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In this dissertation we study four areas where members’ cooperative behavior in

discovering and sharing network resources can be beneficialto achieving various objectives

in group communication. We propose a framework for discovering the topology of a shared

multicast tree based on a novel fan-out decrement mechanismanalogous to time-to-live

(TTL) decrementing in IP. The proposed algorithm for topology discovery is based on the

matrix of path/fan-out distances among session members. Weexhibit sufficient conditions

for topology discovery based on a reduced distance matrix, and propose a practical protocol

to acquire this information. Additionally, we show how the same approach permits nodes to

discover the multicast distribution tree associated with members within their fan-out/TTL

scoped neighborhoods. This permits one to reduce the computational costs while making

the communication costs proportional to the size of neighborhoods.

vii



We then present a novel distributed and scalable framework to support on-demand

filtering and tracing services to defeat distributed Denialof Service attacks. Our filtering

mechanism is designed to quickly identify a set ofboundaryfilter locations so that attack

packets might be dropped as close as possible to their origin(s). We argue that precisely

identifying the origins of an attack is infeasible when there is only a partial deployment of

tracing nodes - as is likely to be the case in practice. Thus wepresent a tracing mechanism

which can identify sets of candidate nodes containing attack origins. Both mechanisms use

multicasting services to achieve scalable, responsive androbust operation.

Next we propose a topology-sensitive subgroup communication (TSC) mechanism

to support efficient subgroup communications in large-scale multicast applications. Our

TSC mechanism exploits spatial locality among members communications within a given

subgroup, and enables members to autonomously build a TSC forwarding structure consist-

ing of multiple unicast and scoped multicast connections. This can completely eliminate the

need to create additional multicast sessions while minimizing the exposure of receivers to

unnecessary packets. Simulations of this approach suggestthat TSC mechanisms perform

well for diverse densities and distributions for a subgroup’s nodes.

Finally we propose a method to quickly distribute large filesacross distributed

nodes. Our Adaptive FastReplica (AFR) mechanism exploits path diversity among the ori-

gin and receivers and adaptively balances loads across overlay paths. Since our approach

uses a fixed overlay structure but then adapts the loads across paths, the control overhead

associated with constructing and maintaining overlay structure, typical of application-level

multicasting solution, is reduced. Based on our experiments with a prototype implemen-

tation over the Internet, we demonstrate its efficiency at minimizing the overall replication

time.
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Chapter 1

Introduction

There is an old adage saying

Two heads are better than one.

This proverb suggests that if a group of people get together and share their intellectual as-

sets, an abundance of knowledge will be amassed and the solution to many problems found.

In this dissertation, we draw on this concept in the context of computer networking. Our

goal is to exhibit cases wheregroup communicationscan be useful to achieve various objec-

tives. Furthermore, we want to gain insights on exactly which components or characteristics

of group communications are being exploited in accomplishing those objectives.

While traditional network and transport protocols supportonly point-to-pointcom-

munication (unicasting) service, there has been a growing need for efficientmultipointcom-

munication (multicasting) to support a plethora of multi-party applications, including audio

and video conferencing tools, shared electronic white boards, distributed interactive sim-

ulation and multi-player games. Due to the significant amounts of bandwidth that such

applications may require, it would not be efficient to develop them over traditional point-
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to-point communication. The terms “multicasting” and “group communication” are often

used interchangeably among network researchers. However,“group communication” needs

to be distinguished from “multicasting.” In a group communication, there are multiple enti-

ties sharing common goals, and members in a group may communicate with each other via

multicasting or unicasting. That is, multicasting or unicasting simply specify communica-

tion methods on how data or content are exchanged among members in a group.

In the last decade, there has been, and there still is, a largeamount of research effort

on support for efficient multipoint communication. The workincludes a network-level

solution, i.e., IP multicast [1] as well as application-level multicasting [2, 3, 4]. In these

problem settings, the existence of multiple entities (mostlikely hosts or nodes in networks)

are assumed, and the main objective is to devise efficient data delivery mechanisms for

communication among members in a group. The work in this dissertation is basically in

alignment with this research effortbut our focus is on highlighting (1) a variety of contexts

where member nodes cooperate, and (2) the advantageous features to be exploited by group

communications.

An example of how group communication is effectively used toachieve a special

goal is that of a Distributed Denial of Service (DDoS) attack, which will be dealt with in

Chapter 3. From the perspective of victims, a DDoS attack is one of the most difficult

security problems to address and one of the greatest threatsto today’s Internet. However,

ironically, DDoS attack is one of the greatest products which can effectively attack the tar-

get victim from the perspective of the attacker. In DDoS attacks, the attacker plants attack

tools on a number of computers by exploiting security vulnerabilities – turning them into

“zombies.” To generate a flood of network traffic to the victim’s site, the attacker issues

commands to “handler” computers, and each in turn, sends commands to zombie comput-

2



ers. Finally, a group of zombie computers forces a flood on thevictim site as shown in

Figure 1.1. As can be seen, the critical innovation in DDoS attacks is exploiting the fact

that there are multiple distributed zombie computers. Eventhough the small number of

attack packets from each zombie may be negligible, when thisis multiplied by the large

number of zombie computers, their impact can be significant and hard to mitigate. Eventu-

ally, in this scenario, the attackers’ goal of shutting downtarget systems can be effectively

accomplished with the coordination of members that unwittingly join the group of zombies.

As will be seen in the sequel, we propose a mechanism to defeatDDoS attacks based on the

same spirit in which they are realized, i.e., a group of distributed components in networks

will perform filtering and tracing of attack packets in a cooperative manner.

Figure 1.1: Architecture of DDoS attack.

In group communications, there are many challenges and issues that need to be

resolved, such as scalability and heterogeneity. The difficulty in handling these problems

comes from the fact that group communication deals with interaction amongmultipleenti-

ties, often resulting in more complex situations, versus traditional point-to-point type com-

munication. In this dissertation, we are interested in how such diversity can be turned into

3



an advantage to build various applications/tools drawing on group communication. The key

point here is that in group communication environments, there may be ample opportunities

to exploit diversity, share resources, and collaborate among distributed entities. For this

purpose, we studied four different problems and associatedsolutions where multicasting

methods range from IP multicast to application-level multicast.

In Chapter 2, we study the topology and resource discovery problem for IP mul-

ticast. Knowing other members’ locations and capabilitiesis a critical starting point for

members to cooperate and perform a common task in group communication environments.

Thus, discovering multicast tree topologies is an important component in various areas,

such as multicast network management, reliable multicast and multicast congestion control

protocols. In this chapter, we propose a new approach to shared tree discovery based on

path and fan-out distance information between end nodes in atree. The fan-out distance

information is obtained via a novel fan-out decrement mechanism, which is analogous to

the time-to-live (TTL) decrement mechanism in IP.

In Chapter 3, as mentioned the above, we study how to effectively thwart DDoS at-

tacks. Unfortunately, the stateless nature of IP protocolsmake it difficult to identify the true

source of packets if the sources wish to conceal it. Thus, we propose a tracing mechanism

which can identify sets of candidate nodes containing attack origin(s). Furthermore, we pro-

pose an on-demand filtering mechanism which enables a host torequest unwanted packets

to be dropped early on, before they reach the victim. Since they are based on IP multicast

service, both mechanisms could achieve scalable, responsive and robust operation.

In Chapter 4 we deal with thepreference heterogeneityproblem in large-scale mul-

ticast sessions. Abundant content, data type and diverse members’ interests naturally lead to

preference heterogeneity within large multicast sessions, requiring communication among
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subgroups of members sharing common interests/requirements. Thus, we propose a new

approach to support efficient subgroup communication. The key idea is to use a combina-

tion of unicast and scoped multicast so as to exploit the spatial locality of members within a

subgroup. That is, scoped multicast is used if members are well clustered, otherwise unicast

is used. Here, finding nearby neighborhoods’ preferences and cooperating to forward data

are key elements of our solution.

In Chapter 5, we consider a content delivery problem across geographically dis-

tributed nodes. Our focus is on distributing large files, such as software packages, stored

streaming media files or data associated with distributed simulations, and the objective is to

minimize the overall replication time. Our basic idea is to partition a large file into multiple

chunks, which each get transmitted to an associated receiver. In turn, each receiver relays

its chunk to the other receivers. By contrast with more complex application-level multi-

casting strategies, our approach does not require optimal construction of paths or probing.

Instead, it uses a fixed but large collection of unicast pathsamong the receivers. This per-

mits the traffic to be spread across the network so as to exploit path diversity. This approach

is extended to support adaptive balancing of the loads across paths by creating non-uniform

partitions of the file.

We conclude the dissertation in Chapter 6, where we summarize the key findings of

our work and highlight the benefits we have exhibited for collaborative resource discovery

and sharing in applications based on distributed group communications.
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Chapter 2

IP multicast topology discovery

2.1 Introduction

Due to its bandwidth efficiency, IP Multicast is the preferred data delivery method for large

one-to-many communication scenarios. Another advantage associated with IP multicast

service, is as an abstraction for group communication, thatis, users can join and leave a

multicast session without requiring explicit knowledge ofthe membership or of the struc-

ture of the distribution tree. However, despite this clean abstraction, if the use of IP mul-

ticast sessions becomes widespread, we observe that the potential downside from hiding

topological information on multicast distribution trees may be heightened.

Depending on the scope of interest, IP multicast resource and topology discovery

problems can be classified into two categories:global, where one is interested in discov-

ering all the members in a multicast session andlocal, where one is interested in finding

relationships among a subset of members in a session and their associated topology.

From the perspective of IP multicast service user (e.g., movie distributor, advertiser)

the number of subscribers in a session, their location, and their density in a specific region
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may be useful information. From the perspective of a networkservice provider, the extent

to which network resources are being used (e.g. number of links and routers) by a given

multicast session may be important to assess usage costs. Inboth cases knowledge of the

global multicast topology would significantly facilitate resource management.1

In a large scale multicast session, it is not uncommon for nearby members to co-

operate and perform a common task, such as distributed computation and data sharing. In

this case, thelocal topology and membership information for a neighborhood of agiven

node would be useful. A typical use of local resource and topology discovery is in build-

ing schemes for loss recovery and congestion control in the context of multicast sessions

supporting heterogeneous receivers. While a variety of approaches have been proposed to

tackle this problem, e.g., [5], [6], [7], [8], [9], a common thread is to recognize that per-

formance can be enhanced by either implicitly or explicitlyexploiting the structure of the

multicast distribution tree. OTERS [6], Tracer [5] and GFP [10] are examples of research

efforts making use of explicit topology information via MTRACE [11] and an inference

technique [12] for local loss recovery. Further motivationfor exposing the multicast distri-

bution tree is given in [12], [10] and [13].

Despite its potential usefulness, there has been surprisingly little research, e.g., [14],

[12], concerning global multicast topology discovery and even less, to our knowledge, con-

cerning local multicast topology discovery. A large amountof work has however been

devoted to Internet topology discovery, see e.g., [15], [16], [17], [18]. By contrast with

multicast topology discovery, Internet topology information can be collected during long

time scales (e.g., several days or even several weeks) [15],or by passive probing [19], since

the physical topology remains stable over reasonably long time periods. In the case of multi-

1Throughout this chapter a multicast topology refers to the multicast distribution tree constructed by multi-
cast routing protocols.
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cast service the character of the distribution tree is only of interest when the session is active

and may change dynamically throughout that period. Thus multicast topology discovery al-

gorithms should be able to operate online and serve as practical protocol building blocks

which dynamically track membership changes. As will be discussed below, these and other

requirements make proposed approaches based on end-to-endmeasurements, [14], [12] fall

short as practical solutions.

The following are some desirable characteristics that a multicast topology discovery

mechanism should have.

Accuracy: Topology information should be “reliable” since potentially critical decisions

will be based on it.

Adaptability: A mechanism should adapt to changes in group membership or distribution

path topology.

Low overheads: Computational requirements at end hosts or servers and communication

overheads should be low.

Distributed: From the perspective of robustness, it is preferable that discovery be per-

formed in a distributed manner rather than relying on central points.

With these in mind, in this chapter we propose a new approach to multicast topology dis-

covery. It is based on introducing a novel fan-out decrementmechanism to IP multicast

service, which is analogous to the time-to-live (TTL), or hop count, decrement mechanism

currently supported in IP. As discussed in the sequel, the proposed scheme achieves all of

the desirable characteristics posed above butonly for the case where multicast service is

based onshared tree, e.g., Core Based Trees(CBT) [20], [21], versus source treerouting.
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Additionally, we propose both concepts and practical issues for local resource and topology

discovery which enable further ‘scalability’ for large scale multicast applications.

The chapter is organized as follows. Section 2.2 introducesthe proposed fan-out

decrement mechanism, briefly indicating some of its uses forresource and topology dis-

covery. In Section 2.3 we propose and analyze an algorithm for global multicast tree dis-

covery. Section 2.4 includes comments on implementation and information exchange, and

is followed by Section 2.5 wherein we discuss a framework forpartial (i.e., local) topology

discovery of multicast trees. In Section 2.6, additional use of the work is proposed and Sec-

tion 2.7 discusses the advantages and shortcomings of previous work and contrasts these

with our work. Section 2.8 concludes the chapter.

2.2 Fan-out decrement mechanism

We propose a fan-out decrement mechanism for IP Multicast service, which supports the

following three elements/behaviors:

1. A fan-out field in a multicast packet;

2. When a multicast packet traverses a router, corresponding to a fan-out point where

the packet is replicated and forked out, the router decrements the fan-out field by one.

3. Multicast routers at fan-out points discard incoming packets whose fan-out fields

have reached 0.

Note that these components are entirely analogous to those of the current TTL

decrement mechanism. The main difference is the location where decrementing occurs:

every router along the path of a packet for the TTL field while only routers corresponding

to fan-out points in multicast distribution tree for fan-out field.

9



a

b

g
f

h

Figure 2.1: Fan-out decrement mechanism illustration.

Table 2.1: Parallels between IP and IP Multicast.

IP IP Multicast

ICMP IGMP
Traceroute MTRACE

TTL decrement Fan-out decrement

Consider the example shown in Figure 2.1. Suppose membera multicasts a packet

with its fan-out field set to 1. When the packet reaches fan-out node f , the fan-out field

becomes 0 but the packet is duplicated and forwarded and willreach memberb. Another

duplicate packet will be forwarded in the other direction but is discarded at fan-out nodeh.

Note that routers that are not fan-out points in the distribution tree, e.g.,g, do not decrement

the fan-out field or discard packets whose fan-out field is 0.

Clearly this mechanism serves as an intuitive and natural counterpart to the TTL

decrement mechanism in IP. Table 2.1 summarizes parallels between IP and IP Multicast

components. Also note that this new feature is simple to implement and will not incur large

overheads at routers. We envisage implementing fan-out decrementing in two ways: 1)

changing native IP packet header and router functionality or 2) perhaps more realistically

providing this as a service supported by IGMP [22] – see Section 2.4 for details.
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The original purpose for the TTL decrement mechanism was to bound the life of

packets in the network to circumvent the adverse effects of forwarding loops during routing

transients. However, due to its simplicity and usefulness,the TTL decrement mechanism

also can be used for scoping IP multicast packets as well as other applications associated

with resource and path discovery, e.g., expanding ring search, traceroute [23]. We believe

that, in the context of multicast service, the proposed fan-out decrement mechanism can

play a similar role.

First, TTL scoping is to constrain how far a multicast packetcan traverse within a

multicast session by carefully choosing the TTL value. To see how the multicast scoping

can be enhanced with the addition of the fan-out decrement mechanism, consider the case

in Figure 2.2 (a) where membera wishes to send packets only to a set of node,A= {b,c,d}.

Unlessa sends repeated unicast transmissions toA, a can perform TTL scoping by setting

TTL value to its maximum distance froma to A, i.e., 5. However, the packets will eventually

reach the other members,{e, f ,g,h, i, j}. In addition to TTL scoping, setting fan-out value

to its maximum fan-out distance froma to A, i.e., 2, turns out to be more efficient scoping

since the packets will arrive only atA.

Second, suppose a member in a multicast session wishes to discover the existence

of another one with a given attribute but close by. Currently, it may do so using expanding

ring search: i.e., multicasting a sequence of query packetswith increasing TTL until an

appropriate reply is received. Note that we can save time andresources by using the fan-out

field to perform an expanding ring search. The possible increase in efficiency for such a

search, can be seen by considering the following of two members that are only one fan-

out away but a large hop count distant from each other, shown in Figure 2.2 (b). Membera

performs an expanding ring search based on the fan-out field,that is, sending a query packet
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Figure 2.2: Fan-out decrement mechanism usage illustrations.

with fan-out field set to 1. In this scenario, which might not be infrequent for sparse large-

scale multicast sessions, membera can quickly identify a close member,b by the first query.

Note that this type of resource discovery is applicable tobothsource and shared tree routing

protocols. Also note that we are not arguing for the superiority of the fan-out decrement

mechanism over the TTL one but proposing potential benefits when both mechanisms are

being used together in IP multicast context.

Finally, as another useful application, we propose the discovery of shared multicast

trees based on the proposed fan-out decrement mechanism. Our algorithm requires that

each node acquire adistance matrixfor the current session members, which is the path
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and fan-out distances of pairs of members. In order to do so, packets will need to carry two

additional pieces of information, InitialTTL and Initial fan-out, corresponding to the initial

values of the TTL and fan-out fields. Clearly with this information in hand, a receiver can

immediately compute its path distance and fan-out distance, i.e., number of fan-out nodes

traversed, from the source. In the next section we shall develop a tree discovery algorithm

based on full and reduced distance matrices. In Section 2.4 we will discuss practical issues

in efficiently acquiring and distributing the required distance information.

2.3 Tree discovery algorithm

We will consider several variations of the following basic problem: given thedistance

matrix associated with the members (i.e., end hosts) of a multicastsession using a shared

distribution tree, determine its physical topology.

2.3.1 Model and Notation

We will use the physical multicast tree illustrated in Figure 2.3 as a reference in discussing

our model.2 The end nodes, shown as solid black circles, correspond to members of the

multicast session, while internal nodes, corresponding tonetwork routers, are shown as

white circles.3 In the sequel we will refer to internal nodes where multiple copies of a

multicast packet are created asfan-out nodes.

We define two types of distances between nodes on a tree. Thepath distance

dp(m,n) between two nodes,m andn, corresponds to the number of links along the path

2Throughout this chapter, a multicast tree or a tree means a shared multicast tree, unless explicitly
mentioned.

3In a multi-access LAN environment, an end node can be considered as a representative of all multicast
members on the LAN, e.g., the one with the lowest IP address among members on the LAN.
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between them. Thefan-out distance df (m,n) between two nodes,m andn, corresponds to

the number of fan-out nodes on the path between them. Note that in the case wherem or n

are themselves fan-out nodes in the tree, the fan-out distance does not includem or n. For

example,df ( f1, f2) = 1 in Figure 2.3. We denote such path and fan-out distance as a tuple

d(m,n) = (dp(m,n),df (m,n)), e.g., for our example we haved(e2,e6) = (8,4). Table 2.2

exhibits thefull distance matrix, which contains the distances among all pairs of members

in the multicast session shown in Figure 2.3. Note that this table is symmetric.

e1

e7

e5
e6

e4

e2

e3

fan-out node/

router

end node/session member

r

e8

f6

f5 f3

f1

f2

f4

Figure 2.3: Example of a physical shared multicast tree.

Table 2.2: Full distance matrix for tree in Figure 2.3.

r e1 e2 e3 e4 e5 e6 e7 e8

r (7,4) (8,4) (7,4) (7,4) (5,3) (6,3) (4,2) (3,1)
e1 (3,1) (4,3) (4,3) (6,4) (7,4) (5,3) (8,4)
e2 (5,3) (5,3) (7,4) (8,4) (6,3) (9,4)
e3 (2,1) (6,4) (7,4) (5,3) (8,4)
e4 (6,4) (7,4) (5,3) (8,4)
e5 (3,1) (3,2) (6,3)
e6 (4,2) (7,3)
e7 (5,2)
e8

When a nodem is connected to a linkl , m and l are said to beincident on each
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other. The number of links incident on a nodem is called thedegreeof m. We say noden is

adjacentto a nodem if the nodes share a link.

r e7

e5
e6

e8

f6

f5 f3

f4

e1

e4

e3

e2
f1

f2

Figure 2.4: The logical tree for our example.

The logical treeassociated with a physical tree is obtained by eliminating internal

nodes whose degree is 2. For example, Figure 2.4 depicts the logical tree corresponding to

the physical tree in Figure 2.3. The nodes in a logical tree can be partitioned intoend nodes

E, whose degree is 1, andfan-out nodes F, whose degree is at least 3. In the sequel we let

|A| denote the cardinality of a setA. For a fan-out nodef ∈ F we letAEf denote the set of

its adjacent end nodes in the logical tree. Thus in our example, AEf1 = {e1,e2}. Fan-out

nodes which have at least 2 adjacent end nodes and only 1 adjacent fan-out node in a logical

tree, is said to be aborder fan-out nodes. We letBF denote the set of border fan-out nodes

in the logical tree. For example, in Figure 2.4,BF = { f1, f2, f3, f6}. The notion of a border

fan-out node will be useful when we consider “reduced” distance matrices in 2.3.4.

Theorem 2.1 A logical tree with at least two fan-out nodes has at least twoborder fan-out

nodes, i.e., if|F| ≥ 2 then|BF| ≥ 2.

Proof Consider one of the longest paths in the logical tree. Since|F| ≥ 2, such a path must

include at least two fan-out nodes. We argue that the nodes adjacent to the the end nodes of
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the path must be border fan-out nodes. Suppose one of them is not a border fan-out node.

Then there is another adjacent fan-out node which is not currently on the path. This means

a longer path than the current one could be constructed and leads to a contradiction.

Theorem 2.2 A logical tree with|E| end nodes has at most|E|−2 fan-out nodes.

Proof This can be proven by constructing a tree which has a maximal number of fan-

out nodes. First, note that a logical tree with|E|+ |F | nodes including end and fan-out

nodes, has|E|+ |F| − 1 links. Thus total degree sum of all nodes in the tree becomes

2(|E|+ |F|−1) since each link contributes 2 degrees. If we wish to construct a tree which

has the maximal number of fan-out nodes in a tree, the degree of each fan-out node should

be as small as possible, i.e., 3. The total degree sum of the tree will be then 3|F |+ |E|.

Equating 3|F |+ |E| with 2(|E|+ |F|−1) gives|F|= |E|−2.

Given an end noder ∈ E we can consider ther-rooted logical multicast tree asso-

ciated with a multicast session. We shall exhibit such treeswith the root is at the top, and

nodes that are equally distant from the root horizontally aligned at levels below it. Figure

2.5 depicts ther-rooted logical tree for physical tree in Figure 2.3.

With the introduction of the root, we can further partition the end nodes,E, and the

fan-out nodes,F, according to their fan-out distances from the root. We letEi represent

the set of end nodes whose fan-out distance from the root isi. Similarly Fi denotes a set of

fan-out nodes whose fan-out distance from the root isi. Ei andFi are said to be atlevel i.

Note thati = 0,1, . . . ,b whereb= maxm∈E df (r,m). We defineE0 as{r} andFb = /0. Figure

2.5 shows the example of such a partition of end and fan-out nodes.

