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This dissertation considers the impact of blockage and mobility on col-

laborative sensing and millimeter wave (mmWave) based communication net-

works. We first study the character of interference and MAC performance in

dense indoor mmWave wearable networks. Using simple stochastic geometric

models for propagation in mmWave bands, we quantify the number of strong

interferers as seen by a typical receiver and show that it is limited due to

blockage. We propose a model to evaluate the performance of current MAC

designs using clustering and hierarchical scheduling. Our results show that the

MAC overheads are scalable, i.e., the performance optimal cluster size does

not grow with user density in dense scenarios. Furthermore, we show that at

high densities the per user throughput is eventually constant.

Next we consider the impact of blockage mobility on MAC overheads

and performance in such networks. We propose a stochastic geometric model
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to capture the temporal dynamics of strong interfering channels resulting from

blocking in networks comprising both fixed and mobile blockages. Based on

our analysis, we derive the rate of change in channels’ states, i.e., Line-of-Sight

(LOS) and Non-LOS (NLOS), and estimate the signaling overheads resulting

from blockage mobility. We argue that while the overheads to track the inter-

ference environment may in fact be limited, MAC protocols will most likely

be better off not coordinating with distant and/or mobile nodes.

We then move on to another area where obstructions have a major

impact, i.e., collaborative sensing for automated driving applications. Both

the sensing and communication for collaborative sensing may be subject to

obstructions (blockages) in such a collaborative setting. We introduce new

models for vehicular collaborative sensing and networking under obstructions

and evaluate how “performance” scales. In particular, we quantify the cov-

erage and reliability gains obtained by collaborative sensing as a function of

the penetration of collaborative vehicles. We further evaluate the associated

communication loads in terms of vehicle-to-vehicle (V2V) and/or vehicle-to-

infrastructure (V2I) capacity requirements and how these depend on penetra-

tion. Sensing by a single vehicle can be highly limited by obstructing neigh-

boring vehicles and objects, while collaborative sensing is shown to greatly

improve sensing performance, e.g., improves coverage from 20% to 80% with a

20% penetration. Furthermore, the volume of sensor data a vehicle generates

and needs to share for collaborative sensing does not necessarily increase with

the density of objects. In scenarios with limited penetration and enhanced
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reliability requirements, infrastructure can be used to sense the environment

and relay data. Once penetration is high enough, vehicular collaborative sens-

ing provides good sensing coverage and V2V connectivity. Data traffic can

be effectively ‘offloaded’ to V2V network, making V2I resources available to

support other services.

Finally we present a more detailed evaluation of the performance of col-

laborative sensing assisted by sensing capable infrastructure, including Road

Side Units (RSUs) and sensors on cellular infrastructure. We compare the

performance of different infrastructure and deployment schemes in terms of

collaborative sensing coverage. Unless deployed along roads, cellular based

sensors off the roads are more obstructed and RSUs deployed at intersections

and at even spacings appear more desirable. Simulation results show that

RSUs see fewer environmental obstructions when placed higher than vehicles

and can benefit from temporal diversity in sensing. Although RSUs have good

sensing coverage, in order to communicate with the relevant vehicle, they will

require relatively high communication range, rate and reliability. Even if RSUs

provide complete coverage of the roads, to increase reliability of sensing, e.g.,

redundancy in sensing, collaboration amongst sensing capable vehicles may

still be desirable.
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Chapter 1

Introduction

1.1 Motivation

The rapid evolution of mobile technologies has introduced new devices

and applications requiring high data rate, low latency and/or high reliability.

A new class of networks currently being developed is that in support

of wearable technologies. In the near future each user might be equipped with

multiple on-body interconnected devices [1], some of which may require high

rates and/or low latency, e.g., devices supporting high quality audio/video, or

enabling real-time augmented reality applications. Millimeter wave (mmWave)

wireless technologies are suitable to meet these requirements and are being

standardized for use in short-range wireless personal area networks (WPAN),

e.g., 802.11ad [2], 802.15.3c [3] and ECMA387 [4].

In order to be viable such technologies will need to operate seamlessly

in a wide range of environments, including settings with high densities of

users/vehicles and dynamics. Even though in the mmWave band there is high

signal attenuation, human body blockage, and typically directional transmis-

sions, we posit that in dense indoor environments interference is still a problem.

Indeed there are at least three issues that pose problems. First in order to
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achieve narrow beams one would typically use a large array of antennas. Such

arrays can be miniaturized and produced at low cost, however the computa-

tional and energy costs to process the signals they generate/capture may not

be workable for wearable applications. Secondly, even if the above costs are

acceptable for high end devices, e.g., cellular phones, augmented reality head-

sets, etc., they may not be for low end devices wishing to share the same band

which may use wider beams. Thirdly, since mmWave channels are sensitive

to user movements, it may be necessary to use wider transmit beams in or-

der to retain connectivity in a dynamic environment and/or reduce signaling

overheads associated with channel estimation and beam tracking. For these

reasons we expect that in dense scenarios MAC scheduling will play a critical

role in mitigating interference.

However MAC protocol design in such settings also faces several chal-

lenges. In particular in order to effectively schedule transmissions a MAC

scheduler needs to be aware of the neighboring strong interferers – which may

be large in numbers and vary quickly. Indeed for dense settings, e.g., a crowded

train car, the set of strong interferers could be large, leading to high signal-

ing overheads and reduced channel reuse. Moreover due to the sensitivity of

mmWave channels to motion and blockage this set may change quickly and

be subject to uncertainty resulting in additional signaling costs and degraded

performance. In this dissertation we will develop an understanding of the

characteristics of the interference environment in dense wearable settings, in

particular the impact of human body blockage and its mobility. We use these
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results to evaluate their impact on MAC design for such networks.

Another application which is sensitive to blockages and obstructions is

collaborative sensing in support of automated driving. In future automated

driving systems, vehicles will sense their surrounding environment in real time.

Despite vehicles being equipped with multiple sensors, e.g., radar, LIDAR and

cameras, the sensing capacity of the sensors mounted on a single vehicle is lim-

ited. Sensors can typically only detect objects in their line-of-sight (LOS) thus

are subject to obstructions. We envisage that neighboring vehicles perform

collaborative sensing to extend the view of a single vehicle and improve the

reliability of sensed information. However, exchanging sensor data, especially

raw sensor data, among vehicles can be costly. The network can be crowded

and dynamic, and the requirements on communication can be stringent, e.g.,

high data rates and low latency.

To better design future collaborative sensing applications and commu-

nication networks, it is crucial to develop an understanding of the performance

benefits and costs of collaborative sensing. For the performance benefits, we

want to quantify the performance gains of collaborative sensing in terms of

sensing coverage and reliability and how they depend on the environment, e.g.,

density of vehicles and objects, and penetration of sensing and communication

capable collaborative vehicles. For the communication amongst vehicles, high

rate V2V links, e.g., mmWave V2V links, seem to meet the communication

requirements. However, as is the case for sensing, mmWave V2V links also

depend on LOS channels and are subject to blockages of neighboring objects.
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At a low penetration of collaborative sensing and communication vehicles,

mmWave based V2V (relay) paths may be blocked, and V2I communication

would be required to facilitate the exchange of sensor data. The traffic loads

on V2V and V2I networks depends on the penetration of communication capa-

ble collaborative vehicles, and in this dissertation we study how the required

traffic loads vary with the penetration of collaborative sensing vehicles.

Infrastructure can help relay sensor data amongst collaborating vehi-

cles to overcome potential blockage in communication, yet the limited sensing

coverage at low penetrations can still be a problem. One possible solution is to

deploy sensing capable infrastructure to assist vehicles with collaborative sens-

ing. The performance of infrastructure assisted sensing would depend on the

deployment schemes and infrastructure’s sensing / communication capabilities.

Two possible options for deploying sensors include 1) placing sensing capabil-

ities on cellular infrastructure (randomly) located in space, and 2) deploying

sensing and communication capable RSUs along roads. Deploying sensors on

existing cellular infrastructure, e.g., base stations (BSs), may cost less as we

can reuse the back-end and communication infrastructure. However, BSs may

see more obstructions than RSUs, e.g., buildings along the road, if BSs are

not also placed along the road. Other factors impacting performance include,

e.g., the height of sensors, the RSU distance to road, RSU and BS sensing /

communication range, etc. In addition, sensors on fixed infrastructure would

see dynamic objects and obstructions. Such environmental dynamics may also

impact the performance benefits of infrastructure assisted sensing. In this dis-
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sertation, we will evaluate the impact of these factors and propose principles

for the deployment of sensors.

In summary,this dissertation explores network and sensing systems with

blockage (obstruction) and mobility, and how the design of the underlying

communication networks will be impacted.

1.2 Related Work

There has been substantial works on mmWave communication networks

and sensing for automated driving. We first introduce works on mmWave

based wearable networks, then discuss the existing works on sensing in vehic-

ular networks.

1.2.1 Related Work on mmWave Based Wearable Networks

There has been a number of initial works on measuring and modeling

propagation in the mmWave band. Large scale path loss models were studied

for outdoor [5–7] and indoor [6–10] environments. The spatial and temporal

statistics of paths have been measured and studied in [8, 10] and 3-D channel

models are proposed in [11,12]. In addition preliminary works in [13–16] study

the impact of human body blockage on a channel between two fixed points

through measurement and simulation.

In addition to these measurement campaigns and models development,

stochastic geometric models and analysis have been widely used to study the

capacity of mmWave networks for outdoor [17,18] and indoor [19,20] networks
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with blocking. In these works, users and blockages are randomly located,

the distribution of the signal to interference plus noise ratio (SINR) and the

coverage probability of a typical user were computed. However, for tractability,

these works assume a simple MAC such as random access Aloha. The authors

of [21, 22] studied the capacity of a wearable network featuring more delicate

frame structures akin to those used in 802.11ad, but in their work blockage is

not considered.

Various standards have been developed to support WPAN in the mmWave

band [2–4]. Among these standards, 802.11ad provides the highest data rate

and works best in dense settings. In the 802.11ad MAC, users may form

clusters. Users within the same cluster are coordinated to avoid intra-cluster

interference and improve reuse. However, the throughput of 802.11ad MAC

can be limited since two users in the same cluster can not transmit at the same

time if they hear each other’s beacon. Note that beacons are typically trans-

mitted omni-directionally. MAC protocols have been proposed to improve the

capacity of mmWave networks [23–25]. The limitation of current standards

and proposed MAC designs is that the characteristics of wearable networks,

i.e., the blockage by users body and large densities of devices, are not fully

addressed. The work of [26] proposes a link scheduling protocol considering

mobile blockage, but the blockage model does not consider the actual charac-

teristics of dense wearable networks, i.e., the parameters of channels are set

without considering the blockage model, user density and locations of users.

Channels in the mmWave bands are highly sensitive to user movements,
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including small local movements like the rotation of a torso or swinging and

large scale movements, e.g., people walking around. Acquiring and maintain-

ing robust communication channels in mmWave bands is a recognized physical

layer challenge. Many approaches to quickly acquiring and adapting beams are

under study see e.g., [27,28]. On the MAC design end, the authors of [26] pro-

pose and evaluate link scheduling algorithms for mmWave ad hoc networks but

the characteristics of their channel blockage model are arbitrarily set without

accounting for actual blockage mobility models. These works proposed meth-

ods to improve the performance of mmWave based networks in the presence of

blockage, but lack an understanding of channel characteristics of user mobility.

Existing work on user mobility [14–16] study the influence of human activity

on the radio channel between a fixed transmitter and receiver. For example,

the authors of [14,16] present measurements of the impact of human mobility

on channel variation. The work in [16] further evaluates the probability that

a channel is blocked by users and proposes a two-state Markov model for the

state of the channel based on experiments. The authors of [15] use simulation

to study radio propagation characteristics in the presence of static and moving

obstacles and show that directional LOS mmWave links experience relatively

high outage. These works provide valuable measurements and insights on the

influence of blockages resulting from human mobility, but do not provide mod-

els towards understanding the impact of user mobility in dense environments,

or towards understanding the impact of density on the conclusions.
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1.2.2 Related Work on Sensing for Automated Driving

Collaborative sensing is likely to be one of the key enabling technolo-

gies for automated driving systems. Vehicles can exchange real time sensor

information with vehicles/RSUs to enhance their view of an obstructed envi-

ronment [29] [30] [31] [32] [33]. An analysis of the scaling and performance of

such systems is however not been done before.

Currently available protocols like Dedicated Short-Range Communica-

tion (DSRC) [34] have limited data rates, e.g., IEEE 802.11p suports 3–27

Mbps (typically 6Mbps), and face challenges for high channel loads [35]. LTE

systems are evolving to support safety-related V2X applications [36], yet still

provide limited capacity and face challenges associated with high density of

UEs. To serve the requirements of collaborative sensing, 3GPP defined vari-

ous use cases and requirements in [37] [38]. Also mmWave technology is being

considered to support the sharing of HD sensor data [39] [40].

The representation of the environment and dynamic objects impact

the performance of information sharing and the volume of sensor data. Sparse

object-based environmental models are currently used but are not sufficient for

safety applications in arbitrary environments. Different ways of representing

the environment at different levels of abstraction have been proposed, ranging

from most compact feature map [41], 2D grid map [42], 3D voxel grid [43], to

raw sensor data. Vehicles may share data at different abstraction levels based

on the scenario. However, the amount of information generated by each vehicle

is in fact also related to the environment, e.g., density of objects/vehicles, due
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to blockage, and this problem has not been well investigated.

The capacity of vehicular ad hoc network (VANET) has been studied

in a variety of works, see e.g., [44] [45] [46] [47]. The communication require-

ments for collaborative sensing, i.e., each vehicle requiring local many-to-many

information sharing, is different from general VANETs where the source and

destination of data need not be close by. Existing capacity analysis needs to

be adapted to this many-to-many setting. The authors of [48] study the com-

munication cost of a single vehicle, but obstructions and networking are not

considered.

Our work on modeling and assessing the performance of collabora-

tive sensing can be viewed as a stochastic version of what are referred to

as the gallery problems [49], which typically address questions such as the

number and placement of cameras/guards in a fixed environment to meet a

pre-specified coverage criterion.

Infrastructure has been considered to be an important component in

ITS to support automated driving [37] [50]. Authors of [51] propose a method

to perceive the environment using RSU camera and vehicle GPS. An analysis

of the performance of infrastructure assisted sensing, e.g., sensing coverage, is

however absent.
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1.3 Contributions and Organization

In summary this dissertation addresses the impact of blockage and mo-

bility in two settings: 1) the channel characteristics and thus MAC design in

millimeter wave based communications; and 2) the performance and commu-

nication costs of collaborative sensing for automated driving applications. The

dissertation is organized accordingly.

In Part I we look at the mmWave based wearable networks. In Chap-

ter 2 we study the impact of blockages on MAC design for dense wearable

networks. In Section 2.1 we present our system model for dense wearable net-

works. In Section 2.2 we characterize the number and distribution of the set

of “strong interferers” a typical receiver would see, as well as its stability to

users’ local motion. In Section 2.3 we characterize the capacity of wearable

networks utilizing a MAC scheduler which leverages clustering and hierarchi-

cal scheduling – not unlike current MAC design approaches. We propose a

simple model to analyze the performance and validate it through simulation.

Such model permits us to evaluate the impact of MAC design parameters, e.g.,

cluster size and transmission beamwidths, on the MAC performance.

In Chapter 3 we study the characteristics of temporal dynamics of

mmWave channels. We discuss the system model for analysis and necessary

background results in Section 3.1. In Section 3.2 we characterize the temporal

variation of a fixed channel. We prove that the temporal variation follows an

on/off renewal process, and characterize the distribution of on (LOS) and off

(OFF) states. We then study the aggregate rate of change of the set of strong
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LOS neighbors seen by a typical receiver in Section 3.3. In Section 3.4 we study

the MAC overheads associated with simple clustering based MAC protocols

as used in current standard in the presence of mobile blockages. In particular,

we evaluate the signaling overheads in cluster formation and maintenance in

mobile environments. Our numerical results in Section 3.5 illustrate that our

analytical model for temporal variations and the rate of change of the set of

strong interferers are accurate.

In Part II we study collaborative sensing for automated driving appli-

cations. In Chapter 4 we study the performance and scaling of collaborative

sensing and networking in support of automated driving. In Section 4.1 we

introduce a new stochastic geometric model for collaborative sensing in ob-

structed environments, which captures both the objects in the environment

and sensing capability of sensors, and propose associated performance metrics

capturing sensing coverage and reliability. We then quantify the performance

of collaborative sensing for varying reliability requirements, vehicle/object den-

sities, and penetrations of collaborative sensing vehicles in Section 4.2. Next

we study the communication costs in Section 4.3 and 4.4. In Section 4.3, we

study how the volume of sensor data generated by a vehicle under different

representation method scales in the vehicle/object density. In Section 4.4 we

explore heterogeneous architectures of sensing and communication combining

vehicles and infrastructure. Our study of the performance and capacity re-

quirements exhibits the critical role of possible infrastructure assistance in im-

proving sensing coverage and communication reliability especially at the early
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stages of collaborative sensing where there may only be a low penetration of

collaborative vehicles.

In Chapter 5 we evaluate the performance of infrastructure assisted

sensing. In Section 5.1 we compare the sensing coverage of cellular and RSU

assisted sensing at different road densities. In Section 5.2 we study the perfor-

mance of RSU assisted sensing under different deployment schemes, e.g., sensor

height, distance to road, sensing and communication ranges, etc. In Section 5.3

we study how sensors can utilize sensing temporal diversity caused by envi-

ronmental dynamics to improve sensing coverage. We give a brief discussion

of robustness in collaborative sensing based automated driving in Section 5.4

and conclude the chapter in Section 5.5.

Chapter 6 provides a summary of the key questions and findings ad-

dressed in this dissertation.
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Part I

Impact of Blockage and
Mobility on mmWave Based

Wearable Networks
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Chapter 2

MAC Scheduling for Dense Wearable

Networks1

2.1 Model Formulation

In this section we focus on indoor wearable networks. The devices on

each user are assumed to form a Personal Basic Service Set (PBSS), coordi-

nated by the PBSS Control Point (PCP), e.g., the user’s smart phone, see

Fig. 2.1. Data transmissions only happen between the PCP and non-PCP

devices of the same PBSS. There is no access point (AP) or central controller

to coordinate or synchronize transmissions across different users. The PBSSs

may form clusters, with the PCP of one PBSS working as the synchronization

PCP (S-PCP), i.e., the cluster head, to synchronize the beacon transmissions

of PBSSs. In the sequel, we will use the channel between two PCPs to approx-

imate the channels amongst the devices in two PBSSs. PCPs are located at

the front of each user’s body at a fixed height hdevice, see Fig. 2.2. We define an

interferer as a strong interferer if the received interference power, Pr, exceeds

1This chapter is based on paper: Yicong Wang and Gustavo de Veciana, “Dense indoor
mmWave wearable networks: Managing interference and scalable MAC,” in 14th Interna-
tional Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), Temple, AZ, 2016. Prof. de Veciana supervised the project.
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Figure 2.1: Wearable network using 802.11ad distributed clustering MAC.

a threshold γSI, i.e.,

Pr = Pt ·Gt ·Gr · L ≥ γSI,

where Pt is the transmit power, Gt and Gr are the transmit and receive antenna

gains, and L is the path loss.

User model. Users are assumed to be located on a 2-D plane. Walls

and obstructions other than human bodies are not considered, but we shall

assume there is a ceiling at a height hceiling. For simplicity, users’ bodies are

of the same dimensions.

Consider a reference user located at the origin 0 with a random ori-

entation denoted by a random variable Θ0, which is uniformly distributed

on [0, 2π). The centers of other users, denoted by Φ = {Xi}, are assumed

to follow a homogeneous Poisson Point Process (HPPP) with intensity λ on
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Figure 2.2: Illustration of the location of PCP and self-blockage model. The
PCP is located in front of user body at a height hdevice. In the figure on the
right, the arrow indicates the orientation (facing direction) of the user, and the
sector centered at the center of the user shows the region with no self-blockage.

R2 \ b(0, rmin). Here b(0, rmin) denotes a disc centered at 0 with radius rmin,

and rmin is the minimum distance between other users and the reference user.

Let Θi denote the orientation of user i, which is assumed to be indepen-

dent and identically distributed (IID) and uniformly distributed on [0, 2π).

