZo’s intended receiver E-
oSRx Wo which is a distance ds from Zo. Then,
the conditional outage probabilityP soE

out is given as
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(a) By conditioning PRxY at distanced to its nearest PTxX, we have no
PTx in shaded regionb (Y, d). A PRx Y can be interfered by potential E-
oSTxs in hatched regionK1 = b (Y, rsp) \b (X, rd) or E-iSTxs in hatched
regionK2 = b

(

Y, risp
)

\b
(

X, ri
d

)

. The activity of potentially harmful E-
iSTxs and E-oSTxs are affected by surrounding PTxs, e.g., E-oSTx z is
active only when there is no PTxs inb (z, rd).

(b) By conditioning PRxY at distanced to its nearest PTxX, we have no PTx
in shaded regionb (Y, d). A PRx Y can be interfered by potential E-oSTxs
in hatched regionK3 = b (Y, rsp) \b

(

X, rE
d

)

or E-iSTxs in hatched region
K2 = b

(

Y, risp
)

\b
(

X, rEi
d

)

. The activity of potential E-iSTxs and E-oSTxs
are affected by surrounding PTxs, e.g., E-oSTxz is active only when there is
no PTxs inb

(

z, rE
d

)

.

Fig. 8: PTxX and PRxY were shown with E-STxs using signal
energy detection method. Left figure corresponds to the casewith
detection radius considering only outdoor devices in Section IV-A
and right figure corresponds to the case with conservative detection
radius in Section IV-B.

P (Wo fails to receive|Zo transmits, ‖Zo −Wo‖ = ds).
For notational simplicity we define following three events
valid only in this proof:

D ≡ {Wo not interfered by active STxs}

=
{

Wo /∈ B
(

ΠE
so, r

oo
ss

)

,Wo /∈ B
(

ΠE
si, r

io
ss

)}

,

E ≡ {Wo not interfered by PTx}

= {Wo /∈ B (Πp, rps)} , and

F ≡
{

Zo not detects PTx inb
(

Zo, r
E
d

)}

=
{

Zo /∈ B
(

Πp, r
E
d

)}

.

Then,P soE
out can be written as

P soE
out

a
= 1− P (Wo receives|F )

= 1− P (D|EF )P (E|F )

where in
a
=, we omitted conditioning on{‖Zo −Wo‖ = ds}

for notational simplicity.P (E|F ) and P (D|EF ) can be
computed as follows:

P (E|F ) = P (Wo /∈ B(Πp, rps)|Zi /∈ B(Πp, r
E
d ))

= exp{−λp|K(Zo, r
E
d ,Wo, rps)|} = 1. (10)

Note that for a given parameter set or a scenario of interest,
we have‖K(Zo, r

E
d ,Wo, rps)| = 0 since detection radiusrEd

is much larger than the interference radiusrps, which results
in P (E|F ) = 1 in (10). Recall thatrEd ≥ rps + ds guarantees
the absence of hidden PTxs and therefore there is no negative
impact from such PTxs. Thus we have that

P (D|EF )
a
= E

[

P (Wo /∈ B(ΠE
so, r

oo
ss ),Wo /∈ B(ΠE

si, r
io
ss)|EFΠp)|EF

]

b
= E

[

P (Wo /∈ B(ΠE
so, r

oo
ss )|EF,Πp)×

P (Wo /∈ B(ΠE
si, r

io
ss)|EF,Πp)|EF

]

c
= E

[

exp
{

−

∫

b(Wo,rooss )

λso1
{

z /∈ B
(

Π(3)
p , rEd

)}

dz
}

×

exp
{

−

∫

b(Wo,rioss)

λsi1
{

z /∈ B
(

Π(3)
p , rEi

d

)}

dz
}

|EF
]

d
= E

[

exp{−λs(aoQ(rooss ,Π
(3)
p , rEd ) + aiQ(rioss,Π

(3)
p , rEi

d ))}
]

.