If a nodep immediately precedes nodec on the path from the root toc, thenp is the

parentof c andc is thechild of p. Nodes having the same parent are said to besiblings. We
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Figure 2.5: Ther-rooted logical tree for our example.

let asibling setdenote anexhaustivecollection of siblings sharing the same parent. Note

that for a given rooted logical tree there are several types of siblings:

• Type 1 (Mixed Siblings): An end nodeeat leveli can be the sibling of a fan-out node

at leveli.

• Type 2 (Fan-out node Siblings): Fan-out nodes at the same level can be siblings.

• Type 3 (End node Siblings): End nodes at the same level can be siblings.

In Figure 2.5, the sibling sets{ f3,e7, f4}, { f1, f2} and{e5,e6} exemplify these types of

relations respectively.

A noded is said to be adescendantof a noden, if n is on the path from the root

to d. Note that from the above definition,n can be its own descendant. Given a fan-out

node f ∈ F , we define areferencenode of f , denoted byr( f ) to be any end node which is
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a descendant off . Reference nodes will be used in checking sibling relationsfor fan-out

nodes, since there is no explicit information for fan-out nodes in the distance matrix.

Note that the level ordering and filial relationships discussed above are always with

respect to a given rooted logical tree. However, for simplicity we have not included the

specified root in our notation.

2.3.2 Algorithm using the full distance matrix

In this section we discuss an algorithm to discover a tree given the full distance matrix. The

algorithm includes two parts. Based on fan-out distances, one first discovers the logical

tree, and then based on path distances, one determines the hop count lengths associated

with links in the logical tree. The steps of the algorithm canbe summarized as follows:

1. Logical tree discovery:

• Select a root.

• Perform a level ordering on end nodes,Ei, i = 0, . . .b.

• Perform bottom up discovery ofFi, i = 0, . . .b and sibling/parent relationships

among nodes.

2. Physical tree discovery:

• Perform bottom up discovery of path distances associated with the logical tree’s

links.

Below we outline the details associated with these steps.
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Logical tree discovery

The first task is to select a root for the logical tree. In general any node could be selected,

however since we intend the discovery algorithm to be carried out in a distributed fashion

at each end node we shall assume without loss of generality that each end node considers

itself to be the root of the tree. We letr ∈ E be the root for our ongoing example. Next,

we partition the end-nodes into setsEi, i = 0, . . .b, based on their fan-out distances from the

root. This is done by checkingr ’s row in the distance matrix.

The key task in the logical tree discovery step is to progressively identify complete

sibling sets in a bottom up fashion. Note that each sibling set is associated with a unique,

previously unknown, parent fan-out node at a higher level ofthe logical tree. Thus we can

progressively determine not onlyFi, i = 0, . . .b−1 but the filial relations among the rooted

tree’s nodes. We shall start at the bottom, settingi = b. The key step will be at each level

i, to discover complete sibling sets amongEi andFi and create the associated set of parent

fan-out nodes,Fi−1, at the next level. The following lemma will enable us to check whether

two nodes inEi ∪Fi are siblings.

Lemma 2.1 Sibling Checking Lemma

1. Suppose e∈ Ei and f ∈ Fi then they are siblings iff

df (e, r( f ))−df ( f , r( f )) = 2.

2. Suppose fa, fb ∈ Fi then they are siblings iff

df (r( fa), r( fb))−df ( fa, r( fa))−df ( fb, r( fb)) = 3.

3. Suppose ea,eb ∈ Ei then they are siblings iff df (ea,eb) = 1.
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The proof of the lemma is straightforward. In the first case,e and f are siblings iff

df (e, f ) = 1, so the lemma follows by noting that we can computedf (e, f ) based onf ’s

reference noder( f ) asdf (e, r( f ))−df ( f , r( f ))−1. In Figure 2.6 sibling nodesf4 ande7

exemplify this case. For the second case, note thatfa and fb are siblings iffdf ( fa, fb) = 1.

The lemma follows by computing this distance based on reference nodes for associated

fan-out nodes, i.e.,

df ( fa, fb) =

df (r( fa), r( fb))−df ( fa, r( fa))−df ( fb, r( fb))−2.

Siblings f3 and f4 in Figure 2.6 exemplify the second case. The final case is clear and can

be easily checked usingea’s (or eb’s) row in the distance matrix.

f1

= r(f4)

r

e8

e1 e4

f2

e3

e6

f6

f5

f4

e2

e5

e7f3

= r(f3)

= r(f5)

Figure 2.6: Illustration of sibling checking criteria.

In order to discover complete sibling sets among the nodes weletC = Ei∪Fi denote

the set of nodes that need to be considered. Select any nodec1 ∈C and determine the set
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of all of its siblingsS1, includingc1, by checking each of the remaining nodes inC using

Lemma 2.1. Now letC := C\S1 and proceed iteratively until there are no more nodes in

C. Suppose this process terminates afterk steps, thenk disjoint sibling setsS1, . . .Sk are

obtained. For each of these, generate a parent nodef j , j = 1, . . . ,k and place it in the set

Fi−1 of fan-out nodes at the next level up. Also define the reference noder( f j) for each

parent, f j , to be any end node which descends fromf j . At this point one can proceed in

discovering siblings and parents at the next level up. This procedure continues until the

logical tree topology is determined.

Discovery of path distances of logical links

Once we have identified the logical tree, we need only to find path lengths associated with

its logical links to determine the physical tree. The key idea is captured by the following

lemma, which determines path distances of logical links between a border fan-out node

f ∈ BF and its adjacent end nodesAEf .

Lemma 2.2 Suppose f∈ BF, m,n∈ AEf and k∈ E,k 6= m,n then

dp(m, f ) = [dp(m,n)+dp(k,m)−dp(k,n)]/2,

dp(n, f ) = [dp(m,n)−dp(k,m)+dp(k,n)]/2.

The proof of this lemma follows directly by decomposing pathlengths into their constituent

components – consider Figure 2.7. Moreover for any additional node,e∈ AEf \{m,n}, the

path distancedp(e, f ) can be computed to bedp(m,e)−dp(m, f ). Observe that to determine

the lengths of the logical links from a border fan-out nodef to all its adjacent end nodes

AEf we only require two rows of the distance matrix, where at least one is associated with

one node inAEf .
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Figure 2.7: Path distance calculation at a border fan-out node f .

Note that for any rooted logical tree, iff ∈ Fb−1 then f ∈ BF. Thus by Lemma 2.2

all the lengths for logical links at the bottom level can be computed. In order to proceed

systematically in a bottom up fashion, we propose to prune the tree and update the path

distance matrix. At leveli, all links and end nodesEi whose distance to their parents have

been computed are pruned. Then all fan-out nodes at leveli−1, i.e.,Fi−1, became end nodes

at level i−1. In this pruned tree, allf ∈ Fi−2 are border fan-out nodes, which guarantees

that the path distance calculation step can again be performed for leveli−1.

As a result of pruning, the path distance matrix for the new tree must be generated.

This is done by eliminating entries associated with all the pruned end nodes, and adding a

new entry, for each fan-out nodef that becomes an end node of the new tree. Table 2.3 is

the path distance matrix for the pruned tree in Figure 2.8.

Table 2.3: Path distance matrix for the tree in Figure 2.8.

r f1 f2 e5 e6 e7 e8

r 6 6 5 6 4 3
f1 2 5 6 4 7
f2 5 6 4 7
e5 3 3 6
e6 4 7
e7 5
e8
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Figure 2.8: The pruned tree of Figure 2.5 at Level 4.

2.3.3 Computational complexity

The computational complexity for the proposed algorithm can be roughly evaluated as fol-

lows. The level ordering step isO(|E|). The bottom up step in the logical topology discov-

ery phase can be shown to beO(|E|2). Indeed there are at most|E|−2 fan-out nodes in the

tree by Theorem 2.2 and determining siblings associated with each parent fan-out node has

a cost of at most|E|. Path distance computations to obtain the physical topologyare also

quadratic. So the overall computational cost isO(|E|2).

2.3.4 Reducing the required distance information

There is in fact a large amount of redundant information in the distance matrix. This moti-

vates us to ask the following question: What is the minimal required distance information

in order to discover a tree? To answer this question, we will define our unit of information

as an end node’s entire row table which includes path/fan-out distances from the end node

to all other end nodes in a tree. LetNE denote the set of end nodes whose row tables are
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available when performing topology discovery. Our goal is to find a reduced setNE such

that the topology of the multicast session can still be determined. Note that the algorithm

described in Section 2.3.2 requires the full distance matrix, i.e.,NE = E.

Theorem 2.3 Given a shared multicast tree with|F| fan-out nodes the following conditions

on the set NE of available rows in the distance matrix are sufficient to allow topology

discovery:

1. If |F|= 1 then|NE| ≥ 2.

2. If |F| ≥ 2 then NE should include at least one node in the set of end nodesAEf

associated with each border fan-out node f∈ BF.

Proof Consider the first case. If|F | = 1, the discovery of the logical topology is straight-

forward, i.e., all nodes are 1 fan-out distant from each other. This can be determined based

on a single row table. Note that by Lemma 2.2 if two row tables are available, one can

compute all path distances from a fan-out node to its adjacent end nodes. This establishes

the condition for the first case.

Now suppose thatNE includes one node from each setAEf associated with border

fan-out nodesf ∈ BF. We show that the logical topology can be determined as follows.

Select any noder ∈ NE as the root and perform a level ordering on end nodes based onr ’s

row table. Note that during our bottom up phase, we will be able to assign a reference node

in NE to each generated fan-out node, since every fan-out node in arooted logical tree,

has at least one border fan-out node as its descendant. This guarantees that all the required

information is available to use Lemma 2.1 for sibling checking.

Next we show that subject to given conditions, the physical topology can also be

discovered. Note that by Theorem 2.1, if|F| ≥ 2 then|NE| ≥ 2. Recall that by Lemma 2.2,
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in order to know the path lengths associated with logical links from a border fan-out node,

e.g., f , to its adjacent end-nodes, we only need two row tables of which at least one node

should be inAEf . SinceNE contains at least one inAEf , and|NE| ≥ 2, all path distances to

f can be computed. The path length computation can once again be carried out by pruning,

starting from the bottom level to the top.

Note that the computational complexity of topology discovery based on the reduced

distance matrix remainsO(|E|2).

2.4 Obtaining distance information

In this section we discuss implementation issues concerning how members of the multicast

session can selectively acquire sufficient distance information to discover the topology of

the multicast tree. The elements necessary in our proposed framework are:

1. Fan-out decrement mechanism.

2. Initial path/fan-out field in packets for allowing a receiving host to obtain distance

information from the sender to itself.

3. Bidirectionalshared multicast routing protocols, e.g., CBT and Border Gateway Mul-

ticast Protocol (BGMP) [24] for preserving path symmetry between members.

Note that TTL decrement mechanism operates on every IP packet. Similarly, we

can envisage that the fan-out decrement mechanism could be applied to every multicast

packet. However, this would need an additional fan-out fieldin the IP packet header while

requiring modifications to all routers. Alternatively, thefan-out decrement mechanism can

be implemented as a special feature in IGMP [22]. In this case, applications wishing to
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use fan-out decrementing, will encapsulate their packets within IGMP packets. Then, the

fan-out decrementing would be performed only when desired,i.e., not for every multicast

packet. This new feature would be simple to implement and will incur fairly low overheads

at routers.

To create shared multicast trees,unidirectionalmulticast routing protocol such as

PIM-SM [25] might be used. However, note that PIM-SM is not applicable to our model

since inunidirectionalmulticast protocols the sender’s packet goes to the core first and then

the core multicasts it to the others. Thus there is no way for each member to acquire other

members’ distance information. In contrast, inbidirectional multicast routing protocols,

members can communicate with each other without going through the core since packets

can travel both up toward the core and down from the core [21].

Assuming that the above requirements are satisfied, first, wediscuss how each

member can obtain the full distance matrix. Suppose every member periodically multi-

casts aheartbeatpacket to the whole group. The role of the heartbeat packet istwo-fold:

1) it serves as an indication of the liveness of the sending host, which is necessary if the

algorithm is to adapt to changing membership or topologies;and 2) it enables receiving

members to obtain their fan-out/path distances from the sender. Note that senders which

persistently multicast data packets to the session may not need to send heartbeat packets, as

long as initial values for the TTL and fan-out fields are included in the IP multicast packet’s

header. Whenever a member receives a heartbeat from other members, the member can

build/update its row in the session’s distance matrix, where each member is identified by its

IP address. In addition to periodically sending heartbeat packets, each member becomes a

reporter and periodically multicasts areport packet to the session which contains its own

row table. Thus, eventually each session member would have access to the full distance
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matrix.

Theorem 2.3 suggests that it would suffice for only one node among adjacent mem-

bers of each border fan-out node to generate report packets.The above approach has two

advantages over the full distance distribution method. First, it reduces the number of re-

porters in a session, which results in significant reductionof communication overheads

since report packets can be large relative to heartbeat packets. Second, it can also reduce

memory storage space required at end-hosts. In order to enable this type of reporting, one

must however identify border fan-out nodes, and then selecta unique reporter for such a

node. This in itself requires that the network topology be known a priori, which is not

practical.

As a compromise between full distance matrix distribution and the impractical sec-

ond approach discussed above, we propose the following rules to determine which end hosts

should serve as reporters:

Rule 1: A member will serve as a reporter if there is at least one othermember which is

1 fan-out distant from it and it has the smallest IP address among members within 1

fan-out distance.

Rule 2: A member will serve as a reporter if all other members in a session are 1 fan-

out distant from it and it has the largest IP address among members within 1 fan-out

distance.

Note that the first rule guarantees that there will be a reporter selected from set of adjacent

members to a border fan-out node – there may also be some additional reporters. The

second rule ensures that if the tree has but one fan-out node,there will be at least 2 reporters.

Thus with these two rules enforced, the sufficient conditions stated in Theorem 2.3 will be

satisfied.
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Note that these rules can be applied by nodes in a decentralized fashion in that they

need only to check their own row table without any computation. This approach would

of course reduce network traffic to acquire the required distance information. Also note

that in this context the minimum number of reporters is 2 while the the maximum number

of reporters isb|E|/2c.4 In general the communication complexity to acquire the distance

matrix would be 2|E| multicast messages, i.e., a heartbeat and report packet persession

member, where the size of heartbeat packets isO(1) while that of reports isO(|E|).

2.5 Local topology discovery framework

If a multicast session involves a huge number of members, theproposed global topology

discovery scheme may not be workable. In particular, the communication, computation and

storage overheads may be unwarranted.

Note also that since each row in the distance matrix containseach members’ IP

address, for large multicast trees this may include a lot of data, eventually requiring reports

to be partitioned across several packets.5 Moreover, in a large scale multicast session,

members may not be interested in discovering the entire distribution tree. Instead they may

only be interested in a local view of the multicast tree’s structure. This is, for example,

the case in the context of applications for local loss recovery where members only wish

to identify other members within a given neighborhood. Thusit would be advantageous

if the proposed framework could also be used to discover a restricted local topology while

reducing the overheads associated with acquiring this information.

4The notation,b c, is a floor operator.
5In order to reduce communication overheads, one might consider reports that include only incremental

changes in data. This must, however, be done with care in a dynamic scenario as new members need to
eventually acquire sufficient information to discover the tree.
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2.5.1 Concept

Let us consider an instance of this problem for a session member r ∈E. Let aneighborhood

Nr be the set of members that share a particular attribute, including r itself. Note that there

is quite a bit flexibility in definingNr . For example the neighborhood could correspond to

FNk
r , the set of members within the k fan-out scope fromr including r itself, or the set of

members that serve as DNS servers and are inFNk
r . Given such a neighborhood, we define

the induced physical and logical treesas follows.

Definition 2.1 Given a neighborhood Nr ⊂ E of a node r∈ E in a multicast tree, we let the

Nr induced physical treebe the subtree connecting r to the members of its neighborhood

Nr . We define the Nr induced logical treeas the logical tree associated with the Nr induced

physical tree.

For example, consider the neighborhoodNr = {r,e5,e8} of r in a physical multicast

tree shown in Figure 2.9. The region that has been outlined corresponds to the physical tree

induced byNr while Figure 2.10 depicts theNr induced logical tree.

r

e5 e6 e1
e2

e3

e4

e7

e8

e9

f6

f5

f1

Nr = {r, e5, e8}
Nr induced physical tree

Figure 2.9: A physical multicast tree.
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r
e8

e5

f6

Figure 2.10: TheNr induced logical tree. (Nr = {r,e5,e8})

Note that anNr induced logical tree simply shows the logical relationshipamong

members inNr , and it might include logical links that hide fan-out nodes in the global

multicast tree. For example, the logical link fromf6 to e5 in Figure 2.10 actually represents

3 physical links and 2 fan-out nodes.

Definition 2.2 Given a neighborhood Nr ⊂ E of a node r∈ E in a multicast tree, thelocal

multicast topology discovery ofNr is defined as determining the Nr induced logical tree

topology, as well as path/fan-out distances for its logicallinks.

Local topology discovery can be based on anNr restricteddistance matrix including

only row and column entries associated with the nodes inNr . This problem can be viewed

as a restricted version of the global topology discovery problem presented in Section 2.3.

It is relatively easy to see that one can, with some care, apply the same methods developed

for global topology discovery in this context.

We propose to perform local topology discovery by first determining theNr induced

logical topology applying the algorithm in Section 2.3.2. In this step, we in fact determine

the subtree induced byNr on theglobal logical topology. This is illustrated in Figure

2.11 for the local topology discovery problem associated with FN3
r in the multicast session

Figure 2.9. Note that the subtree enclosed in the dashed lineneed not be the desiredNr

induced logical tree. In particular, the subtree obtained by using our previous algorithm on
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the restricted set may include fan-out nodes, e.g.,f3 and f4 in the above example, which

would not be part of theNr induced logical topology, see Figure 2.12. Once such nodes

are pruned, the structure of theNr induced logical tree has been discovered along with the

fan-out distances associated with its logical links.

r

e1 e2 e3 e4

e5 e6 e7

e9

e8f1 f2 f3

f4 f5

f6

Figure 2.11: Ther rooted logical tree of Figure 2.9.

r

e9

e8

f5

f6

e5 e7e6

f1

Figure 2.12: TheFN3
r induced logical tree.
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Next, based on Lemma 2.2, one can identify the path distancesof the logical links

in theNr induced logical subtree. Note that certain path metrics would not, and in fact can

not, be identified based on theNr restricted distance matrix. For example, nodef4 is not

present in the induced logical subtree, and thus the path lengths f1 to f4 and f4 to f6 would

not be determined, however the overall path metric associated with the logical link fromf1

to f6, can be identified.

In summary, discovering anNr induced logical tree’s topology and the associated

logical links’ distances requires basically the same stepsas discussed for the global case. It

should be clear that the computational complexity of local topology discovery is quadratic

in the size of the neighborhood, and storage requirements would also depend on the size of

the the neighborhood.

In principle a neighborhood can be any set of members sharinga particular attribute.

However, below we will focus on local topology discovery, i.e., that associated with neigh-

borhoods having spatial proximity on the multicast tree. Thus we will define both fan-out

and TTL scoped neighborhoods for a given node. We letTNl
r denote the set of members

in a multicast group that are within anl limited TTL scope fromr including r itself. In

general one can define a jointly scoped neighborhood, e.g.,Nr = FNk
r ∩TNl

r , for each node

in a network and proceed to discover the induced logical trees based on restricted distance

matrices.

2.5.2 Obtaining restricted distance matrices

The remaining question is how each node would acquire the restricted distance matrix asso-

ciated with itsk fan-out andl TTL scoped neighborhood. Depending on the application, we

can envisage the following two cases for local topology discovery. For some collaborative
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applications,everymember in a session may need to have a local view of its neighborhood,

each with the same uniformk fan-out andl TTL scope. By contrast, other applications

might only requiresomenodes to acquire their own local topology associated with possibly

heterogeneous fan-out/path scopes. Considering the abovetwo cases, here we propose two

schemes for acquiring the restricted distance matrix.

Uniform local topology discovery

The goal of the first scheme is to enableeachmember, sayr, to discover its neighborhood,

Nr = FNk
r ∩TNl

r with a uniformk andl . The following simple protocol suffices:

1. Each member periodically sends heartbeat packets with the fan-out scope set to 2k−1

and the TTL scope set to 2l −2.

2. Each member periodically sends a report packet withk and l set as the fan-out and

TTL scopes respectively.

The idea underlying this scheme is quite simple. First, eachnoder should receive

reports from all members of its neighborhood, thus report packets should be scoped as

indicated above. Second, since anNr restricted distance matrix contains path and fan-out

distances among all pairs of members inNr , they have to know of each other’s existence

and the associated distances. Note that 2k−1 and 2l −2 are the maximum possible fan-out

and TTL distances between members inNr = FNk
r ∩TNl

r . Thus it should be clear that the

proposed fan-out and TTL scopes on heartbeat packets ensurethat theNr restricted distance

matrix acquired by a noder is complete. Note that we have assumed an a priori uniform

selection ofk andl for all nodes. This poses the question of how they might be ‘optimally’

chosen and whether they might be selected in a non-homogeneous decentralized fashion.
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This would of course depend on applications.

Assuming nodes share information in this fashion, one can significantly reduce the

communication overhead associated with topology discovery, in terms of the number of

heartbeat and report packets seen onany link in the multicast tree and the size of the report

packets. Indeed, although the same total number of packets,2|E|, will be sent as in the

global discovery case, these packets are scoped and hence will not be seen by all links and

members. In particular, a rough estimate for the number of messages seen by a member

would be the size of its 2k− 1 fan-out and 2l − 2 TTL scoped neighborhood. Similarly

the size of report packets would is no longer be|E| but proportional to the size of the

neighborhoods.

Non-uniform local topology discovery

The above scheme may incur heavy communication overhead in the case where topology

information is not frequently required and not necessary for all nodes in a session. In such

cases, we propose the following scheme which allows a singlenode to discover its local

topology within a predefined fan-out/path distance when desired. To do so, we introduce a

32 bit requesterID fieldin heartbeat packets. Depending on the content of the field, we can

classify heartbeat packets into two types: arequest heartbeator anormal heartbeat. In a

request heartbeat, the requesterID field is set to 0 by arequesterwhich wants to discover its

local topology. A normal heartbeat is generated by aresponder, i.e., a node that receives a

request heartbeat. When a responder generates a normal heartbeat, it places the requester’s

IP address in the requesterID field.6

6Note that when a node receives a heartbeat packet, it can determine if the heartbeat packet comes from the
requester by checking if the requesterID field is set to 0, andif so, it also can extract the requester’s IP address
from the source address of the heartbeat packet.
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Let r be a requester and suppose its aim is to acquire its restricted Nr = FNk
r ∩TNl

r

distance matrix. We propose the following mechanism:

1. A requester,r, multicasts a request heartbeat settingk and l as scoping fan-out and

path distance parameters respectively.

2. Each responder ofr, saya, multicasts a normal heartbeat with its fan-out scope set to

df (r,a)+k−1, TTL scope set todp(r,a)+ l −2, andr ’s IP address in its requesterID

field.

3. Based on the requesterID fields of the received heartbeat packets, each responder of

r builds its own row table whose entries are composed ofr and responders ofr.

4. Each responder ofr unicasts a report packet tor.

In this scheme when there is no requester, no traffic is injected into the network,

which in turn, may enormously reduce communication overheads. Note that the scoping

parameters in Step 1, suppress packet injection from other members but onlyr ’s responders,

which indeed are members ofr ’s neighborhood. For example, consider the case where there

is one requester,r, in Figure 2.13. Onlya, q andr will generate packets whileb ando will

discard the normal heartbeat packets fromr ’s responders, e.g.,a or q.