Φ̃ = {(Xi,Θi)} is an independently marked point process (IMPP) and the

network is uniquely defined by Φ̃. We let φ̃ = {(xi, θi)} denote a realization of

Φ̃, where xi and θi denote the location and the orientation of user i respectively.

Fig.2.3 illustrates the model of the network.

Channel model. Again for simplicity let the location of the center

of a user approximate the location of the user’s PCP, see Fig. 2.3. Only two

types of channel are considered, the LOS channel and the reflected channel off

the ceiling, which we refer to as the NLOS channel. We shall assume a LOS

channel follows the free space propagation model while the path loss of the

reflected channel is determined by the free space path loss and a ceiling reflec-

tion coefficient, Γ, which depends on incident angle and reflection material,
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Figure 2.3: Model for the wearable network as seen by a reference user located
at 0.

see e.g., [52].

Blockage model. Human body introduces more than 20 dB path

loss [13], thus from the MAC perspective, we assume that the interference

from a channel is weak to be neglected in MAC scheduling. We assume the

channel gain is 0 if a channel is blocked by users, including self blockage. For

self blockage, we assume user’s body would block both the LOS and NLOS

channels to/from devices behind the user as shown in Fig. 2.2. We say that

two users are “facing” each other if they are in the non self-blocking regions

of each other. The angle of the non self-block region is α.

Blocking by other users can be different for LOS and NLOS channels.

Consider the channel between the reference user at 0 and the user at location

x, and a potential blocking user (x′, θ′), see Fig. 2.4(a). Denote by l0,x the line

segment between 0 and x, nx the unit vector perpendicular to l0,x. We assume

user at x′ blocks the LOS channel, l0,x, if the following two conditions are met,

sx(x
′) ∈ [0, |x|], (2.1)
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0 ∈ Dx(x, θ
′), (2.2)

where sx(x
′) ∈ R is the projection of x′ on the unit vector from 0 to x, |x|

is the distance between x and 0, Dx(x
′, θ′) ⊂ R is the projection of user’s

cross section at height hdevice on nx. For blocking of the NLOS channel, we

further assume that the cross section of the user body at height higher than the

device, h ≥ hdevice, is contained in the cross section at height hdevice. Denote

by Cx(x
′, θ′) ⊂ R2 the intersection of the cross section of user (x′, θ′) at height

hdevice and l0,x, hNLOS(x, sx(x
′)) is the height of the NLOS channel between 0

and x at a distance sx(x
′) from 0 and h(x′,θ′)(y) is the height of user (x′, θ′) at

location y, see Fig. 2.4. Based on the assumptions, the user at x′ blocks the

NLOS channel if the condition in Eq. 2.1 is met and

hNLOS(x, sx(x
′)) ≤ h(x′,θ′)(y),∀y ∈ Cx(x′, θ′). (2.3)

Notice that if the LOS channel is not blocked, Cx(x
′, θ′) = ∅, thus the NLOS

channel is also not blocked.

Given Pt, Gt and Gr, let rmax be the maximum distance of a strong

interferer when the LOS channel is available, and rreflection
max that when only the

NLOS channel is not blocked. Due to reflection losses and longer path taken,

rreflection
max < rmax. For |x| ∈ [rmin, r

reflection
max ], a user at x is a strong interferer

if the NLOS channel is not blocked; for |x| ∈ (rreflection
max , rmax], a user at x is

a strong interferer if the LOS channel is not blocked. Notice that the path

loss of the NLOS channel may not be a monotonically increasing function of

|x| due to the sensitivity of the reflection coefficient to the incident angle,
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(a) Blockage model for LOS channel

(b) Blockage model for NLOS channel

Figure 2.4: (a) the conditions that user (x′, θ′) blocks the LOS channel between
0 and x. (b) illustrates the condition that the NLOS channel is blocked.

thus for |x| ≤ rreflection
max , having an unblocked NLOS channel may be only a

necessary condition, not a sufficient condition, for being a strong interferer in

some scenarios. Our model can be easily extended to account for these effects.

Antenna model. We assume that the antenna gain is invariant to the

angle between antenna direction and the vertical axis, e.g., the same for the

LOS and the NLOS channel between two devices. The antenna gain follows a
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sectorized antenna model [17], i.e.,

G =

{
gmain, w.p. β/2π

gside, w.p. 1− β/2π
,

where gmain is the antenna gain of main lobe, gside is the antenna gain out of

the main lobe, β is the 2-D beamwidth.

There are many complex factors involved in mmWave propagation but

the above simple model captures the key features for such systems, e.g., di-

rectionality, reflection, and blockages. Notice that in the analysis of strong

interferers, the directional transmission is not actually not considered. The

reason is that in the current 802.11ad standard, two PBSSs are assumed to be

interfering with each other and cannot transmit at the same time if the de-

vices can hear the beacons from the other PBSS. The beacons are transmitted

and received in omni-directional mode [2]. The directional antenna model is

used in our analysis of wearable MAC performance. Different parameters, e.g.,

threshold for strong interferers, Γ, NLOS path loss model, and antenna model

do impact the accuracy and numerical results of our analysis. Our qualitative

analysis is used to capture the key factors and their potential impact on MAC

design.

2.2 MAC Perspective on Interference in Dense Millime-
ter Wave Wearable Networks

In this section, we characterize the interference environment in dense

mmWave wearable networks from the MAC perspective, i.e., the characteris-
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tics of the set of strong interferers, including the size of the set and its stability

under user motion. These characteristics determine the performance and co-

ordination costs associated with MAC scheduling.

For simplicity we assume Gt = Gr = 1 and focus our analysis on

the impact of channel blockages in this section. Assuming Gt = Gr = 1

corresponds to the setting considered in the 802.11ad MAC standard, where

two users are considered to be interfering with each other if they can hear each

other’s beacon which are sent/received omni-directionally. This model can be

extended to the case where users have different or heterogeneous beamforming

capabilities. These considerations will be included when we evaluate MAC

performance in Section 2.3.

2.2.1 Number of Strong Interferers

We first analyze the number of strong interferers seen by the user at 0,

(0,Θ0), denoted by NSI. NSI can be written as follows,

NSI =
∑

(X,Θ)∈Φ̃

f
(
X,Θ, Φ̃\{(X,Θ)}, 0,Θ0

)
, (2.4)

where f(X,Θ, Φ̃\{(X,Θ)}, X0,Θ0) is the indicator function that user (X,Θ)

is a strong interferer to user (X0,Θ0) given the locations and orientations of

other users, Φ̃\{(X,Θ)}.

Due to the blockage effect, NSI is a function of the process Φ̃, which

makes the distribution of NSI hard to compute. Still the average number of

strong interferers is a good metric to capture the MAC coordination require-
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ments/overhead. Given our proposed modeling assumptions, E[NSI] can be

computed and as given in the following result.

Theorem 2.2.1. If users follow an HPPP with intensity λ and users’ ori-

entations are uniformly distributed on [0, 2π), then for the proposed blockage

model we have that,

E[NSI] = 2πλpfacing

(∫ rreflection
max

rmin

e−E
[
NNLOS

B (x)

∣∣|x|=r]rdr
+

∫ rmax

rreflection
max

e−E
[
NLOS

B (x)

∣∣|x|=r]rdr), (2.5)

where pfacing = ( α
2π

)2 is the probability that two users face each other, NLOS
B (x)

is the number of blockages of the LOS channel between 0 and x, excluding the

user at 0 and the user at x, while NNLOS
B (x) is the number of users blocking

the NLOS channel between 0 and x.

Before establishing this result, we first characterize the distribution of

NLOS
B (x).

Theorem 2.2.2. If user locations follow an HPPP with density λ, NLOS
B (x)

has a Poisson distribution with mean E[NLOS
B (x)] ≈ λ|x|E[D], where E[D] is

the expected width of a user’s cross section at height hdevice. The probability

that the LOS channel is not blocked is thus given by e−E[NLOS
B (x)].

Proof. The number of blockages is given by,

NLOS
B (x) =

∑
(xi,θi)∈Φ̃\(x,θ)

1
(
(xi, θi) blocks lLOS

0,x

)
. (2.6)
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Φ̃\{(x, θ)} is an IMPPP and 1
(
(xi, θi) blocks lLOS

0,x

)
is independent of other

users, thus NLOS
B (x) is an independently thinned Poisson process, which is

still a Poisson process [53]. The mean of NLOS
B (x) is given as follows,

E[NLOS
B (x)] =

∫
R2\ b(0,rmin)

∫
[0,2π)

1
(
(x′, θ′) blocks (x, θ)

)
· FΘ′(dθ

′)λ(dx′) (2.7)

(a)
≈

∫
R2\ b(0,rmin)

∫
[0,2π)

1
(
0 ∈ Dx(x

′, θ′)
)

· 1
(
sx(x

′) ∈ [0, |x|]
)
FΘ′(dθ

′)λ(dx′) (2.8)

(b)
≈ λ|x|

∫
[0,2π)

|Dx(·, θ′)|FΘ′(dθ
′) (2.9)

(c)
= λ|x|E[D]. (2.10)

In (a), we use the two conditions in Eq. 2.1 and Eq. 2.2 for the blockage of LOS

channel to approximate 1
(
(x′, θ′) blocks (x, θ)

)
. In (b), we use the fact that

users follow an HPPP with density λ. Since the dimensions and orientation

of a user are independent of its location, the distribution of |Dx(x
′, θ′)| is

independent of x′. We neglect b(0, rmin) for simplicity, an approximation which

is suitable for large |x|. In (c), E[|Dx|] is the expectation of Dx over Θ′, which

is uniform over [0, 2π), thus E[|Dx|] is the same for all x, which we denote by

E[D].

For NLOS channels, NNLOS
B also follows a Poisson distribution. One can

compute E[NNLOS
B ] in a similar way as above for E[NLOS

B (x)] by substituting
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the first indicator function in (2.8), 1
(
0 /∈ Dx(x

′, θ′)
)
, with the condition in

Eq. 2.3.

Now with the distribution of NLOS
B and NNLOS

B , we can prove Thm. 2.2.1

as follows.

Proof of Theorem 2.2.1. E[NSI] can be computed using the reduced Camp-

bell’s formula for IMPP of Corollary 2.2 in [53] as follows,

E[NSI] = E

[ ∑
(X,Θ)∈Φ̃

f(X,Θ, Φ̃\{(X,Θ)}, 0,Θ0)

]

=

∫
[0,2π)

∫
R2\ b(0,rmin)

∫
[0,2π)

∫
M̃

λf(x, θ, φ̃\{(x, θ)}, 0, θ0)

P !
Φ̃

(φ̃)FΘ(dθ)dxFΘ0(dθ0),

(2.11)

where M̃ is the space of realizations of Φ̃, P !
Φ̃

(·) is the reduced Palm distribution

of Φ̃.

According to our blockage model, E[NSI] can be computed as follows,

E[NSI] =

∫
R2\ b(0,rmin)

EΘ,Θ0

[
1
(
(x,Θ) faces (0,Θ0)

)]
·
[
1
(
|x| ∈ [rmin, r

reflection
max ]

)
· Pr

(
NNLOS

B (x) = 0
)

+ 1
(
|x| ∈ (rreflection

max , rmax]
)
· Pr

(
NLOS

B (x) = 0
)]
λdx

= 2πλpfacing

(∫ rreflection
max

rmin

e−E
[
NNLOS

B (x)

∣∣|x|=r]rdr
+

∫ rmax

rreflection
max

e−E
[
NLOS

B (x)

∣∣|x|=r]rdr).

(2.12)
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Here we let Pfacing(x) = EΘ,Θ0

[
1
(
(x,Θ) faces (0,Θ0)

)]
, i.e.,

Pfacing(x) =

∫
[0,2π)

∫
[0,2π)

1
(
(x, θ) faces (0, θ0)

)
· FΘ(dθ)FΘ0(dθ0). (2.13)

Θ0 and Θ are uniform over [0, 2π), thus Pfacing(x) = pfacing =
(
α
2π

)2
for all x.

By Thm. 2.2.1, NLOS
B (x) follows a Poisson distribution with mean λE[D]|x|,

thus Pr
(
NLOS

B (x) = 0
)

= e−E[NLOS
B (x)], which is a function of |x|. Similarly,

Pr
(
NNLOS

B (x) = 0
)

= e−E[NNLOS
B (x)] is also a function of |x|. Combine the

above facts, we get Eq. 2.12 and this finishes the proof.

2.2.2 Stability of Strong Interferers

In this part we study the stability of LOS strong interferers in the

presence of users’ small scale movements. The stability of strong interferers

influences the cost and benefit of tracking and coordinating scheduling with

such neighbors: if the set of strong interferers changes quickly, the tracking

of neighbors is unreliable thus requires more frequent signaling and associ-

ated overheads. For simplicity, we focus on the stability of only LOS strong

interferers, but the results are similar for NLOS ones.

We use the following small scale mobility model for our analysis. Sup-

pose that in a time interval [t, t + ∆t], users make independent small scale

movements, i.e., translation ∆Xi and rotation ∆Θi. Denote by Φ̃t the net-

work at time t. Given Φ̃t = φ̃t and the user at 0 is (0, θ0) at t, the changes of
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the network can be summarized as follows:

(0, θ0)→ (∆X0, θ0 + ∆Θ0),

φ̃t = {(xi, θi)} → Φ̃t+∆t = {(xi + ∆Xi, θi + ∆Θi)}.

We assume the following simplified local mobility model. ∆Xi and ∆Θi are

IID, ∆Xi is uniformly distributed in b(0, rmove), rmove is the maximum range

of movements, ∆Θi is uniformly distributed in [−ω, ω]. Our local mobility

model includes both translation and rotation of users. Users may follow dif-

ferent mobility patterns, e.g., moving in fixed directions or rotate at constant

rate. We expect the trend scalability of stability are the same as our general

simplified model.

Denote by Y t
x = f(x,Θ, Φ̃t\(x,Θ), 0,Θ0) as a random variable repre-

senting whether user x is a strong interferer at time t, and Y t+∆t
x a random

variable representing the state of the same user at t+ ∆t, i.e.,

Y t+∆t
x = f(x+ ∆X,Θ + ∆Θ, Φ̃t+∆t\(x+ ∆X,Θ + ∆Θ),∆X0,Θ0 + ∆Θ0),

(2.14)

where ∆X, ∆Θ are random variables having the same distribution as ∆Xi

and ∆Θi respectively, Y t
x and Y t+∆t

x ∈ {0, 1}. We define the stability of an

interferer originally located at x for an interval of length ∆t, S(x,∆t), based

on the autocorrelation of the state of the interferer at t and t+ ∆t as follows,

S(x,∆t) = Corr(Y t
x , Y

t+∆t
x ) =

Cov(Y t
x , Y

t+∆t
x )

σY tx · σY t+∆t
x

, (2.15)

where Cov(Y t
x , Y

t+∆t
x ) = E[Y t

xY
t+∆t
x ]− E[Y t

x ] E[Y t+∆t
x ], is the covariance of Y t

x

and Y t+∆t
x , and σY tx , σY t+∆t

x
are the variance of Y t

x and Y t+∆t
x , S(x,∆t) ∈

[−1, 1].
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The stability metric we define here works as a measure on the correla-

tion of previous measurements and current channel state. If S(x,∆t) is small,

i.e., close to 0, the correlation of the channel state of an interferer at different

times, t and t+ ∆t, is low and the interferer channel state is unstable. In this

case, previous measurements at ∆t before are not reliable and the frequency

of channel measurements need to be higher and the users may need to change

their clustering and scheduling strategy more frequently. If S(x,∆t) is close to

1, the correlation is high and the interferer is stable, and the overhead would

be lower.

How to compute S(x). Based on our assumptions that movements are

IID, Φ̃t is stationary according to the Displacement Theorem [54]. As a result,

σ2
Y tx

= PSI(x) ·
(
1− PSI(x)

)
, (2.16)

where PSI(x) = Pr(f0(x,Θ, Φ̃\(x,Θ), 0,Θ0) = 1). We use σ2
Y tx

to approximate

σ2
Y t+∆t
x

. To compute Cov(Y t
x , Y

t+∆t
x ), we have E[Y t+∆t

x ] ≈ E[Y t
x ] = PSI(x).

E[Y t
x · Y t+∆t

x ] is the probability that user at x is strong interferer at times t

and t+ ∆t,

E[Y t
x · Y t+∆t

x ] = Pr
(
{Y t

x = 1} ∩ {Y t+∆t
x = 1}

)
. (2.17)

The user at x at time t, is a strong interferer at t and t+∆t if it is facing user 0

and the channel between them is not blocked at t and t+ ∆t. The probability

of users facing each other can be computed by taking the expectation over

Θ0,Θ,∆Θ0,∆Θ. Let us denote N t,t+∆t
B as the number of users blocking the

channel between user x and user 0 at t or t + ∆t. Since Φ̃t is IMPP and
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the movements are IID, it follows that N t,t+∆t
B has a Poisson distribution and

E[N t,t+∆t
B ] can be computed using Campbell’s formula and the mobility model.

We consider two metrics for the stability of strong interferers based on

S(x). The first metric is the stability of strong interferers at a given distance,

d, i.e.,

E
[
S(x,∆t)

∣∣|x| = d
]
. (2.18)

The second metric we consider, is the stability of a random LOS strong inter-

ferer, E[S],

E[S] =
λ
∫
R2\ b(0,rmin)

S(x,∆t) · PSI(x)dx

E[NSI]
. (2.19)

E[S] is the average sensitivity of the strong interferers normalized by the prob-

ability that a user is a strong interferer. This metric estimates the average sta-

bility of the interferers that user tracks and the coordination costs for tracking

a neighboring strong interferer.

2.2.3 Numerical Results on Interference

We first present the numerical results for the number of strong interfer-

ers. In a dense scenario, the HPPP may not be a good model for user locations

as users in reality will not overlap with each other. This may affect the accu-

racy of our model for E[NSI]. In Fig. 2.5 we compare our analytical results with

simulation results in which the users are excluded from overlapping. For these

numerical and simulation results, users are modeled as cylinders with a diam-

eter of 0.6 m, and we use Matérn III process [55] to model the user locations

in our simulation and the minimum distance between users is 0.6 m to prevent
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overlapping. hbody = 1.754 m, hdevice = 1 m, hceiling = 2.8 m, |Γ|2 = 0.2166,

α = 4π/3. PBSSs work in the 60GHz band and the threshold of path loss for

strong interferers is −88 dB, i.e., rmax = 10 m, and rreflection
max = 3.1 m. The av-

erage sum interference in (b) is from analysis using the same analytical model,

transmit power is 20 dB, antenna gain is Gt = Gr = 0 dB. As can be seen, our

analytical results are in line with the simulation, validating the accuracy of

the approximation by the HPPP. Also as can be seen, E[NSI] first grows with

the user density, but as user density further increases, close by neighbors block

the interference from more distant users, thus E[NSI] saturates and begins to

decrease with density. Users see the largest number of strong interferers at

moderately high user densities. By contrast, the average sum interference a

typical user receives is increasing with the user density, see Fig. 2.5(b), which

is in line with the results in [19, 20]. The trend for E[NSI] is similar for the

case where users use directional transmissions.

To understand the reasons behind these phenomena, we study how the

distribution of strong interferers changes in the user density in Fig. 2.6 and

Fig. 2.7. Fig. 2.6 illustrates the distribution for the distance of LOS strong

interferers for varying user densities. Fig. 2.7 shows the locations of strong

interferers in one realization of the network. As user density increases, the

strong interferers tend to concentrate close to the receiver. When the user

density is very high, the network reaches a “jamming regime”, where strong

interferers are mostly close by and block further away interferers as shown in

Fig. 2.7(c). This also helps explain the results in Fig. 2.5(b): although the
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(a) Expected number of strong interferers (b) Number of strong interferers v.s. aver-
age sum interference

Figure 2.5: (a) How E[NSI] changes with user density, and (b) comparison of
E[NSI] and sum interference from other users.

Figure 2.6: Probability density function of LOS strong interferers as a function
of the distance to the reference user at 0, |x|.
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(a) λ = 0.1/m2 (b) λ = 0.5/m2 (c) λ = 1.5/m2

Figure 2.7: The locations of strong interferers for different densities, neglecting
self blockage. The joint red circles represent LOS interferers, green hollow
circles are NLOS interferers and blue crosses are non strong interferers. The
area shown above is 10m × 10m.

number of strong interferers is limited as the density grows, they get closer

and each contributes an increasing amount of interference, resulting in a sum

interference which increases in the user density. These results imply that at

high user densities we might be able to mitigate interference with appropriate

MAC schedulers since there are only a small number of strong interferers. In

addition, the MAC coordination costs might not be too high.