In the above equality
a
=, we used conditional expectationE

given the eventEF . In
b
=, we used the fact that the two

events are conditionally independent givenΠp and in
c
=, the

probability thatWo is not covered by the Boolean process
B
(

ΠE
so, r

oo
ss

)

is given as the void probability of the random
subset ofb(Wo, r

oo
ss ). The second probability is also computed

in the same fashion. Furthermore we used the fact thatΠp

conditioned onEF is the same asΠ(3)
p . In

d
=, E is taken

w.r.t. the new random processΠ(3)
p . This completes the proof.

APPENDIX C
PROOF OFTHEOREM 10

Proof: Suppose that a G-oSTxZo detects the
absence of PTxs in its detection radiusb (Zo, rd) as
shown in Fig.10. ConsiderZo’s intended receiver G-
oSRx Wo which is at distanceds from Zo. Then,
the conditional outage probabilityP soG

out is given by
P (Wo fails to receive|Zo transmits, ‖Zo −Wo‖ = ds). For
notational simplicity we define the following three events
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Fig. 9: Conditioned that there are no PTxs in
b
(

Zo, r
E
d

)

(⊃ b (Wo, rps)), an E-oSRx Wo can be interfered
by potential E-oSTxs inb (Wo, r

oo
ss) or potential E-iSTxs in

b
(

Wo, r
io
ss

)

. Their activities are determined by surrounding PTxs in
b
(

z, rEd
)

for E-oSTxs andb
(

z, rEi
d

)

for E-iSTxs.

Fig. 10: Conditioned that there are no PTxs in
b (Zo, rd) (⊃ b (Wo, rps)), a G-oSRx Wo can be interfered by
potential G-oSTx inb (Wo, r

oo
ss) or G-iSTxs in b

(

Wo, r
io
ss

)

. The
activity of potential G-oSTxs(G-iSTxs) are affected by surrounding
PTxs, e.g., a G-oSTx(G-iSTx) atz can be preempted by PTxs inside
b(z, rd).

valid only in this proof:

D ≡ {Wo is not interfered by any G-STx}

=
{

Wo /∈ B
(

ΠG
so, r

oo
ss

)

,Wo /∈ B
(

ΠG
si, r

io
ss

)}

,

E ≡ {Wo is not interfered by any PTx}

= {Wo /∈ B (Πp, rps)} , and

F ≡ {Zo doesnot detect any PTx inb (Zo, rd)}

= {Zo /∈ B (Πp, rd)} .

The probability of outageP soG
out can be written asP soG

out

a
=

1 − P (Wo receives|F ) = 1 − P (D|EF )P (E|F ) , where
the equality

a
= follows by omitting conditioning on

{‖Zo −Wo‖ = ds} for notational simplicity.P (E|F ) and
P (D|EF ) are computed as follows:

P (E|F ) = P (Wo /∈ B (Πp, rps) |Zo /∈ B (Πp, rd))

= exp {−λp |K (Zo, rd,Wo, rps)|} = 1.

P (D|EF )
a
= E

[

P (Wo /∈ B(ΠG
so, r

oo
ss ),Wo /∈ B(ΠG

si, r
io
ss)|EFΠp)|EF

]

b
= E

[

P
(

Wo /∈ B
(

ΠG
so, r

oo
ss

)

|EFΠp

)

×

P
(

Wo /∈ B
(

ΠG
si, r

io
ss

)

|EFΠp

)

|EF
]

c
= E

[

exp
{

−

∫

b(Wo,rooss )

λso1
{

z /∈ B
(

Π(4)
p , rd

)}

dz
}

×

exp
{

−

∫

b(Wo,rioss)

λsi1
{

z /∈ B
(

Π(4)
p , rd

)}

dz
}

|EF
]

= E
[

exp{−λs(aoQ(rooss ,Π
(4)
p , rd) + aiQ(rioss,Π

(4)
p , rd))}

]

In the above equality
a
=, E is a conditional expectation

conditioned onE andF . In
b
=, two events are conditionally

independent givenΠp and in
c
=, Πp conditioned onEF is the

same asΠ(4)
p .