In Step 2, the selection of scoping parameters of each responder is such that fan-

out/path distance information among all pairs of members inNr is eventually obtained. It is

clear that by setting the fan-out scope todf (r,a)+k−1 and the path scope todp(r,a)+ l−2,

a’s heartbeat packets can reach all members inNr - see Figure 2.14 for the fan-out distance

case. This choice of scoping parameters instead of 2k−1 and 2l −2 further suppresses the

scope of the normal heartbeat and thus minimizes the communication overheads.
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Figure 2.13: Illustration of multiple requesters.

Note that in Step 3, each responder ofr would include only data associated with

nodes inr ’s neighborhood. In particular, the requester field enablesa responder to distin-

guish more than one ongoing topology discovery attempts andmakes our proposed scheme

work well even in the presence of multiple requesters whose neighborhoods overlap. For

example, suppose that there are 2 concurrent requestersr andb in Figure 2.13. In this case

a will multicast two differently configured normal heartbeats associated withr andb. Also

note that whena builds a report packet tob , it would not includeq entry sinceq is not a

responder ofb. This feature keeps the size of a report packet proportionalto the size of the

requester’s neighborhood.

Lastly, the report will be sent tor via unicast further reducing communication over-

heads.

In addition to the basic mechanism described above, some more detailed issues

need to be addressed. In the above scheme we make two assumptions: 1) there is no packet

loss, e.g., heartbeats or reporters and 2) each responder knows when it has received all the
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Figure 2.14: Fan-out scoping parameter selection.

required information to build its own row table. A simple wayto handle these problems is to

repeat the above scheme several times. Then eventually a requester can obtain its restricted

distance matrix.

2.6 Annotated Trees

So far, the main role of heartbeat packets is to enable each host to obtain fan-out/path

distance information from the others. In this section, we briefly describe how additional

information in a heartbeat can be beneficial for some one-to-many multicast applications,

e.g., local loss recovery or locating approximate problematic links.

Consider the case that one sender persistently multicasts packets and each receiver

can evaluate its own performance metrics, e.g., packet lossrate or bottleneck bandwidth

[12]. By combining these performance values exchanged through heartbeats with the pro-

posed topology discovery scheme, one can obtain anannotated tree, i.e., a tree whose leaves
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have associated performance metrics. Note that obtaining annotated trees only slightly in-

creases the size of heartbeat packets with no additional packet exchanges. Figure 2.15

exhibits an example of a tree annotated with packet loss rate.

r

0.32

0.02

0.460.43

l

l l

l

2

3 4

1

0.04

Figure 2.15: A tree annotated with packet loss rate.

This tree might be useful to a local loss recovery mechanism in determining a

“good”(close and capable)helper from which a node can obtain lost packets [5]. Fur-

thermore, this tree can also help to approximately locate the problematic links [12].7

For example, based on the annotated tree in Figure 2.15, it iseasy to determine that

a link l1 is seeing a high degree of packet loss. However, it is not clear how to differentiate

the quality of links,l2, l3, l4 since there are several scenarios are possible, e.g., 1) only l2

is bad or 2) bothl3, l4 is bad etc. If accurate estimation of each links’ packet lossrate is

desired, the approach in [26] could be used with the topologyinformation provided by our

framework.
7Here note that considered links are logical.
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2.7 Related Work

In this section, we discuss the pros and cons of existing workon multicast distribution

tree discovery and the approach proposed in this chapter. Our intent is to find in which

environment each approach fits best by identifying its advantages and shortcomings rather

than arguing the superiority of our approach over existing ones. Existing approaches to

multicast distribution tree discovery can be classified into two types: those based on end-

to-end measurements [14], [12], and those requiring the help of intervening network nodes

[11].

The key idea underlying the first approach is that receivers sharing common paths

on the multicast tree associated with a given source will seecorrelations in their packet

losses. Thus based on the shared loss statistics for transmitted probe packets one can at-

tempt to infer the multicast tree. This elegant approach to the problem is particularly ad-

vantageous in that it requires no support from internal nodes. However, since this approach

is based on the loss of packets, a source needs to send a large number ofprobemulticast

packets even if the goal is to discover the topology of a smallscale multicast tree. The

lower the packet loss rate for links is, the larger the numberof probe packets is needed.

Furthermore, it potentially suffers from significant communication overheads required to

periodically gather large amounts of loss data so as to adaptto changing memberships or

topology, and processing overheads to assemble and performthe inference step. This is

currently conceived as a centralized approach whose accuracy is unlikely to scale nicely.

The approach assumes network links have steady state loss characteristics, which may or

may not be realistic on the time-scales during which loss data are collected. A final point

is that the approach permits identification of the logical multicast topology rather than the

actual physical topology. This means that a session member that is at the end of a long path
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with no intervening fan-out points, would see this section of its path collapsed to a single

logical link. In practice this may or may not be an appropriate abstraction of the actual

topology. The key advantage of this approach lies in its applicability to inferring multicast

trees without requiring modifications to, or the help from, internal nodes.

Compared to the first approach, our approach has a number of advantages. To name

a few, the communication overhead is low since it requires atmost 2|E| multicast packets

of size O(|E|). Its computation complexity is low as much asO(|E|2) and it is quickly

adaptable to tree changes since distance information will be immediately seen by heartbeat

packets.

The second approach to multicast topology discovery which has the above-mentioned

desirable characteristics is based on using the MTRACE feature currently implemented in

the IGMP protocol [22]. MTRACE enables tracing the path froma source to a destination

on a given multicast distribution tree [11]. A query packet is sent from the requester to

the last multicast router (on the distribution tree) prior to a given destination. This query is

then forwarded hop-by-hop along the reverse path from the “last-hop” router to “first-hop”

router, i.e., that to which the source is attached. While thequery packet traverses the tree,

each router adds a response data block containing its interface addresses and packet statis-

tics. When the query packet reaches the first-hop router it issent back to the requester via

unicasting or multicasting.

Note that an MTRACE query provides full information, i.e., interface addresses

and performance characteristics, butonly for onepath from a multicast source to a given

destination. Thus if all members wish to know the full multicast topology for a given source,

each receiver would send a query packet to its last-hop router, and query responses should

be multicastto the entire group. Then the reconstruction of the full multicast topology is
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achievable since each packet includes a stack of interface addresses for nodes along the

path from the source and the destination. Note that all querytraffic would visit the first-

hop router which would in turn generate multicast responses. Due to this focussed load,

in a large-scale multicast session, this approach may not scale. By comparison, in our

approach, there is no single focussed, or central point, which leads to a more decentralized

mechanism. Key advantages of the second approach are that itprovides full information on

the multicast topology based on currently available IGMP features.

In contrast, our approach is based on introducing a new fan-out decrement mecha-

nism in IP multicast, which is not currently available. However, as pointed out in Section

2.2, it is simple to implement and provides a generic servicewhich has broad applicabili-

ties, i.e., not only topology discovery but also efficient scoping within IP multicast context.

Furthermore, by implementing this as a special feature of IGMP, as proposed in Section 2.4,

fan-out decrementing need only be supported when needed, thus incurring low overheads

at routers. Note that this overhead at routers may be ‘lighter’ than that of MTRACE since

MTRACE inserts each interface’s address as well as packet loss statistics.

Note that while the first approach is strictly based on using end-to-end measure-

ments, the second relies heavily on special services at routers, thus from the perspective of

required network support these are two extremes of the spectrum. Also the first approach

identifies the logical topology while the second determinesthe physical topology including

interface addresses of routers. Note that our approach liessomewhere in their midst, re-

quiring light weight cooperation from multicast capable routers (i.e., fan-out decrementing)

and cooperation among members in the session to identify thephysical topology (without

internal interface addresses).

One limitation of our approach lies in its narrow applicability to bidirectional shared
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multicast routing protocols since it requires a path symmetry property among members.

However, bidirectional shared multicast routing protocols are likely to become increas-

ingly crucial, as a number of large scale multicast applications are emerging. First, it

is generally considered that shared tree routing is more efficient than source tree routing

for large scale multicast applications such as distributedinteractive simulations(DIS) [27]

where each member is both a sender and a receiver. This is because source tree routing

maintains source as well as group specific state informationat routers. Second, once shared

tree routing is determined to be used, unidirectional routing protocols are inefficient for

multicast scoping and communications among neighborhoodssince every multicast packet

should visit the core in first. The larger are multicast sessions and the more is the demand

for local resource discovery, the larger communication overheads will be incurred in uni-

directional shared multicast routing protocols. Reflecting these observations, the long term

inter-domain routing solution, Border Gateway Multicast Protocol(BGMP) [24] currently

under development, constructs bidirectional shared trees.

Finally note that while existing work focus onglobal multicasttopologydiscovery,

our approach provides a general framework forresourcediscovery within a session and

its associatedtopology discovery, which allows not onlyglobal but alsolocal topology

discovery. This comes from the fact that our approach is based on interactions among

members.

2.8 Conclusion

In this chapter, first we propose an algorithm, which can discover the topology of the shared

multicast tree based on a full distance matrix, with the analysis of computational complex-

ity. Second, we provide sufficient conditions to achieve thesame result with a reduced
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distance matrix. Third, we show how reduced distance information could be acquired ef-

ficiently by exchanging a small number of multicast packets with an analysis of explicit

communication overheads, i.e., the minimal number of packets injected in the network and

the size of the packets. Forth, we consider concepts in the context of local topology dis-

covery enabling nodes to discover the distribution tree within their fan-out and TTL scoped

neighborhoods. Furthermore, we discuss practical issues for acquiring distance information

in both uniform and non-uniform manner. Finally, we presentan annotated tree concept for

possible applications, e.g., identification of congested links.
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Chapter 3

Filtering and Tracing Service for

Defeating DDoS attacks

3.1 Introduction

Denial of Service (DoS) attacks are one of the greatest threats to today’s Internet. They

not only degrade performance but deprive legitimate users of basic access to network ser-

vices. As seen in frequent news headlines attacks are becoming increasingly prevalent and

evolving since the first spectacular attack on high-profile web sites Feb 2000 [28].

Despite their diverse character, such attacks share a common feature: they exploit

defects or weaknesses of various network components ranging from applications, operating

systems to protocols. Attacks using implementation defects or bugs in network components,

can be prevented by frequent system updates and software patch work. However, it is much

harder to thwart attacks which exploit intrinsic vulnerabilities and characteristics of the

existing IP infrastructure.
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For example, in IP, irrespective of a receiving side’s intent, any host can basically

send packets to any other host provided that those hosts are connected to the Internet. This

simple feature of IP allows attackers to launch DoS attacks by simply inundating victims

with large amounts of useless traffic. In turn, such traffic consumes network resources

along the way to victims and eventually degrades performance for other users sharing these

network resources. In a distributed DoS (DDoS) attack, i.e., one which is carried out by

multiple compromised hosts, the damage can become exceedingly detrimental.

Moreover, IP has no mechanism for checking or controlling the correctness of the

sender’s address. This facilitatesspoofing, i.e., concealing the true origins of packets by

placing incorrect source IP addresses in them. Furthermore, it is difficult to identify the

physical locations of attacks in an IP network due to its stateless nature, i.e., routers forward

packets based on destination addresses alone and maintain no state information on traffic

flows. The identification of the origins of attacks is even more difficult in the case of a

DDoS attack where attackers may inject multiple, identicalpackets at multiple locations.

One way to deal with such attacks isproactivefiltering [29], [30]. The key idea is to

configure routers to drop spoofed packets whose source IP addresses are inconsistent with

the network topology. Note that the strength of this approach is its proactiveness, i.e., at-

tacks can be eliminated before they affect victims. However, if DoS attacks are infrequent,

most resources allocated to proactive filtering are wasted except when spoofed packets are

actually dropped. Furthermore, attackers may evade proactive filtering by forging IP ad-

dresses using hundreds or thousands of legitimate host addresses within a given domain.

By contrast, in this chapter our focus is on tworeactiveapproaches:on-demand

filtering1 and tracing. Our approach isreactivein that actions are initiated after an attack

1Throughout the chapter, we omit ‘on-demand’ when there is noconfusion with proactive filtering.
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reaches a victim. Both tracing and on-demand filtering mechanisms can make up for the

above-mentioned deficiencies of IP networks. That is, a tracing mechanism can identify the

true origins of an attack and a filtering mechanism can enablea host to request unwanted

packets to be dropped early on, before they reach the victim.

The critical innovation in DDoS attacks is its distributed nature. Even a small num-

ber of attack packets from each compromised host can eventually become a large traffic

flow, inundating a target system. We argue that the solutionsto thwart DDoS attacks should

be alsodistributedto be effective. Thelocal solutions on the victim computer or in its local

network without outsider’s cooperation, can neither identify where the packets are coming

from nor effectively mitigate the possibly large volume of attack traffic.

The following are some desirable characteristics that filtering and tracing mecha-

nisms should have.

• Scalability: Mechanisms should be scalable to benefit aglobal cooperation across a

number of different administrative domains.

• Promptness:Filtering and tracing should be performed quickly before the victim is seri-

ously damaged or there no longer exists a trail of information.

• Flexibility: Mechanisms should allow heterogeneous equipment and proprietary opera-

tion across different administrative domains.

• Distributed: From the perspective of robustness, it is preferable that mechanisms be

implemented in a distributed manner rather than relying on central points.

In this chapter we consider two separate goals, filtering andtracing, and propose a

framework to aid in thwarting DDoS attacks. For filtering, the objective is to block attack

packets as close as possible to attack origins by way of filtering components that are dis-

tributed over the Internet. Under apartial deployment environment where only a subset of
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routers are tracing-enabled, it becomes impossible to pinpoint the precise origins of attack

packets. Thus our objective for tracing is to identify sets of candidate nodes containing

attack origins.

The proposed solutions are based on IP multicast service to achieve a number of

desirable characteristics, e.g., scalability, distributedness, quick response and robustness.

Furthermore, they rely on existing monitoring and filteringmechanisms, allowing hetero-

geneity from different network domains.

The chapter is organized as follows. Section 3.2 introducescomponents and attack

models used throughout the chapter. In Section 3.3 and 3.4, we discuss our objectives and

our solutions for filtering and tracing mechanisms respectively. Section 3.5 includes a per-

formance evaluation for the proposed framework and is followed by Section 3.6 wherein we

include comments on implementation and various possible modes of operation. In Section

3.7, we discuss the advantages and shortcomings of previousapproaches to defeating and

mitigating attacks and contrast these with our work. Section 3.8 concludes the chapter.

3.2 Models

3.2.1 Attack Model

Consider an attack whose target is a node,v, referred to as thevictim. A victim can be

an end host, a router or a network border device such as a firewall. In the sequel, we will

refer to the set ofattack nodes Aas those participating in the attack. We will leave the

initiation time of the attack unspecified. Thus, the tuple ofthe set of attack nodes and the

victim, i.e., (A,v) represents an attack incidence. In the case of a distributedattack, |A|

is greater than 1 and the locations of attack nodes are potentially widespread. For each
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attack node, say,ai ∈ A, theattack pathfor ai is an ordered list of nodes traversed by attack

packets fromai to v, excludingai itself. An attack graphinduced by(A,v), denoted by

AG(A,v), consists of all links and nodes traversed by attack packetsassociated with nodes in

A and the victimv.2 For example, in Figure 3.1,(r3, r4, r5, r6,v) is a3’s attack path and the

dotted lines represent an example of the attack graph for attack incidence({a1,a2,a3},v).

Throughout this chapter, anattack originis referred to as a local router to which the attack

node is attached. For example,r1 is the attack origin ofa1 in Figure 3.1. We will refer to

an attack signature AS(A,v) as a common feature shared by attack packets generated from

A. For example, for a smurf DoS attack case, an attack signature could be 1) ICMP echo

protocol and 2) a range of source IP addresses [31].3

v

a2
a1

a3

r1

r2

r3

r4

r5

r6

Figure 3.1: An example of an attack incidence.

2Attack paths and graphs may vary during the attack period dueto routing instabilities and dynamic attack
patterns.

3A smurf attacker sends a stream of ICMP echo requests to the broadcast address of the reflector subnet.
Since the source addresses of these packets are falsified to be the address of the target, many hosts on the
reflector subnet will respond, flooding the target. Thus, thesource addresses of the echo reply packets are
clustered in a few address prefixes.
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3.2.2 Framework Model

Our framework includes the following components.

• Detecting component:Reactive approaches to DoS attacks require a component which

can detect incidences of attacks and generate an attack signature by extracting a feature

shared by attack packets. This attack signature is further used in the tracing and filtering

processes.

•On-demand filtering component:An on-demand filtering component drops packets con-

forming to a rule set derived from an attack signature.

• Tracing component:When a tracing component is queried for a given attack signature, it

can check for the existence of packets with the attack signature in the past or current traffic

traversing the component.

There are various available, or proposed, implementation methods for each com-

ponent, which will be described in Section 3.6.1. Note that it is not our intent to propose

specific or new implementation methods for the above components. Our focus is on allow-

ing heterogeneous mechanisms to cooperate so as to provide aflexible global filtering and

tracing service.

We refer to entities which provide detecting, filtering and tracing services to vic-

tims asdetector, filter and tracer which are equipped with detecting, on-demand filtering

and tracing components respectively.4 Note that each entity is associated with a location of

interest. That location may be an end host, a router or a link depending on the implemen-

tation. Without loss of generality, throughout the chapter, we assume that filters and tracers

are located at internal nodes (i.e., routers), and detectors are co-located at victim nodes.5 In

4Multiple functionalities can be co-located and perform multiple roles.
5Usually detector nodes,D, will be located at highly-defended and secured strong points such as high-profile

web servers or network entry points. Filter nodes,F , and tracer nodes,T, could be located at network entry
points or distributed all over the Internet.
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our framework, we assume apartial deployment of components over the Internet, i.e., only

a subset of nodes are equipped with detecting, filtering and tracing functionalities – this is

deemed a realistic environment.

Given a particular attack incidence(A,v), any set of nodesScan be partitioned into

two subsets:positiveandnegativenodes, where positive nodes are on the attack graph of

(A,v) and negative nodes are not. That is, positive nodes, denotedby S(A,v), are given by

S∩AG(A,v). For a given set of nodesSandai ∈ A, we define aboundarynode,b(ai) as the

node inSthat is first encountered by attack packets making their way towards a victimv. We

refer to aboundary interfaceas the interface where attack packets enter in a boundary node.

We denote byBS(A,v) the collection of boundary nodes associated with an attack incidence

(A,v). Letting Sbe a set of filter nodes,F, or a set of tracer nodes,T, we can obtain sets

of corresponding to positive, negative and boundary filter (tracer) nodes associated with a

given attack incidence.

v

a2
a1

a3f1

f2
f4

f3

f5
f6

f7

a4

BF(A, v)

Figure 3.2: An example of filter deployed network.
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For example, in Figure 3.2 the filter nodes (shadowed nodes) have been deployed in

the network shown in Figure 3.1. For an attack incidence(A,v) = ({a1,a2,a3,a4},v), F(A,v)

= { f1, f2, f3, f5, f6}, b(a1) = f1 andBF(A,v) = { f1, f2, f3, f5}.

3.3 On-demand Filtering

3.3.1 Objective

The objective for on-demand filtering considered in the chapter is to block attack packets as

close as possible to the attack nodes by using a setF of cooperative filter nodes distributed

over the Internet. One might consider a centralized solution wherein each detector main-

tains and queries all the filters,F, over the Internet. However, this approach may incur high

overheads and seems to scale poorly when there is a large number of filter or attack nodes.

We observe that boundary filter nodes play a key role in achieving the objective, since they

are the filtering nodes first met by attack packets fromA to v. That is, performing filter-

ing only at boundary filter interfaces is resource-efficientwhile blocking attack packets as

early as possible given the available set of filtersF. Thus, the filtering objective becomes a

resource discovery problem, i.e., finding boundary interfaces given a set of filter nodes,F,

and a particular attack(A,v).

3.3.2 Our solution

Filter multicast session

The key idea in our filtering solution is that all filter nodes subscribe to afilter multicast

session. As with the ‘911’ telephone number allotted to serve police, fire and emergency

situations in the United States, in our approach, a filter multicast session is dedicated to a
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1: { For each interface,i, except the one receives the request packet}
2: { t : filtering initiation time,di = αdv (0 < α≤ 0.5) }
3: { install a filtering rule set conforming toAS(A,v) at t}
4: if no attack packets dropped in [t, t +di] then
5: stop filtering
6: makei stateOFF
7: else
8: keep filtering
9: if no attack packets dropped in [t +dv−di, t +dv] then

10: makei stateOFF
11: else
12: makei stateON
13: end if
14: end if

Figure 3.3: Interface state decision algorithm.

communication channel to support on-demand filtering service.

Once an attack,(A,v), is launched and detected by a victimv,6 it joins the filter

multicast session and requests filtering service by multicasting afilter request packet. This

packet contains an attack signature,AS(A,v), used to generate appropriate filtering rule sets,

and afiltering period dv, the desired duration over which filtering is to be performed. Once

each filter receives aninitial request packet, it associates its interfaces with either theON or

OFF state based on the following decision rule:

The state of each interface is basically determined according to whether it carries

the attack packets over two equal-sized intervals at the beginning and the end of filtering

period: [t, t + di ] and [t + dv− di, t + dv]. Note that the range forα in Line 2 guarantees

that there is no overlap between two intervals.

Given an attack incidence,(A,v), interfaces at filter nodes can be classified into

three types: 1) negative: whose interface state should beOFF after the first interval (Line

6In the case where a detector and a victim is not co-located, the detector will act as an agent on behalf of
the victim.
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6), 2) boundary: whose interface state should beON after the second interval (Line 12), and

3) positive but not boundary: whose interface state should beOFF after the second interval

(Line 10). The third type may happen because filtering requests are handled in a distributed

and asynchronous manner at each filter node. Note that in the above decision rule, even

a single packet matching with the attack signature enables an interface to be put in the

ON state. One may consider a threshold method, i.e., only when the number of packets

matching the attack signature is larger than some specified threshold value, the interface

enter theON state.

Each filter node which has at least one interface in theON state (referred to asON

filter node), sends afiltering reportpacket to the victim containing some filtering statistics,

e.g., the number of packets dropped on each of itsON interfaces. Based on report pack-

ets(whether the attack persists or not), the victim can renew its filtering request by multi-

casting another filtering request packet. As the state of each interface at filter nodes has

been decided after the initial filtering request packet,OFF filters simply ignore the request,

while ON filter nodes keep filtering atON interfaces until either 1) a filtering timeout(dv)

expires, or 2) a renewal arrives, in which case the filtering period is restarted and again a

filtering report packet is sent to the victim.

Note that state information should be preserved long enoughthat the next filtering

request packet arrives, i.e., next renewal. However, it should be eventually eliminated if

no renewals arrive. Thus, once a node gets a filtering requestpacket, it restarts thestate

elimination timer, (e.g., 3∗ dv). After the timer expires (i.e, no renewal packet prior to

timeout), it eliminates state information associated withthe attack signature,AS(A,v).
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Adaptiveness

In the above protocol, filter states are determined upon receipt of an initial request packet,

and remain fixed before they expire. However, even for the same attack incidence, the

boundary filter nodes may change due to 1) dynamic attack patterns, e.g., an attacker may

have a strategy that periodically turns on and off some attack nodes and 2) routing instabil-

ity, i.e., packets injected by the same host to the same destination may travel different paths.