We present the numerical results on the stability of LOS strong inter-

ferers in Fig. 2.8. For these results, ∆t was set to be 1s. We assumed rmove is

a function of λ and may decrease at high user densities, i.e.,

rmove(λ) =

0.2 m if λ ≤ 0.71/m2

0.6

(√
0.9
πλ
− 0.3

)
m if λ > 0.71/m2

.

In our model for rmove, the range of user translation is fixed at low user den-

sities, i.e., rmove = 0.2 m, since the distance among users is large and the local
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movements of users are less likely to be constraint by other users. At high user

densities, users are close to each other and the movements of users are assumed

to be more limited. Assuming each user occupies a circle centered at the user’s

initial location and the circles of different users do not overlap, then, in the

dense packing case, the radius of the circle is approximately
√

0.9/λπ and

the maximum range of movement is rmax
move(λ) = (

√
0.9/λπ − rbody)m, where

rbody = 0.3m is the radius of user body. Thus we set rmove = 0.6 · rmax
move(λ).

This rough model captures the impact of the limitations of local movements

at high densities. The range for rotation was assumed to be 48, i.e., ω = 24.

Fig. 2.8(a) exhibits the stability of users at different distances. As can

be seen, close by interferers are more stable to user movements than distant

interferers. This supports the observation that closely interferers will be robust

to movements and information regarding interference from closely neighbors

is more reliable. Fig. 2.8(b) exhibits the stability of a typical strong interferer,

E[S], for different user densities. Strong interferers first become less stable

as S(x,∆t) decreases with λ. In highly dense scenarios, strong interferers are

closer and their movements are more constraint, thus effectively the strong

interferers are more “stable”. Our numerical results show that coordination

with closely neighbors may work well in dense wearable settings as the channels

are relative stable and the coordination costs are limited. If the movement of

users scale differently with user density, e.g., rmove does not change with λ,

stability may keep decreasing with user density. The rate of decrease is smaller

at high densities as long as user mobility does not increase with user density.
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(a) Stability of user x (b) Average stability of strong interferers

Figure 2.8: (a) Stability of users at different distance |x|, and (b) average
stability of a typical strong interferer E[S] for different user densities.

Our results here implicate the possibility that stability may not monotonically

decrease with user density and in dense environments the stability of channels

may increase as movements are limited. Our focus here is on dynamics of

wearable networks under small scale local movements. We study the impact

of large scale movements, e.g., walking, in Chapter 3

2.3 Hierarchical Wearable MAC

In this section we propose a simple model to study the performance of

a hierarchical MAC protocol which uses clustering, channel selection, and hi-

erarchical scheduling. Our model is in line with current MAC designs, e.g., the

distributed clustering in 802.11ad, but optimized for dense wearable settings

based on our findings in the previous section.
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2.3.1 Hierarchical MAC for Wearable Networks

When centralized control is absent, hierarchical clustering and schedul-

ing work as a viable solution to coordinating transmissions amongst multiple

PBSSs, see e.g., the distributed clustering in 802.11ad [2].

A hierarchical MAC consists of three parts, clustering, channel selection

and scheduling at each PBSS. PBSSs form clusters, while the cluster head

synchronizes the PBSSs in the cluster and schedules Beacon Transmission

Intervals (BTIs) for each cluster member PBSS, see Fig. 2.9. Cluster heads

do not schedule the data transmissions of cluster members. Channel selection

is mainly used to mitigate interference among clusters and performed by the

cluster heads. Clustering and channel selection help coordinate the PBSSs

and are usually performed at a slower time scale. In each PBSS, the PCP

schedules the data transmissions within the PBSS for each frame while trying

to optimize reuse in dense scenarios.

To optimize MAC performance in wearable networks, e.g., handling

blockage and improving reuse, we propose the following MAC.

Clustering and channel selection. For dense wearable networks, the

basic principle underlying clustering is that the channels among the cluster

head and cluster members should be strong and stable. To better mitigate

inter-cluster interference through channel selection, it is also desirable that

cluster members share a similar set of strong interferers. Based on our analysis

of the interference environment and the above principles, a cluster shall consist
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Figure 2.9: Frame structure of clustering with Hierarchical Resource Reuse.

of users in close proximity and operate in a channel distinct from that of nearby

clusters.

Scheduling within clusters. Wearable devices on a user may have differ-

ent quality of service (QoS) requirements and transmission capabilities. High

end devices may have more directional transmissions and require high data

rates and low latency. Low end devices, on the other hand, may use less di-

rectional transmissions and do not have strict QoS requirements. To achieve

better resource reuse within each cluster and meet the basic QoS require-

ments of different types of devices in each PBSS, we propose the hierarchical

scheduling method exhibited in Fig. 2.9. Our scheduling method follows the

same basic structure as that in 802.11ad. The cluster head synchronizes the

Beacon Interval (BI) for PBSSs in the cluster and schedules slots for Beacon

Transmission Intervals (BTIs). In each BTI, only one PCP transmits its bea-
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cons while other users listen to the beacons. The slots after the BTI (before

the next BTI) are allocated to the PBSS that just sends the beacon, during

which the PBSS has priority over the other PBSSs. The PBSS starts data

transmission after sending the BTI. Other PBSSs may however try to contend

with other non-priority PBSSs to reuse the slots if the their transmissions do

not interfere with the transmissions of the priority PBSS. Non-priority PBSSs

will first measure the channel and try to access the channel if they are not

interfering with a priority user. To avoid interference among non-priority PB-

SSs, non-priority PBSSs may take turns in attempting to access the channel.

A non-priority PBSS needs to avoid interference with any PBSSs that has

accessed the channel in the cluster.

2.3.2 Modeling the Achievable Reuse for Hierarchical MAC Schedul-
ing

We propose a model to compute the achievable reuse of our proposed

MAC for dense wearable networks. Let us consider the average time that

a PBSS can perform a successful data transmissions, denoted by Successful

Transmission Time (STT) , as the performance metric of interest. A PBSS

interferes with another PBSS if the interference power it causes at the receiver

is above a threshold γSI. We say two users interfere with each other if either

user is interfering with the other. Under this simplified model, a transmission

is successful if there is no strong interferer. STT is then defined as follows,

STT = fdata × paccess × psuccess, (2.20)
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where fdata is the fraction of time reserved for data transmission, paccess is the

probability that a PBSS in a given cluster may access the channel, with no

intra-cluster interference after scheduling, and psuccess is the probability that a

data transmission is successful. We use the “protocol model” to decide whether

a transmission is successful, i.e., a transmission is successful if the receiver does

not see a strong interferer, which causes interference stronger than γSI. In dense

wearable networks, due to blockage and directional transmissions, interference

is dominated by a few strong interferers, and we suppose the criterion above

is a good approximation for an SINR based criterion if an appropriate γSI is

used.

There are two types of transmissions, beacon and data transmissions.

To account for the heterogeneity of devices, e.g., transmission capabilities and

QoS requirements, we classify data transmissions of each PBSS into two cat-

egories, primary data transmissions with higher QoS requirements and highly

directional antennas and secondary data transmissions associated with lower

QoS requirements and less directional antennas.

Modeling clustering and channel selection. We assume that clusters

are of the same size K and share M channels. Each cluster includes the

nearest neighbors of the cluster head and when possible each cluster chooses

to operate on a channel different from those used by its closest neighboring

clusters. For analytical purposes, we consider a typical cluster, where the

cluster head is located at the center with the other K−1 cluster members being

its closest neighbors. MAC performance is related to the intra-cluster resource
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sharing and inter-cluster interference. To obtain a tractable simple model, we

assume the cluster members are uniformly distributed on a disc centered at

the cluster head with a fixed radius Rcluster, while channel selection, geared at

ensuring neighboring clusters operate on different channels, effectively forms

an inter-cluster interference protection region, see Fig. 2.10. An idealized

protection area is modeled as a disc centered at the cluster head with a radius

Rprotect, where there are no inter-cluster interferers. For such a model, the

performance of MAC is determined by the size of the cluster disc, Rcluster, and

the radius of the protection region, Rprotect. Rcluster determines the intra-

cluster interference which in turn impacts the ability of users in the cluster

to access their shared channel, paccess. Rprotect and the density of users on

the same channel outside the protection region determines the inter-cluster

interference, and the probability of a successful transmission, psuccess.

For users in the cluster, we shall assume user density on the disc is λ,

then the expected number of users on the disc should be equal to the number of

cluster members, K − 1, which permits a rough estimate of the cluster radius:

λπ · (R2
cluster − r2

min) ≈ K − 1⇒ Rcluster ≈
√
K − 1

λπ
+ r2

min. (2.21)

To model inter cluster interference, we assume that the fraction of clusters

operating on each channel is equal, and the number of users in the protection

area of each cluster is the same. Users using other channels of course will not

interferer, but still play a role as possible blockage outside the cluster disc.

We further assume the protection areas of clusters on the same channel are
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(a) Network after clustering and chan-
nel selection

(b) Analytical model for clustering

Figure 2.10: (a) illustrates the cluster and the channel each user works in after
clustering and channel selection. Users of the same shape work in the same
channel, while close by users in the same channel belong to the same cluster.
(b) shows the analytical model for clustering and channel selection. Close
by users are clustered together with the cluster head located at the center.
Channel selection forms a protection area around the cluster, separating users
working on the same channel. Interfering users on the same channel can be
viewed as randomly located outside the protection area with density λ/M and
working independently.
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non-overlapping, thus on average there should be M ·K users in the protection

area. Suppose these users are uniformly distributed in the protection area with

density λ, then under our idealized model, one can get a rough estimate of the

protection radius:

λπ · (R2
protect − r2

min) ≈M ·K − 1

⇒ Rprotect ≈
√
M ·K − 1

λπ
+ r2

min.
(2.22)

We shall assume users outside the protection area can be modeled as following

an HPPP with density λ and operating on a given channel with probability

1/M . All PBSSs outside the protection region are treated as working inde-

pendently.

Modeling scheduling. We assume that there is at most one transmission

in each PBSS in each slot. Let Tframe denote the length of a frame and Tbeacon

denote the length of beacon transmission time for one PBSS, see Fig. 2.9.

The cluster head reserves exactly K BTIs in Tframe thus the fraction of time

reserved for data transmission is given by

fdata =
Tdata

Tframe

=
Tframe −K · Tbeacon

Tframe

. (2.23)

When one PCP transmits its beacon, the other PCPs attempt to receive the

beacon using an omni-directional receive mode. The PBSSs are assumed

to have full buffers and schedule primary data transmissions a proportion

ρprimary ∈ [0, 1] of slots and schedule secondary transmissions for the remain-

ing ρsecondary = 1− ρprimary of the slots.
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We will consider two types of scheduling within clusters: time division

multiple access (TDMA) and hierarchical resource reuse (HRR). In TDMA

scheduling, PBSSs share the slots equally within the cluster and the fraction

of time that a PBSS can access the channel in a frame is given by,

pTDMA
access =

fdata

K
. (2.24)

Thus overall a PBSS schedules primary transmissions in ρprimaryfdata/K slots,

and secondary transmissions in the rest (1− ρprimary)fdata/K slots.

In HRR, each PBSS is allocated 1/K of the slots where it is prior-

ity PBSS, i.e., having higher priority in scheduling. A PBSS first schedules

primary transmissions in the reserved slots and schedules other transmissions

by reusing slots allocated to other PBSSs. If ρprimary ≤ 1/K, the PBSS also

schedules secondary transmissions in the slots not allocated for primary trans-

mission. Otherwise PBSSs also try to reuse the slots if they do not interfere

with the priority PBSS assigned to the slot. We shall chose a user located
√

2
2
Rcluster away from the cluster head as a representative user for the cluster.

Such users capture what is “typically” achievable in the cluster, i.e., paccess,

psuccess, and thus STT. The probability that the representative PBSS can reuse

a given slot can then be approximated by

preuse
access ≈

1− ppriority
SI

1 + E[N reuse
intra−cluster]

. (2.25)

In the above, ppriority
SI is the average probability that the representative user

interferes with the priority user considering the channel path loss and antenna
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gain, The random variable N reuse
intra−cluster denotes the number of non-priority PB-

SSs in the cluster, which do not interfere with the priority PBSS but interfere

and contend with the representative PBSS to reuse the slot.

We further denote by Ninter−cluster the number of inter-cluster interfering

PBSSs seen by the representative PBSS. The transmission states of inter-

cluster interferers outside the protection region are assumed to be mutually

independent and the blockage states of their channels to the representative

PBSS are assumed to be independent. It follows by the thinning property of

Poisson process that Ninter−cluster has a Poisson distribution and the probability

of a successful transmission is given by,

psuccess = e−E[Ninter−cluster]. (2.26)

The distribution of Ninter−cluster is related to the channel access probability of

interfering PBSSs, and we assume all PBSSs outside the cluster on the same

channel have the same channel access probability as the representative user.

2.3.3 Numerical Results and Discussion

In this section, we present results on the achievable STT of the repre-

sentative user. We assume the secondary transmissions use omni-directional

antenna and low transmit power while primary transmissions use directional

antenna with β =, ρprimary = 0.5. The other parameters used are listed in

Table 2.3.3.

We begin by comparing our analytical model with simulations in Fig. 2.11.
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Table 2.1: Parameters in wearable MAC performance analysis
Parameter Value
Frequency 60 GHz

M 4
λ 1 user/m2

Pt (primary) 10 dBm
Pt (secondary) 4 dBm

γSI -78 dBm
gmain (β = 60) 5 dB
gside (β = 60) -5 dB
gmain (β = 24) 10 dB
gside (β = 24) -10 dB

Tframe 100 ms
Tbeacon 2 ms

In our simulation, the locations of users follow a Matérn III process [55], i.e.,

users can not overlap each other. The blockage from other users follows the

probabilistic model based on distance while self-blockage and antenna gain

are calculated based on user locations and orientations and antenna direc-

tions. Users are first clustered using Affinity Propagation (AP) [56] based on

a similarity metric between two users i and j, which is simply defined as the in-

verse squared distance, i.e., d−2
ij , where dij is the distance between user i and j.

The clustering algorithm used in our simulated MAC protocol requires the dis-

tance to other users to compute the similarity and implement the distributed

clustering algorithm. In reality, users would estimate similarity metrics (not

necessarily distance) based on channel measurements. After clustering, the

cluster heads hop among channels, attempting to minimize the sum similarity

between the cluster head and other users operating on the same channel but
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which do not belong to its cluster. Channel selection is performed until clus-

ter head choices stabilize. After clustering and channel selection, each cluster

schedules users either using TDMA or HRR. In HRR, each non-priority PBSS

is assigned a random reuse-priority, and a non-priority PBSS user can reuse

the channel if it does not interfere with the priority PBSS, nor other non-

priority PBSSs which have higher reuse priority and can access the channel

for reuse. As shown in Fig. 2.11, the simulation results for this more realistic

network model, e.g., with real clusters, channel selection and scheduling, are

in accordance with our simplified analytical model.

Trade-offs associated with cluster size. Fig. 2.11 exhibits how the STT

changes with cluster size. As can be seen the STT first increases with cluster

size, then saturates and decreases, indicating that although large clusters may

provide good inter-cluster interference mitigation, they increase the contention

between users within a cluster as well as signaling overheads thus may reduce

the spatial reuse.

In Fig. 2.12 we present the psuccess for different cluster sizes. As ex-

pected, psuccess increases with cluster size, as larger cluster sizes increase the

size of the protection region and decrease interference. When using HRR, the

interference is higher, thus psuccess is smaller than that achieved under TDMA.

We also observe that primary data transmission has larger psuccess than sec-

ondary data transmissions as the transmit power and antenna gains are higher.

Impact of transmission capability of devices. Fig. 2.13 exhibits the STT

when users have different beamwidths β for their primary transmissions. As
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(a) STT in TDMA

(b) STT in HRR

Figure 2.11: Total STT (T.), STT of primary transmissions (P.) and STT of
secondary transmissions (S.) in TDMA and HRR for different cluster sizes.
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Figure 2.12: psuccess for different cluster sizes.

might be expected, the optimal cluster size maximizing STT is smaller when

the transmissions are more directional. Results suggest that highly directional

devices are less dependent on clustering to mitigate interference, thus users

with highly directional devices may favor small clusters or be better off not

joining clusters at all.

Optimal cluster size v.s. user density. In Fig. 2.14 we show how the

cluster size maximizing the sum STT of primary and secondary transmissions

changes with user density. When user density is high, the optimal cluster

size does not change very much. Indicating that in such regimes, a fixed

near optimal cluster size can be chosen for a range of user densities – i.e.

robust choice. Furthermore, since overheads increase in cluster size, the results

suggest that for high densities, these overheads scale well. However, as we have

discussed, the transmission capabilities of users influence the optimal cluster
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Figure 2.13: Comparison of STT for networks with different beamwidths β for
primary transmissions.
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Figure 2.14: Cluster size that maximizes STT for different user densities.

size.

STT v.s. user density. In Fig. 2.15 we compare the STT for different

MAC protocols, i.e., clustering+TDMA, cluster+HRR, and optimal Aloha,

at different user densities. In clustering based protocols, the cluster size is

chosen as the one that maximizes the STT at the user density. For optimal

Aloha, channel access probability is chosen to maximize average STT, and

we assume users select channels randomly. We observe that clustering and

reuse provide moderate gains in STT, i.e., 50% over optimized Aloha, partly

due to beacon overheads. The STT of users remains roughly constant with

user densities, indicating that the per user throughput scales nicely at high

densities. Combined with the observation that coordination costs saturate, we

conclude that MAC schedulers for mmWave wearable network will be scalable.
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Figure 2.15: STT in different user densities for different MAC protocols: clus-
tering+HRR, clustering+TDMA and optimal Aloha. In optimal Aloha, the
channel access probability is optimized to maximize STT.

Compared with [19,20], which assume all users contend, our results show that

MAC scheduler can make user throughput scalable.

2.4 Conclusion

Our analysis of the character of interference and MAC performance

in dense mmWave wearable networks suggests such networks might be quite

viable for a range of user densities. Blockage and directionality help limit

the number of strong interferers to a few that are close by and stable. For a

relative stationary network, clustering with resource reuse is a viable solution

to coordinating PBSS transmissions. An ideal cluster protocol should cluster

close by stable and strong interfering neighbors and possibly adapt to users’
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beamforming capabilities and QoS requirements. More importantly, the coor-

dination costs and performance of MAC scale well at high densities. In fact

when designing and evaluating a MAC design, one may want to focus on the

most challenging scenario, i.e., one with a moderate density of users.
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Chapter 3

Temporal Dynamics of Mobile Blocking in

Millimeter Wave Based Wearable Networks1

In this chapter we characterize the temporal dynamics of mmWave

based channels caused by large scale movements of blockages.

3.1 System Model and Background Results

In this section we introduce our system model for a mmWave network

with mobile users along with some fundamental background results that are

critical to have a clear understanding of the results in this chapter.

1This chapter is based on paper: Yicong Wang and Gustavo de Veciana, “Temporal
dynamics of mobile blocking in millimeter wave based wearable networks,” in 15th Interna-
tional Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), Paris, France, 2017. Prof. de Veciana supervised the project.
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3.1.1 Background Notation and Key Results

We introduce some notations for set operations, see [53]. For x ∈ R2,

A,B ⊂ R2,

A⊕B = {x+ y : x ∈ A, y ∈ B}, (3.1)

x+B = {x+ y : y ∈ B}, (3.2)

B̌ = {x : −x ∈ B}. (3.3)

Here ⊕ denotes the Minkowski sum of sets.