APPENDIX D
PROOF OFTHEOREM 14

Proof: We condition on that an L-oSRxWo is located
a distanced(≥ so) away from its nearest PTx as shown
in Fig.11. This ensures that there is no PTx in a shaded
disc b (Wo, so). Note that our scenario (or parameter selec-
tion) guaranteesb (Wo, so) ⊃ b

(

Zo, r
L
d

)

. An associated L-
oSTx Zo is located a distanceds from the L-oSRxWo.
Then, the conditional outage probabilityP soL

out (d) is given
by P (Wo fails to receive|Zo transmits, ‖Zo −Wo‖ = ds, d ≥
so). For notational simplicity we define the following events
valid only in this proof:

D ≡ {Wo is not interfered by any L-STx}

=
{

Wo /∈ B
(

ΠL
so, r

oo
ss

)

,Wo /∈ B
(

ΠL
si, r

io
ss

)}

,

E ≡ {Wo is not interfered by any PTx}

= {Wo /∈ B (Πp, rps)} ,

F ≡
{

Zo doesnot detect any PTx inb
(

Zo, r
L
d

)}

=
{

Zo /∈ B
(

Πp, r
L
d

)}

, and

G ≡ {d ≥ so} = {Wo /∈ B (Πp, so)} .



IEEE JSAC SPECIAL ISSUE ON ADVANCES IN COGNITIVE RADIO NETWORKING AND COMMUNICATIONS 19

Fig. 11: Conditioned that there are no PTxs in
b (Wo, so)

(

⊃ b
(

Zo, r
L
d

))

, a L-oSRx Wo can be interfered by
potential L-oSTx inb (Wo, r

oo
ss) or L-iSTxs in b

(

Wo, r
io
ss

)

. Their
activities are determined by surrounding PTxs, e.g., PTxs in
b
(

z, rLd
)

for a L-oSTx atz and PTxs inb
(

z, rLi
d

)

for a L-iSTx at
z. However, no PRxs outside of coverage androoss + rLd < so in our
scenario guarantee that all harmful L-STxs are active.

Then, the outage probability is given by

P soL
out (d) = 1− P (Wo receives|FG)

= 1− P (DE|FG)

= 1− P (D|EFG)P (E|FG) ,

whereP (E|FG) andP (D|EFG) can be computed as

P (E|FG)

= exp{−λpπ|b(Wo, rps)\{b(Zo, r
L
d ) ∪ b(Wo, so)}|} = 1,

P (D|EFG)

= E[P (Wo /∈ B(ΠL
so, r

oo
ss ),

Wo /∈ B(ΠL
si, r

io
ss)|EFGΠp)|EFG]

a
= E[P (Wo /∈ B(ΠL

so, r
oo
ss )|EFGΠp)

× P (Wo /∈ B(ΠL
si, r

io
ss)|EFGΠp)|EFG]

b
= E

[

exp
{

−

∫

K4

λso1{To(z,Πr)}1{z /∈ B(Π(5)
p , rLd )}dz

}

×

exp
{

−

∫

K4

λsi1{Ti(z,Πr)}1{z /∈ B(Π(5)
p , rLid )}dz

}

|EFG
]

c
= E

[

exp{−λsoQ(rooss ,Π
(5)
p , rLd )}

× exp{−λsiQ(rioss,Π
(5)
p , rLid )}|EFG

]

d
= E

[

exp{−λs(aoQ(rooss ,Π
(5)
p , rLd ) + aiQ(rioss,Π

(5)
p , rLid ))}

]

.

In
a
=, we use the fact that two events are conditionally

independent. In
b
=, we haveK4 = b(Wo, r

oo
ss ) and introduce

Πp conditioned onEFG which is denoted asΠ(5)
p . In

c
=, we

use the fact that1 {To (z,Πr)} = 1 {Ti (z,Πr)} = 1 since

Wo is in the outside of PTx’s converge. In
d
=, E is w.r.t. a

new random processΠ(5)
p . This completes the proof.
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