This requires a filtering mechanism to adapt to dynamic changes in the set of boundary filter

nodes (interfaces).

To this end, we include areset flagin the filtering request packet and add the fol-

lowing behavior at filter nodes: 1) if the received request packet’s reset flag is 0, then

perform the state decision procedure for onlyON interfaces, and, 2) if the reset flag is 1,

then perform the state decision procedure for all the interfaces ignoring previously deter-

mined states. These rules ensure a transition fromON to OFF and a transition fromOFF to

ON respectively. A failure in this state transition might eventually be detected by the victim,

since attack packets may reach the victim.7 Thus, the victim node will periodically send

filter request packets with the reset flag set to either 1 or 0 depending on whether it is seeing

attack packets or not until the attack is suppressed or ends.

7Receiving attack packets at the victim side does not necessary indicate the failure of state transitions.
Consider the case where there is no filter node along the way from the attack nodes to the victim. However, we
do not assume such a case.
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3.4 Tracing

3.4.1 Objective

The ultimate goal of a tracing mechanism is to identify attack nodes, e.g.,{a1,a2,a3} for

the example in Figure 3.1. However, the goal is usually relaxed to determining the origins

of the attack, i.e.,{r1, r2, r3}. This is because 1) tracing-enabled functionality is usually

associated with routers and 2) MAC address spoofing is possible. Most existing tracing

approaches [32], [33], [34] focus on developing mechanismswhich can discover an attack

graph. Once the attack graph is discovered, the origins of the attack can be pinpointed.

However, precisely pinpointing the origins of an attack is not achievable when there is only

a partial deployment of tracing nodes – as is likely to be the case in practice. Thus, rather

than identifying the exact attack graph, we set up our tracing objective as that of localizing

attack nodes by providing sets ofcandidatenodes, possible attack origins.
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Figure 3.4: An example of tracer deployed network.
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3.4.2 Our solution

Localization

First, we define the notion of ‘candidate nodes’ used in this chapter. Candidate node sets

are determined based on the set of boundary tracer nodes. Recall that boundary tracer nodes

BT(A,v) are simply tracer nodes which are first met on the path of attack packets associated

with given attack incidence(A,v).

Let Mv denote a network map (tree) of upstream nodes rooted at the victim, v. For

any nodem∈ Mv, let Mm denote the subtree rooted atm. For each boundary tracer node

n∈ BT(A,v), let the set ofcandidate nodesof n, Cn, be

Cn = Mn\
⋃

x∈Mn∩T

Mx.

Note thatCn is obtained by subtracting all subtrees rooted at descendant tracer nodes

of n from the subtree rooted atn. For example, in Figure 3.4 where tracer nodes are shown

in black, boundary tracer nodes are{r3, r11, r17, r7 } and their sets of candidate nodes are

C1 = {r3, r2}, C2 = {r11, r10, r12}, C3 = {r17, r15, r16}, C4 = {r7, r6, r4} respectively.

We further define a nodec to be aboundary negative tracernode with respect to

n∈ T(A,v) if

1. c is a negative tracer node,

2. n is on the path from the root,v to c, and

3. there are no other nodes inT on the path fromn to c.

For example,r3’s boundary negative node isr1 while r7 has no boundary negative tracer

nodes in Figure 3.4.

The key idea underlying our tracing approach is that a set of candidate nodes con-

tains at least one origin of an attack. For example, considerthe attack nodea1 in the network
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shown in Figure 3.4 where tracer nodes are shown in black. With the following information:

1) r3 is a boundary tracer node, 2)r1 is a negative tracer node, and 3) the network topology,

one can conclude that{r2, r3} is a set of nodes which contain an attack origin(s).

A positiveattack graph is defined as the collection of all links and nodes traversed

by packets from each node inT(A,v)(i.e., positive tracer nodes), to the victimv. We define an

expandedattack graph as the positive attach graph plus the collection of all links and nodes

traversed by packets from boundary negative nodes to the victim. For the attack incidence

in Figure 3.4, its expanded attack graph is depicted in Figure 3.5. Thick links and nodes

from the victim to positive tracer nodes comprise the positive attack graph.
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Figure 3.5: An expanded attack graph.

Note that sets of candidate nodes can be obtained with the following information:

1) a network map of upstream nodes to the victim, 2) anexpandedattack graph, and 3)

boundary tracer nodes. By overlapping the two graphs, i.e.,network map and expanded

attack graph, we can identify candidate node sets. The network map of upstream nodes to

the victim can be obtained using a tool such as Skitter [35] orthat developed in [36]. Thus
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the remaining task is to obtain an expanded attack graph and identify the boundary tracer

nodes.

Obtaining expanded attack graphs

Note that obtaining a positive attack graph is the goal of existing tracing approaches [34],

[33], [32]. In this section, we propose a new approach to obtaining a positive attack graph

and then extend it to determining the expanded attack graph.

As with our filtering approach, we propose to have a multicastsession support trac-

ing services, referred to as atracer multicast session. This session is joined by the set of

tracer nodes,T. Once an attack incidence,(A,v) is detected at the victim, thenv joins the

tracer multicast session and sends atracing request packetcontaining a signature,AS(A,v).
8

Upon receiving the tracing request packet, each tracer nodechecks whether it has carried

attack packets conforming to the attack signature.

In order to obtain path information from tracer nodes to a victim, we propose to

use thetracerouteprogram. Traceroute provides an executing node with a forward path

information from it to a destination. After checking whether it is seeing any attack traffic,

each positive tracer noden in T(A,v), performs a traceroute toward the victim, which enables

it to identify the forward path fromn to v. Thenn sends atracing reportpacket including

this path information to the victim. By collecting paths reported by positive tracer nodes,

the victim can construct a positive attack graph – a subset ofan attack graph. A simple

approach to obtain an expanded attack graph is to have every negative tracer node also

perform a traceroute to the victim and send a tracing report packet. However, this will

not scale when there is a large number of (negative) tracer nodes in a network. Thus, we

8Note that tracing request packets may contain the attack incidence time for post-mortem tracing if it is
supported.
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propose the following mechanism. Once a tracer node is determined to be positive, after

some time, the node performs ascopedmulticast by sending atracing solicit packetto

its neighborhood with Time-to-Live(TTL) set to some value,k. The TTL value is first

specified in the original tracing request sent by the victim.Upon receiving the tracing

solicit packet, a positive tracer node simply ignores it, but a negative tracer node performs

a traceroute to the victim and sends a tracing report packet to the victim. Tracing report

packets require a flag representing whether they were generated by a positive or negative

tracer node. Note that this mechanism makes negative tracernodes withink TTL distance

from positive tracer nodes participate in the tracing operation. However, this mechanism

may only produce anapproximateexpanded attack graph. This depends on the scope of the

tracing solicit packet and the locations of tracer nodes. For example, if TTL value is too

large or tracer nodes are closely located, unnecessary negative nodes may be included in the

graph. However, in this case, one can still identify candidate nodes. In the other case, i.e.,

where the TTL value is too small or tracer nodes are too far away, one fails to obtain a set

of candidate nodes. Reflecting this practical situation, weclassify sets of candidate nodes

into two classes:closedor open, i.e., identified or unidentified candidate nodes respectively

from the perspective of a victim. This classification depends on the deployment of tracer

nodes, i.e., how many and where, as well as which TTL value is used. To reduce the number

of open sets, we can envisage the following scheme: after thevictim recognizes existence

of sets of candidate nodes which are open, it may perform another tracing operation with a

larger TTL value. However, even though this can reduce open sets to closed ones, too large

number of nodes in a closed set requires lots of search effortwithin the set, which in turn

makes localization expensive.
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Identification of boundary tracer nodes

Once one obtains an expanded attack graph, it is clear how to identify boundary tracer nodes

residing at the end of a positive attack graph, e.g.,r3, r11 andr17 in Figure 3.5. However, it

is difficult to find boundary tracer nodes residing at internal nodes of a positive attack graph,

e.g.,r7 in Figure 3.5. This is because the packets generated at attack nodes associated with

a boundary tracer node can not be differentiated from packets injected at upstream attack

nodes. Note that this problem exists even with networks in which tracers are fully deployed.

For example, in Figure 3.4,a4’s attack origin is invisible unless tracing components have an

ability to not only check if an attack packet has passed but also acquire information about

which interface(s) attack packets are flowing through. Thisproblem can be handled by the

following methods: 1) filtering and tracing can be performedjointly or 2) packets from

different attack nodes can be further differentiated, e.g., instead of using attack signature

shared by all attack nodes, using packets themselves may differentiate those attack packets.

3.5 Performance evaluation

We conducted three sets of simulations varying topologies and placement strategies. The

objective was to explore two questions: how many and where should filters and tracers

be deployed in the network to be effective for blocking and localizing attacks. We do not

claim these experiments are comprehensive. Instead, our goal is to provide insights on how

the proposed framework performs in several representativesettings. Below we first discuss

performance metrics for the proposed filtering and tracing framework, and then present our

simulation results.
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3.5.1 Filtering performance metrics

We define thecostof an attack node,ai , as the product of two quantities: the amount of

attack traffic injected atai , w(ai) and the distance from the attack node to the victim,d(ai ,v).

This can be roughly considered as a measure of network resources (e.g., bandwidth, routers’

CPU cycles, etc.) that are wasted in processing attack packets from ai to v. For an attack

incidence(A,v), thetotal attack cost c(A,v) is

c(A,v) = ∑
ai∈A

w(ai)d(ai ,v).

When filter nodesF are deployed and filtering is conducted at the boundary, the total attack

costc(A,v,F) is reduced to

c(A,v,F) = ∑
ai∈A

w(ai)d(ai ,b f(ai)).

whereb f(ai) is the boundary filter node associated with attack nodeai . To demonstrate

the amount of traffic that can be blocked using filtering, we define therelative attack costγ

as the ratio of the cost with filters deployed to the cost without, i.e.,γ = c(A,v,F)/c(A,v).

Note that this cost metric is from the perspective of the network rather than the victim.

Although the proposed metric is simple, it captures well features associated attack traffic

aggregation. For example, consider a local solution where there is a filter installed at an

ingress point only a few hops away from the victim. Accordingto this cost function,γ will

be high, capturing the situation where the attack is still effectively disrupting the victim’s

local network.

3.5.2 Tracing performance metrics

LetCi be a closed set of candidate nodes andACi be the set of attack nodes inCi. For a given

attack incidence(A,v) and set of tracer nodesT, supposek of closed sets of candidate nodes

61



are obtained after tracing. In this case, the victim will have to search for attack nodes within

C1, . . . ,Ck. We shall define two metrics. The first one,Φ1, is given by

Φ1 =
∑k

i=1 |ACi |

|A|
.

Note thatΦ1 is the ratio of the number of identified attack nodes to the total number of

attack nodes. Here, (1-Φ1) is the portion of attack nodes that lie in open candidate sets, and

are assumed remain undetected. To capture how ‘localized’ the portion of identified attack

nodes is, we define a second metric,Φ2 as

Φ2 =
1
k

k

∑
i=1

|Ci |

|ACi |
.

Note that|Ci|/|ACi | represents thesearch effort, i.e., the average number of nodes to be

searched in order to determine attack node(s) inCi . Thus,Φ2 is the average search effort

over the closed of candidate nodes. In summary,Φ1 represents how many attack nodes are

identified andΦ2 captures the search effort or degree of localization achieved by the tracing

mechanism.

3.5.3 Simulation Results

For an attack incidence(A,v), we randomly select|A| nodes (excluding the victim) in a

given topology to be attack nodes. We assume that attack nodes generate the same amount

of attack traffic, i.e.,w(ai) = c, i = 1, . . . , |A|. We have built a tool to estimate the perfor-

mance measures proposed in Section?? and??. For all of our results, each performance

metric value is the average value of 100 simulation runs (attack incidences). For the re-

sults associated with tracing, we set 5 as the TTL value for the solicit tracing packets. For

simplicity, we assume that filtering is also performed at boundary tracer nodes, which can
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identify all boundary tracer nodes. In the simulation, we donot consider dynamic changes

in the configuration of attack nodes during each attack incidence.

Simulation I

In this simulation we use a real tree topology from [37]. The tree was obtained by perform-

ing traceroutes at the server,www.bell-labs.com, to its clients and consists of around

23,000 distinct nodes. We considered a scenario where randomly placed nodes launch an

attack to the server. For the placement of tracer or filter nodes in the network, we choose

a random strategy for a givencoverage ratioβ, i.e., β is the portion of total nodes in the

network that are filter or tracer nodes.
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Figure 3.6: Relative attack cost (|A|= 25) in simulation I.

Figure 3.6 shows the relative attack cost, i.e.,γ, resulting from an attack involving

25 nodes and varying filter coverage ratios. Note that it has aconvex shape, i.e., a small

increase in coverage ratio can cause a large reduction in theattack traffic when the coverage

ratio is small. We observe that one can reduce the attack traffic by 80% (relative attack cost

is 0.2), with a filter coverage of 30%.

Figure 3.7 showsγ for several coverage ratios and a varying number of attack nodes
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Figure 3.7: Relative attack cost in simulation I.

from 25 to 1600. We observe thatγ is independent of the number of attack nodes. To

explain this result, we notice thatc(A,v,F) is roughly given by|A|w(ai)E[d∗] whereE[d∗]

is the expected distance from attack nodes to their boundaryfilter nodes. Likewisec(A,v)

becomes|A|w(ai)E[d] whereE[d] is an expected distance from attack nodes to the victim.

Since we assumew(ai) is constant,γ simply depends on the ratio of the above two distances.
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Figure 3.8:Φ1(|A|= 25) in simulation I.

Figures 3.8 and 3.9 showΦ1 andΦ2 respectively for an attack of 25 nodes. At a

30% coverage ratio, around 75% attack nodes can be detected and on average attack nodes

can be localized to within 9 nodes. Figures 3.10 and 3.11 showresults forΦ1 and Φ2
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Figure 3.9:Φ2(|A|= 25) in simulation I.

respectively for various coverage ratios varying the number of attack nodes. We make the

following observations. First,Φ1 is independent of the number of attack nodes. Second,Φ2

is decreasing as the number of attack nodes increases. Thesecan be explained as follows.

As the number of attack nodes increase, one can see more attack nodes will be placed in

closed sets of candidate nodes, which ensures more attack nodes will be detected. ThusΦ1

is likely to be independent of the number of attack nodes. Furthermore,Φ2 will decrease

since there are more attack nodes found in the same closed candidate sets as the number of

attack nodes increases.
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Figure 3.10:Φ1 in simulation I.
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Figure 3.11:Φ2 in simulation I.

Simulation II

For the second set of simulations, we generated a 2000-node random transit-stub graph

using GT-ITM [38]. This topology is composed of interconnected transit and stub domains

where domains are assumed autonomous. In this setup, we randomly choose a victim node

for each attack incidence. To investigate the performance impact of filter or tracer location,

we explore aborderplacement strategy, i.e., randomly choose the location of filter or tracer

nodes among border nodes of domains versus randomizing overall possible locations. This

reflects the case where a network administrator of a domain decides to provide services, the

administrator is likely to place filter or tracer nodes at border nodes rather than at random

locations within the domain.

The results for different numbers of attack nodes show the same qualitative behavior

as those in the previous experiments. We exhibit the resultsfor a 50 node attack. Figure 3.12

showsγ for various placements. For the same coverage ratio 5% and 10%, border place-

ment performs better than random, and border placement with15% coverage outperforms

random placement with 30% coverage. Figures 3.13 and 3.14 show results forΦ1 andΦ2

respectively. Here, we obtained an encouraging result thateven a 15% deployment of tracer
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Figure 3.12: Relative attack cost (|A|= 50) in simulation II.

nodes at border nodes can detect more than 90% of the attack nodes and on average attack

nodes are localized to within 10 nodes. Additionally, we made the following observations.

First, border placement can detect more attack nodes than random. Second, all random

placements have lowerΦ2 value than border placement. Indeed even a small coverage ratio

of border placement can create a well-balanced number of candidate sets. This reduces the

number of open candidate sets, which achieves highΦ1. Compared to this, with random

placement, the number of nodes in candidate nodes set vary more dramatically. This results

in smallΦ1, which identifies the smaller number of open candidate sets.However, once it

is identified to be open, its search effort becomes less, leading to a smallerΦ2 value.
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Figure 3.13:Φ1(|A|= 50) in simulation II.
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Figure 3.14:Φ2(|A|= 50) in simulation II.

Simulation III

Finally, we performed filtering simulations on a 145-node routing tree rooted at the server,

www.bell-labs.com in [37]. The motivation for this set of simulations is to explore

the case where the victim (the server) has full control over the placement of filter nodes on

a mid-size network.

We considered anoptimalplacement to be one that minimizes the total attack cost

under the assumption that each node in the network can be an attack node and generate the

same amount of attack packets. This problem is equivalent tothe cache location problem

studied in [37], [39], thus we used their dynamic programming formulation to find optimal

placements.

Figure 3.15 shows the relative attack cost results of 25 attack nodes for random

versus optimal placements. As can be seen, optimal placements outperform random. A

10% coverage with optimal placement can reduce attack traffic by 80%.

68



Rand 5% Rand 10% Opt 5% Rand 30% Opt 10%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 R
el

at
iv

e 
at

ta
ck

 c
os

t (
 γ 

)

Figure 3.15: Optimal vs. Random (|A|= 25) in simulation III.

3.6 Discussion

3.6.1 Implementation issues

Implementation of components

In this section, we briefly present various implementation methods for the components de-

scribed in Section 3.2.2. A number of intrusion detection systems(IDS), or identification

algorithms [40], can serve as detecting components. Note that the ability to obtain attack

signatures from attack packets is a critical requirement for our framework and is itself a

significant on-going topic of a number of intrusion detection systems. For tracing compo-

nents,9 input-debugging [41] can check tracing results only for on-going traffic. By contrast,

logging [41] and hash-based logging [34] methods can provide apostmortemtracing service

which can check if even past traffic (before a query) containsattack packets. Furthermore

one can envisage that stand-alone data capture devices (e.g., RMON probes [42]) or sniffers

(e.g., tcpdump) can be used to provide on-going tracing services in a non-intrusive way, i.e.,

not affecting routing performance. Also note that there arevarious filtering services avail-

9See Section 4.4 for more detailed explanations for each tracing method.
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able which operate at various layers of the protocol stack - e.g., IP-level, TCP-level and

application level.

Security issue

To be a viable solution to defeat DDoS attacks, our frameworkshould itself not be misused

by an attacker. For example, we can consider the following possible security concerns: 1)

a compromised tracer provides incorrect information, and 2) an attacker generates faked

tracing or filtering requests. Note that the critical solution for the above problems is to

authenticate the source of the packets (i.e., who is sendingthe request or report packets).

A comprehensive solution addressing security concerns in our framework, we would use a

secure multicast service. However, secure multicast service is still being developed [43].

Instead, we observe that a standard digital signature scheme will suffice for source authen-

tication in our framework. As pointed in [33], if the authentication of packets is required

too frequently, a digital signature is an expensive solution incurring lots of computational

and space overhead. However, note that in our scheme, the packets are exchanged between

a victim and a subset of tracer or filter nodes only when required.

Inaccurate information

As seen in Section 3.4, our tracing mechanism relies on 1) a map of upstream routers and

2) traceroute results. In this section, we consider the impact of inaccurate information on

our tracing mechanism. Even though the network map can be obtained using the tools

described in Section 3.4.2, we observe that it is difficult toobtain an updated accurate

Internet topology. However, since our goal is not to pinpoint the exact attack origins, such a

map does not have to be perfect. Furthermore, note that even without a map, the expanded
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attack graph itself can be a useful tool for identifying the regions where attacks originated.

Also, a map can be obtained in a post-mortem manner after an attack ends.

Note that traceroute may not work as desired due to the mannerin which routers

are configured along given paths. In addition, traceroute may not provide an accurate attack

path due to changes in routing and attack patterns on parallel routes. However, as mentioned

above, our goal is to obtain a set of candidate nodes not to identify the exact attack origins.

Thus, inaccurate path information can be still useful. Furthermore, if traceroute is per-

formed while an attack continues, attack packets and traceroute packets will be forwarded

based on the same unicast routing table, which produces a more accurate approximate attack

graph.

Multicast routing protocol

In this section, we consider which multicast routing protocol will be suitable for our frame-

work. Current implementations of multicast routing service, can be classified into two

types: source tree and shared tree routing. In source tree routing, the distribution tree is a

reverse shortest-path treewhich is formed by overlaying shortest path from each member

to a source. In shared tree routing protocols, e.g., CBT [20]or PIM-SM [25], the distri-

bution tree is commonly shared by all members irrespective of the sources. Note that in

our approach, during a time without attacks, there are no data packets injected into a mul-

ticast session. This is because the multicast session is notused for data distribution among

members but only for tracing or filtering request distributions from unpredictable victims.

Therefore, the cost for maintaining the multicast session becomes an important issue when

selecting a multicast routing protocol. In source tree routing, the distribution tree is main-

tained by periodic reverse-path forwarding and pruning, which incur large overheads. Thus
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we conclude that a shared tree routing protocol is more suitable than a source tree for our

approach.

Shared multicast routing protocols can be further classified into two types:unidi-

rectional and bidirectional shared tree routing protocols. In a unidirectional shared tree

protocol, the sender’s packets go to the core first and the core multicasts them to others.

By contrast, in bidirectional shared tree routing protocols, members can communicate with

each other without going through the core since packets can travel both up toward the core

and down from the core. Thus, once a shared tree routing is used, unidirectional routing

protocols are inefficient for scoped multicast and communications among neighborhoods.

The larger the multicast session and the more demands for scoped multicast, the larger the

communication overheads will be in unidirectional shared multicast routing protocols. Re-

flecting these observations, the long term inter-domain routing solution, Border Gateway

Multicast Protocol(BGMP) [24] constructs bidirectional shared trees. Since our tracing

mechanism uses scoped multicast to find negative tracer nodes, bidirectional shared tree

routing protocols will be more efficient in our framework.

3.6.2 Economic Incentives

Irrespective of the existence of feasible solutions to mitigate DDoS attacks, a significant

hurdle may be the lack of viable economic incentives [44]. For example, installing ingress

filters in a domain consumes valuable router resources and reduces the overall routing per-

formance. However, its beneficiaries are likely to be other domains rather than the domain

performing ingress filtering. In our framework, we can envisage the following economic

model: victims pay a fee for the services provided by tracer and filter nodes. Clearly this

gives an incentive to provide tracing and filtering servicesto victims in other domains. The
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payment may be dependent on the number of attack packets dropped, the number of tracing

or filtering report packets and so on. One can further consider that victims pay a fee for

detecting services. We leave the more detailed pricing mechanisms as future work.

3.6.3 Differentiated Services

As described in Section 3.6.1, various implementation methods for tracing and filtering

components are available with different characteristics.To allow such heterogeneity in im-

plementation in our framework, we can consider providing differentiated services. Instead

of having a single multicast session for tracing (or filtering) service, we create different

multicast sessions for different services. For example, there could be a multicast session for

postmortem tracing or one for application level filtering.

Note that this scheme allows 1) flexible service requests forvictims and 2) hetero-

geneity in different implementation methods from different domains. Depending on the

attack scenarios, a victim can request different services.For example, if a victim detects

an attack very late and the attack has already ended, the victim can ask for a postmortem

tracing service rather than tracing for an on-going one. Given its service requirements,

each domain may use its own methods. This requires less standardization across network

domains, allowing more heterogeneity.