The following results will be used repeatedly in the sequel and are fairly

well known in the literature:

� Displacement Theorem in R2 [54]

� Boolean Model in R2 [57]

� Generalized Steiner Formula in R2 [57]

The above results provide the following key insights in the context

of modeling mobile blockages. Displacement theorem indicates that starting

with a Homogeneous Poisson Point Process (HPPP) of blockages locations,

randomly displacing blockages gives another HPPP. If a set of blockages can

be modeled as a Poisson Boolean Process in Boolean model, the number of

such blockages intersecting a set follows a Poisson distribution. Generalized

Steiner formula helps calculate the expected area of the Minkowski sum of

random sets.
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3.1.2 System Model

We use a similar model for wearable network as that in Chapter 2. Each

user is equipped with multiple wearable devices. The devices on each user are

assumed to form a Personal Basic Service Set (PBSS), coordinated by the

PBSS Control Point (PCP), e.g., the user’s smart phone. Data transmissions

only happen between the PCP and non-PCP devices of the same PBSS. We

shall assume each user is equipped with a device, e.g., a smart phone, which

serves as coordinator for the user’s wearable devices. The coordinating device

will be assumed to be located in front of the user’s body. We shall consider

channels amongst the centers of users as approximating the channels among

devices associated with different users.

We shall consider networks composed of two types of users, fixed and

mobile users. Due to the low transmit power and high attenuation in the

mmWave band, the maximum range of a potential interferer is limited in

wearable networks, e.g., 10m. Consider a channel within this limited range,

the movements of users/blockages can be approximated as constant velocity

movements, i.e., the velocity and the direction of the blockages at that scale

may be assumed to be fixed. We refer to this mobility model as the Constant

Velocity Model (CVM)2.

Channel model. We shall focus on the LOS channels in this work. We

also consider human bodies as the main source of blockages. Human body

2Our analysis and results still hold if the direction of movement is fixed while the speed
changes.
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introduces more than 20dB path loss [13] thus we assume an LOS channel is

unavailable if a human is in the way. In fact the blockage model in our anal-

ysis may also represent blockages other than human bodies. In the mmWave

band, the path loss of NLOS channels are typically dominated by a few major

reflected paths. The blockage of reflected channels over the floor and ceiling

are typically also coupled with the blockage state of the LOS channel. For

other reflected paths, e.g., reflection over the wall, we may assume they are

independent of the LOS channel and approximate the temporal variation using

the model for LOS channels. However such NLOS channels are much weaker

than the LOS channel due to longer path and reflection loss and are more

likely to be blocked. In this initial work, we do not consider the diffraction

of signals and NLOS channels. Self blockage is independent of other block-

ages thus in the sequel, we focus on the channels that are not self blocked by

default. The impact of channel variation caused by self blockage and users’

small local movement is studied in Chapter 2.

Location and shape of user cross section. We suppose the blockages

are cylindrical and focus on the blockage on LOS channels. For simplicity we

consider 2D model in our analysis. Suppose users are randomly located on R2

where the centers of fixed users are Φf = {Xf
i } ∼ HPPP (λf ) and centers of

mobile users at time 0 are Φm = {Xm
i } ∼ HPPP (λm). We further assume

Φm is independent of Φf and mobile users’ movements are independent, e.g.,

users can overlap with each other.

Denote by Afi (Ami ) random closed convex sets modeling the shape of
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fixed (mobile) user i’s cross section. Afi (Ami ) is centered at 0 and we denote

by Θf
i (Θm

i ) the random direction user i is facing. Afi , A
m
i are independent and

identically distributed (IID) as are Θf
i ,Θ

m
i , which are assumed to be uniformly

distributed in [0, 2π].

Mobility model. We let the random variable Smi model the speed of

mobile user i, be IID, and such that Smi ∈ [smin, smax] where 0 < smin ≤ smax <

∞. Mobile user i is assumed to move in its facing direction Θm
i . Denote by

Wm
i ∈ R the width of mobile user i as viewed from the facing direction Θm

i ,

and V m
i ∈ R2 its velocity vector, i.e.,

V m
i =

(
Smi cos Θm

i , S
m
i sin Θm

i

)
. (3.4)

See Fig. 3.1a for an illustration of user body model. We shall further let Xm
i (t)

denote location of the center of mobile user i at time t, t ≥ 0, thus

Xm
i (t) = Xm

i + t · V m
i . (3.5)

The mobility model here corresponds to scenarios where users’ movements are

independent and random, e.g., crowded airport/shopping mall. Our model

and analysis can also be extended to other mobility models, e.g., blockages

move in the same direction.

The locations, cross sections, facing directions and velocities, of fixed

and mobile users at time 0 can be represented by two independent Indepen-

dently Marked Poisson Point Processes (IMPPP) [57], Φ̃f and Φ̃m, given by

Φ̃f = {(Xf
i , A

f
i ,Θ

f
i )},

Φ̃m = {(Xm
i , A

m
i ,Θ

m
i , S

m
i )}.
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Denote by Φm(t) the point process representing the locations of mobile users

at time t, Φ̃m(t) the marked point process for mobile users at t. It follows

immediately from the Displacement theorem [54] that Φm(t) is also an HPPP

with intensity λm and we have the following proposition.

Proposition 3.1.1. Users make constant velocity movements, Φ̃m is an IMPPP

with intensity λm and Θm
i and Smi are IID, then at any time t Φ̃m(t) is an

IMPPP with the same distribution.

(a) User body. (b) User trace.

Figure 3.1: (a) Model for mobile user i. Ami is centered at 0 and the actual
cross section of mobile user i is Xm

i +Ami . V m
i = (Smi cos Θm

i , S
m
i sin Θm

i ). (b)
Trace of mobile user i in [t, τ ], Bm

i [t, τ ].

Blockage model. We shall for simplicity assume a channel is blocked

if a blockage intersects the LOS channel between two devices. Let x ∈ R2

and l0,x ⊂ R2 be the line segment between 0 and x, representing the LOS

channel between the two points. We shall let Bf
i and Bm

i , denote the region

that fixed/mobile user i occupies at time 0, i.e.,

Bf
i = Xf

i + Afi and Bm
i = Xm

i + Ami . (3.6)
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We further let Bm
i (t) denote the region mobile user i occupies at time t, where

Bm
i (t) = Bm

i + t · V m
i = Xm

i (t) + Ami . (3.7)

We say the channel between 0 and x is blocked at time t by mobile user i if

Bm
i (t) ∩ l0,x 6= ∅ and for fixed user i if Bf

i ∩ l0,x 6= ∅.

Blockage traces. An important metric to capture interference temporal

variation is the rate at which new blockages are seen by a channel. To compute

these rates we shall determine if a mobile blockage i has blocked the channel

in a given interval [t, τ ], t ≤ τ , by defining the blockage trace in that time

interval, denoted by Bm
i [t, τ ] given by

Bm
i [t, τ ] = ∪

t≤z≤τ
Bm
i (z) = ∪

t≤z≤τ

(
Ami +Xm

i (z)
)

=Ami ⊕ lXm
i (t),Xm

i (τ) = Xm
i (t) +

(
Ami ⊕ l0,(τ−t)Vmi

)
,

(3.8)

see Fig. 3.1b. Clearly mobile user i has blocked channel l0,x in [t, τ ] if Bm
i [t, τ ]∩

l0,x 6= ∅.

To estimate the number of blockages in [t, τ ] using the generalized

Steiner formula, we need the area and perimeter of Bm
i [t, τ ]. Ami (t) is con-

vex and lXm
i (t),Xm

i (τ) is a line segment, thus ν2(Bm
i [t, τ ]) and ν1(Bm

i [t, τ ]) are as

follows,

ν2(Bm
i [t, τ ]) = ν2(Ami ) + (τ − t)Smi Wm

i , (3.9)

ν2(∂Bm
i [t, τ ]) = ν1(∂Ami ) + 2(τ − t)Smi . (3.10)

Bm
i [t, τ ] can be viewed as stretching Bm

i (t) by (τ − t)V m
i , the increase in area

is (τ − t)Smi Wm
i and the increase in perimeter is 2(τ − t)Smi .
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Figure 3.2: Illustration of fixed blockages Bf , mobile blockages at time t,
Bm(t), and traces of mobile blockages in [t, τ ], Bm[t, τ ]. Bf , Bm(t) and Bm[t, τ ]
are Poisson Boolean Processes.

Boolean model. Denote by Bf the region covered by all fixed users,

Bm(t) the region covered by mobile users at time t, Bm[t, τ ] the cumulative

region covered by mobile users in the time interval [t, τ ], i.e.,

Bf =
∞
∪
i=1
Bf
i =

∞
∪
i=1

(
Xf
i + Afi

)
, (3.11)

Bm(t) =
∞
∪
i=1
Bm
i (t) =

∞
∪
i=1

(
Xm
i (t) + Ami

)
, (3.12)

Bm[t, τ ] =
∞
∪
i=1
Bm
i [t, τ ] =

∞
∪
i=1

(
Xm
i (t) + (Ami ⊕ l0,(τ−t)·Vmi )

)
. (3.13)

Φf ,Φm(t) are HPPPs, Afi , A
m
i , A

m
i ⊕ l0,(τ−t)·Vmi are IID random sets, thus Bf ,

Bm(t) and Bm[t, τ ] correspond to Poisson Boolean Process model [57], see

Fig. 3.2.

Number of blockages. For a closed convex set K ⊂ R2, we denote by N f
K

the number of fixed users whose cross-sections intersect K, Nm
K (t) the number

of mobile users intersecting K at time t, Nm
K [t, τ ] the cumulative number of
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mobile users that have intersected K in [t, τ ]. N f
K , Nm

K (t) and Nm
K [t, τ ] are

defined as follows,

N f
K =

∞∑
i=1

1(Bf
i ∩K 6= ∅), (3.14)

Nm
K (t) =

∞∑
i=1

1(Bm
i (t) ∩K 6= ∅), (3.15)

Nm
K [t, τ ] =

∞∑
i=1

1(Bm
i [t, τ ] ∩K 6= ∅) (3.16)

Since Bf , Bm(t) and Bm[t, τ ] correspond to Poisson Boolean Processes, it

follows by the Boolean model that N f
K , Nm

K (t) and Nm
K [t, τ ] have Poisson dis-

tributions. Denote by A, Θ, S and W , random variables having the same

distributions as Afi (Ami ), Θf
i (Θm

i ), Smi and Wm
i respectively. Θ is uniform

in [0, 2π] thus A is isotropic and E[ν2(K ⊕ Ǎ)] can be computed using the

generalized Steiner formula. The expected number of blockages are given as

follows,

E[N f
K ] = λf

(
ν2(K) + E

[
ν2(A)

]
+

E
[
ν1(∂A)

]
· ν1(∂K)

2π

)
, (3.17)

E[Nm
K (t)] = λm

(
ν2(K) + E

[
ν2(A)

]
+

E
[
ν1(∂A)

]
· ν1(∂K)

2π

)
, (3.18)

E
[
Nm
K [t, τ ]

]
= λm

(
ν2(K) + E

[
ν2(A)

]
+ (τ − t) E[S] E[W ]

+

(
E[ν1(∂A)] + 2(τ − t) E[S]

)
· ν1(∂K)

2π

)
,

(3.19)

where we use the fact that for a convex set A, ν2(Ǎ) = ν2(A), ν1(∂(Ǎ)) =

ν1(∂A).
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Strong interfering neighbor. User located at x has a strong channel to

user at 0 if l0,x is unobstructed, i.e., an LOS channel, and |x| ≤ rmax, where

rmax is the maximum length of a strong channel. If |x| > rmax, we assume the

channel is weak and user at 0 can ignore such neighbors.

3.2 Time-varying Blocking for a Fixed Channel

Let us now consider the blocking state of fixed channels. Without loss

of generality we consider the LOS channel between 0 and x, l0,x, and denote by

|x| the length of l0,x. The channel can be blocked by fixed and mobile blockages.

We study the probability that the channel is blocked, then characterize the

temporal variation in the blocking.

3.2.1 Probability of Having LOS Link

Denote by PLOS,f
l0,x

the probability l0,x is not blocked by fixed blockages,

PLOS,m
l0,x

(t) the probability l0,x is not blocked by mobile blockages at t, PLOS
l0,x

(t)

the probability l0,x is LOS at time t. For line segment l0,x, ν2(l0,x) = 0,

ν1(l0,x) = 2|x|, and the expected numbers of blockages for l0,x are given as

follows,

E[N f
l0,x

] = λf
(

E[ν2(A)] +
E[ν1(∂A)] · |x|

π

)
, (3.20)

E[Nm
l0,x

(t)] = λm
(

E[ν2(A)] +
E[ν1(∂A)] · |x|

π

)
. (3.21)
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The probability of having LOS link is then given as follows,

PLOS,f
l0,x

= P(N f
l0,x

= 0) = e
−E[Nf

l0,x
]
, (3.22)

PLOS,m
l0,x

(t) = P(Nm
l0,x

(t) = 0) = e
−E[Nm

l0,x
(t)]
, (3.23)

PLOS
l0,x

(t) = PLOS,f
l0,x

· PLOS,m
l0,x

(t) = e
−E[Nf

l0,x
]−E[Nm

l0,x
(t)]
. (3.24)

3.2.2 Temporal Variation of Fixed Channels

Next we consider the temporal variation of blocking caused by mobile

users. Let us assume l0,x is not blocked by fixed users. Under our model,

a mobile blockage moves in a fixed direction, thus each blockage blocks the

channel at most once. A mobile user may start to block the channel, if so

it blocks the channel for some time then stops blocking. We say a blockage

arrives at the channel if it begins to block the channel, i.e., the region the

blockage intersects the channel. Denote by Tmi (l0,x) ⊂ R the (bounded) time

interval mobile user i blocks channel l0,x, i.e.,

Tmi (l0,x) = {t ∈ R |Bm
i (t) ∩ l0,x 6= ∅}. (3.25)

If the mobile user ever blocks the channel, i.e., Tmi (l0,x) 6= ∅, the mobile

blockage i arrives at the channel at time min{t|t ∈ Tmi (l0,x)} and leaves the

channel at time max{t|t ∈ Tmi (l0,x)}. The duration of blocking is |Tmi (l0,x)|.

The following theorem characterizes the temporal variation in blocking

for l0,x.

Theorem 3.2.1. Under CVM model, if the LOS channel l0,x is not blocked by

fixed users/blockages, then the blocking of l0,x is an alternating renewal process.
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The length of an LOS period, T LOS
l0,x

, has an exponential distribution with mean

E[T LOS
l0,x

] =
1

λm · E[S] ·
(

E[W ] + 2|x|/π
) . (3.26)

The length of an NLOS period, TNLOS
l0,x

, has mean

E[TNLOS
l0,x

] =
1− PLOS,m

l0,x
(t)

PLOS,m
l0,x

(t)
E[T LOS

l0,x
], (3.27)

where PLOS,m
l0,x

(t) is given in Eq. 3.23.

To prove the theorem, we first prove the following lemma characterizing

the arrivals of mobile blockages.

Lemma 3.2.2. For a channel l0,x subject to CVM blockages, the arrival of

mobile blockages follows a Poisson process with rate

λQl0,x = λm · E[S] · (E[W ] + 2|x|/π). (3.28)

Proof. Denote by Nnew
l0,x

(t, τ ] the number of blockages that arrive at l0,x during

(t, τ ], τ ≥ t. By the displacement theorem, at time t, the mobile blockages

follow an HPPP. The movements of blockages are independent thus Nnew
l0,x

(t, τ ]

has a Poisson distribution. Based on our definition of Nm
K [t, τ ], we have that

Nnew
l0,x

(t, τ ] = Nm
l0,x

[t, τ ]−Nm
l0,x

(t), (3.29)

E
[
Nnew
l0,x

(t, τ ]
]

= E
[
Nm
l0,x

[t, τ ]
]
− E

[
Nm
l0,x

(t)
]
. (3.30)

Using Eq. 3.18 and 3.19, E[Nnew
l0,x

(t, τ ]] is given by,

E
[
Nnew
l0,x

(t, τ ]
]

= λm E[S]
(

E[W ] + 2|x|/π
)
(τ − t). (3.31)
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For any time interval (t, τ ], Nnew
K (t, τ ] follows a Poisson distribution with mean

proportional to τ−t, thus the arrival of blockages follows a Poisson process [54].

We denote by λQl0,x the Poisson arrival rate of mobile blockages on link l0,x, then

we have, λQl0,x = λm · E[S] ·
(

E[W ] + 2|x|/π
)
.

Lemma 3.2.2 indicates, as might be expected, that the arrival rate of

mobile blockages is proportional to blockage density λm and moving speed

E[S]. If we ignore the term for blockage width, E[W ], the arrival rate is also

proportional to link length. With Lemma 3.2.2, we can prove Theorem 3.2.1

as follows.

Proof. We can model the channel state as an M/GI/∞ queue. The fixed

channel can be viewed as an infinite server queue while mobile blockages are

“jobs” that need service. The time that a blockage blocking the channel is

“job” service time. By Lemma 3.2.2, mobile blockages follow Poisson arrival,

which is memoryless (M). Furthermore, the typical time that a mobile user

blocks the channel depends on the velocity and cross section of the blockage,

thus has a general distribution (GI). By the CVM assumption, the movements

of users are independent from each other and the time each mobile blockage

blocks the channel is independent from others (infinite servers).

The state of the M/GI/∞ queue captures whether the channel is LOS

(on) or blocked NLOS (off), thus blocking can be modeled by an on/off renewal

process, where T LOS
l0,x

and TNLOS
l0,x

are IID. In an M/GI/∞ queue, the time

that the queue is empty, which in our case is T LOS
l0,x

, follows an exponential
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distribution with mean 1/λQl0,x , i.e.,

E[T LOS
l0,x

] =
1

λm E[S]
(

E[W ] + 2|x|/π
) . (3.32)

The distribution of the length of busy period, TNLOS
l0,x

, depends largely on the

distribution of service time of each user, i.e., |Tmi (l0,x)|, and is somewhat com-

plex, see [58]. In CVM, the probability that the channel is not blocked by

mobile users is PLOS,m
l0,x

(t), thus we can compute E[TNLOS
l0,x

] without comput-

ing the exact distribution of |Tmi (l0,x)|. For a renewal process, we have the

following relationship among PLOS,m
l0,x

(t), E[T LOS
l0,x

] and E[TNLOS
l0,x

],

PLOS,m
l0,x

(t) =
E[T LOS

l0,x
]

E[T LOS
l0,x

] + E[TNLOS
l0,x

]
, (3.33)

from which we can derive Eq. 3.27

The author of [59] shows that as the arrival rate of jobs goes to infinity,

the busy period of M/GI/∞ queue is asymptotically exponential with mean

equal to expected busy period if the distribution function of service time, H,

satisfies that,

(log z)

∫ ∞
z

{1−H(y)}dy → 0, (3.34)

as z →∞. For our CVM model, we have the following result on the distribu-

tion of TNLOS
l0,x

.

Theorem 3.2.3. In CVM, the distribution of TNLOS
l0,x

approximates exponential

distribution with mean E[TNLOS
l0,x

] as λQl0,x → ∞, i.e, λm, E[S] and/or |x| goes

to infinity.
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Proof. Smi ≥ smin > 0, thus |Tmi (l0,x)| is upper bounded by (|x| + dA)/smin,

where dA is the diameter of the smallest circle that contains A. H(y) = 1

for y > (|x| + dA)/smin thus Eq. 3.34 is satisfied. By Theorem 1 in [59], as

λQl0,x →∞,

P
(
TNLOS
l0,x

≤ z E
[
TNLOS
l0,x

])
→ 1− e−z, z > 0. (3.35)

The key idea of Theorem 3.2.3 is that exponential distribution is a

good approximation for the tail distribution of TNLOS
l0,x

if λQl0,x is large. By

Lemma 3.2.2, λQl0,x is large if user density is high, user speed is large and/or

channel is long. There are potential problems with approximating the distri-

bution of TNLOS
l0,x

with an exponential distribution. If λQl0,x is small, the expo-

nential distribution may not fit TNLOS
l0,x

well. The probability that the channel

is blocked by more than one blockage is small and the distribution of TNLOS
l0,x

is

close to the conditional distribution of |Tmi (l0,x)| given |Tmi (l0,x)| > 0. If λQl0,x

is large, the assumption that user movements are independent and users can

overlap may not be accurate.

If, for tractability, we approximate the distribution of TNLOS
l0,x

with an

exponential distribution with mean E[TNLOS
l0,x

], then the blocking of the channel

becomes a renewal process with T LOS
l0,x

and TNLOS
l0,x

having exponential distribu-

tions, which can be modeled by a two-state continuous time Markov model [16],

see Fig 3.3. The rate that the channel changes from LOS to NLOS is λQl0,x ,
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Figure 3.3: Two-state continuous time Markov model for temporal variation
of link l0,x, which is not blocked by fixed users.

while the rate channel changes from NLOS to LOS µQl0,x is,

µQl0,x = E[TNLOS
l0,x

]−1. (3.36)

3.3 Rate of Change for Strong LOS Neighbors Seen by
a Typical Receiver

In this section we study how the aggregate rate at which blocked/weak

LOS neighbors change into strong LOS neighbors as seen by a typical fixed

“reference” user. In principle, when a user becomes a strong LOS neighbor,

the reference user needs to make channel measurements and initiate keeping

track of that user. Thus the overall rate of change is a reasonable proxy for

signaling overheads and the stability of the links the reference user sees.