3.7 Related Work

In this section, we discuss the pros and cons of existing research efforts on defeating DDoS

attacks and the proposed approach in this chapter.
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3.7.1 Detection and mitigating approach

There are two types of mitigation mechanisms: host-based and router-based. Host-based

approaches [45], [46] try to detect and mitigate the impact of attacks by an efficient control

of resources from the perspective of the operating system onthe victim side. Even though

this helps sustain a victim longer, the victim will eventually give in to attacks. By contrast,

in the router-based approach [40], detection and mitigation of attacks are performed at

routers. This work defines anaggregateas a particular set of packets causing the overload

and proposes an identification algorithm for detection and control mechanisms which can

reduce such aggregates. A SYN flooding detection mechanism is recently proposed in [47].

It is based on discrepancies between SYN and FIN packets. It is stateless and requires low

computational overhead to detect SYN flooding attacks.

3.7.2 Proactive filtering approach

Ingress filtering [29] and route-based filtering [30]10 proactively prevent attacks employing

spoofing. Routers are configured to drop packets whose sourceIP addresses are illegitimate

based on routing and network topology information. Ingressfiltering uses simple direct

connectivity information, so it is usually performed at border routers in stub networks [29].

However, in transit networks, it lacks the ability to distinguish between legitimate and il-

legitimate packets and its effectiveness can only be guaranteed via wide deployment. To

overcome these weaknesses, a route-based mechanism [30] performs filtering using source

reachability information imposed by routing and network topology. By using additional

network topology information, route-based filtering requires less coverage than ingress fil-

tering to be effective.

10Route-based filtering approach also has a tracing by-product, i.e., attack origins can be localized to a set of
AS (Autonomous System) sites.
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3.7.3 Tracing approach

As indicated by recent work on tracing mechanisms [34], [32], [33], tracing can be an

effective way of discouraging attackers. The identified compromised hosts intentionally or

unwillingly participating in attacks can be isolated from the Internet or can provide clues to

the real attacker. Existing tracing approaches can be classified into the following two types.

The first type is a query-based approach where trail information is queried to tracing

components in the network. The query is usually performed inthe reverse direction of the

attack packets, i.e., from the victim toward the source(s) of the attack. Checking whether

attack packets have been forwarded by given routers can be done by several currently avail-

able techniques: logging packets using monitoring tools [41] or input debugging which can

identify which ingress port was used by packets departing ona given egress port. How-

ever, there may be a high storage overhead for logging methods and some adverse effects

on routing functionality when input debugging is used. To overcome these problems, in the

hash-based logging approach [34], routers store packet digests generated by a hash function

rather than the packets themselves. Upstream routers to thevictim are successively queried

for attack packets in a reverse path flooding manner. A key advantage of this approach is

that it is capable of tracing a single recently forwarded packet while keeping privacy. How-

ever, tracing queries should be initiated early enough thatappropriate digest entries have

not been overwritten by more recent packets. Note that sincequeries are sequentially pro-

cessed in the query-based approach, the malfunctioning of some tracing components may

not deliver a query to upstream routers, which result in the failure of tracing operation.

Another tracing alternative is based on partial path information which is proactively

sent to end hosts when packets are forwarded. Once attacks are detected, the victim can

reconstruct the routes attack packets took based on stored trail information. In the iTrace
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method [48], [49], with a low probability routers send extraICMP messages including their

own addresses to the end host. By contrast, IP marking schemes [32],[33] can eliminate

the extra ICMP messages used in iTrace by having routers probabilistically inscribeedge

information (represented by two routers at the end of a link)onto a traversing packet. The

advantage of this approach is that it enables incremental deployment while keeping router’s

overhead low. However, as pointed out in [50], in the presence of multiple attack nodes, the

approach suffers from a scalability problem, i.e., uncertainty in identifying origins of at-

tack packets increases proportionally with the number of nodes in a distributed DoS attack.

Furthermore, due to its probabilistic character, the solution is confined to tracing attacks

associated with large volumes of traffic. Note that in this second approach, end hosts need

to proactively save incoming packets irrespective of whether an attack is ongoing, requiring

large storage overheads at end hosts.

Schnackenberg et al. [51] propose an IDIP (Intruder Detection and Isolation Pro-

tocol) for automated intrusion response systems that can detect a DoS attack and request

upstream network elements to block the traffic. Their work focuses on standardization of a

set of protocols for interaction among infrastructure components to realize a simple query-

based tracing idea.

3.7.4 Characteristics of our solution

In a proactive filtering approach, filters need to maintain a large number of filtering rule

sets and examine every single packet. We envisage a large scale filtering framework, which

suffers from the complexity of managing a large number of filtering rule sets. Furthermore,

if attacks are infrequent, valuable resources may be wastedif irrelevant filtering rule sets are

applied to packet flows. By contrast, our filtering mechanismhas soft state properties, e.g.,
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renewal and expiration of filtering, which significantly reduces complexity of managing

filtering rule sets.

The conventional reactive filtering approach confined to a single administrative do-

main containing the victim has its limitation. Once attack packets (possibly generated at

multiple locations) have been aggregated into large trafficflows, attack traffic can over-

whelm the local domain and make local filters inoperable; as aresult, the filters are victim-

ized. Note that our filtering mechanism is designed to quickly identify a set of boundary

filter locations so that attack packets might be dropped as close as possible to their origins

before they are aggregated.

The key requirement for reactive approaches – promptness – can be met by the

use of multicast communication in our framework. This is thecase when a request packet

is distributed in real time via multicast, so filter/tracer nodes can respond concurrently and

quickly. The use of IP multicast provides the following additional advantages. First, there is

no overhead in managing a list of cooperative filter/tracer nodes on detector or filter/tracer

nodes, leading to improved scalability. This feature comesfrom the member abstraction

property of multicast service, i.e., members can join and leave a multicast session without

explicit knowledge of its membership. Second, the proposedmechanism is robust even in

the presence of some malfunctioning filter nodes or packet losses. In a sequential query-

based approach, the query process may be terminated due to packet losses or malfunc-

tioning of some filter nodes. In such situations, our approach may not result in optimal

filtering/tracing operation, i.e., filtering is performed in non-boundary filter nodes(or attack

graph is not accurate), but it may still work well. Finally, multicast ensures an efficient use

of network resources – a single packet traverses each link inthe multicast distribution tree

and is replicated at fan-out points.
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3.8 Conclusion

In this chapter, we presented a new multicast-based filtering and tracing service framework

to defeat DDoS attacks. The proposed filtering mechanism pushes filtering operation to

boundary nodes so that attack packets might be dropped as close as possible to their ori-

gin(s). If we assume that attacks are infrequent, our filtering mechanism can achieve more

efficient use of network resources versus proactive solutions. Indeed when no attacks are

ongoing, only a multicast session needs to be maintained, without overheads associated

with filtering operation. In this chapter, we consider the goal of determining sets of candi-

date nodes for localizing attack origins under a partial deployment of tracing components,

and propose a mechanism to achieve this end.

A significant challenge of large scale deployment of both mechanisms is handled

by a novel use of IP multicast and soft-state. Furthermore the use of IP multicast provides

a number of desirable characteristics, e.g., fast response- one of key requirements for re-

active solutions, and robustness. Additional contributions of our work include a number

of practical considerations: 1) addressing economic incentives, 2) using currently available

equipment and technologies without major router modifications, and 3) allowing incremen-

tal and partial deployment.

The performance evaluation for the proposed framework shows that a small cover-

age ratio of well-placed filter or tracer nodes can achieve efficient blocking and localizing

of attacks.
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Chapter 4

Topology-sensitive Subgroup

Communication

4.1 Introduction

Due to its bandwidth efficiency, IP Multicast is the preferred data delivery method for large-

scale interactive applications such as distributed interactive simulations (DIS), video con-

ferencing tools and multi-player games. Although the members in such applications join

a multicast session for some common goal, abundant content,data type and heterogene-

ity in members’ interests naturally lead topreference heterogeneitywithin sessions [52],

requiring frequent communication withinsubgroupsof members sharing common inter-

ests/requirements. A multicast session shared by all members (referred to as the global mul-

ticast session) can be used to support subgroup communication. However, this may lead to

inefficiency, i.e., packets are delivered to the entire tree, which results in wasted bandwidth

and CPU processing power to transmit and handle unnecessarypackets. This is referred
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to as theexposureproblem. The exposure problem can be completely eliminatedif data is

only forwarded along a tree induced by the members of each subgroup, as required. This

can be achieved by creating a new multicast session for each subgroup. However, this re-

quires routers to store multicast forwarding state information for each subgroup, which can

cause a significant scalability problem as the number of subgroups increases [53, 54]. Thus,

mechanisms to handle preference heterogeneity should consider both the exposure problem

and the scalability of increasing multicast forwarding state. Most existing approaches to the

preference heterogeneity problem focus on developingclusteringframeworks, i.e., given a

limited number of multicast sessions, determine how to bestcluster multiple subgroups into

multicast sessions based on a preference matrix [52] or players’ positions in a virtual cell

[55].
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Figure 4.1: An example of TSC forwarding structure

In this chapter, we propose a topology-sensitive subgroup communication (TSC)

mechanism to support efficient subgroup communication in large-scale multicast applica-

tions. Our TSC mechanism allows members in a subgroup to autonomously build a TSC
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forwarding structure consisting of multiple unicast and scoped multicast connections. For

example, consider a distribution tree for a multicast session, G, in Figure 4.1(a). All end

nodes are members ofG and the black end nodes are members of a subgroup,S. In our

scheme, whena wishes to send packets to other members inS, packets will be delivered

as follows: (1)a −→ b via unicast; (2)b −→ c via unicast; and, (3)c −→ {d,e, f} via

multicasting with a TTL scope of 2 as shown in Figure 4.1(a). We assume that the multicast

tree forG is a bidirectional shared one.1 Note that in the example, the use of unicast can

suppress the exposure and the use of scoped multicast can reduce duplicate packets travers-

ing the same link. Our approach does not require the creationof new multicast sessions,

which can completely eliminate any additional multicast forwarding state except those of

the global session. We attempt to minimize exposure by exploiting spatial locality among

members within a given subgroup.

This chapter is organized as follows. In Section 4.2 we discuss how to construct and

maintain a TSC forwarding structure. In Section 4.3, we evaluate and compare the proposed

TSC mechanism with other schemes in various environments. We discuss related work in

Section 4.4 and conclude this chapter in Section 4.5.

1Our mechanism targets many-to-many large-scale multicastapplications where each member can be a
sender and/or receiver. For such applications, it is generally agreed that shared multicast routing protocols are
more efficient than source based ones. Even though PIM-SM, widely deployed for shared multicast routing,
takes a unidirectional forwarding mechanism, we argue thatbidirectional forwarding mechanisms are more
efficient. The larger the multicast session and the more the demand for local communication, the larger the
overhead incurred by using a unidirectional tree. Reflecting these observations, the long term inter-domain
routing solution, Border Gateway Multicast Protocol(BGMP) [24] currently under development, constructs
bidirectional shared trees.
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4.2 TSC forwarding structure

GivenG andS= {a, b, c, d, e, f} as shown in Figure 4.1(a), Figure 4.1(b) depicts an ex-

ample of a TSC forwarding structure exhibiting an overlay structure among members in

subgroupS. The solid and dashed lines represent unicast and TTL scopedmulticast respec-

tively. Subgroup members in a TSC scheme are classified into two types:normalor head

members. A normal member is associated with a head member. Head members, denoted by

a setHS, communicate with each other via unicast connections in a TSC forwarding struc-

ture. The role of the head members is two-fold: 1) they participate in constructing a unicast

overlay structure, and 2) they perform scoped multicast forwarding to their associated nor-

mal members. We define anisland as a set of nodes consisting of a head and its normal

nodes. Note that it is possible to have one member island where there are no normal nodes

associated with the head node. For example,HS = {a, b, c} and{a} ,{b}, {c, d, e, f} are

islands in Figure 4.1(b).

Note that if there are only one-member islands in a TSC forwarding structure, this

completely eliminates themember exposureproblem. However, this will introduce per-

formance penalties, i.e., duplicate packets on the same physical links. The use of TTL

scoped multicast may reduce such bandwidth wastes in the case where subgroup members

are clustered with each other. Thus, our goal is to build a TSCforwarding structure which

minimizes wasted bandwidth while limiting the exposure of non-subgroup members given

a multicast sessionG and subgroup preferences for each member inG. Building TSC struc-

tures involves two stages: constructing islands and then connecting islands.
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4.2.1 Constructing islands

Let the setN(a, t) be the set of neighbors ofa, i.e., nodes within a TTL distance oft of

a nodea ∈ G, excludinga itself. Note that ifa performs a scoped multicast with a TTL

scope oft, packets will be delivered to all the nodes inN(a, t). Let NS(a, t) denote the set

of subgroupS members inN(a, t), i.e., {n|n ∈ S∩N(a, t)}. For example, in Figure 4.1,

N(c,2) = {d,e, f ,g} andNS(c,2) = {d,e, f}. For a∈ S and a givent, theexposure ratio

βS(a, t), is defined as follows:2

βS(a, t) =















1 if |N(a, t)|= 0,

|N(a,t)\NS(a,t)|
|N(a,t)| , otherwise.

Before proceeding, we briefly describe how each member can compute an exposure ratio

for a given TTL scope. LetLa be a set of subgroups which a membera wishes to join.

Each member,a∈ G, periodically multicasts asubgroup advertisementpacket containing

La with a fixed TTL distancek. Then each member can maintain aTTL-neighbor profile

storing tuples of all neighboring members and their subgroup lists along with TTL distance

up tok. 3 Figure 4.2 shows an example of the TTL-neighbor profile of memberc in Figure

4.1 whenk is 5. With the TTL-neighbor profile, each node can easily obtain exposure ratios

up to TTL scopes ofk. Note that the scopek value should be large enough to create an

efficient and large island, but also should be small enough not to incur too much traffic.

Note that the exposure ratioβS(a, t) can indicate whether a scoped multicast per-

formed bya with a TTL scope oft is efficient or not. That is, when the exposure ratio is

low, scoped multicast can be considered an efficient delivery method.

2A\B representsA minusB, i.e., elements fromA that are not inB. |A| denotes the cardinality of a setA.
3Distance information between members can be obtained by senders inserting initial TTL value in packets.

This enables a receiver node to compute its TTL(path) distance from the sender by simply subtracting the value
in TTL field from initial TTL value.
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Figure 4.2: TTL-neighbor profile ofc in Figure 4.1

Since we envisage that a head node forwards packets to its normal nodes via a TTL

scoped multicast for subgroup communication, an island canbe specified by a head node

and an associated TTL scope. Note that constructing islandsrequires (1) each member inS

to decide its role between head and normal, (2) a normal node to decide its head node, and

(3) a head node,h∈ HS, to decide its TTL scope, calledradius, rS(h). Note that there is an

important trade-off in selecting the radius. If it is too large, there may be a high exposure,

and if it is too small, we underutilize the use of scoped multicasts. To make a trade-off, we

introduce anexposure thresholdε to control the degree of exposure. Thus, the goal is to

make the radius as large as possible for a given allowable exposure threshold. Since each

node,a∈ S, initially considers itself to be a head candidate, each node computes its radius

as shown in Figure 4.3.

If there are no TTL scope values with exposure ratios that areless thanε for a nodea

(line 2),a sets its radius and exposure ratio to 0 and 1 respectively (line 3). Line 5 indicates

that each node chooses as large a radius as possible given an exposure threshold. Line 6 and

7 try to reduce the radius if there are unnecessary bandwidthwastes. For example, consider

two cases where a nodec chooses its radius as 2 or 4 respectively in Figure 4.1 (a). Even

though the exposure ratios of both cases are the same, with the selection of a larger radius
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1: Let T = {t|βS(a, t) < ε,0 5 t 5 k} where 05 ε 5 1
2: if |T|= 0 then
3: rS(a) = 0 andβS(a,0) = 1
4: else
5: tm = max{t|t ∈ T}
6: if there existstn ∈ T such thatNS(a, tn − 1) 6= NS(a, tn) =NS(a, tn + 1)= . . . =

NS(a, tm−1)= NS(a, tm) then
7: rS(a) = tn
8: else
9: rS(a) = tm

10: end if
11: end if

Figure 4.3: Radius selection algorithm

i.e, 4, packets will traverse more links than with a radius of2. That is, the goal of the radius

selection algorithm is to minimize bandwidth waste while satisfying the exposure threshold

constraint. Figure 4.4 shows an example of the radius decision rule for nodec in Figure 4.1

where an exposure threshold,ε, is 0.4. In this example,tm andtn are 4 and 2 respectively.

A weight vectorof a, wS(a), is defined as a 3-tuple including the exposure ratio,

radius and node ID, i.e.,< βS(a, rS(a)), rS(a), ID(a) >. An IP address can be used as an

ID of a node. The elements of the weight vector are ordered in alexicographical manner.

That is, a weight vector for a nodea is lessthan that of a nodeb, wS(a)<wS(b), if

1) βS(a, rS(a)) < βS(b, rS(b)) or

2) βS(a, rS(a)) = βS(b, rS(b)) andrS(a) < rS(b) or

3) βS(a, rS(a)) = βS(b, rS(b)) andrS(a) = rS(b) andID(a) < ID(b).

Once each member,a, has a weight vector, the choice of a head node is based on

the weight associated with each node: the lower the weight ofa node, the higher its priority

to assume the role of head. This idea is similar to the algorithm for organizing mobile

nodes into clusters proposed in [56]. Each node,a, advertises its weight vector only to
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Figure 4.4: Radius selection ofc in Figure 4.1

N(a,rS(a)), i.e., performs a scoped multicast with scoperS(a). After gathering neighbors’

weight vectors, each node nominates the one with the lowest weight vector to be its head and

notifies its head of its decision. Once a node,a, is elected by at least one normal member,a

becomes a head member. Note that a node can nominate itself ifthere is no other node with

lower weight vector.4 Also note that this algorithm may generate overlapping islands.

4.2.2 Connecting islands

Once each member decides its role, the head members,HS, are responsible for connecting

islands, i.e., building an overlay structure consisting ofunicast connections among head

nodes. This problem is similar to recent research being conducted on application level

multicasting [2, 3, 4]. Our solution is to build filial relationships among head members

based on TTL distance information. Each head member finds itsparent head member. If a

head node nominates itself as a parent node, it becomes aroot head node for the subgroup,

S. This strategy, i.e., finding its own parent, guarantees that every head member participates

4This includes the case where a node is so far away from other nodes that other nodes’ weight vectors are
unavailable.
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1: C = {n∈ HS|d(n, r) < d(h, r)} whered(h, r) denotes TTL distance betweenh andr.
2: if |C| 6= 0 then
3: D = argmin

n∈C
d(n,h)

4: p(h) = argmin
n∈D

ID(n)

5: else
6: C̄ = {n∈ HS|d(n, r) = d(h, r)}.
7: p(h) = argmin

n∈C̄
ID(n)

8: end if

Figure 4.5: Parent head node selection algorithm

in constructing the overlay structure.

Suppose areferencenode,r ∈ G, periodically sendsreferencepackets to the entire

session.5 When receiving reference packets, each member can obtain the distance between

itself and the noder. This distance information is used to build parent-child relationships

among head members in the session. The parent node,p(h) of a nodeh∈ HS, is selected

based on the following rules: Choose the one with the closer distance tor than that of itself.

If multiple nodes satisfy this condition, then choose the node which is the closest to itself.

If there are again multiple nodes, then choose the one with the lowest ID. Figure 4.5 and 4.6

present the detailed algorithm and an example of the parent selection process respectively.

In Figure 4.6, the number in parenthesis is the ID of the node.Note that nodec would select

its parent in Step 4 of Figure 4.5 while nodesa, b would select their parents on Step 7.

The only required information in the above algorithm are TTLdistances among

head members. Thus, each head member,h∈HS, puts two additional pieces of information

in its subgroup advertisement packets: 1)d(h, r) and 2) the fact that it is a head node. How-

ever, in the case where its parent head node may be further than k (the scope of subgroup

advertisement packets) hops away, an expanding ring search[23] can be used to find the

5Note that the reference node is not dependent on any subgroup.
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Figure 4.6: An example of parent selection algorithm

parent head node. Once each node,h, sends aparent nominationpacket, then its parent

node,p(h), sends back aparent confirmationpacket, which sets up a filial relationship.

4.2.3 Forwarding and maintenance of a TSC mechanism

While each node,a ∈ S, sets up a relationship among members inS, it needs to build a

routing table,TS(a) for subgroupS communication. A normal node simply maintains an

entry for its head node. A head node stores its radius and entries of nodes which have filial

relationships, i.e., one parent and its children, if any. The radius entry in the routing table

represents a scoped multicast in theG session with the TTL scope of the radius. Then the

following two rules suffice for subgroupS communication: (1) if a node,a, is a source

node, broadcast packets over entries inTS(a) and (2) if a node is a relay node, broadcast

packets over entries inTS(a) except the one from which packets are received.

Note that during the multicast session, the interests of members may change and

members may leave or join the global multicast session. Suchdynamics are handled by

periodic subgroup advertisement packets injected by each member. A change of interest

or membership will produce different TTL-neighbor profile,leading to a change in the

weight vectors. If a normal node wishes to change its head node, it notifies the previous
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head node of its intention, so that the head which no longer has any normal members,

can become a normal member. When a head node leaves or becomesa normal node, it

notifies its parent and children of the event, so that they update their routing tables and find

other parents. Consider the case where nodes abruptly fail or the network is partitioned,

wherein explicit notification is impossible. In this case, periodic subgroup advertisement

packets indicate the liveness of members, thus our mechanism can dynamically adapt to

the situation. However, since there is a scope limit to subgroup advertisement packets (k in

Section 4.2.1), parent and child nodes whose distance is farther thank, need to periodically

exchange acknowledgment packets.

4.3 Evaluation

We conduct simulations to study various issues and trade-offs in applying the proposed

TSC mechanism in multicast applications. Our goal is to investigate in which environments

it is advantageous to apply the proposed mechanism. For comparison, we examine the

performance of the following schemes for subgroup communication.

•Global Multicast:This represents a scheme that simply uses the original global multicast

groupG for subgroup communications.

• Unicast-Only: This scheme constructs unicast overlay trees among subgroup members.

Though there have been numerous overlay schemes presented,we use our methods for

constructing overlay structures. That is, this scheme can be considered as a TSC mechanism

with 0 exposure ratio.

• TSC-ε: This represents our proposed scheme with anε exposure threshold.
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4.3.1 Performance Metrics

To evaluate our TSC mechanism, we use the following metrics.

• Cost ratio: Let us define thecostof a subgroup communication using schemef byCf (S),

the total number of links traversed by packets generated to distribute a unit amount of data

for Ssubgroup communication.6 For example, in the case where a new multicast session is

created, the cost of subgroupScommunication, denoted byCnew(S), is simply the number

of links in the tree induced by subgroup members. SinceCnew(S) can be considered optimal,

we define acost ratioγ f as the ratio ofCf (S) toCnew(S), i.e.,γ f = Cf (S)/Cnew(S). A value

close to 1 for the cost ratio metric represents an efficient use of bandwidth.

•Global member exposure ratio: Let Ef (S) be a set of members inG exposed while ap-

plying a schemef for subgroup communication among a set of users. Theglobal member

exposure ratio, β f , is defined as|Ef (S)\S|
|Ef (S)| . The higher the value ofβ f , the more members are

exposed.