We define the rate of change as seen by a reference user located at 0

at time t as follows. Denote by N change
0 [t, τ ] the number of users that became

strong LOS neighbors of the reference user at 0 during [t, τ ], given the fixed

users Φ̃f and mobile users Φ̃m. The mean rate of change as seen by the
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reference user, f total, is defined by

f total = lim
τ→t+

EΦ̃f ,Φ̃m

[
N change

0 [t, τ ]
]

τ − t
. (3.37)

Based on our CVM model, f total is invariant to t and can be characterized as

follows.

Theorem 3.3.1. Under CVM model, the rate of change for strong LOS neigh-

bors seen by a typical fixed user, f total, is given by

f total = f range + ffixed + fmobile, (3.38)

where f range is the rate at which mobile users enter b(0, rmax), circle centered

at 0 with radius rmax, and have LOS channels, i.e, are not blocked, ffixed is the

rate of change associated with temporal channel variations to other fixed users

in b(0, rmax), and fmobile is the rate of change associated temporal variations

in channels to other mobile users in b(0, rmax). These three contributions are

characterized as follows:

f range = 2λm · rmax · E[S] · PLOS
l0,(0,rmax)

, (3.39)

ffixed = λf ·
∫
b(0,rmax)

PLOS
l0,x
· λQl0,x dx, (3.40)

fmobile = λm ·
∫
b(0,rmax)

∫ ∫ (
δLOS

(x,θ,s) + PLOS
l0,x
·
(
λQ,f(x,θ,s) + λQ,m(x,θ,s))

)
Pm(ds, dθ) dx,

(3.41)

where Pm(S,Θ) is the probability measure of S and Θ, δLOS
(x,θ,s) is the rate that

PLOS
l0,x

changes due to movement, λQ,f(x,θ,s) and λQ,m(x,θ,s) are the expected rate over Φ̃f

and Φ̃, that the channel between the reference fixed user at 0 and a mobile user
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at location x with orientation θ and speed s, i.e., (x, θ, s), sees new blockages

as a result of other fixed users and mobile users respectively.

δLOS
(x,θ,s) = − (λf + λm) · s · cos(ω) ·

E
[
ν1(∂A)

]
π

, (3.42)

λQ,f(x,θ,s) = λf · s ·
(
|x| · | sin(ω)|

2
+

E[ν1(∂A)]

π
·
(
1 + cos(ω)

))
, (3.43)

λQ,m(x,θ,s) ≈ lim
τ→t+

λm · EA,V

[
ν2

(
Ǎ⊕M(x,v,V,τ−t)

)]
τ − t

. (3.44)

ω is the angle between v and vector from 0 to x, see Fig. 3.4a, M(x0,v0,v,τ−t) =

l0,x0 ∪
(
− (τ − t) · v + l0,x0+(τ−t)·v0

)
, see Fig. 3.4b.

(a) (b)

Figure 3.4: (a) Movement of user at x with velocity v in[t, τ ]. ω is the angle
between v and vector 0 to x. (b) Illustration of M(x0,v0,v,τ−t).

The proof is in the appendix (Section 3.7.1). Theorem 3.3.1 can also

be extended for the rate of change seen by mobile users. If self blockage

is considered, the rate of change becomes pfacing · f total, where pfacing is the

probability that the channel between two users is not self blocked given that

users are facing random directions. Actually f range is not proportional to pfacing,

but it is small compared to f change, see Section 3.5.
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3.4 Impact on MAC in mmWave Networks

In this section, we analyze the impact of temporal variation caused by

mobility on MAC scheduler in mmWave wearable networks. In particular, we

focus on a simple clustering based MAC design as used in Chapter 2 and [2].

Fixed users form clusters with close by neighbors while mobile users work in-

dependently and do not cooperate with each other. In each cluster, a user is

selected as cluster head, which synchronizes cluster members, schedules signal-

ing transmissions and coordinates data transmissions. Such a MAC involves

formation and maintenance of clusters, and we study how user mobility would

impact the overhead and performance of these two procedures.

We consider two scenarios: 1) a fixed user joins a network and connects

to the closest strong LOS cluster head it finds within a probing interval, and

2) a user performs re-clustering after losing the strong LOS channel to cluster

head for a given period time. The distribution of users is the same as described

in Section 3.1. Let us denote by M the average number of users in a cluster,

and assume that each fixed user has a probability of 1/M to be a cluster head.

As a simple model, we assume the locations of cluster heads follow an HPPP

with density λf/M . We assume the state of channels are independent, and

we use the two-state Markov model developed earlier to model the impact of

dynamic blocking.

Joining Network. A randomly located fixed user joins the network at

time 0. It scans the channel for some time tprobe and connects to the closest

cluster head that it has strong LOS channel to during [0, tprobe]. We want to

69



study the probability that the user finds at least one cluster head in [0, tprobe]

and the distribution of the distance to the cluster head it connects to. Use the

location of the fixed user as the reference point 0, and denote by PLOS
l0,x

[0, tprobe]

the probability that l0,x has ever been LOS in [0, tprobe], then we have

PLOS
l0,x

[0, tprobe] = PLOS,f
l0,x

·
(
1− (1− PLOS,m

l0,x
(0)) · e−µ

Q
l0,x
·tprobe

)
, (3.45)

where e
−µQl0,x ·tprobe is the probability the channel is kept blocked by mobile users

in [0, tprobe]. Denote by NCH
b(0,r)(tprobe) the number of cluster heads in b(0, r) with

an LOS channel to the new user in [0, tprobe]. Channels are independent thus

NCH
b(0,r)(tprobe) has a Poisson distribution with mean

E
[
NCH
b(0,r)(tprobe)

]
=
λf

M
·
∫
b(0,r)

PLOS
l0,x

[0, tprobe]dx. (3.46)

Denote by DCH the distance to the closest cluster head that user finds in

[0, tprobe], and GDCH
(·) the cumulative density function (CDF) of DCH, then

we have

GDCH
(r) = 1− exp

(
− E

[
NCH
b(0,r)(tprobe)

])
. (3.47)

The probability that the new user has found a cluster head in [0, tprobe],

Pconnect(tprobe), is GDCH
(rmax).

Re-clustering. We assume a user performs re-clustering if its channel

to the cluster head is blocked for tout. Assume the reference fixed user is

located at 0, with the cluster head located at x. l0,x is LOS at time 0. Denote

by T recluster
l0,x

the time before the user re-clusters. In Theorem 3.2.1 we have

shown that the blocking of the channel is an alternating renewal process, thus

re-clustering is performed if TNLOS
l0,x

≥ tout.
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Denote by GTNLOS
l0,x

(t) the complementary CDF of TNLOS
l0,x

, which is ap-

proximated by that of an exponential distribution with mean µQl0,x . The num-

ber of LOS periods before re-clustering is 1/GTNLOS
l0,x

(tout), and the number of

NLOS periods, excluding the NLOS period when re-clustering is performed, is

1/GTNLOS
l0,x

(tout)− 1. The time with LOS channel before re-clustering is

1

GTNLOS
l0,x

(tout)
· E
[
T LOS
l0,x

]
,

and the time spent with no LOS connection to cluster head is

tout +

(
1

GTNLOS
l0,x

(tout)
− 1

)
· E
[
TNLOS
l0,x

∣∣TNLOS
l0,x

< tout

]
.

3.5 Numerical Results

In this section we evaluate the accuracy of our analysis and discuss the

impact of mobile blockages on MAC design using numerical results. Users

are assumed to have the same cross-section A which is a rectangle of size

0.45 m×0.25 m, with their facing directions perpendicular to the long side of

the rectangle. The speed of users is 1 m / sec and rmax is 10 m.

Fig. 3.5 exhibits the CDF of T LOS
l0,x

and TNLOS
l0,x

for λm = 0.5/m2. For

T LOS
l0,x

our analysis is an exact match of simulation results. For TNLOS
l0,x

we can see

that approximation using the two-state Markov model gives a good estimate

for the distribution for large t, but not accurate for small t.

Fig. 3.6 exhibits the rate of change as seen by a typical fixed user

characterized in Theorem 3.3.1. In Fig. 3.6a, λf is the same as λm. In
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(a) CDF of TLOS
l0,x

(b) CDF of TNLOS
l0,x

Figure 3.5: CDF of T LOS
l0,x

and TNLOS
l0,x

, given l0,x is not blocked by fixed users.
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Fig. 3.6b, λf + λm = 1 user per m2 while the proportion of mobile users,

ρm = λm/(λm+λf ) changes. Comparing the analysis to the simulations shows

that the analysis is a good match. From Fig. 3.6a we can see that as user

density increases, the rate of change first increases due to increased mobility,

then saturates and even begins decreasing. The reason is that in highly dense

scenarios, most neighbors are blocked thus their impact on variability of the

interference environment becomes limited. Also the rate of change contributed

by mobile users is higher than that from fixed users. In Fig. 3.6b the rate of

change increases almost linearly with the proportion of mobile users, ρm. The

takeaway of these results is that for dense environments, the channels may be

poor due to blockage, but the overheads associated with tracking users may

scale with density. However, the overheads would increase with the proportion

of mobile users. The design insight here is that fixed users may track other

users when the proportion of mobile users is low. When the environment is

highly mobile, i.e., with high proportion of mobile users, users may choose not

to coordinate with mobile users due to excessive overheads.

Fig. 3.7 exhibits results on a fixed user joining the network. As ex-

pected, Pconnect increases with tprobe while decreases with λm. The distribution

of the distance to cluster head is pretty robust to tprobe and λm, but depends

on the fixed user density λf and cluster size M . Such results indicate that

clustering takes more time when there is more mobile blockages. The distance

to cluster head, however, is not very sensitive to mobile blockages.

Fig. 3.8 exhibits how mobile blockages impact re-clustering. As can be
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(a) Rate of change for λf = λm.

(b) Rate of change for different ρm.

Figure 3.6: Rate of change as seen by a typical fixed user. The markers
represent results from simulations.
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(a) Prob. finding cluster head in tprobe

(b) PDF of distance to cluster head

Figure 3.7: (a) Probability of finding a cluster head in [0, tprobe] and (b) the
PDF of distance to the connected cluster head. In the Base case, λf = 0.2/m2,
λm = 0.5/m2, M = 10, tprobe = 2s.
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seen in Fig. 3.8a, the time before re-clustering grows super-linearly with tout,

indicating that a longer tout can help reduce re-clustering overheads. How-

ever, as shown in Fig. 3.8b, the connection to the cluster head can be poor if

tout is large. Choosing tout requires making a trade-off between reducing re-

clustering and improving connection quality for signaling. When λm is high,

the frequency of re-clustering is high and the channel quality is poor, thus

users should connect to closer cluster heads, or not use a coordination based

MAC.

3.6 Conclusion

In this chapter we introduce a new model and analysis tools to study

mobile blockages in mmWave settings where channel dynamics (LOS/NLOS)

have an impact on MAC overheads/performance. Our formal results show the

temporal variations between LOS/NLOS state of a channel follow an on/off

renewal process, whose holding time in each state is characterized. Based on

our analysis, we derive the rate of change for channel states and estimate the

associated signaling overheads resulting from user/blockage mobility. In dense

and mobile networks, fixed users should perhaps track nearby fixed users, and

not be too reactive to changes due to blockages, most likely associated with

moving users. Meanwhile, they should avoid coordinating with distant and/or

mobile users. From a MAC perspective the challenge is to differentiate among

mobile and fixed neighbors so as to optimize coordination and scheduling.
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(a) Average time before re-clustering.

(b) Proportion of time with LOS channel before re-clustering

Figure 3.8: Impact of mobile blockages on re-clustering given |x| = 4 m.
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3.7 Appendix

3.7.1 Proof of Theorem 3.3.1

Proof. N change
0 [t, τ ] consists of three parts, mobile users move in b(0, rmax) with

LOS channels, the channels to fixed and mobile users in B(0, rmax) change from

NLOS to LOS.

Denote byNnew
b(0,rmax)(t, τ ] the number of mobile users that enter b(0, rmax)

in (t, τ ]. ν2(b(0, rmax)) = πr2
max, ν1(∂ b(0, rmax)) = 2πrmax. Following the same

steps in Lemma 3.2.2, we have

Nnew
b(0,rmax)(t, τ ] = 2λm · rmax · E[S] · (τ − t), (3.48)

thus f range = 2λm · rmax · E[S] · PLOS
l0,(0,rmax)

(t).

Denote by N change,f
0 [t, τ ] the number of fixed users whose channels to 0

change from NLOS to LOS in [t, τ ], i.e.,

N change,f
0 [t, τ ] =

∑
(x,a,θ)∈Φ̃f

gfixed
(
[t, τ ], (x, a, θ), Φ̃f\(x, a, θ), Φ̃m

)
, (3.49)

where gfixed
(
[t, τ ], (X,A,Θ), Φ̃f\(X,A,Θ), Φ̃m

)
is an indicator function that

the channel between fixed user (X,A,Θ) and 0 changes from NLOS to LOS

during [t, τ ], given other fixed users, Φ̃f\(X,A,Θ), and mobile users Φ̃m.

Using the Reduced Campbells formula for IMPPP in [53], we can compute

EΦ̃f ,Φ̃m

[
N change,f

0 [t, τ ]
]

as follows,

EΦ̃f ,Φ̃m

[
N change,f

0 [t, τ ]
]

=

∫
b(0,rmax)

λf · E![gfixed] dx, (3.50)
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where E![gfixed] is the expectation of gfixed over Φ̃m and the reduced Palm

probability of Φ̃, given X = x.

Denote by ffixed(x) the expected rate that fixed user located at x

changes from NLOS to LOS, i.e.,

ffixed(x) = lim
τ→t+

E!
[
gfixed([t, τ ], (x,A,Θ), ·, ·)

]
τ − t

. (3.51)

Under CVM assumptions, user’s cross section and speed are bounded, thus

ffixed(x) is bounded and we have

ffixed = λf ·
∫
b(0,rmax)

ffixed(x) dx. (3.52)

Denote by ffixed
NLOS(x) the expected rate that the channel between fixed user at x

and 0 changes from LOS to NLOS, then ffixed and ffixed
NLOS satisfy the following

equation,

ffixed − ffixed
NLOS =

d

dt
PLOS
l0,x

(t), (3.53)

where d
dt

PLOS
l0,x

(t) is rate that the probability of having LOS channel changes.

For fixed users, d
dt

PLOS
l0,x

(t) = 0, thus we have ffixed(x) = ffixed
NLOS(x). By

Lemma 3.2.2, the mobile blockages follows Poisson arrival with rate λlQ0,x
. The

channel can change from LOS to NLOS only if it is LOS at time t. Combine

the above two facts, ffixed(x) is given by

ffixed(x) = ffixed
NLOS(x) = PLOS

l0,x
(t) · λQl0,x . (3.54)

For fmobile we can derive Eq. 3.41 following the similar steps as those

for ffixed. Conditioning on that there is a mobile user (x, θ, s), the rate that
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l0,x changes from NLOS to LOS is fmobile(x, θ, s) = d
dt

PLOS
l0,x

(t) + fmobile
NLOS (x, θ, s).

By Eq. 3.24, the rate that PLOS
l0,x

(t) changes is given by,

δLOS
(x,θ,s) =

d

dt
PLOS
l0,x

(t) = −(λf + λm) · s · cos(ω) ·
E
[
ν1(∂A)

]
π

. (3.55)

The blockages follow Poisson arrival, thus we have

ffixed
NLOS = PLOS

l0,x
(λQ,f(x,θ,s) + λQ,m(x,θ,s)). (3.56)

λQ,f(x,a,θ,s) is given by,

λQ,f(x,θ,s) = lim
τ→t

E
[
N f
K [t, τ ]−N f

l0,x

]
τ − t

, (3.57)

where the convex set K here is the triangle consisting of 0, x and x+(τ− t) ·v,

see Fig. 3.4a. By the generalized Steiner formula and the law of cosines, we

can get Eq. 3.43.

For λQ,m(x,θ,s), we denote by Nm
(x,θ,s)[t, τ ] the number of mobile blockages

that have intersected the channel of mobile user (x, θ, s) in [t, τ ], i.e.,

Nm
(x,θ,s)[t, τ ] =

∞∑
i=1

1
(
∃z ∈ [t, τ ] s.t. Bm

i (z) ∩ l0,x+(z−t)v 6= ∅
)
, (3.58)

where v is the velocity vector of mobile user (x, θ, s). Given that we only need

to compute Nm
(x,θ,s)[t, τ ] for τ → t+, we approximate the condition in Eq. 3.58

by 1
(
∃z ∈ {t, τ} s.t. Bm

i (z) ∩ l0,x+(z−t)v 6= ∅
)
. Take expectation over Φ̃m and

we can get Eq. 3.44.
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Part II

Impact of Blockage and
Mobility on Collaborative

Sensing for Automated Driving
Applications
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Chapter 4

Performance and Scaling of Collaborative

Sensing and Networking for Automated

Driving Applications

In this chapter we present new models and performance scaling analysis

for vehicular collaborative sensing and networking. We quantify the coverage

and reliability gains as are their dependence on the penetration of collaborative

vehicles. We further evaluate the associated communication loads in terms of

the V2V and V2I capacity requirements and how these depend on penetration.

4.1 Modeling Sensing in Obstructed Environments

We begin by introducing a simple stochastic geometric model to study

the character of collaborative sensing.

4.1.1 Obstructed Environments and Sensing Capabilities

The environment includes all objects, i.e., vehicles, pedestrians, build-

ings, etc. In some settings there may be substantial a priori knowledge re-

garding the environment, e.g., static elements that are part of a previously

computed HD maps [60]. While the presence of such objects is already known
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they still impact collaborative sensing as they can obstruct a sensor’s field of

view, e.g., a building may obstruct a vehicle’s view when entering an inter-

section. For simplicity we shall not differentiate among static and dynamic

objects, and focus on sensing at a snapshot in time1.

The centers of objects are located on 2-D plane according to a Homo-

geneous Poisson Point Process (HPPP) Φ with intensity λ, i.e.,

Φ = {Xi|Xi ∈ R2, i = N+} ∼ HPPP(λ),

where Xi is the location of object i, and N+ is the set of positive integers. Each

object, say i, has a shape modeled by a random closed convex set denoted

Ai ⊂ R2 referenced to the origin 0 and independent of Xi. We let Ei denote

the region it occupies which is given by

Ei = {Xi} ⊕ Ai =∆ {Xi + x|x ∈ Ai},

i.e., the object’s shape Ai shifted to its location Xi, where ⊕ is the Minkowski

sum, see Fig. 4.1a. Thus E =
∞
∪
i=1
Ei denotes the region occupied by objects in

the environment. We refer to the region not occupied by objects, Ec = {x|x /∈

E}, as the void space. Fig. 4.1b illustrates our model for the environment.

It is unavoidable that as automated driving technologies are progres-

sively introduced, only a fraction of vehicles will be equipped with sensors

and/or participate in collaborative sensing. Thus only the subset equipped

1In practice collaborative sensing system will track objects over time. Thus taking the
snapshot point of view can be considered “worst case” assumption.
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(a) Model for object i. (b) Model for environment.

Figure 4.1: Model for environment based on randomly located and shaped
objects.

with sensors can participate in collaborative sensing – we shall refer to such

objects as sensors. Each object has an independent probability ps of being

a sensor. Thus the locations of sensors, Φs, correspond to an independent

thinning [57] of Φ, and Φs ∼HPPP(λs) where λs = psλ. For such objects we

assume for simplicity each has one sensor, and denote by Yi ∈ R2 the relative

placement of the sensor on object i referenced to Xi, so the location of sensor

i is given by Xi + Yi ∈ Ei. Each sensor i is assumed to have a radial sensing

support S0
i ⊂ R2 referenced to the location of the sensor which is defined as

follows.

Definition 4.1.1. (Radial sensing support) The radial sensing support of a

sensor i referenced to the origin, S0
i , is the set of locations that can be viewed

if the sensor is located at 0 and the LOS to the location is not obstructed. The
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set S0
i can be represented in polar coordinates as follows,

S0
i =

{
(r, θ)

∣∣r ∈ [0, rimax(θ)], θ ∈ [0, 2π]
}
, (4.1)

where rimax(θ) is the maximum sensing range in direction θ.

(a) Radial sensing support S0
i (b) Sensing support Si

Figure 4.2: (a) Radial support referenced to the origin 0 and (b) the sensing
support of sensor i.

Fig. 4.2 illustrates examples of sector and omni-directional radial sens-

ing supports. We denote by Si = {Xi +Yi}⊕S0
i the sensing support of sensor

i. For an object, say j, which is not a sensor, we let Yj = 0 and S0
j = ∅. The en-

vironment and the sensing field are thus modeled by an independently marked

PPP (IMPPP), Φ̃, which associates independent marks Mi = (Ai, Yi, S
0
i ) to

each object i, i.e.,

Φ̃ =
{(
Xi,Mi

)
, i ∈ N+

}
.

Note that (Ai, Yi, S
0
i ) is independent of Xi, but Ai, Yi, S

0
i need not be mutually

independent. Indeed if i is a sensor, Yi ∈ Ai since the sensor should be mounted

on the object. The distribution of the shape of objects with sensors, e.g.,

vehicles, can be different from that of other objects, e.g., pedestrians.
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4.1.2 Vehicle’s Region of Interest

We shall assume each sensing vehicle is interested in information within

a certain range around it – usually measured in time, e.g., tinterest sec. Specif-

ically, since human drivers respond slower than automated driving systems, a

larger communication range is needed for SAE Level 2 and 3 automation [61]

(partial and conditional automation) than SAE Level 4 and 5 automation (high

and full automation). The actual spatial range depends on the vehicle’s speed

s and is given by s · tinterest. We model a sensing vehicle’s region of interest as

follows.

Definition 4.1.2. (Region of interest) The region of interest for sensor vehicle

i, Di, is modeled as a disc, b(Xi, r), centered at Xi with radius r = s · tinterest.

For a vehicle located at the center of a multi-lane road, its region of

interest can be approximated by a rectangular set [−s · tinterest, s · tinterest] ×

[−wroad

2
, wroad

2
], where wroad denotes the width of the road.

4.1.3 Collaborative Sensing in an Obstructed Environment

Next we define a sensor’s coverage set given the environment and sensor

model Φ̃ as follows – see Fig. 4.3.

Definition 4.1.3. (Sensor coverage set) For sensor i in the environment and

sensor model Φ̃, we let E−i = ∪
j:j 6=i

Ej denote the environment excluding Ei.

The coverage set of sensor i, Ci(Φ̃), is given by

Ci(Φ̃) =
{
x ∈ Si

∣∣x ∈ Ei or lXi+Yi,x ∩ E−i ⊆ {x}
}
, (4.2)
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where ly,z denotes the closed line segment between y, z ∈ R2. The coverage

area of sensor i is the area of its coverage set which we denote |Ci(Φ̃)|.

In the above definition, we assume that a sensor is aware of Ei, the space

its associated object occupies, i.e. no “self blocking”. Also lXi+Yi,x∩E−i ⊆ {x}

verifies that the LOS channel between the sensor at Xi+Yi and location x is not

blocked by other objects. A location x ∈ Ci(Φ̃) may be in the void space or on

the surface of an object. The coverage set of sensor i represents the surrounding

environment that it is able to view under environmental obstructions.

Figure 4.3: Coverage set of sensor i in Φ̃.

Let C0 denote the coverage set of a typical sensor shifted to the origin

2 and A0, Y 0 and S0 are the associated shape, location of sensor, and radial

support set, referred to the origin. Denote by A denotes a random set with the

same distribution as the shape of objects and is independent of A0. Their dis-

tributions may be different, since the latter is conditioned on an environmental

2Its distribution is formally referred to as the Palm distribution [57].
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object being a sensor, i.e., being a sensing vehicle. Given these notations, the

expected coverage area of a typical sensor is given in the following theorem,

and the proof is in the appendix (Section 4.6.1).

Theorem 4.1.4. Under our environment and sensor model Φ̃ the expected

coverage area of a typical sensor is given by

E
[
|C0|

]
= E[|({Y 0} ⊕ S0) ∩ A0|] + E

[ ∫
({Y 0}⊕S0)\A0

e−λ·E[|lY 0,x⊕Ǎ|]dx

]
, (4.3)

where Ǎ = {x| − x ∈ A}.

The set ({Y 0} ⊕ S0) ∩ A0 denotes the region, if any, in the sensing

support overlapping with the object, while ({Y 0} ⊕ S0)\A0 = {x|x ∈ {Y 0} ⊕

S0, x /∈ A0} is the region in the sensing support excluding the sensing object.

For example if objects are modeled as discs of radius r, i.e., A = b(0, r),

with probability 1, and sensor is mounted at the center, i.e., Y 0 = 0, we have

that |l0,x⊕Ǎ| = πr2+2r·|x| (see [57]), so E
[
|C0|

]
is straightforward to compute.

The theorem shows how the coverage area of a single sensor decreases in the

object density λ since the probability of sensing a given location (the term

inside integral) decreases exponentially in λ.

4.1.4 Sensor Coverage Area: Numerical and Simulation Results

Below we verify the robustness of our idealized analytical model by

comparing to a simulation of vehicles on a freeway. For the analytical model,

the shape of all objects (vehicles) is a disc of radius 1.67 m, roughly corre-

sponding to the area of a vehicle, and each has an omni-directional sensing
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support with radius 100 m. For the typical vehicle we limit its sensing support

and coverage set to a rectangular region of interest centered on the vehicle,

say i, such that

Di = b(Xi, 100 m) ∩ ((−∞,∞)× [Xi − 12 m, Xi + 12 m]). (4.4)

This is geared at capturing the fact that vehicles are mainly interested in

sensing nearby road and sidewalks and 12 m is roughly the width of three

lanes.

Our simulations are based on the freeway scenario specified in [62] with

3 lanes in each direction and lane widths of 4 m. Vehicles are placed on

each lane according to a linear Matérn process [55], i.e., randomly located but

ensuring a minimum gap of 10m among the centers of vehicles on the same

lane. Vehicles are modeled as 4.8m ×1.8m rectangles, and distance from the

center locations to the lane center are uniformly distributed unif[−1, 1]m. The

coverage area does not include the region off the road. Fig. 4.4 illustrates the

difference between our analytical model and the freeway simulation.

Fig. 4.5 exhibits analytical and simulation results for the vehicle’s cov-

erage area normalized by the area of sensing support scales versus vehicle

density λ. Confidence intervals are not shown as they are negligible. As

expected, with increased vehicle density, sensor coverage area decreases due

to increased obstructions. To reduce boundary effects, the simulation results

correspond to the average sensor coverage area for vehicles in the two most

central lanes. As can be seen the analytical and simulation results exhibit
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(a) Analytical model

(b) Freeway simulation model

Figure 4.4: Analytical model (a) and freeway simulation model (b). In the
analytical model, an object is randomly selected as the typical object, with a
region of interest in Eq. 4.4. The dark green shape represents the reference
object (sensor), the red shapes are other objects (obstructions). The light
green region is covered by the reference sensor, while the light red region is
obstructed void space. In the freeway simulation, we select a vehicle in the
two central lanes as the reference vehicle to reduce boundary effect.

90



0 0.005 0.01 0.015 0.02

# vehicle per m2

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 C
ov

er
ag

e 
A

re
a Simulation

Analysis

Figure 4.5: Coverage area of a typical vehicle normalized by the area of its
sensing support.

similar trends. At high vehicle densities, the coverage area of a single vehicle

is heavily limited, i.e., covering less than 20% of the sensing support. In an

obstructed environment collaborative sensing will be critical to achieve better

coverage and reliability for each vehicle’s region of interest. We consider this

next.

4.2 Performance Benefits of Collaborative Sensing

The benefits of collaborative sensing are twofold: (1) it increases sens-

ing redundancy/diversity leading to improved reliability, and (2) it improves

coverage and extends sensing range. We consider two metrics for the perfor-

mance of collaborative sensing, i.e., redundancy and coverage.
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4.2.1 Sensing Redundancy

We define sensing redundancy as the number of collaborative sensing

vehicles that can view a location/object. Tracking objects based on multi-

ple sensors’ point of view provides greater reliability and robustness to sen-

sor/communication link failures.

Definition 4.2.1. (Sensing redundancy for a location) Given an environment

and sensing field, Φ̃, and a subset of sensors K ⊆ Φs collaborating, the sensing

redundancy for a location x is the number of sensors in K that view x, denoted

by

R(Φ̃, K, x) =
∑

i:Xi∈K

1
(
x ∈ Ci(Φ̃)

)
. (4.5)

In the most optimistic case K = Φs, i.e., all sensors collaborate. The

expected redundancy of a location in the void space is then given by the

following theorem. The proof is in the appendix (Section 4.6.2).

Theorem 4.2.2. Given an environment and sensing field Φ̃ and all sensors

collaborate, K = Φs, the expected redundancy given a typical location x in the

void space is

E[R(Φ̃,Φs, x)|x /∈ E] =
ps · λ · E[|C0\A0|]

e−λ·E[|A|] , (4.6)

where E[|C0\A0|] is given in Eq. 4.3.

Fig. 4.6 exhibits the expected sensing redundancy of a typical location

in the void space. As can be gleaned from our analytical results, sensing re-

dundancy for a location is proportional to ps so we only exhibit results for
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Figure 4.6: The expected sensing redundancy of a random void location versus
object density. All vehicles participate in collaborating, i.e., K = Φs = Φ.

ps = 1. At small densities sensors are not likely to be blocked thus redun-

dancy first increases in the density of objects λ. However, at higher densities,

the objects obstruct each other reducing the coverage area of each sensor and

the resulting sensing redundancy. The simulation results show the expected

redundancy of a random location in the central two lanes, and exhibit similar

trends as the analysis. Overall one can conclude that collaborative sensing will

provide highest redundancy at moderate densities, i.e., this is where in princi-

ple collaborative sensing is most reliable and robust to sensor/communication

failures.
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4.2.2 Collaborative Sensing Coverage and Reliability.

A location in a vehicle’s region of interest of is covered by collaborative

sensing if the location can be reliably sensed, i.e., sensed by a sufficient number

of collaborating sensors. We define the collaborative sensing coverage and

reliability for a vehicle as follows.

Definition 4.2.3. (Collaborative sensing coverage and reliability) Given an

environment and sensing field Φ̃, a minimum redundancy requirement γ ∈ N+

for reliable sensing of a location, a subset of collaborating sensors, K ⊆ Φs,

and sensor i’s region of interest Di, the γ-coverage set of sensor i is the region

within its region of interest, which is covered by at least γ sensors in K, denoted

by

Cc(Φ̃, K,Di, γ) =∆
{
x
∣∣x ∈ Di, R(Φ̃, K, x) ≥ γ

}
. (4.7)

The γ-coverage of sensor i is the area of the γ-coverage set,

|Cc(Φ̃, K,Di, γ)|. (4.8)

The γ-coverage reliability is the γ-coverage normalized by the area of region

of interest,

|Cc(Φ̃, K,Di, γ)|
|Di|

. (4.9)

The γ-coverage reliability can be interpreted as the fraction of i’s region

of interest that can be reliably sensed. Denote by D0 the possibly random3

3Recall the region may depend on the vehicle’s speed.
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Figure 4.7: Decomposition of D0 for collaborative sensing coverage approxi-
mation.

region of interest associated with a typical sensing vehicle, and As ⊂ R2 a

random set having the same distribution of the shape within a the region

occupied by the sensor and is covered in the sensor’s sensor support, i.e.,

{Y 0} ⊕ S0 ∩ A0.

Approximation of γ-coverage. Denote by Q(k,m) = P(N(m) ≥ k),

where N(m) is a Poisson random variable with mean m. Denote by Rvoid =

E[R(Φ̃,Φs, x)|x /∈ E] the expected redundancy of a location in the void space

as given in Eq. 4.6. The γ-coverage can be approximated by

E
[
|Cc(Φ̃,Φs, D0, γ)|

]
≈

E[|D0 ∩ C0 ∩ A0|] ·Q(γ − 1, λs · E[|As|])

+ E[|D0 ∩ C0\A0|] ·Q(γ − 1, Rvoid)

+ E[|D0\A0|] ·Q(γ, λs · E[|As|])

+ (E[|D0\A0|] · e−λ·E[|A|] − E[|D0 ∩ C0\A0|]) ·Q(γ,Rvoid). (4.10)

This approximation is based on decomposing D0 into various sets, see

Fig. 4.7 for example: D0 ∩C0 ∩A0 the set occupied and sensed by the object,
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D0 ∩C0 ∩A0 the set outside the object but sensed by the object, D0 ∩E\C0

the set occupied by objects but not in C0, and D0\(E ∪ C0) the void space

excluding C0.

By Slivynak-Mecke theorem, the other objects as seen by the reference

sensor follow an IMPPP with the same distribution as Φ̃, the locations of other

sensors follow HPPP(λs). The region covered by objects and sensors each

form a Boolean process [57]. For a random location x, the number of sensors

occupying and sensing x has a Poisson distribution with mean λs · E[|As|],

the number of objects occupying x has a Poisson distribution with mean λ ·

E[|A|]. For a location in the void spacer, we approximate the distribution

of the redundancy with a Poisson distribution with mean Rvoid. Rvoid is not

conditioned on there being at typical sensor, thus Rvoid can be different from

the expected redundancy of x ∈ D0\E. In C0 the reference object provides

1 redundancy and other sensors should provide (γ − 1) redundancy, while in

D0\C0 the other sensors should provide γ redundancy.

Based on the above approximation, the components of Eq. 4.10 are

interpreted as follows: E[|D0 ∩ C0 ∩ A0|] · Q(γ − 1, λs · E[|As|]) is the area in

A0 that is occupied (and sensed) by γ − 1 other sensors. E[|D0 ∩ C0\A0|] ·

Q(γ−1, Rvoid) is the area void space space in C0 that is covered by γ−1 other

sensors. E[|D0\A0|] · Q(γ, λs · E[|As|]) is the area in D0\A0 that is occupied

(and sensed) by γ sensors. E[|D0\A0|] · e−λ·E[|A|]−E[|D0 ∩C0\A0|] is the area

of void space in D0\A0 excluding C0, and Q(γ,Rvoid) is the probability that

a location is covered by γ other sensors.
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(a) Sensing in analytical model

(b) Sensing in freeway scenario

Figure 4.8: Collaborative sensing in (a) analytical model, and (b) freeway
simulation. Dark green shapes represent sensors, red shapes are non-sensing
objects. Light green region can be sensed via collaborative sensing, while light
red region are obstructed and not sensed.
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Fig. 4.8 illustrates collaborative sensing in the analytical model and the

freeway simulation. In the analytical model, objects are modeled as randomly

distributed discs and may overlap. The objects are randomly placed thus the

region covered by collaborative sensing will also be random in shape. In the

freeway simulation, vehicles are randomly distributed along lanes, such that

there is no overlap. The environment is more ‘organized’, and thus so is the

collaborative sensing coverage set, e.g., the space between lanes is less likely

to be obstructed.

We validate the accuracy of our generalized approximation in Fig. 4.9a,

in which we consider a 2D infinite plane, λ = 0.01/m2. The approximation is a

good match of the analytical model, validating the accuracy of our approxima-

tion in Eq. 4.10. Fig. 4.9b exhibits the freeway simulation results, which show

the same qualitative trend as the analytical results. As expected the minimum

penetration to achieve a certain level of γ-coverage reliability increases in the

required diversity γ.

Fig. 4.10 exhibits the expected 1-coverage reliability for varying pene-

trations ps and vehicle densities λ. The freeway simulation results show the

same trend as analytical results. Note that Eq. 4.10 is an approximation of

the analytical model, which is different from our simulation of the freeway

scenario. As expected, reliability increases monotonically in ps. More impor-

tantly, collaborative sensing can greatly improve reliability even with a small

penetration of collaborating vehicles, e.g., over 0.8 reliability when 20% of

vehicles collaborate as compared to 0.2 reliability without collaboration at a
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(b) Freeway simulation

Figure 4.9: γ-coverage reliability for different redundancy requirements γ. In
(a) curves represent results from our approximation in Eq. 4.10, markers are
simulation of the analytical model. (b) are freeway simulation results.
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Figure 4.10: 1-coverage reliability: (a) based on analytical approximation in
Eq. 4.10, and (b) obtained by simulation of freeway scenario.
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Figure 4.11: How 1-coverage reliability scales in obstruction densities, λ− λs,
while sensor density λs is fixed.

vehicle density λ = 0.0175/m2. Such results indicate that it can be beneficial

to share sensor data even with only a subset of neighboring vehicles.

Impact of obstruction density. Another scenario we study with our an-

alytical framework is how the collaborative sensing reliability scales in the ob-

struction densities when sensor density is fixed. One example of such a scenario

is at some freeway junctions where vehicles entering the freeway are mainly

non-sensing vehicles. Fig. 4.11 exhibits how 1-coverage reliability scales in the

obstruction density based on our approximation in Eq. 4.10. The 1-coverage

decreases approximately linearly with obstruction density. In Collaborative

sensing with RSUs may be required to guarantee coverage in such scenarios.
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4.2.3 Benefits of Collaboration with Sensing RSUs.

Despite the performance gains associated with vehicular collaborative

sensing, achieving a high γ-coverage reliability at low penetrations will be

difficult, especially for γ > 1. Joint collaborative sensing with RSUs having

sensing capabilities can help improve coverage and reliability, e.g., RSU in-

frastructure could provide 100% 1-coverage reliability if located on top of the

freeway (no obstruction) and their sensing support covering the freeway. If γrsu

denotes the redundancy provided by RSU, the gain in γ-coverage associated

with joint vehicle/RSU collaboration is given by

E
[∣∣Cc(Φ̃,Φs, D0, γ − γrsu)

∣∣]− E
[∣∣Cc(Φ̃,Φs, D0, γ)

∣∣]. (4.11)

In Fig. 4.9b, for γrsu = 1 and ps = 0.1, collaboration with RSUs improves 2-

coverage reliability by over 0.25. In summary deploying collaborative sensing

RSUs will be beneficial especially at low penetrations, but possibly also at

higher penetrations if γ = 2 or higher diversity is desired.

4.3 Data Volumes to Support Collaborative Sensing

In this section we model and study how vehicles sensor data rates ve-

hicles would scale with the density of objects in the environment for different

data models/representations.
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4.3.1 Representations and Compression of Sensor Data.

Abstracted object model. The most compact representation of sensor

data would likely be associated with sharing models for sensed objects, e.g.,

bounding boxes, along with additional information, e.g., type of object and/or

direction and velocity of motion. The volume of data would thus be propor-

tional to the number of objects sensed by the vehicle. We define sensed data

complexity of sensor i, Ni(Φ̃), as the number of objects that vehicle i can view,

i.e.,

Ni(Φ̃) =
∣∣{j|j ∈ N+, j 6= i, Ej ∩ Ci(Φ̃) 6= ∅}

∣∣. (4.12)

Ni(Φ̃) is a complex function of Φ̃ whence we propose an upper bound, Nupper
i (Φ̃),

and an approximation (also lower bound), Napprox
i (Φ̃). In particular

Nupper
i =

∣∣{j|j ∈ N+, j 6= i, Ej ∩ Si 6= ∅}|

denotes number of objects overlapping with vehicle i’s sensing support, i.e.,

the maximum number of objects vehicle i can sense ignoring obstructions, and

Napprox
i = |{j|j 6= i,Xj ∈ Si and lXi,Xj ∩ Ek = ∅ ∀k 6= j, i}|

is the number of objects for which sensor i has an unobstructed view of their

centers and thus a subset of the sensed objects. The expected sensing com-

plexity of a typical sensor is then given in the following theorem, whose proof

is relegated to the appendix.

Theorem 4.3.1. Based on our system model, bounds on expected sensing

complexity are given by:

E[Nupper,0] = λE
[∣∣S0 ⊕ Ǎ

∣∣], (4.13)
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E[Napprox,0] = λE

[ ∫
x∈S0

e−λE[|l0,x⊕Ǎ|]dx

]
. (4.14)

where Nupper,0 and Napprox,0 denote random variables whose distribution are

those as seen by a typical sensor.