4.3.2 Methodologies

We have built a simulation tool to compute the above two metrics. We measure them by

varying the following elements.7

• Topologies:We use real multicast trees gathered in [57]. Note that unicast packets will

follow the same path taken by multicast packets in our simulation environment, which may

not be the case in real world. However, as shown in [57] there is a topological closeness

between unicast paths and multicast paths. Thus, we believethat the performance results

are valid.
6For simplicity, we assume that a link cost is symmetric and unit cost. However, the cost can be generalized

with inclusion of asymmetric and variable link costs.
7In the simulation, we do not consider a dynamic membership change.
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• Subgroup density:We vary density of subgroup members from sparse, to mid-range, to

dense.

• Subgroup membership distribution:We follow the same methodology as proposed in [54]

to model topological correlation within a subgroup, i.e., as with random, affinity/disaffinity

and distributed clusters. Affinity mode emulates subgroup distributions with members that

tend to cluster together and the disaffinity mode is for the subgroup member distribution

that tends to be spread out.

We create a subgroupSwith m nodes for affinity and disaffinity modes as follows:

initially Shas no members and we choose subgroup members one by one from the global

sessionG until |S| = m. The first node is randomly selected. Forkth node selection, we

assign a probabilitypi = α
gθ

i
to each nodeni ∈ G\S, wheregi = min

nj∈S
d(ni ,n j) and α is

calculated such that ∑
ni∈G\S

pi = 1. Then, we randomly select a subgroup member among

C = {ni |ni ∈ G\S, pi ≥ p} wherep is a random value from 0 to 1.8 We useθ = 15 and

θ =−15 for affinity and disaffinity respectively.

In the distributed clusters mode, a few clusters are randomly scattered in the tree and

each cluster is modeled according to the affinity mode. We modeled a number of clusters

that was linearly increasing as a density of subgroup increases, i.e., 0.3∗density+2.

• Scope of subgroup advertisement packet:We vary scope of subgroup advertisement

packet to investigate its impact on the performance of our TSC mechanism.

4.3.3 Results

Since our results for the various topologies in [57] show similar trends, we only present

results for the real multicast tree shown in Figure 4.7. It consists of 2359 nodes and 1487

8If |C|= 0, then choose a differentp value.
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end nodes(members).

Figure 4.7: A global multicast tree topology

The following figures show the cost ratio and member exposureratio results vary-

ing subgroup densities for the various node distributions.We set 7 as the TTL scope for

subgroup advertisement packets. In each figure, we present performance metrics for global

multicast, unicast-only, TSC-0.2 and TSC-0.6 schemes. Each point in the figures represents

an average over 100 different subgroup distributions for given distribution mode and den-

sity. We do not include the member exposure ratio of the unicast-only scheme since it is

always 0.

Figure 4.8 shows the results for random node distributions.We observe that the cost

ratio of global multicast scheme heavily depends on the density of subgroups: the larger the
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Figure 4.8: Random mode

density of a subgroup is, the lower cost ratio of global multicast is; above 20% density

global multicast beat all the other schemes in terms of the cost ratio. However, the member

exposure ratio of global multicast scheme is higher than other schemes for all densities.

Also note that the member exposure ratio of global multicastis constant regardless of sub-

group members’ distributions. For low density regimes, we observe that unicast-only and

TSC schemes show similar results. This is because members are randomly distributed and

the density is low, TSC generates one-member islands in mostcases. As subgroup density

increases, TSC outperforms unicast-only by using scoped multicast. TSC-0.6 achieves bet-

ter cost ratio than TSC-0.2 as density increases since TSC-0.6 scheme aggressively forms

non-one member islands. However, better cost ratio performance is at the expense of more

member exposure ratio as shown in Figure 4.8 (b).

Figure 4.9 shows the performance results for subgroups withnodes placed based on

the affinity distribution. Note that since in the affinity mode, members are spatially clustered

together, a global multicast scheme causes an excessive cost ratio, e.g.,γ= 23 at 5% density.

The cost ratio of TSC mechanism is almost two times lower thanunicast-only scheme for
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Figure 4.9: Affinity mode

the range of densities. TSC-0.2 and TSC-0.6 have almost the same cost ratio results since

members are clustered so that the exposure threshold value is not a major factor for creating

islands any more. Also note that TSC mechanisms achieve fairly low member exposure

ratios.
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Figure 4.10: Disaffinity mode

Figure 4.10 depicts the results for the disaffinity distribution mode. Both cost ratio

and member exposure ratio results show similar trends to those for the random case except
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that in the mid-range of densities, the cost ratio of TSC mechanisms is slightly higher than

that of the unicast-only scheme. This can be explained sincemembers are spread out from

each other in a disaffinity mode, the effort to form islands ina TSC mechanism leads to more

link exposure by scoped multicasts. However, for high densities, the cost ratio eventually

benefits TSC mechanisms.
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Figure 4.11: Distributed clusters mode

Figure 4.11 shows the performance results for the distributed clusters distribution

mode. We observe that the results are similar to the affinity mode.

Figures 4.12, 4.13, 4.14 and 4.15 show the performance results for random, affinity,

diaffinity and distributed clusters respectively varying the scope (k) of subgroup advertise-

ment packets, i.e.,k = 2,4,7,10 with TSC-0.6 scheme. Note that the scopek provides a

hard limit for the radius of islands, i.e., the radius cannotbe larger thank. We observed

that all four distribution modes show similar results for varying scopes of subgroup adver-

tisement packet as follows. First, as the scope becomes smaller, member exposure ratio

decreases. This is intuitive since a smaller scope does not allow large islands, which can

reduce member exposure. At the extreme case wherek= 0, the member exposure ratio is 0.
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Figure 4.12: Random mode (TSC-0.6)

Second,k = 4 is the best choice for the cost ratio metric for all distribution modes. Though

smaller scopes generate smaller member exposure ratio, it may underutilize scoped multi-

cast to reduce the cost ratio. Also, if TTL scopes are too large, they generate high cost ratios

due to large islands. Thus, an intermediate scope value can produce the lowest scope value,

which is k = 4 for our simulation results. Third, even a small scope can generate pretty

low cost ratio for all distribution modes. For example,k = 2 achieves slightly higher cost

ratio compared tok = 4. This result demonstrates that most benefit from scoped multicast

can be achieved with even small scopes. This is an encouraging result since the overhead

for control messages for TSC mechanism can be significantly reduced by using subgroup

advertisement packets with small scopes.

Through the simulation studies, we observed that differentsubgroup membership

distributions and varying subgroup densities heavily influence the performance of the schemes

for subgroup communication. As expected, the TSC mechanismbenefits greatly from clus-

tered distributions (affinity and distributed clusters modes). The TSC mechanism also
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Figure 4.13: Affinity mode (TSC-0.6)

achieves fairly stable cost ratios (from 1.5 to 4) irrespective of variations in density or

distribution modes.

4.4 Related work

The scalability of state associated with multicast forwarding by routers has been one of the

significant issues for the wide deployment of IP multicast. Reduction of multicast forward-

ing state at routers can be achieved through aggregation or elimination of non-branching

approaches. In [53], multiple multicast forwarding entries are aggregated if entries have

adjacent group address prefixes and matching incoming and outgoing interfaces. The goal

of dynamic tunnel multicast [58] and REUNITE [59] is to reduce multicast states by elimi-

nating non-branching point. That is, only fan-out (branching) points keep state information,

which is mostly beneficial in a sparse distribution of members. Note that the above two ap-

proaches require the modification of routers, which may takea long time to be deployed.

The clustering schemes aim to efficiently cluster members into a limited number

of multicast sessions based on a preference matrix [52] or players’ position in a virtual
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Figure 4.14: Disaffinity mode (TSC-0.6)

cell [55]. Note that the first two approaches (aggregation and non-branching elimination)

are at the routing level, that is, trying to eliminate multicast forwarding state at each router.

However, the clustering schemes are at the application level, i.e., aim at reducing the number

of multicast groups using application specific information. Thus, the first two approaches

can be applied to any single multicast group and the clustering schemes are for large-scale

multicast applications requiring lots of subgroup communication, which is our aim in this

chapter. Note that in clustering schemes, there is a centralpoint where all the member’s

preference information should be gathered. Due to not only processing overhead but also

communication overhead this is unlikely to scale nicely when there is dynamic change of

membership or preference in a large-scale multicast session. In contrast, our approach is a

distributed algorithm wherein the forwarding decision is made at each node.

Our approach should be contrasted with a number of recent application-level mul-

ticast studies, e.g., [2, 3, 4]. First, the goal of application-level multicast is the replacement

of IP multicast due to a number of challenges such as infrastructure modification, reliabil-

ity, flow and congestion control. However, we use the end-to-end approach for reduction
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Figure 4.15: Distributed clusters mode (TSC-0.6)

of multicast forwarding state in large-scale multicast applications. In our view IP multicast

and application-level multicast may coexist and IP multicast will survive as an important

delivery mechanism to serve large-sized groups. Second, our TSC mechanism is not a sim-

ple adaptation of unicast overlay solution to the preference heterogeneity problem. It uses

scoped multicast by exploiting spatial locality among members. By varying the exposure

threshold, it can position itself in the middle of two extreme points: a global multicast and

unicast overlay solution.

4.5 Conclusion

In this chapter, we designed and evaluated a topology-sensitive subgroup communication

mechanism to handle the preference heterogeneity problem in large-scale multicast appli-

cations. Our TSC mechanism takes a complete end-to-end approach which eliminates addi-

tional creation of multicast groups. Depending on the localdensity of subgroup members,

members in the session self-configure into islands and forwarding structures. Within is-

lands, scoped multicast is used to derive benefit from clustered membership distribution
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and between islands, unicast is used to reduce unnecessary exposure. Throughout our sim-

ulations, we observe that our TSC mechanism performs in a consistent way over diverse

densities and distribution modes of the subgroup.
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Chapter 5

Fast Content Replication

5.1 Introduction

Content delivery networks (CDNs) are deployed to improve network, system and end-user

performance by caching popular content on edge servers located close to clients. Since con-

tent is delivered from the closest edge server to a user, CDNscan save network bandwidth,

overcome server overload problems, and reduce delays to endclients.

CDN edge servers were originally intended for static web content, e.g., web docu-

ments and images. Thus, if the requested content was not available or out-of-date, the local

server would contact the original server, refresh its localcopy, and send it to the client. This

pull type of operation works reasonably well for small to medium size web content, since

the performance penalties for a cache miss, e.g., additional network traffic from the original

server to the local server and higher delay to the client, arenot significant. However, CDNs

have recently been used to the deliver large files, e.g., digital movies, streaming media and

software download packages. For large files, it is desirableto operate in apushmodel,

i.e., replicating files at edge servers in advance of user’s requests, since their distribution
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requires significant amounts of bandwidth. The download times may be high, e.g., 20 min

media file encoded at 1 Mbit/s results in a 150 MBytes file, or a high quality digital movie

may be around 700 MBytes. Such push style file replication across distributed machines is

also required for web mirror services.

In this chapter we consider the problem of content distribution across geographi-

cally distributed nodes. Our focus is on distributing largefiles such as software packages

or stored media files, and our objective is to minimize the overall replication time, i.e.,

minimizing the worst case download time to a set of receivers.

5.1.1 Related work

IP multicast [1] is an efficient one-to-many delivery methodwhich can provide a number of

operational advantages for content and network providers by reducing the overall resources

consumed to achieve such distribution. A single packet transmitted by the source traverses

each link in the multicast distribution tree to all receivers in the multicast group. However,

the deployment of IP multicast has been hampered by a number of challenges including

the need to modify infrastructure and the need to support reliability, flow, and congestion

control.

Limited network layer support for multicast in the Internettoday, has led to active

research on end-system approaches [60], [61], [3], [62], [4], [63], [64], which do not re-

quire such infrastructure support, i.e., all multicast related functionalities, including group

management and packet forwarding, are implemented at end systems. In this architecture,

hosts in the group cooperate to construct anoverlaystructure of unicast connections. One

advantage of this approach over IP multicast is that participating hosts have the flexibility to

choose which overlay structure is constructed. Thus there is a possibility of routing around
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congested links. Furthermore, participating hosts may reconfigure their overlay structure

to adapt to dynamic changes in network congestion. Thus, many existing end-system so-

lutions [60], [61], [3], [62], [4], focus on constructing orreconfiguring a “good” overlay

structure to optimize the performance according to the application’s requirements.

However, the above-mentioned flexibility in building overlay structures comes at

a price. That is, building optimized overlay structures requires path quality information

among hosts, which in turn must be obtained through probing.Since overlay paths may

share common physical links,sequentialprobing to estimate available bandwidth on end-

to-end paths (i.e., without the presence of other overlay path probing) may result in poor

choice. If this is the case,joint probing over a large number of combinations should be per-

formed, which may lead to huge overheads. After building an overlay structure, participants

need to maintain it by exchanging control signals. To adapt to dynamic network situations,

additional monitoring of alternative paths may be required. Furthermore, while restructur-

ing happens, further overheads may be incurred due to lost packets or reconfiguration.

5.1.2 Contributions

To improve the delivery time in distributing large files in the context of a content deliv-

ery network, we proposedFastReplica, which is also an application level approach [65].

FastReplica uses two key ideas: (1) file splitting and (2) multiple concurrent connections.

That is, the source divides the original file intom (the number of receivers) chunks, and

concurrently transmits a different chunk to each receiver.Meanwhile each receiver relays

its chunk to the remaining nodes so that each node ends up withall mchunks.1 To support a

larger number of receivers in the group, the above basic algorithm can be applied iteratively

1This will be described in detail in Section 5.2.
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using a hierarchicalk-ary tree structure wherek is chosen small enough to support efficient

file distribution using the FastReplica algorithm.

In contrast with most existing end-system approaches, FastReplica does not attempt

to build a “good” overlay structure, but simply uses all available paths, i.e., fixedm2 overlay

paths among the source andm receivers. This reduces flexibility, but also reduces the over-

heads incurred in probing, building and reconfiguring the overlay structure. Experiments on

a wide-area testbed showed the potential of this approach toreduce the overall replication

time [65].

Despite these encouraging results, there are inherent weaknesses with the Fas-

tReplica scheme. FastReplica is oblivious to heterogeneity in its m2 overlay paths, i.e.,

some paths are “good” and others “bad”. FastReplica simply puts an equal amount of data

on each chunk. In this case, the overall replication time depends on the completion time of

the chunk traversing the worst path. Heterogeneity in the overlay paths may arise due to

at least three factors. First, it is inherent in network resources. Infrastructure-based CDNs

or web server replica networks are equipped with a dedicatedset of machines and/or net-

work links, which are engineered to provide a high level of performance, however there are

inherent heterogeneities among network resources, e.g., different capabilities of servers or

available capacity on network links. Second, even with homogeneous capabilities on net-

work resources (e.g., nodes’ capabilities and capacities of links between all end points are

uniform), each chunk transfer may not achieve the same throughput since multiple overlay

paths may be mapped onto the common physical links. A link shared by multiple flows

generated by FastReplica becomes bottleneck point, which will dominate the transfer time.

Third, Internet traffic is variable. The available bandwidth on each path may vary with

time possibly even during the transfer of a given file. In summary, although FastReplica
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exploits path diversity, it is unaware of heterogeneous resources, path sharing and dynamic

environments.

To overcome the above-mentioned limitations, in this chapter we propose theAdap-

tive FastReplica (AFR)mechanism. The key idea in AFR is to have chunks of different sizes

depending on network conditions. That is, the source node sends a smaller portion of the

file on “bad” paths and larger one on “good” paths. Several questions need to be answered

to make this type of application level load balancing practical.

• Which criterion should be used to decide which paths are “good” or “bad”?

• How does the source obtain such information?

• How large should the source make each chunk?

We propose an analytical network model, and study the problem of determining

the optimal partition. Based on the insights from the analysis and considering a practical

context, we propose the AFR mechanism to expedite file transfers. We implemented the

proposed scheme, and experimented with it on the Internet. Our performance evaluation

shows that there are significant performance gains for AFR over FastReplica, and that the

gain becomes more significant if network state is changing dynamically.

5.1.3 Organization

The rest of the chapter is organized as follows. Section 5.2 introduces our framework and

network model. In Section 5.3 we formulate and solve the optimization problem associated

with minimizing the overall replication time, and discuss our practical approach. Section

5.4 discusses an implementation of the Adaptive FastReplica mechanism. This is followed

by Section 5.5 wherein we present our experimental results over a wide-area network envi-

ronment. In Section 5.6 we discuss additional related work and Section 5.7 concludes the
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chapter.

5.2 Framework & Network model

In this section, we will present our framework, notation,andnetwork and bandwidth allo-

cation model used throughout the chapter.

5.2.1 Replication framework

Consider the problem of replicating a filef originating at noden0 across a set of receiver

nodes,R= {ni |i ∈N}, whereN = {1, . . . ,m} is the index set for receivers. Throughout this

chapterf will denote not only a file but also its size in bytes. The filef is divided intom

chunks, f1, . . . , fm, such that∑m
i=1 fi = f and fi ≥ 0, i ∈ N. To represent the portion of the

original file that goes to each chunk, we define apartition ratio vector, x = (xi =
fi
f , i ∈N).

Note that 0≤ xi ≤ 1 and∑m
i=1xi = 1. The mechanism underlying FastReplica includes two

basic activities.
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Figure 5.1: An illustration of the FastReplica framework.

• At the source n0: Noden0 opensmconcurrent connections to the replicating set,n1, . . . ,nm,

106



and sends to each nodenk the following two items: 1) a list of replicating nodes,{ni |i ∈N}

and 2) a chunkfk. This procedure is shown in Figure 5.1(a) in the case wherem= 3.

• At each node nk: After receiving the list of replicating nodes, eachnk opensm−1 con-

current connections to the remaining nodes,R\ {nk}, and relays its chunk,fk to each of

them. This procedure is depicted in Figure 5.1(b). Here, ideally a cut-throughoperation is

used to relay data, i.e., relaying nodes forward data on the fly as they receive it, instead of

waiting for arrival of the entire chunk.2

1

n

n

nn

n n

........
m

i

0

i−1 i+1

Figure 5.2: Overlay tree of theith chunk.

Figure 5.2 shows theoverlay treeassociated with chunki. As can be seen, the tree

includesm overlay links. Since there arem chunks and thusm such trees, FastReplica uses

m2 overlay links to realize the file transfer. Note that an overlay link between two nodes

may consist of multiple physical links and routers, i.e., itcorresponds to a unicast path in

the underlying physical network. Also, note that multiple overlay paths may share the same

physical link.

We shall letti j (x), i, j ∈ N, denote thetransfer timeof the ith chunk from noden0

2Note that the cut-through operation was not assumed nor implemented in the original implementation of
FastReplica [65].
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to noden j , when the partition vectorx is used. We further define thedownload timeto the

jth receiver,d j(x) = max
i∈N

[ti j (x)] and theworst case transfer timefor the ith chunk,ti(x) =

max
j∈N

[ti j (x)]. Note that these times all depend on the partition ratio vector x. In the sequel

we will occasionally suppressx in these notations.

5.2.2 Network and Bandwidth allocation Model

In our analytical network model, we assume that file transfertime is governed by the avail-

able bandwidth from a source to a destination node. This is reasonable when large files are

being transferred [66].

We consider two models for bandwidth availability:point-to-pointsessions andtree

sessions. In the point-to-point session model, the overlaytree associated with each chunk

consists ofm independent point-to-point sessions. A chunk may be delivered at different

rates along different overlay paths. Figure 5.3(a) shows anoverlay tree for the 1st chunk

wherem = 3. In the tree, there are three point-to-point sessions fromn0 to n1, from n1

to n2, and fromn1 to n3. The values next to the overlay links in Figure 5.3(a) represent

the available bandwidth to each session. A transfer can achieve such transmission rates

on each session if the available bandwidths are decreasing along paths in the tree. If there

is a strict decrease, then an intermediate node needs to buffer the data to be transmitted

by the downstream session. By contrast, in our tree session model, we assume a chunk is

transferred at the same rate along the entire overlay tree. This can be achieved by coupling

transmissions from the source and relay nodes (e.g., through backpressure or flow control),

i.e.,n0 sends each chunk at the minimum rate associated with its overlay tree. This is shown

in Figure 5.3(b).

In our subsequent analysis, we will model bandwidth availability based on tree
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Figure 5.3: An example of bandwidth allocation to the overlay tree for the 1st chunk when
m= 3.

sessions. This not only simplifies our analysis but also is consistent with our objective

of minimizing the overall replication time. Indeed, note that in a point-to-point session

model, fast transmission rate fromn0 to n1 or from n1 to n3 in Figure 5.3(a) does not help

to minimize theoverall replication time as compared to the strategy in Figure 5.3(b). This

is because the overlay link with the minimum available bandwidth is the bottleneck to the

chunk’s overall replication at all receivers.

We consider a network consisting of a set of linksL with capacityc = (cl , l ∈ L).

We associate atreesession with each chunk. LetS denote the set ofm tree sessions sharing

the network. Bandwidth is allocated among tree sessions, according to an appropriate cri-

terion, e.g., max-min fair allocation [67], proportional fair allocation [68], max-throughput

allocation [69], or that realized by coupled TCP sessions.

Forsi ∈A⊂ S , we leta∗si
(A) denote the bandwidth allocated to sessionsi when only

the tree sessions inA persist on the network. Subsequently, we will callA⊂ S the active

set, i.e., the set of tree sessions which still have a backlog to send. Forsi ∈ S , we leta∗si

denote the bandwidth allocated tosi when allm tree sessions are active in the system, i.e.,

a∗si
= a∗si

(S).

Since the same bandwidth is allocated along all paths of the tree session for each
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chunk, the completion times under this model will satisfyti j = ti , ∀ j ∈ N, i.e., all receivers

will get each chunk at the same time. Each tree sessionsi ∈ S traverses a set of physical

links Lsi associated with the overlay tree forith chunk. Recall that there may be multiple-

crossings of the same link by a given tree session, and such multiplicities can be easily

accounted for.

Since there is a one-to-one mapping between a chunk and a treesession, we will use

these interchangeably in our notation, i.e., we will equivocate theith chunk withsi session.

Thus, we havea∗i = a∗si
andN = S etc.

5.3 Analysis

5.3.1 Optimal partition ratio

Note that by making partition ratios the same for all chunks,i.e.,xi = 1/m, i ∈N, the scheme

in Section 5.2 corresponds to the original FastReplica algorithm [65]. In this section, we

formulate an optimization problem whose objective is to minimize the overall replication

time by controlling the partition vectorx under the tree session model introduced in Section

5.2.2.

Problem 5.1 Suppose we are given a file f at a source node n0 and a receiver set R.

Under the tree session bandwidth allocation model, determine a partition ratio vector,

x = (x1, . . . ,xm) which minimizes the overall replication time r(x), given by

r(x) = max
j∈N

[d j(x)] = max
i, j∈N

[ti j (x)] = max
i∈N

[ti(x)].
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By controlling the partition ratio vector, the source can determine how much data

is injected into each tree session, i.e.,f xi will be delivered through theith tree session. By

makingxi = 0, the source can decide not to use theith tree session at all. Depending on the

partition ratio vectorx and the network capacity, the bandwidths allocated for treesessions

may change dynamically over time. This is because if a session leaves the system (i.e., a

chunk is successfully delivered), the network resources will be shared among the remaining

sessions, possibly resulting in a new bandwidth allocation.