2D occupancy grid map. A representation which leverages a lower level

of abstraction is the 2D occupancy grid map [63], in which the environment

is divided into small cells and each cell is associated a probability its being

occupied by an object. If vehicles sensed data in the form of grid map , the data

volume is approximately proportional to the sensors coverage area. In 2.5D

maps and 3D grid maps, e.g., elevation maps, each cell has more information,

e.g., height of the cell, while the data volume is still proportional to coverage

area. Note that the scaling of coverage area in the density of objects was

studied in Section 4.2.

Raw LIDAR sensor data. If raw LIDAR sensor data is shared, the

volume of data may not be directly related to the characteristics of the envi-

ronment. However, sharing all raw sensor data without any processing may

not be always necessary, indeed a vehicle may compress such information based

on the characteristics of the environment. For example one can consider com-

pressing data based on the distance to sensed objects, while still preserving

the valuable information. We consider two ways of compressing raw sensor

data:

1. omit sensor data in the directions where no object is sensed within a

predefined range;
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2. subsample sensor data based on distance to sensed objects.

The sensing range of sensors is limited thus in some directions vehicles may

sense no objects. Furthermore vehicles may have high resolution map of the

fixed environment and raw data associated with the fixed environment can

be omitted. For raw sensor data associated with surrounding objects, the

resolution of data can be changed based on the distance to objects: close by

objects might result a relatively large number of measurements, e.g., LIDAR

data points, while distant objects have much fewer.

Let fi(r, θ) ∈ [0, 1] denote the compression factor, measuring the ratio

between compressed data and uncompressed data in direction θ, given the

distance to measured object is r. We posit fi(r, θ) as a non-decreasing function

of r, fi(r, θ) = 0 for r > rimax(θ). Given the environment Φ̃, the length of

measurements of sensor i in direction Θ is given by

ri(Φ̃,Θ) = max
{
r
∣∣r ∈ [0,∞) and(

(Xi + Yi)⊕ l0,(r cos Θ,r sin Θ)

)
∩ E−i ⊆

{
(r cos Θ, r sin Θ)

}}
(4.15)

The normalized volume of compressed raw data under our model is thus given

by EΘ

[
fi(ri(Φ̃,Θ),Θ)

]
.

4.3.2 Scaling Behavior of Sensor Data Volumes

Fig. 4.12 exhibits how the sensor data volume would scale with the

environment’s object density. Fig. 4.12a exhibits results for sensed data com-

plexity. As mentioned earlier upper bound does not consider blockage, and
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Figure 4.12: (a) How sensed data complexity scales with object density. (b)
How LIDAR sensor data volume normalized by uncompressed LIDAR data
volume scale with λ using different compression methods: omitting data with
no objects (blue); omit data with no objects and fi(r, θ) = r/rimax(θ) (green);
no compression (red).
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thus increases linearly with density. The true sensed data complexity (and

approximation/lower bound) first increase in but then due to obstructions

saturate and even starts decreasing in the object density. Fig. 4.12b exhibits

the LIDAR data volume normalized by uncompressed LIDAR data volume un-

der different compression methods. Omitting LIDAR sensor data in directions

with no objects can effectively compress data at low density, but the save in

data volume is limited at high densities as vehicles are surrounded by neighbor

vehicles/objects. If sensors further compress sensor data based on distance to

objects, e.g., fi(r, θ) = r/rimax(θ) (measurement resolution is uniform for ob-

jects at different distances), the volume of sensor data can be reduced even at

high vehicle densities.

Our results show that sensor data volume generated by one vehicle does

not necessarily increase with object density due to obstructions and/or the use

of compression on higher resolution data for close by objects.

4.4 Network Capacity Scaling for Collaborative Sensing

In this section we study the network capacity requirements for collabo-

rative sensing. We first consider a setting with full penetration, i.e., all vehicles

have sensing and V2V communication capabilities. We then turn to a setting

with partial penetration, i.e., a fraction of the vehicles are not collaborating

and in fact may obstruct (e.g., mmWave) communications amongst collabo-

rating vehicles. In this setting we assume V2I links are used to overcome V2V

blockages and study how V2I capacity requirements scale in the penetration
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of collaboration. Our analysis provides a comprehensive view on a possible

evolution of future network capacity requirements.

4.4.1 Capacity Scaling in V2V Network

When all vehicles are participating in collaborative sensing and net-

working one can leverage V2V links and hop-by-hop relaying to realize data

sharing. Additionally since V2V links have typically short range, they can

deliver high per-link rate and transmit parallelism. Still collaborative applica-

tions require many-to-many data sharing and thus capacity requirements can

be quite high.

Broadcast versus unicast. In assessing capacity scaling for collabora-

tive sensing we will differentiate V2V technologies supporting broadcast versus

unicast. If broadcasting is available, a vehicle can ideally transmit data to all

vehicles within its communication range. Vehicles receiving the data can then

re-broadcast the data to more distant vehicles. A broadcasting mode is partic-

ularly attractive since it enables vehicles to share data with several neighboring

vehicles with a single transmission. However in some settings, implementing

a broadcast mode may be challenging, e.g., hard to broadcast narrow beams

to each user to compensate for high penetration losses in the mmWave band.

In a unicast mode a vehicle communicates with one vehicle at a time. The

number of concurrent transmissions can be higher since unicast transmissions

can be more directional and achieve higher rates, but more transmissions will

be required.
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High resolution data versus merged data. If vehicles share high resolu-

tion unprocessed sensing data, i.e., relaying is performed without processing,

so per hop delays are substantially reduced. Alternatively vehicles can com-

bine the received sensor data from neighbors with their own, send one merged

data flow. This can substantially reduce the overall data rates exchanged by

vehicles but requires standardization of sensing models and introduces merg-

ing delay. Given the time critical nature of vehicular collaborative sensing and

need for reliability and robustness to failures/attacks, some consider relaying

data without processing the preferred sharing option.

V2V capacity analysis. We shall evaluate the capacity scaling require-

ments for four different combinations: HD data broadcast (HB), HD data

unicast (HU), merged data broadcast (MB), and merged data unicast (MU).

To that end we introduce the following simple model. We consider vehicles

on a road with l lanes, all vehicles have sensing and V2V communication ca-

pabilities and each has a region of interest of tinterest sec in both forward and

backward directions. We shall consider the worst case scenario, i.e., the den-

sity of vehicles is high and the gap between (the centers of) vehicles in the

same lane is the minimum gap for safe driving, tgap sec. Thus if the velocity of

vehicles is s m/sec, the range of interest is s · tinterest m and inter-vehicle gap is

at least s · tgap m. We denote by λvehicle = 1
s·tgap

the density of vehicles on the

lane. We assume vehicles need to receive data from all vehicles in their range

of interest, and by symmetry vehicle also need to send data to all vehicles

in their range of interest. We suppose vehicles use omni-directional antennas
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but note that our results can be easily extended to the case with directional

antennas as in [44]. We adopt the protocol model introduced in [64]. Each

vehicle has a communication range rcomm and a transmission is successful if

there is no other transmitter within the protection region of the receiver, i.e.,

a circle centered at the receiver with radius (1 + ∆)rcomm. Denote by ω the

peak rate for V2V links, ν the sensor data rate per vehicle. Lower bounds on

ω are given in the following result proven in the appendix (Section 4.6.3).

Theorem 4.4.1. Under the protocol model for interference and assuming

a communication range no more than the radius of region of interest, i.e.,

rcomm ≤ s · tinterest, the lower bounds on ω for the four schemes are given as

follows,

ωHB ≥ ν · 2l · (1 + ∆) · (2s · tinterest − rcomm) · λvehicle, (4.16)

ωHU ≥ ν · 4l2 · (1 + ∆) · s · tinterest · rcomm · λ2
vehicle, (4.17)

ωMB ≥ ν · 2l · (1 + ∆) · rcomm · λvehicle, (4.18)

ωMU ≥ ν · 4l2 · (1 + ∆) · r2
comm · λ2

vehicle. (4.19)

V2V capacity scaling analysis. From the above results we see that the

V2V link capacity requirements increase with communication range (except

for ωHB). Reducing rcomm can decrease the required V2V link capacity by

increasing the number of concurrent transmissions, but rcomm should at least

cover the gap between neighboring vehicles, i.e., rcomm ≥ s · tgap. Moreover

reducing rcomm results in more hops and thus higher end-to-end latency. In

broadcast modes, ωHB, ωMB ∝ λvehicle, while in unicast modes, ωHU , ωMU ∝
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λ2
vehicle. If rcomm ∝ s ·tgap = 1/λvehicle, i.e., covers the gap between back-to-back

vehicles, the required capacity (except for ωHB) does not change with λvehicle.

Finally we note that when sharing HD data, the required V2V link capacity

is proportional to the range of interest tinterest.

Based on these rough arguments let us consider the required capacity

for a typical freeway scenario where: l = 6, ∆ = 0.5, tgap = 2s, s = 20m/s,

tinterest = 10s, rcomm is set to be the minimum, i.e., rcomm = s · tgap = 40m.

Let ν = 50 Mbps [38], then the lowest capacity requirement is broadcasting

with merged data, ωMB ≥ 900 Mbps, while the highest capacity requirement

is for HD data with unicast, ωHU ≥ 54000 Mbps. Note that even the lowest

capacity requirement above is well beyond the capacity of current standards

like IEEE 802.11p. If omni-directional transmissions were to be used, this

analysis suggests that sharing HD data might be hard, and merging data and

broadcasting will be necessary to reduce the network capacity requirements.

However, enabling V2V communications in the mmWave band has the

potential to support the massive data rates required by collaborative sensing

[39] [40]. If full-duplex mmWave unicast were used, the capacity requirement

for V2V links, ω, would simply be the application per vehicle throughput

requirements. The highest link capacity requirement, i.e., HD data unicast, in

the above freeway scenario is 3000 Mbps, which can likely only be supported by

mmWave technologies. Unfortunately mmWave links are subject to blockages,

which might help reduce interference but makes the delivery of data to distant

obstructed vehicles difficult, or results in higher delays due to additional multi-
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Figure 4.13: Collaborative sensing of vehicles in a single lane with V2V + V2I
network. Vehicle uses V2I to relay data when LOS V2V links are blocked.

hoping.

4.4.2 Capacity Scaling in V2V+V2I Network

We envisage both V2V and V2I connectivity might be used to enable

collaborative sensing in automotive settings. This might be critical to meet

reliability and coverage requirements as we transition from legacy systems. In

particular when the penetration of collaborative sensing vehicles is limited,

the mmWave V2V links/paths required to share collaborative sensing data

may be blocked/unavailable. When this is the case, V2I connectivity could

serve as the fallback to share critical sensing/manouvering information. Below

we study the V2I fallback capacity requirements scaling in the collaborative

sensing penetration ps.

We first consider a vehicle which is located on a single lane road ac-

cording to the same model introduced in Section 4.4.1 with a penetration ps.

A sensing vehicle thus needs to send data to η = b tinterest

tgap
c other vehicles in

front and behind it, see Fig. 4.13. A vehicle has LOS V2V communication
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channels to the neighboring vehicles in front and back. A non collaborating

vehicle thus blocks the V2V relay path along the chain of vehicles. If a LOS

V2V relay path is not available, we assume the reference vehicle relays data

through the infrastructure and the receiving vehicle can then further relay

data to upstream/downstream or vehicles via available V2V links. Let NUL

and NU
DL be random variables denoting the number of uplink and unicast down-

link V2I transmissions required by a sensing vehicle. The expected required

V2I uplink capacity cUL and V2I downlink capacity for broadcast, cB
DL, and

unicast, cU
DL, are given in the following theorem. The proof is in the appendix

(Section 4.6.4).

Theorem 4.4.2. Under the single lane model, the density of vehicles is λvehicle,

each sensing vehicle share data with η = btinterest/tgapc vehicles in front and

back. The V2I capacity requirements on a infrastructure serving the linear

road segment of length dm are given by

cUL = cB
DL = ps · λvehicle · d · E[NUL] · ν, (4.20)

cU
DL = ps · λvehicle · d · E[NU

DL] · ν, (4.21)

where

E[NUL] = 1−
( η∑
k=0

pks · (1− ps)η−k
)2
, (4.22)

E[NU
DL] =

{
2(η − 1)ps(1− ps), if η ≥ 2,

0, otherwise
. (4.23)

The above results convey the average capacity requirements on V2I

infrastructure. Unfortunately a single non-collaborating vehicle can block the

113



Figure 4.14: Collaborative sensing of vehicles in a single lane using V2V +
V2I, with V2V relay assistance from vehicles in the two neighboring lanes.

V2V LOS links amongst a large number of vehicles and result in a burst of V2I

traffic especially at high penetrations, e.g., when vehicles in front and back of

the non-collaborating vehicle are all collaborating. The required V2I capacity

to handle such bursts can thus be much higher.

The single lane relaying scenario studied above is a worst case, i.e., data

can only be relayed by vehicles on the same lane. One can also consider scenar-

ios where in addition collaborative vehicles on either of two neighboring lanes

participate in V2V relaying. LOS links among vehicles on neighboring lanes

are less likely to be blocked, but LOS links to distant vehicles in neighboring

lanes will see larger path loss and may experience more interference, e.g., from

transmissions of vehicles in the same lane. Thus for simplicity suppose vehicles

only communicate with the closest vehicle in a neighboring lane and consider

the simple grid connectivity model shown in Fig. 4.14. Each node on the grid

corresponds to a vehicle, and each row represents a lane. Vehicles have LOS

channels to neighboring vehicles on the grid. For comparison purposes we

suppose, as before, that the reference vehicle needs to send data to η vehicles
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in front and back in the same lane. Vehicles can receive data via V2V links if

there is an LOS V2V relay path on the grid. To limit the number of hops and

associated delays, we assume that a relay path can not include links in both

forward and backward directions.

Based on this model, whether vehicles in the (k + 1)th column from

the reference vehicle can receive data via V2V links depends on whether the

vehicles in the (k+1)th column are collaborating and can get data from vehicles

in the kth column. In this setting one can again compute the expected V2I

capacity requirements to deliver data to vehicles in each column and thus the

total capacity requirements as a function of η and ps – a detailed analysis is

included in the appendix.

4.4.3 Numerical Results

Fig. 4.15 exhibits how the V2I capacity, cUL, cB
DL and cU

DL, normalized

by λvehicle · d · ν and the average V2V throughput per sensing vehicle normal-

ized by V2V throughput at ps = 1, vary with ps in single lane and single

lane assisted by vehicles in neighboring lanes scenarios. The results corre-

spond to the case where η = 5. An increase in ps causes an increase in the

number of vehicles participating in collaborative sensing but also results in

improved V2V connectivity. When ps is small, both the number of collabo-

rative sensing vehicles and the capacity per sensing vehicle increase, thus V2I

traffic increases. However at higher penetrations, V2V connectivity improves

and the V2I capacity requirements of a sensing vehicle decreases, resulting in
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lower and eventually negligible V2I traffic. Comparing the results with and

without assistance from vehicles in neighboring lanes, we observe, as expected,

that V2I traffic is smaller when vehicles in neighboring lanes can help relay

data. The V2V throughput per sensing vehicle increases with ps. Note that

if vehicles in neighboring lanes assist V2V relaying, the V2V throughput is

higher than that in single lane scenario, and the cV2V can be higher than the

V2V throughput at full penetration.

Although the average V2I capacity is small at high penetrations, infras-

tructures may still see a burst in V2I traffic, e.g., failure in a single vehicle can

block the V2V data flow along the fleet of vehicles and V2I is needed to relay

all the data from vehicles in the front and behind. In Fig. 4.16 we consider the

difference in average V2I capacity required at an infrastructure, given that a

reference vehicle changes from a sensing and communicating vehicle to a non-

collaborative vehicles. At low penetrations, the traffic relayed by a typical

vehicle is limited, and V2I may also be needed to help relay the sensor data

generated by the reference vehicle. Infrastructures should still have the ability

to relay high rate V2V traffic.

In summary the V2I traffic resulting from collaborative sensing data

would be highest at intermediate penetrations, e.g., ranging from 0.5 to 0.7,

but eventually would decline once most vehicles participate in both collabo-

rative sensing and V2V networking. This suggests an evolution path where

V2I resources are initially critical to safety-related services like collaborative

sensing, but eventually at high penetrations of sensing vehicles, traffic can

116



0 0.2 0.4 0.6 0.8 1
Penetration Ratio

0

0.5

1

1.5

N
or

m
al

iz
ed

 C
ap

ac
ity

c
UL

, c
DL
B

c
DL
U

c
V2V

(a) Single lane

0 0.2 0.4 0.6 0.8 1
Penetration Ratio

0

0.5

1

1.5

N
or

m
al

iz
ed

 C
ap

ac
ity

c
UL

, c
DL
B

c
DL
U

c
V2V

(b) Single lane assisted by neighbors

Figure 4.15: How V2I capacity requirements, normalized by λvehicle · d · ν,
scale with ps in (a) single lane and (b) single lane assisted by vehicles in
neighbor lanes. cUL is uplink capacity, cB

DL and cU
DL are downlink capacity

using broadcast and unicast. cV2V is V2V throughput per sensing vehicle
normalized by the V2V throughput at full penetration, ps = 1.
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Figure 4.16: Difference in total V2I capacity when a sensing vehicle becomes
disconnected in single lane scenario.

be effectively offloaded to V2V network, e.g., in the single lane assisted by

neighboring lanes, cUL, c
B
DL per vehicle is less than 0.25ν if ps > 0.8, and the

infrastructure may transition to supporting non-safety-related services, e.g.,

mobile high data rate entertainment and dynamic digital map update. These

results are likely robust to improved models, yet more detailed analysis based

on more accurate V2V mmWave channel and networking models would be

needed to provide more accurate quantitative assessment.

4.5 Conclusion

Collaborative sensing can greatly improve a vehicle’s sensing coverage

and reliability, but suffers at low penetrations due to, both a lack of available
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collaborators, and blockages in (mmWave) V2V relaying paths. Access to V2I

connectivity will thus be important to provide communication for collaborative

sensing when V2V relaying paths are unavailable. At higher penetrations, the

average V2I traffic is low, but the infrastructure should still have the ability

to support traffic bursts when the V2V network becomes disconnected.

To provide higher reliability one might consider supporting joint collab-

orative sensing amongst vehicles and RSUs with both sensing and communica-

tion capabilities. With sufficient RSU density and unobstructed placements,

one can ensure 100% 1-coverage by collaborating only with RSUs. The as-

sociated capacity requirement can also be much smaller than collaboration

with vehicles: vehicles receive data from one RSU instead of all neighboring

vehicles. However sensing based only on RSUs deployed with 100% 1-coverage

might not provide enough sensing redundancy and deploying even more RSUs

to provide diversity would be costly. Furthermore, in order to navigate in a

variety of environments, vehicles will need to have their own sensing capa-

bilities which should clearly be leveraged. Thus we see the combination of

vehicular/RSU collaborative sensing as the most cost effective way to achieve

high coverage and reliability in vehicular automated driving applications.

4.6 Appendix: Proofs and Additional Results

4.6.1 Proof of Theorem 4.1.4

Proof. The locations associated marks of the objects, Φ̃, follow an IMPPP,

thus the occupied region can be modeled by a Boolean Process [57]. One can
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thus properly define the distribution as seen by a typical vehicle referred to

the origin 0. Let Z0 = (0,M0), M0 = (A0, Y 0, S0), denote the typical vehicle.