Let us consider an example to understand dynamics associated with Problem 5.1,

i.e., how the transfer time of each chunk and the available bandwidth for each session are

dynamically determined. We will suppose for simplicity that bandwidths among trees are

allocated according to max-min fair criterion3 in our examples.

Suppose the file size isf = 4 and the number of receivers ism = 3. Sessionss1

ands2 share a physical bottleneck linkl1 whose capacity is 2. Sessionss2 ands3 share a

bottleneck linkl2 whose capacity is 3. The remaining links in the network are unconstrained

and not shown in Figure 5.4.

2

s2

s s3

32

1

l 1 l 

Figure 5.4: An example network.

Figure 5.5 shows each session’s transfer time and assigned available bandwidth as

time evolves when the partition ratio vector isx = (0.1,0.3,0.6). Times t1, t2, and t3 in

3In max-min fair bandwidth allocation method, each session crossing a link should get as much as other
such sessions sharing the link unless they are constrained elsewhere. Thus, it has the following characteristics:
(1) each session has a bottleneck link, and (2) unconstrained sessions at a given link are given an equal share of
the available capacity [67], [70].
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Figure 5.5 represent the transfer time of chunk 1, 2 and 3 respectively. Over the time, we

have the following active sets and bandwidth allocations:

0≤ t ≤ t1, A = {s1,s2,s3},

a∗1(A) = a∗2(A) = 1,a∗3(A) = 2

t1 < t ≤ t2, A = {s2,s3},a
∗
2(A) = a∗3(A) = 1.5

t2 < t ≤ t3, A = {s3},a
∗
3(A) = 3

2
c

c = 2

= 3

xf 1 = 0.4
f x 3=2.4

t 1 t 2= 0.4 = 0.93 t 3 = 1.2

f x 2= 1.2 f x 2= 1.2

l

l1

Figure 5.5: Max-min fair bandwidth allocation for the network in Figure 5.4 withx =
(0.1,0.3,0.6) and f = 4.

For a given active setA, we letg(A) = ∑i∈Aa∗i (A) denote theaggregate bandwidth,

i.e., the sum of bandwidths allocated to tree sessions inA.

Theorem 5.1 Suppose that A∗ maximizes the aggregate bandwidth among all possible ac-

tive sets inS , i.e.,

A∗ ∈ argmax
A⊂S

g(A) = argmax
A⊂S

∑
i∈A

a∗i (A). (5.1)

Then, x∗i given by
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x∗i =















a∗i (A
∗)

∑k∈A∗ a∗k(A
∗) , i ∈ A∗

0 i ∈ S \A∗ ,

(5.2)

is an optimal solution to Problem 5.1.

Proof Note that under the partition ratiox∗i , all sessions inA∗ complete at the same time,

i.e., f x∗i
a∗i (A

∗) = f
∑k∈A∗ a∗k(A

∗) , for all i ∈ A∗. By definition,A∗ offers the maximum instantaneous

aggregate bandwidth rate to the receivers throughout the entire transfer. Thus, the proposed

partition ratio vector must be optimal, though not necessarily unique.

Note that from the perspective of the receivers,g(A) is the amount of data per

unit time they will get when all sessions inA are being used for file transfer. A higher

aggregate bandwidth will result in the lower overall replication time. Thus, Theorem

5.1 says that 1) we need to find which active set (tree session configuration) provides

us with the maximal aggregate bandwidth, and 2) given such a set, sayA∗, the parti-

tion ratio x∗i satisfying Eq.(5.2) guarantees that the maximal aggregatebandwidth will be

achieved throughout the file transfer. For example, for the network in Figure 5.4, we obtain

A∗ = {s1,s3}, g(A∗) = 5, x∗ = (2/5,0,3/5), r(x∗) = f
5 and for the network in Figure 5.6(a),

we haveA∗ = {s1,s2,s3}, g(A∗) = 4, x∗ = (1/4,1/4,1/2), r(x∗) = f
4 .

Note that Theorem 5.1 does not assert that the solution is unique, i.e., there may be

multiple optimal solutions not satisfying the conditions in Theorem 5.1. For example, in

Figure 5.6(b), all tree sessions are constrained at a singlebottleneck, and any partition ratio

vector will be an optimal solution.
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Figure 5.6: Example networks.

5.3.2 Practical solution to obtaining good partitions

Theorem 5.1 provides an optimal strategy based on the available bandwidth along overlay

trees which minimizes the overall file replication time. However, there are critical limita-

tions to applying this results in practice. One of them is obtaining the active setA∗ which

maximizes the aggregate bandwidth. This is a complex combinatorial problem requiring ei-

ther detailed knowledge of the network and tree structures,or possibly a brute force search

over 2m−1 possible solutions.

Instead of searching for an optimal active set, we propose touse all tree sessions (m

overlay trees) for the file transfer, i.e.,A = S , and use the partition ratio vector suggested

by Theorem 5.1:

x+
i =

a∗i
∑k∈S a∗k

, i ∈ S . (5.3)

Recall thata∗i = a∗i (S) in Section 5.2.2. Note that this solution may or may not be an

optimal solution, e.g., for the cases in Figure 5.4 and Figure 5.6(a), this approach results

in sub-optimal and optimal solutions respectively. Although hard to prove, we believe that

multiple concurrent overlay tree sessions are likely to produce higher aggregate bandwidth

in practice. In part because concurrency delivers higher throughput, and the impact on

allocations among multiple trees might be small.
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Note that the partition ratio for theith chunk,x+
i is proportional to the bandwidth

a∗i . It is intuitive that for a ‘bad’ route (smalla∗i ) a small chunk should be selected, and for

a ‘good’ route (largea∗i ) a large size chunk should be selected in order to reduce the overall

replication time. Also recall that this partition ratio will make the transfer times for each

chunk identical.

Under our model, the overall replication times for FastReplica (FR) and our ap-

proach (AFR) would be4

rFR≈
f

mmin
i∈S

a∗i
, (5.4)

rAFR =
f

∑i∈S a∗i
. (5.5)

Since∑i∈S a∗i > mmin
i∈S

a∗i , our approach will always beat FastReplica in terms of minimiz-

ing overall replication time. While the performance of FastReplica is limited by a single

worst bottleneck link, the performance of our approach is limited by the sum of them tree

bottleneck links.5

5.3.3 Throughput-based approach

Once we choose to use all overlay trees for the file transfer, one more hurdle remains. In

order to determine a partition ratio vector, a source needs prior knowledge of all avail-

able bandwidth for each overlay tree, which is not easy to measure [71]. Moreover, extra

measurement traffic may need to be injected into the network.To overcome this limita-

tion and reduce the overheads to obtain path quality information, we propose the following

throughput-basedapproach.

4Note thatrFR is an approximation in Eq.(5.4). This is because all chunks may not complete at the same
time.

5Even though the performance of FastReplica is limited by a single bottleneck, only1
mth of the entire file

will be transferred on each overlay path. This can alleviatethe congestion level.
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Consider a case where a source has a large number of files (or blocks of the same

file), f (1), . . . , f (n), . . . to be replicated across a receiver setR where f (n) denotes thenth

file (block) to be transferred. Throughout the rest of the chapter, the number inside paren-

thesis represents an iteration step, e.g.,x(n) is a partition ratio vector used fornth file (block)

transfer andti(n) is the worst transfer time for theith chunk fornth file (block) transfer.6

The following describes our throughput-based approach:

• For the first file transfer, the source uses an arbitrary (possibly cached based on previous

transfers) partition ratio vectorxi(1) > 0, i ∈N.

• At the(n−1)th iteration step (n≥ 2), each receivern j measuresai j (n−1)≡ f (n−1)xi(n−1)
ti j (n−1) , i ∈

N defined as anaverage throughputachieved by theith chunk to receivern j and sends it to

the source.

• At the nth iteration step, the source updates the partition ratio vector x(n):

xi(n) =
ai(n−1)

∑m
k=1 ak(n−1)

, i ∈ N (5.6)

whereai(n−1) = min
j∈N

[ai j (n−1)].

In the above approach, we replace the theoretical availablebandwidths with receiver

estimates for average throughputs in Eq.(5.3). The intuition for this strategy is that we

consider a route ‘good’ if it achieved a high throughput and aroute ‘bad’ if it saw a low

throughput.

This approach has several practical advantages. First, theoverhead to obtain path

characteristics is low. It is easy to estimate average realized throughput rather than available

bandwidth. Furthermore, since it uses an in-band measurement, this approach does not gen-

erate any extra traffic except feedback messages from receivers to the source. Second, the

approach can provide more accurate path information as compared tosequentialprobing.

6Recall that here in time notations, we suppress a partition ratio vectorx, i.e.,ti(x,n)≡ ti(n).
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Note that multiple overlay paths are concurrently being used in this framework. Thus our

estimates for the average realized throughputs are obtained in the presence of other active

overlay trees. Hence, they will provide fairly accurate path quality information. Finally,

in practice, file transfer times between two hosts will depend on a number of factors, e.g.,

not only available bandwidth but also network latency, probability of packet losses, and

overhead to create TCP connections and processes etc. Additionally, the bottleneck might

be the relaying node due to limited memory or CPU processing power. Since the various

components are coupled in a complicated way, it is extremelydifficult to decouple them,

and identify which components become bottlenecks. However, we note that irrespective of

the cause for the bottleneck, the achieved throughput is a fair indicator for the quality of the

path.

5.3.4 Convergence

In the above throughput-based approach, the source initially has no knowledge of the path

characteristics. However, it learns path quality information from past file transfers, and

updates partition ratios. A natural question to ask is whether this procedure would converge,

and if so, how quickly when the network capacity is static, i.e., there is no other interfering

traffic. That is, irrespective of the initial chunk sizes, will our throughput-based algorithm

converge to the partition ratio vector given in Eq. (5.3)?

The difficulty here is that when the partition ratio is not optimal, different chunks

will complete at different times. Thus, one will obtain possibly biased estimates of the

available bandwidth for tree sessions which see dynamically changing bandwidth alloca-

tions. To this end we will prove the following convergence result.

Theorem 5.2 Under throughput-based adaptation with max-min fair bandwidth allocation
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for tree sessions, given any initial partition ratio vectorxi(1) > 0, i ∈N, the partition ratio

xi(n) converges geometrically to x+
i given in Eq.(5.3).

Proving Theorem 5.2 is equivalent to showing that for each sessionsi ∈ S , the av-

erage throughputasi (n) converges geometrically toa∗si
. Max-min fair allocation can be

characterized in terms of ahierarchyof sets of bottleneck links and sessions [72], [70]. We

prove this theorem by induction on the bottleneck hierarchy. For each level of bottleneck,

we obtain a lower bound and an upper bound for average throughput asi (n), and show both

bounds converge geometrically toa∗si
because the iterations are monotonic, or correspond

to a contraction mapping.

Before proceeding, we formally define the hierarchy bottlenecks related to max-min

fairness that will be useful in the sequel. We define thefair share y1l = cl/m1
l at a link l ∈ L

as a fair partition of capacity at the link in the 1st level of the hierarchy, wherem1
l = |Sl | is

the number of sessions throughl . Then, the set of 1st level bottleneck links and sessions are

defined as follows:

L(1) = {l ∈ L |∀s∈ Sl , a∗s = b(1) = min
k∈L

y1
k},

S (1) = {s∈ S |s∈ Sl andl ∈ L(1)}.

wherea∗s is the bandwidth assigned for the sessions. ThusL(1) is the set of 1st level bot-

tleneck links such that the sessions inS (1) traversing these links are allocated the minimum

bandwidth (‘fair share’) in the network, denoted byb(1). These two sets make up the 1st

level of the bottleneck hierarchy.

The next level of the hierarchy is obtained by applying the same procedure to a

reduced network. The reduced network is obtained by removing the sessions inS (1). The

capacity at each link inL \L(1) traversed by sessions inS (1) is reduced by the bandwidth

118



allocated to these sessions. The bottleneck linksL(1) are also removed from the network.

Thus L(2) and S (2) are obtained based on a network with fewer links and sessionsand

adjusted capacities. The set of 2nd level bottleneck links, sessions, and bottleneck rateb(2)

are defined as before. This process continues until no sessions remain.

Let U(h) =∪h
k=1L(k) andV (h) = ∪h

k=1S (k). These are defined as the cumulative sets

of bottleneck links and sessions, respectively, i.e., for levels 1 toh of the hierarchy. The

fair shareyh
l (h≥ 2) of link l in l ∈ L \U(h−1) is defined as the fair share of the available

capacity at the link in thehth level of the hierarchy:

yh
l =

cl −βh∗
l

mh
l

(5.7)

whereβh∗
l = ∑s∈S∩V (h−1) a∗s is the total flow of sessions throughl which are constrained by

bottleneck links inU(h−1), andmh
l = |Sl \V (h−1)|, wheremh

l > 0, is the number of sessions

throughl which are unconstrained by the links inU(h−1). Based on the fair share, the set

of hth level (h > 2) bottleneck links and sessions can be defined as:

L(h) = {l ∈ L \U(h−1)|∀s∈ Sl , a∗s = b(h) = min
k∈L\U(h−1)

yh
k},

S (h) = {s∈ S \V (h−1)|s∈ Sl andl ∈ L(h)}. (5.8)

HereL(h) is the set ofhth level bottleneck links such that the sessions inS (h) are allocated

the minimum fair share in the reduced network. We repeat thisprocedure until we exhaust

all the links and sessions resulting in a hierarchy of bottleneck links and corresponding ses-

sionsL(1), . . . ,L(q) andS (1), . . . ,S (q), which is uniquely defined by (5.7) and (5.8), where

q is the number of levels in the hierarchy.

In the sequel, when we refer to the hierarchy of bottlenecks we mean theinitial

hierarchy structure when all sessions are active, i.e.,A = S . Consider anhth level link

l ∈ L(h) of this bottleneck hierarchy. Note that the sessions sharing link l can be partitioned
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into those in levels 1 toh, i.e., Sl = ∪h
j=1[Sl ∩ S ( j)]. For sessions in thejth level of the

hierarchy, suppose we order them by their finishing times (i.e., when they depart from the

system) on thenth file transfer. We letsj
i (n) denote theith session to leave the system among

jth level sessions at thenth step.7 Thus we have that

tsj
1
(n)≤ tsj

2
(n)≤ . . .≤ tsj

k
(n),

wherek = mj
l . Note that at each iteration step, the order in which sessions complete may

change.

For the sessionsh
i (n), we let p j(sh

i (n)) be the number of sessions at thejth level

whose departure times are equal or less than that of sessionsh
i (n). Then, note that at time

tsh
i
(n), the number of remainingjth level flows in the system ismj

l − p j(sh
i (n)) sincemj

l is

the total number ofjth level sessions in linkl . Figure 5.7 illustrates the notation we have

defined.

Proof of Theorem 5.2.We will prove Theorem 5.2 by induction on theinitial bottleneck

hierarchy which is constructed when all sessions are in the system. Without loss of gener-

ality, we let the file size be 1, i.e.,f (n) = 1, n≥ 1.

Step 1: Consider a 1st level bottleneck linkl ∈ L(1). Note that for any sessions in

Sl and at any iteration stepn,

b(1) ≤ as(n). (5.9)

Indeed the bandwidth rates for all first level sessions are non-decreasing over time. That is,

once sessions start to leave the linkl , the additional bandwidth available to the remaining

sessions can only result in an increase in the bandwidth allocated to a first level bottleneck

session.
7For simplicity, we may suppress an iteration step index in notations, e.g.,tsj

i (n)(n) = tsj
i
(n).
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Figure 5.7: Sessions in thehth level link.

Fors1
i , theith session to leave the system among the first level sessions on link l , we

have a lower bound on its transfer time as follows:

ts1
i
(n) =

∑i
k=1 xs1

k
(n)

cl − (m1
l − i)b(1)

≤ ts1
i
(n). (5.10)

The numerator is the amount of work to be done from the first to the ith session. The

denominator is the largest amount of bandwidth available for transferring this data. This is

because duringts1
i
(n) there are at least (m1

l − i) flows each with a bandwidth allocation of at

leastb(1).
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Thus we have that

b(1) ≤ as1
i
(n) =

xs1
i
(n)

ts1
i
(n)
≤

xs1
i
(n)

ts1
i
(n)

=
xs1

i
(n)

∑i
k=1 xs1

k
(n)

[cl − (m1
l −1)b(1)] (5.11)

=
as1

i
(n−1)

∑i
k=1 as1

k
(n−1)

[cl − (m1
l −1)b(1)] (5.12)

≤
as1

i
(n−1)

(i−1)b(1) +as1
i
(n−1)

[cl − (m1
l −1)b(1)]. (5.13)

We obtain Eq. (5.12) from Eq. (5.11) by using Eq. (5.6) and we have Eq. (5.13) from Eq.

(5.12) by Eq. (5.9). Thus,

|as1
i
(n)−b(1)| ≤

∣

∣

∣

∣

as1
i
(n−1)

(i−1)b(1) +as1
i
(n−1)

[cl − (m1
l −1)b(1)]−b(1)

∣

∣

∣

∣

(5.14)

=

∣

∣

∣

∣

b(1)(i−1)(as1
i
(n−1)−b(1))

(i−1)b(1) +as1
i
(n−1)

∣

∣

∣

∣

(5.15)

≤
i−1

i
|as1

i
(n−1)−b(1)|. (5.16)

Eq. (5.16) is obtained from Eq. (5.15) by usingas1
i
(n−1)≥ b(1).

Let ξl =
m1

l −1
m1

l
. Then,∀ s ∈ Sl we have that

|as(n)−b(1)| ≤ ξl |as(n−1)−b(1)|. (5.17)

Since 0< ξl < 1, as(n) converges geometrically tob(1) = a∗s.

Step 2: Suppose that for alls∈ V (h−1), as(n) converges geometrically toa∗s. Con-

sider anhth level link l ∈ L(h) and ash
i ∈ Sl ∩ S (h), which is theith session to leave the

system amonghth level sessions in linkl at iteration stepn. We will show thatash
i
(n), i ∈

{1, . . . ,mh
l } will converge tob(h). This can be done by finding a lower bound and an upper

bound and showing the bounds converge tob(h).
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Convergence of lower bound: Let tmin
l (n)= min

s∈Sl∩V (h−1)
[ts(n)] andtmax

l (n)= max
s∈Sl∩V (h−1)

[ts(n)].

Thus,tmin
l (n) andtmax

l (n) are the earliest and the last departure time among sessions from

levels 1 to(h−1) at link l respectively. Now, defineεh
l (n) as the difference between these

two times, i.e,εh
l (n) = tmax

l (n)− tmin
l (n). Consider the time-varying bandwidth allocation

for anhth level session depicted in Figure 5.8.

S

tmin max
l l

cl

l

0
Time

Bandwidth

: Lower bound

cl

m
l
h

: Lower bound

t

b (h)

ε l (n)
h

 Lower bound

(n) (n)

Figure 5.8: Bandwidth allocation for anhth level session.

• From the beginning of the transfer totmin
l (n), no session inSl ∩V (h−1) leaves linkl . Thus,

at leastb(h) is allocated to anhth level session during this period.

• After tmax
l (n), there are onlyhth level sessions remaining, which traverse linkl . A lower

bound on bandwidth allocation for such sessions iscl/mh
l sincemh

l is the entire number of

hth level sessions at the beginning. Note that the lower bound islarger thanb(h) by Eq.

(5.7).

• Note that it is possible for thehth level session to be less thanb(h) only during the period

from tmin
l (n) to tmax

l (n). This may happen if sessions lower thanhth level change their

bottleneck links to linkl during this period. For example, consider Figure 5.5. Initially,
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the bottleneck hierarchy is preserved before sessions1 leaves the system. However, onces1

departs, sessions2 changes its bottleneck link froml1 to l2 and equally sharing the capacity

of l2 with s3. This results in reduction ofs3’s bandwidth from 2 to 1.5. During this period

of lengthεh(n), we can have a lower bound on bandwidth for anhth level session bycl
|Sl |

.

Note that this lower bound is the first share of the linkl , i.e.,y1
l .

Based on the above observations, we have the following lowerbound for the average

throughput of the anyhth level session:

ah
l (n) =

b(h)tmin
l (n)+ cl

|Sl |
εh

l (n)

tmax
l (n)

= b(h)−
(b(h)− cl

|Sl |
)εh

l (n)

tmax
l (n)

≡ b(h)−δh
l (n) (5.18)

≤ as(n), s∈ Sl ∩S (h).

Note that the above lower bound is the average throughput at time tmax
l in Figure

5.8, and it is a worst case scenario including a maximal amount timeεh
l (n) at the lower rate

cl
|Sl |

.

By our induction hypothesis, fors∈ V (h−1), as(n) converges geometrically toa∗s,

so εh
l (n) also converges to 0. Also note that asεh

l (n) goes to 0,δh
l (n) also goes to 0 and

eventually the lower boundah
s(n) converges geometrically tob(h).

Convergence of upper bound: Next, consider the following lower bound for the finishing

time of sessionsh
i :

tsh
i
(n) =

∑h
j=1 ∑pj (sh

i )
k=1 xsj

k
(n)

cl −∑h
j=1(m

j
l − p j(sh

i ))a
j
l (n−1)

≤ tsh
i
(n). (5.19)

As with Eq. (5.10) in Step 1, the numerator is the amount of work to be done prior tosh
i ’s

departure and the denominator is an upper bound on the available bandwidth.

124



In a similar manner to Step 1, we have that

ah
l (n) ≤ ash

i
(n)

≤
ash

i
(n−1)[cl −∑h

j=1(m
j
l − p j(sh

i ))a
j
l (n−1)]

∑h−1
j=1 p j(sh

i )a
j
l (n−1)+ (ph(sh

i )−1)ah
l (n−1)+ash

i
(n−1)

. (5.20)

By replacing Eq. (5.18) into Eq. (5.20) and using the fact that cl = ∑h
j=1mj

l b
( j), we

have that

ash
i
(n)≤

ash
i
(n−1)[∑h

j=1 p j(sh
i )b

( j) +P(n−1)]

∑h
j=1 p j(sh

i )b
( j)−b(h)−Q(n−1)+ash

i
(n−1)

,

whereP(n) = ∑h
j=1(m

j
l − p j(sh

i ))δ
j
l (n) andQ(n) = ∑h−1

j=1 p j(sh
i )δ

j
l (n)−δh

l (n).

Now lettingR(n)= max[P(n),Q(n)], we have an upper bound for an average through-

put:

ash
i
(n) ≤

ash
i
(n−1)[∑h

j=1 p j(sh
i )b

( j)−R(n−1)]

∑h
j=1 p j(sh

i )b
( j)−b(h) +R(n−1)+ash

i
(n−1)

≡ āsh
i
(n)≡ T(R(n−1),ash

i
(n−1)) (5.21)

Now we will show that ¯ash
i
(n) converges tob(h) geometrically. ConsiderT(·,ash

i
).

We have that

max
R≥0

∣

∣

∣

∣

∂
∂R

T(R,ash
i
)

∣

∣

∣

∣

=

∣

∣

∣

∣

−2ash
i
∑h

j=1 p j(sh
i )b

( j) +ash
i
b(h)− (ash

i
)2

[∑h
j=1 p j(sh

i )b
( j)−b(h) +R(n−1)+ash

i
(n−1)]2

∣

∣

∣

∣

R=0

≡ A(ash
i
).

For anyε > 0, by our lower bound, there is ann such thatash
i
(n)≥ ash

i
(n)≥ b(h)− ε . Thus,

letting the Lipschitz constant̄K = A(b(h)− ε), we have that

|T(R(n),ash
i
(n))−T(0,ash

i
(n))| ≤ K̄|R(n)−0| (5.22)

Note thatR(n) is a linear combination ofδ j
l (n), soR(n) will converge geometrically to 0.
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Furthermore,T(R, ·) is a pseudo-contraction [73], which converges toT(0,b(h)) =

b(h), i.e.,

|T(0,ash
i
(n))−T(0,b(h))| ≤

∣

∣

∣

∣

ash
i
(n)[∑h

j=1 p j(sh
i )b

(h)]

∑h
j=1 p j(sh

i )b
( j)−b(h) +ash

i
(n)
−b(h)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∑h
j=1 p j(sh

i )b
( j)−b(h)

∑h
j=1 p j(sh

i )b
( j)−b(h) +ash

i
(n)

∣

∣

∣

∣

|ash
i
(n)−b(h)|

≤ ξ|ash
i
(n)−b(h)|, 0 < ξ < 1 (5.23)

So,

|ash
i
(n+1)−b(h)| = |T(R(n),ash

i
(n))−T(0,b(h))| (5.24)

≤ |T(R(n),ash
i
(n))−T(0,ash

i
(n))|+ |T(0,ash

i
(n))−T(0,b(h))|

≤ K̄|R(n)−0|+ ξ|ash
i
(n)−b(h)|, 0 < ξ < 1. (5.25)

Thus,ash
i
(n) converges geometrically tob(h). This completes the proof.

5.4 Adaptive FastReplica and its Implementation

In this section, we discuss our implementation of Adaptive FastReplica (AFR). In our im-

plementation, we used the point-to-point sessions, i.e., TCP connections from source to

relays and relays to receivers. One of the main reasons for this choice was ease of imple-

mentation. Realization of tree sessions would require tight coupling amongmpoint-to-point

sessions. This requires modifications of the TCP layer, which would slow down deploy-

ment. By adopting the point-to-point session model our solution could be implemented

entirely at the application layer. In addition to ease of implementation, point-to-point ses-

sions may result in a higher average throughput since they decouple the rate of transmis-

sion over the different branches of the distribution tree [74], particularly when there are fast
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changes in the interfering traffic. Finally we note that the solutions we proposed in Section

5.3 (the use of full overlay trees and throughput-based approach) can be applied as is under

point-to-point sessions.

5.4.1 Block-level adaptation

In our analysis in Section 5.3, we assumed that the availablenetwork capacity for file trans-

fers was fixed. However, this needs not be the case in practice, i.e., the available bandwidth

may change dynamically because of other traffic sharing the network. Even during a sin-

gle file transfer, the available bandwidths for overlay paths may significantly change due to

highly variable Internet traffic.

To be more adaptive to such variations, we propose to divide large files into multiple

equal-sizedblocks, and use throughput-based adaptation of the partition ratio vector on a

per block basis. That is, within a single file transfer, the source obtains feedback messages

containing routes’ average throughput information from past block transfers, and uses these

in computing the partitions for subsequent blocks. Note that with this method, the argument

n in xi(n),ai(n) in Section 5.3.3, is interpreted as referring to thenth block of a given file.

In addition to being adaptive to dynamic environments, there are several practical

advantages to the above block-level adaptation. First, even with the assumption of static

network capacity, the approach can expedite file transfer. This is because instead of sticking

with ‘bad’ partition ratio vector, it can quickly learn network capacity by way of frequent

feedback messages, and use a ‘good’ partition ratio vector for the file transfer. Second, to

add resilience to node failures, heartbeat messages from each receiver to its source need to

be introduced, see [65]. However, there is no need for heartbeat messages in our solution

since feedback messages play the role of indicating each node’s liveness.
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1: INPUT: file f , list of receivers, block sizeB
2: send the list of receivers toR
3: initialize xi(1) = 1

m, i ∈ N

4: for n = 1 to d f
Be do

5: if there is a new latest throughput information (ai( j), i ∈ N, j < n) then
6: xnew

i (n)← ai( j)
∑m

k=1 ak( j) , i ∈ N

7: xi(n) = (1−α)xi(n−1)+ α xnew
i (n) , 0≤ α≤ 1

8: else
9: xi(n) = xi(n−1)

10: end if
11: assignith chunk size based onxi(n) and concurrently send it to nodeni , i ∈ N with

size and block index information.
12: end for

Figure 5.9: AFR algorithm for a source.

Our solution does not incur a significant amount of control overhead: the total num-

ber of feedback message packets generated in our solution for a single file transfer ism2d f
Be

whereB denotes the block size (each receiver generatesmd f
Be feedback messages). This

overhead is further alleviated with TCP’s piggyback mechanism [75], where a receiver does

not have to send a separate TCP acknowledgment.

5.4.2 Implementation

Figure 5.9 and 5.10 exhibit pseudo-codes describing the behavior of the source and receiver

respectively.

We made each receiver ready for a file transfer by having them listen to a specific

port number, and let the source initiate file transfer.8 Once the list of receivers is sent to each

receiver viamconcurrent TCP connections from the source node, each receiver establishes

data connections to the other receivers. We implemented concurrent file transfers using a

standardpthreadmulti-thread library [76].

8The mechanism for selecting/soliciting receiver nodes, isoutside the scope of the chapter.
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1: receive the list of receivers
2: while file f not completely downloadeddo
3: concurrently keep reading data fromn0 and other receivers
4: if data is coming fromn0 then
5: forward them to other receivers
6: end if
7: if each chunk completely downloadedthen
8: send feedback message ton0 containing its average throughput value
9: end if

10: end while

Figure 5.10: AFR algorithm for receivers.

The original file is sent block by block. Each block is partitioned intom chunks

depending on the current partition ratio vector. Since the ratios are not integer, the floor

operation is used to assign the appropriate amounts of bytesto each chunk, that is,fi(n) =

bBxi(n)c whereB is the block size.9 Then, the remaining bytes were distributed among

chunks with the higher partition ratios in a round-robin manner. In order for receivers to

know how much data they need to read, chunk size and block index information are sent

prior to the transferred data.

In our implementation, the source need not wait for the arrival of all feedback infor-

mation from previous blocks prior to sending the next block.To expedite the file transfer,

the source keeps pushing blocks, and applies the updated information as it becomes avail-

able. In order to handle highly variable Internet traffic, a partition ratio vector is generated

by having a weighted average between the previous partitionratio vectorxi(n−1), and new

estimate for the partition ratio vectorxnew
i (n) as shown on Line 7 in Figure 5.9. The impact

of varyingα and block size will be discussed in Section 5.5.5.

9Note that even though block sizes are all equivalent, the last block size may be different.
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5.5 Performance Evaluation

We evaluated the proposed scheme on the Internet by conducting experiments with our

implementation over the Planetlab testbed [77]. Planetlabis a distributed overlay network

providing diverse hosts for experimentation. We explored anumber of configurations by

varying the source, receiver nodes’ locations, and the number of participants. In this section,

we present representative results for the 9 hosts in Table 5.1. Table 5.2 shows five source &

receiver set configurations that will be discussed below.

We measured two performance metrics: (1) overall replication time, max
i∈N

di , which

is our primary objective, and (2) the average replication time, 1
m ∑m

k=1 dk.10 Ideally, the

transfer time at each receiver should be measured from the beginning of the transfer at the

source node to the completion of the file download at the receiver node. However, due

to clock synchronization problems at different nodes, we measure the file transfer time

from the beginning of the transfer at the source node until a feedback message notifying file

completion from the receiver. Since we are interested in large file transfers, the addition of a

one-way latency of the packet from the receiver to the sourcewill not impact the accuracy of

the results. Unless explicitly mentioned, all results are averaged over 10 different runs and

the vertical lines at data points represent approximate 90%confidence intervals assuming

independent identically distributed samples.

For comparison, we examined the following alternative distribution mechanisms:

Sequential Unicast (SU) This scheme measures the file transfer time from the source to

each receiverindependentlyvia unicast (i.e., in the absence of other receivers), and then

takes the worst case transfer time over all receivers assuming such times could be realized

10The measured times reported in this chapter do not include any overheads that might be incurred due to the
reintegration of chopped segments.
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n0 utexas.edu
n1 columbia.edu
n2 gatech.edu
n3 umich.edu
n4 ucla.edu
n5 cam.ac.uk
n6 caltech.edu
n7 upenn.edu
n8 utah.edu

Table 5.1: Participating nodes.

source receiver set

CONFIG 1 n0 n1,n2,n3,n4, n5,n6,n7,n8

CONFIG 2 n7 n0,n1,n2,n3,n4, n5,n6,n8

CONFIG 3 n0 n1,n2,n3,n4

CONFIG 4 n7 n0,n5,n6,n8

CONFIG 5 n0 n1,n7

Table 5.2: Configurations.

in parallel. Note that Sequential Unicast is a hypothetical“optimistic” construction used for

comparison purposes. Our measurements for Sequential Unicast emulate the performance

of file distribution using IP multicast.

FastReplica (FR) This scheme is a refinement of that proposed in [65]. It is implemented

with cut-through functionality at relay nodes.

We define thespeedupfor the overall replication time of schemeY over scheme

Z in percentage as 100(rZ/rY−1)%. Thus, for example, 30% speedup of schemeY over

schemeZ means that schemeY is 1.3 times faster than schemeZ.

5.5.1 FR versus SU - Does partitioning and path diversity help?

Figure 5.11(a) shows the performance results for the SU and FR schemes when an 8MB

file is transferred in CONFIG 1 shown in Table 5.2. We observe that there is a significant
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speedup for the overall replication time (75%) and a marginal speedup for the average repli-

cation time (4%) of FR over SU. Figure 5.11(b) depicts the download times for individual

receivers. We observe that the limited bandwidth fromn0 to n5 significantly impacts the

performance of SU. However, FR can overcome this limitationby realizing additional con-

current connections with path diversity. Also note that FR achieves much smaller variance

in download times among receivers - a desirable characteristic if fairness among receivers

is an issue.
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Figure 5.11: FR vs. SU in CONFIG 1.

5.5.2 AFR versus FR - Does adaptivity help?

Figure 5.12(a) shows the performance gain of AFR over FR for an 8MB file transfer in

CONFIG 1. In the experiments discussed in this subsection, AFR had a block size of

512KB andα = 0.1.(We will discuss the impact of varying block size andα later.) As can

be seen, there is a 26% and 18% speedup for AFR over FR for overall and average repli-

cation time respectively, corresponding to a 121% overall and 23% average time speedup
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of AFR over SU. Figure 5.12(b) depicts download times at receiver nodes. Observe that

AFR achieves its speedup gains over FR by reducing download times for all receiver nodes.

As expected, AFR’s performance gain come from exploiting heterogeneity in network re-

sources and dynamic traffic conditions, i.e., putting more on “good” paths and less on “bad”

paths.

Figure 5.13 shows a particular realization of the partitionratio vector for AFR as a

function of the block index. The partition ratio vector stays fixed at 0.125 at the beginning

of file transfer until feedback messages containing averagethroughput information return.

Subsequently, partition ratios keep evolving to better exploit the heterogeneity of overlay

paths by load balancing. Note that the partition ratios for FR would be fixed at 0.125.
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Figure 5.12: AFR (B = 512KB,α = 0.1) vs. FR in CONFIG 1.

5.5.3 Diverse configuration results

After verifying that both AFR and FR do better than SU, we consider another scheme,m-

Sequential Unicast(mSU)for comparison. As with SU, this scheme measures file transfer
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Figure 5.13: Partition ratio vector for AFR (B = 512KB,α = 0.1) in CONFIG 1.

FR (overall) SU (overall) FR (average) SU (average)

CONFIG 1 26 % 121 % 18 % 23 %
CONFIG 2 13 % 327 % 10 % 106 %
CONFIG 3 29 % 86 % 22 % 30 %
CONFIG 4 5 % 132 % 4 % 59 %

Table 5.3: Speedup gains for AFR over FR and SU.

time from the source to each receiverindependently. However,m (the number of receivers)

concurrent unicast connections are used to realize the file transfer. That is, the file is equally

partitioned intom chunks and those chunks are delivered viam parallel connections from

the source to the receiver. This scheme will benefit from an acceleration in transfers due to

parallel connections, but not the diversity in paths provided by AFR/FR.

Figure 5.14(a)-(d) shows performance results for AFR, FR, SU and mSU with

CONFIG 1, 2, 3 and 4 respectively under an 8MB file transfer.

First, let us consider comparison results among AFR, FR and SU. Table 5.3 sum-

marize the speedup gains for AFR over FR and SU. With different configurations we obtain
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Figure 5.14: AFR (B = 512KB,α = 0.1) vs. FR vs. SU.

different amounts of performance gains, but the results consistently show that (1) AFR

outperforms FR and SU in both overall and average replication time, and (2) as expected

AFR achieves more speedup in overall replication time than average replication time. We

also verified this result with a large number of configurations by varying source or receiver

nodes’ locations with different number of participants.

Next, note that mSU always beats SU, which verifies that multiple concurrent file

transfers will achieve better throughput than that of a single one. For CONFIG 1 and 3, mSU
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is better than AFR and FR, but a bit surprisingly, for CONFIG 2and 4, the performance

of mSU is worse. Furthermore note that for cases where the source is atn7, e.g., CONFIG

2 and 4, we observed that AFR and FR performs significantly better than SU, and there is

not much gain for AFR over FR. The main reason behind these results is that noden7’s

transmitting rate is quite limited, implying there is a bottleneck at the source. This can also

be verified in Figure 5.13, wherex7 is the smallest over time. From the perspective of the

source, the amount of data to be transferred at its outgoing link is the same for all schemes.

This indicates that not only having parallel concurrent connections but also having path

diversity like FR or AFR schemes can greatly help in cases where the bandwidth at the

source is limited. This result is consistent with those presented in [65] where the source

is located at hp.com, which is bandwidth-limited compared to other receivers connected to

Internet2. Since the bottleneck link is at the source, it is likely that the same bottleneck link

is equally shared by all chunks. This will result in a roughlyequal partition ratio for all

chunks, so, the performance of AFR becomes similar to that ofFR.

5.5.4 AFR - A case for robustness in a dynamic environment

For these experiments, we observed fairly tight confidence intervals on our measurements

indicating the network loads were fairly stable. This is probably because most hosts on

the Planetlab testbed are connected on Internet2 [78]. To study how more dynamic traffic

patterns impact the performance of AFR, we devised the following experiment based on

CONFIG 5 in Table 5.2. The sourcen0 transfers an 8MB file to receivers,n1 andn7. After

5 seconds from initiating the transfer, we generate an interfering traffic by having hostn7

transmit a 32MB file to all the hosts in Table 5.1 exceptn0 andn1. Figure 5.15 shows the

performance results for AFR (B=128KB,α = 0.1) and FR with/without traffic interference.
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Without traffic interference, there was a 5% speedup for AFR over FR in overall replication

time. However, the speedup gain becomes significant (28%) with traffic interference. We

observe that AFR puts a smaller portion of its traffic ton7 due to its limited sending ability

after 5 seconds. This result clearly indicates that AFR adaptation can enhance performance

in a truly dynamic network environment, as might be expectedon the Internet versus our

testbed Internet2.
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Figure 5.15: AFR (B = 128KB,α = 0.1) vs. FR with a dynamic network environment in
CONFIG 5.

5.5.5 Tuning AFR’s parameters

There are two parameters to be selected in AFR: block size andα. Both parameters play

a role in determining how quickly partition is adapted. Withlarge blocks, we lose oppor-

tunities to respond to dynamic changes in network bandwidth. (At the extreme end where

making block size equal to the entire file size, no adaptationis performed.) On the other

hand, there will be overheads incurred in processing feedback messages and reintegration

when blocks are small. Likewise, with smallα we are too conservative to quickly follow
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changes in network state, and vice versa for largeα value. To see how differentα values

impact the performance, we conducted the following experiment: in CONFIG 5, the source

starts a transfer of 32MB file using AFR (B=128KB), and 10 seconds latern7 transfers

1MB to {n2,n3,n4,n5,n6,n8}. Figure 5.16 shows the partition ratio vector values withα =

0.1 and 0.5. As expected, largerα values (0.5) quickly track changes in network state but

experience higher variability due to measurement noise.

Our experiments varying block size and alpha under the configurations in Table 5.2

shows that the performance difference is not noticeable except when block size is too small

(e.g., making each chunk lower than 32KB) andα = 0, i.e., no adaptation. This again

indicates that the network is fairly stable.
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Figure 5.16: Partition ratio vectors for AFR (B = 128KB) witha dynamic network environ-
ment in CONFIG 5.
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5.6 Additional Related Work

Expediting file transfers using concurrent connections is not a new idea. One area of active

research in this direction has been exploiting the benefits of path diversity between clients

and servers with replicated content in CDNs. That is, since there are multiple servers stor-

ing the same content deployed at geographically distributed locations in CDNs, a client can

access multiple servers in parallel to reduce the download time, or achieve fault tolerance.

The work in [79] reduces the download times by having a clientreceive a Tornado encoded

file from multiple mirror servers. The dynamic parallel access scheme in [80] also demon-

strates the improved download time observed by clients by requesting different parts of a

file from different servers. Note that this research work is of the many-to-one communica-

tion type, and it is assumed that the original content is already replicated across the edge

(mirror) servers. By contrast, the problem in our chapter isabout content replication across

edge servers within content delivery networks.

As mentioned earlier, many existing end-system approachestry to optimize overlay

tree structure based on target application requirements. For example, Yoid [60], Narda [2]

and Scattercast [61] use delay as the routing metric. Overcast [3] constructs an overlay tree

optimized for available bandwidth from the source to the receivers. End system multicast

[62] uses a combination of delay and available bandwidth when selecting a routing path.

Available bandwidth from the source to the receivers is the key quantity for our approach

since our objective is to minimize the overall replication time. However, unlike [3], [62],

we do not explicitly measure the available bandwidth on an end-to-end path, but rely on

feedback messages containing throughput information fromreceivers. Furthermore, unlike

all the above end-system approaches, our approach uses a mesh-structure versus a tree

structure.
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Recent work in [81] proposes the use of additional cross-connections between peers

to exchange complementary content that nodes have already received. This approach pro-

vides peer-to-peer type content delivery service supporting asynchrony, i.e., receivers can

leave or join at arbitrary times. Note that our approach is related to the infrastructure based

content distribution network (CDN) (e.g., Akamai [82]). Ina CDN setting, we assume that

the set of receivers is known priori to file transfer.

5.7 Conclusion

In this chapter, we propose the Adaptive FastReplica mechanism for a fast delivery of large

files to distributed nodes. Three key ideas were added to the original FastReplica concept

[65]. First, chunk sizes are no longer necessarily equal. The source may assign a larger

portion of the original file to paths that are efficient and smaller ones to paths that are

not. Second, in order to efficiently obtain path quality information, we propose an iterative

throughput-based approach where each receiver sends a feedback message containing the

perceived average throughput information for each chunk. This average throughput infor-

mation is used to generate new partition ratios for subsequent transfers. Third, a large file

is partitioned into multiple equal-size blocks, and each block is again split intom chunks

according to our partitioning algorithm. This allows the source to dynamically generate par-

tition ratios based on feedback messages from receivers, and effectively adapt to changing

Internet traffic loads during a single large file transfer.

Unlike most existing end-system approaches, ours does not try to construct opti-

mized overlay structure. Instead, it uses a full fixed set of heterogeneous overlay paths in

an ‘optimized’ manner, i.e., application-level load balancing. It exploits ‘good’ paths by

putting more data on them. This can significantly reduce overhead otherwise incurred from
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active probing, maintaining and reconfiguring overlay structure.

Although the performance gains for our approach over FastReplica and Sequential

Unicast schemes depend on a case by case basis, the experiment results suggest that our ap-

proach consistently outperforms other schemes in minimizing both the overall and average

replication time. Furthermore, this speedup gain becomes significant when the network is

highly dynamic, as might be the case on more congested networks than those on which we

conducted our experiments.

When there is a large number of receivers, e.g., hundreds/thousands of nodes, the

basic FastReplica framework can be iteratively applied using a hierarchicalk-ary tree struc-

ture wherek is small enough to support efficient file replication. One interesting and im-

portant issue is “how one might build such a structure”, i.e., efficient clustering techniques.

Recent research [83] shows that large-scale Internet applications could benefit from incor-

porating IP-level topological information in the construction of the overlay to significantly

improve overlay performance. In [83], a new distributed technique is introduced where the

nodes partition themselves into bins in such a way that nodeswithin a given bin are rela-

tively close to one another in terms of network latency. Thismay be an interesting way for

clustering “close” nodes into replication groups in FastReplica framework.
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Chapter 6

Conclusion

In this dissertation we address four problems: (1) IP multicast topology discovery, (2) DDoS

attack prevention, (3) efficient subgroup communication, and (4) fast content delivery. Each

problem has its own value and significance in today’s Internet. Our contribution is that for

each problem, we have presented practical and simple solutions based on a suite of novel

ideas. The following is the summary of key ideas and mechanisms used to solve these four

problems.

• IP multicast topology discovery

– Fan-out decrement mechanism

– Topology discovery based on path/fan-out distance information

• DDoS attack prevention

– Filtering and tracing mechanisms based on IP multicast

• Efficient subgroup communication

– Group communication based on combining unicast and scoped multicast
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– Resource and topology discovery

• Fast content delivery

– Use of a fixed set of overlay paths to exploit resource diversity

– Application-level load adaptation

Although at first glance the proposed solutions might seem quite different, we were

able to make the following observations.

First, a common property of the problems we studied and of today’s Internet is that

they are dynamic and unpredictable in the sense that (1) members (or attack nodes) can join

and leave at any time, and (2) traffic is highly variable. To cope with this dynamicity, which

is seemingly an immutable characteristic in computer networks, we believe thatadaptivity

androbustnessare key elements, which are incorporated in all of the solutions we proposed.
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Resource

Multicast

diversity
Exploiting

Resource

Cooperation

Chap. 3

prevention
DDoS attack

Topology discovery

Chap. 2 Chap. 4
Scalable

communication
subgroup

Fast file
Chap. 5

replication

Figure 6.1: Relationships between problems and characteristics used to solve them in the
dissertation.

Second, a common thread in our work is the exploitation of inherent characteristics

of group communications. Figure 6.1 summarizes the relationships between the problems
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we addressed in this dissertation. The items in squares are the problems, while those in

circles are characteristics used to solve them. In all the solutions,cooperationamong mem-

bers is the key element. Topology or resource information within neighborhoods becomes

a foundation for sharing resources or further cooperation.Thus, our results on topology

discovery in Chapter 2 can be used to solve the problems in DDoS attack prevention in

Chapter 3 and efficient subgroup communication in Chapter 4,whereinresource discovery

and sharingare key components. The approach used for DDoS prevention inChapter 3

is a good example illustrating the powerful use of group communications. We note that,

to our knowledge, this is the first attempt to apply IP multicast to defeat DDoS attacks,

moving away from its basic use as a data distribution medium.The key idea used for fast

content delivery in Chapter 5 is to simplify the exploitation of path diversity. Recall that

this diversity can exist only when there are multiple nodes.

In this dissertation, we explore howdiversity in group communications can be

turned into an advantage in achieving various objectives. Throughout our studies, we

learned that cooperation, discovery and sharing network resources can be used to attack

various problems associated with group communications.
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