We let

f(x, z0, φ̃\{z0}) = 1(x ∈ c0) (4.24)

be the indicator function that location x is in the coverage set of the typical

sensor z0, where φ̃\{z0} denotes the other objects in the environment excluding

z0. The expected area of coverage set is given by,

E[|C0|] = E

[ ∫
x∈R2

f(x, Z0, Φ̃\{Z0})dx
]

=

∫
x∈R2

∫
m∈M

∫
φ̃

f(x, φ̃\{z}, z)P !
z(dφ̃)FM0(dm)dx,

(4.25)

where M is the support of M0, P !
z(·) is the reduced Palm distribution of Φ̃

given a typical object is z = (0,m), i.e., the distribution of other objects in the

environment as seen by a typical object. For a Boolean Process, it follows by

Slivnyak-Mecke theorem [57] that the reduced Palm distribution is the same

as that of the original Boolean Process. Thus we have∫
φ̃

f(x, z, φ̃\{z})P !
z(dφ̃) =

∫
φ̃

f(x, z, φ̃)PΦ̃(dφ̃)

(1)
= 1(x ∈ ({y} ⊕ s) ∩ a) + 1(x ∈ ({y} ⊕ s)\a)e−λEA[|ly,x⊕Ǎ|],

(4.26)

where ({y} ⊕ s)\a is the sensing support of the typical sensor excluding the

region covered by the typical sensor. In equality (1) we have used the fact

that in a Boolean Process, the number of objects intersecting with a compact

convex shape, e.g., ly,x, has a Poisson distribution with mean λ ·EA[|ly,x⊕ Ǎ|],

Ǎ = {x| − x ∈ A} [57]. Apply the result of Eq. 4.26 to Eq. 4.25 and we get

Eq. 4.3.
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4.6.2 Proof of Theorem 4.2.2

Proof. The locations of the objects follow an HPPP and the environment can

be modeled as an IMPPP thus the environment is homogeneous in space.

Without loss of generality we consider the redundancy of location 0. By defi-

nition, we have

E[R(Φ̃,Φs, 0)|0 /∈ E] =
E[R(Φ̃,Φs, 0) · 1(x /∈ E)]

P(0 /∈ E)
(4.27)

The region occupied by objects follow the Boolean Process thus the probability

that 0 is not occupied by objects is given by, see [57],

P(0 /∈ E) = e−λ·E[|A|]. (4.28)

We let h(x0, x,m, φ̃\{(x,m)}) be the indicator function that location x0 is in

the void space and sensed by object (x,m), given the environment excluding

the reference object is φ̃\{(x,m)}. E[R(Φ̃,Φs, 0) · 1(0 /∈ E)] is then given by,

E[R(Φ̃,Φs, 0) · 1(0 /∈ E)]

= E

[ ∑
(Xi,Mi)∈Φ̃,Xi∈Φs

h
(
0, Xi,Mi, Φ̃\{(Xi,Mi)}

)]

=psλ

∫
x∈R2

∫
m∈M

∫
φ̃

h(0, x,m, φ̃)P !
(x,m)(dφ̃)FM(dm)dx

(1)
=psλ

∫
x∈R2

EM,Φ̃

[
h(0, x,M, Φ̃)

]
dx

(2)
=psλ

∫
x∈R2

EM,Φ̃

[
h(−x, 0,M, Φ̃)

]
dx

(3)
=psλ · E[|C0\A0|]. (4.29)
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The equality (1) follows for Slivnyak-Mecke theorem [57]. Equality (2) follows

from the spatial homogeneity of the environmental model thus we have that

EM,Φ̃

[
h(0, x,M, Φ̃)

]
= EM,Φ̃

[
h(−x, 0,M, Φ̃)

]
. (4.30)

Equality (3) follows from the result of E[|C0|] in Thm. 4.1.4. Note that function

h is not equal to f introduced in the proof of Thm. 4.1.4, i.e., a point on the

boundary of an object can be in the coverage set but can not be in the void

space. However the area of the set of such points is 0, thus equality (3) holds.

Combining the above results and we finish the proof.

4.6.3 Proof of Theorem 4.4.1

Proof. Denote by ρ the throughput per vehicle after scheduling. The average

number of vehicles in the protection region of a vehicle, is roughly 2(1 +

∆)rcommλvehicle. There is at most one transmitting vehicle in a protection

region, thus the highest throughput per vehicle is given by

ρ ≤ ω

2l(1 + ∆)rcommλvehicle

. (4.31)

Denote by ntx the minimum number of transmissions one piece of data needs

to be sent, ρ should satisfy that

ρ ≥ ntx · ν. (4.32)

In HB mode, to cover all vehicles within s · tinterest in both forward and

backward directions using broadcast, the minimum number of transmissions
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is roughly given by

nHBtx = 2 ·
⌊
s · tinterest

rcomm

⌋
− 1. (4.33)

In HU mode, the minimum nHUtx is the number of vehicles in the region of

interest, i.e., nRUtx = 2l · s · tinterest · λvehicle. If the vehicles share merged data,

each vehicle only needs to transmit to vehicles within rcomm, i.e., nMB
tx = 1 and

nMU
tx = 2l · rcomm · λvehicle. Combine the results on ntx, Eq. 4.31 and Eq. 4.32,

then we get the lower bounds on ω.

4.6.4 Proof of Theorem 4.4.2

Proof. Consider the expected number of V2I transmissions required by a typ-

ical sensing vehicle.

V2I uplink. The probability that the V2I link will be required to share

sensor data with collaborating vehicles in one direction, e.g., forward direction,

is given by

pfront(η, ps) = 1−
η∑
k=0

pks · (1− ps)η−k. (4.34)

This expression can be interpreted as one minus the probability (associated

with the sum) that the V2I link is not required: V2I link is not required if

the first k vehicles are collaborative and can thus perform V2V relaying, and

the remaining ν − k are not and so do not require the data. The forward and

backward directions are independent and symmetric, thus the probability that

V2I resources will be required is

pV2I(η, ps) = 1−
(
1− pfront(η, ps)

)2
. (4.35)
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Data need only sent up once irrespective of whether one or more sharing paths

are blocked thus E[NUL] = pV2I.

V2I downlink. If broadcast downlink is used, we have NB
DL = NUL,

thus E[NB
DL] = E[NUL]. If only unicast downlink is available, a V2I downlink

is required for every collaborative vehicle where no LOS V2V relay path is

available. Given our modeling assumption that vehicles receiving data from

infrastructure can further relay data via V2V links, the (k + 1)th collabora-

tive vehicle requires a downlink transmission if the kth vehicle is not sensing.

E[NU
DL] is the summation of the expected number of unicast downlink required

by each kth vehicle and thus we have Eq. 4.23.

Given the expected V2I transmissions of a typical sensing vehicle, we

get cUL, cB
DL, and cU

DL accordingly.

4.6.5 V2I Capacity with V2V Relay by Vehicles in Neighbor Lanes

Consider the vehicles in front of a reference vehicle placed in column 0

of the grid. Let Sk = (S1
k , S

2
k , S

3
k), S

i
k ∈ {0, 1}, denote whether the vehicles in

the kth column from the reference vehicle (1, 2, 3 denotes vehicles from top row

to bottom row) are collaborating where 0 denotes a non-collaborating vehicle

and 1 the opposite. Denote by Xk = (X1
k , X

2
k , X

3
k), X i

k ∈ {0, 1}, the state

of the vehicles in the kth column are both collaborating and can receive data

from the reference vehicle. We denote by Yk ∈ {0, 1} whether V2I downlink is

required to relay sensing data to vehicles in the first k columns. The state of
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the kth column is given by

Zk = (Xk, Yk). (4.36)

Based on our assumption that relaying paths can not contain links in

both forward and backward directions, Xk+1 only depends on Xk and Sk+1.

Since whether a vehicle is collaborating is independent from other vehicles,

the probability distribution of Zk+1 depends on that of Zk and ps.

Denote by P the state transition probability of state from Zk to Zk+1,

k ≥ 0. The probability distribution of Sk+1 is given by,

P
(
Sk+1 = (s1

k, s
2
k, s

3
k)
)

= p
s1k+s2k+s3k
s · (1− ps)3−s1k−s

2
k−s

3
k . (4.37)

Denote by X̃k+1 the indicator of whether vehicles in the kth column can send

data to vehicles in the (k + 1)th column via V2V links. Denote by ∧ logical

AND, ∨ logical OR, we have

X̃k+1 = (X1
k ∧ S1

k+1, X
2
k ∧ S2

k+1, X
3
k ∧ S3

k+1). (4.38)

Further consider the communication amongst vehicles in the same column.

Denote by X̂k+1 the state of vehicles after vehicles in the (k + 1)th column

share data amongst themselves via V2V links, we have

X̂1
k+1 = X̃1

k+1 ∨ (S1
k+1 ∧ (X̃2

k+1 ∨ (X̃3
k+1 ∧ S2

k+1))), (4.39)

X̂2
k+1 = X̃2

k+1 ∨ (S2
k+1 ∧ (X̃1

k+1 ∨ X̃3
k+1)), (4.40)

X̂3
k+1 = X̃3

k+1 ∨ (S3
k+1 ∧ (X̃2

k+1 ∨ (X̃1
k+1 ∧ S2

k+1))), (4.41)
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i.e., a sensing vehicle can also receive data from other collaborating vehicles

in the same column via V2V relaying.

For V2I relaying, we denote by Ỹk+1 whether V2I relaying is required by

the k+1th column. This occurs if the vehicle in the central lane is collaborating

but can not receive data via V2V links, i.e., when

(S2
k+1 = 1) and (X̂2

k+1 = 0), (4.42)

we have Ỹk+1 = 1. The vehicle can further relay data to neighboring collab-

orative vehicles in the (k + 1)th column. The state transition is now given

by

Yk+1 = Yk ∨ Ỹk+1, (4.43)

Xk+1 =

{
X̂k+1, if Ỹk+1 = 0

Sk+1, otherwise
. (4.44)

Based on the above state transition rules, we can compute P based

on ps. Denote by Z the support of Zk, πk = (π1
k, π

2
k, . . . , π

|Z|
k ) the probability

distribution of Zk, where πik is the probability of state i at column k. We have

that

πk = P k · π0. (4.45)

Denote by ZV2I ⊆ Z the set of states with Y = 1. The probability that V2I

communication is required to relay data to vehicles in the forward direction,

conditioning on the probability distribution of column Z0 being π0, is given by

pfront(η, ps, π0) =
∑
i∈ZV2I

πiη, (4.46)
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where πη = P ηπ0. Conditioning that the reference vehicle is a sensing vehicle,

we can compute π0 based on ps. pV2I is thus given by

pV2I =
∑

i=1,...,|Z|

πi0 ·
(
1− (1− pfront(η, ps, ei))

2
)
, (4.47)

where ei ∈ {0, 1}|Z|, eii = 1 and eji = 0 for j 6= i.

For the number of E[NU
DL], we can define Yk as the state for number of

V2I unicast downlinks required by vehicles in each column. Similarly as above,

we can compute the corresponding state transition probability and E[NU
DL] is

given by

E[NU
DL] =

η∑
k=1

E[Yk] (4.48)

In the above analysis we assume the reference vehicle only needs to

share data to vehicles in the same lane, e.g., vehicles are moving in platoons

and mainly require data from the same platoon. In fact, vehicles may also

need to share data with vehicles in neighboring lanes for applications like

advanced automated driving and collaborative sensing [37]. In this case we

can analyze the required capacity on V2I network following similar steps. One

major difference is that the condition in Eq. 4.42 should be replaced by

∃i ∈ {1, 2, 3} s.t. X̂ i
k+1 6= Sik+1, (4.49)

i.e., there is a sensing vehicle not receiving the sensor data via V2V relay. Also

in Eq. 4.44 we have Xk+1 = Sk+1, i.e., all sensing vehicles would get the data

by either V2V or V2I.
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Figure 4.17: How pV2I(η, ps), normalized cUL, cB
DL, and cU

DL change with ps
when vehicles send data to vehicles in the same lane and the two neighboring
lanes.
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In Fig. 4.17 we exhibit the result when vehicles need to share data with

vehicles on neighboring lanes. Compared with the case that vehicle needs to

share data with only vehicles in the same lane, the V2I capacity requirements

here is much higher. Such result is as expected as more vehicles are requiring

data. Note that pV2I is almost 1 for a large range of penetrations, e.g., from 0.1

to 0.6. This indicate that assistance from V2I would be necessary for reliable

collaborative sensing ever since the early stage of the penetration of automated

driving vehicles.
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Chapter 5

Infrastructure Assisted Collaborative Sensing

In this chapter we explore the performance of infrastructure assisted

sensing of roads under various deployment schemes.

5.1 Comparison of RSU and Cellular Based Sensing

In this section we study the performance of infrastructure based sensing,

i.e., sensing performed by infrastructure without the help of vehicles, under

two deployment scenarios:

� sensors on RSUs placed along the road,

� sensors on cellular infrastructure, e.g., BSs, which are randomly placed

in space.

We provide a comparison of the two approaches leveraging simple stochastic

geometry models.

5.1.1 System Model

We model the road system using a Manhattan Poisson line process

(MPLP) [65] on an infinite 2D plane, see [66] [67]. The road network is modeled
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(a) RSU based sensing (b) Cellular based sensing

Figure 5.1: Manhattan Poisson line process model for roads. (a) Model for
RSU based sensing. (b) Model for cellular (BS) based sensing.

based on two HPPPs, Ψx,Ψy ⊂ R, along the x-axis and y-axis respectively.

At each point of Ψx (Ψy) there is a vertical (horizontal) line corresponding

to a road. We shall initially neglect the width of the roads in this section.

The intensities of Ψx and Ψy, λ
v
road and λh

road, corresponding to the density

of vertical and horizontal roads. The total density of roads, and the average

length of roads per unit area, are both given by

λroad = λh
road + λv

road. (5.1)

See Fig. 5.1 for example.

RSU based sensing We shall assume RSUs are distributed along each road

with intensity µrsu RSUs/meter, resulting in a spatial density of RSUs, λrsu,

given by,

λrsu = λroad · µrsu. (5.2)
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We shall assume RSUs are distributed along each road with intensity µroad

RSUs/m, resulting in a spatial density

λrsu = λroad · µrsu. (5.3)

For simplicity we assume a road can only be sensed by RSUs deployed along

the road, i.e., RSUs on other roads are obstructed. RSUs are placed above

vehicles and objects on the road, thus are assumed to be able to sense all

objects on the road. An RSU deployed at an intersection can sense all the

roads joining at the intersection. We consider three ways of deploying RSUs:

1. randomly distributed, i.e., RSUs follow HPPP(µroad) along each road;

2. evenly spaced, RSUs are deployed along roads at an interval 1/µrsu;

3. first deployed at intersections, then randomly deployed along roads.

The optimal placement of RSUs is beyond the scope of this work, thus we only

consider the above simple approaches. Placing RSUs at intersections and/or

at even spacings would be most effective in covering roads with fewest RSUs.

However in early stage of deployments, RSUs may be placed at busy road

segments first, and subject to environmental limitations, e.g., availability of

backbone infrastructure power and RSU installation space. The deployment

of RSUs may also consider performance of communication, e.g., [68] [69] [70].

These considerations may bring randomness to the placement of RSUs, and the

HPPP model represents a “worst case” deployment with the most randomness.
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RSU deployments in the real world would likely to be a compromise among

these deployment models.

Cellular based sensing Cellular BSs are typically modeled as randomly

placed on the 2D plane, i.e., follow an HPPP with intensity λBS [65] [71]. We

assume each base station has a sensing support in the shape of a disc with

radius rBS, e.g., a BS located at x can sense the region b(x, rBS) if unobstructed,

see Fig. 5.1b. Unlike dedicated RSUs along the road, we model cellular based

sensing as being subject to building obstructions. We consider the 3D model

shown in Fig. 5.2. Consider a typical location, 0, on the center of a typical

horizontal road, i.e., the x-axis (we neglect other roads).1 We assume there is

a minimum distance from the road to locations where cellular infrastructure

can be placed (i.e., width of road + sidewalk) given by dBS,min
road , and BSs follow

an HPPP(λBS) on the set

DBS = (−∞,∞)×
(
(−∞,−dBS,min

road ) ∪ (dBS,min
road ,∞)

)
. (5.4)

The height of BSs is hBS.

Buildings are the only obstructions. Each building is associated with a

location Xb ∈ R2 and a 3D shape modeled by a random cuboid parametrized

by

Ab = (Lb,Wb, Hb),

1It is straight forward that the results for vertical roads would be similar.

133



where Lb,Wb, Hb ∈ R+ correspond to the length, width and height of the

cuboid. The side corresponding to Lb is assumed to be parallel to the road.

The location of the building, Xb, is at the center of the side closest to the road.

Note that Xb is on different sides for buildings above and below the road. See

Fig. 5.2a for an example. We assume the shape of buildings are independent

of the locations of the buildings, and building shapes are independent of each

other. We assume the locations of buildings follow an HPPP of intensity λb in

Db = (−∞,∞)×
(
(−∞,−db,min

road ) ∪ (db,min
road ,∞)

)
, (5.5)

i.e., ensuring that the minimum distance from the side of a building to the

road is db,min
road .

The location 0 can be viewed by a sensor at location x if it falls in the

sensing range of the sensor, i.e.,

|l0,x| ≤ rBS. (5.6)

and there are no buildings obstructing the LOS sensing channel. Indeed con-

sider the LOS sensing channel between 0 and a BS located at x. Denote by

l0,x ∈ R2 the line segment between 0 and x, |l0,x| the length of the segment.

Suppose there is a building of height hb, whose projection on the plane occu-

pies a region e ⊆ R2 with area lb × wb. Let ρ · (x1, x2) = (ρ · x1, ρ · x2). The

projection on the plane of the part of the sensing channel which is subject to

obstructions of height hb, i.e., lower than hb, is given by a segment l0,ρ·x, where

ρ = min(1, hb/hBS), The building will obstruct the channel if e ∩ l0,ρ·x 6= ∅.

See Fig. 5.2b for an example.
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(a) Cellular based sensing model (b) Side and top view of channel

Figure 5.2: (a) model for cellular based sensing under building obstruction (in
rural area). In the example shown, we assume dBS,min

road = db,min
road = dmin

road (b) the
side and top view of an example for channel obstruction. The path lower than
hb is subject to building obstruction.

The above obstruction model is roughly appropriate for sparse subur-

ban/rural areas where building densities are low and buildings can be approx-

imated as randomly distributed. In dense urban areas, the building density

can be high, and we may suppose the buildings fill the city blocks separated

by roads. In the latter case, the buildings can be tall thus it will be difficult

for a BS to have a good LOS coverage of a road which is one block away,

see Fig. 5.3. For better sensing coverage (and LOS channels for mmWave

communication), cellular based sensors should be located on the sides of the

buildings next to roads, which then becomes similar to our assumptions on

RSU placement. The performance of sensing would then be similar to that of

RSUs but perhaps placed at a larger height.
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Figure 5.3: Cellular based sensing can be heavily obstructed in dense urban
area.

We shall examine the coverage of roads, i.e., the proportion of roads

covered by at least one sensor, under different sensor deployment schemes

given road density λroad and sensor spatial density λrsu (and building density

λb).

5.1.2 RSU Based Sensing Coverage

Randomly distributed RSUs. For each road, the coverage of RSUs fol-

lows a 1D Poisson Boolean process [53]. For a fixed spatial density of RSUs

λrsu and roads λroad, the locations of RSUs on a road follows an HPPP with

intensity

µrand
rsu =

λrsu

λroad

, (5.7)

and each RSU covers a segment of length 2 · rrsu, thus it follows that the

number of RSUs covering a typical location on the road, N rand
rsu , has a Poisson

distribution with mean

E[N rand
rsu ] = µrand

rsu · (2 · rrsu). (5.8)
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The road coverage is thus given by

prsu,rand
cover (λrsu, rrsu, λroad) = Pr(N rand

rsu > 0)

= 1− e−E[Nrand
rsu ]

= 1− e−
λrsu
λroad

·2·rrsu .

(5.9)

Evenly spaced RSUs. The distance between two neighboring RSUs is

1
µeven

rsu
= λroad

λrsu
, thus the proportion of road covered is easily shown to be

prsu,even
cover (λrsu, rrsu, λroad) = min

{
1, 2 · rrsu ·

λrsu

λroad

}
. (5.10)

RSUs at intersections along with randomly distributed RSUs. In the

MPLP model, the intersections on a horizontal road follow an HPPP of inten-

sity λv
road, and the density of horizontal roads is λh

road, thus the spatial density

of intersections in the MPLP model is given by

λinter = λh
road · λv

road. (5.11)

Note since λroad = λh
road + λv

road, when λh
road = λv

road the intersection density

is given by λinter =
λ2

road

4
. Also note that the intersection density is maxi-

mized when λh
road = λv

road. If λrsu ≤ λinter, we assume each intersection has

a probability λrsu/λinter of having an RSU and there are no RSUs off inter-

sections. If λrsu > λinter, each intersection has an RSU and in addition each

road has randomly distributed RSUs with linear density µrand
rsu , where µrand

rsu is

such that the total spatial density of RSUs, including RSUs at intersections

and randomly distributed RSUs, is equal to λrsu. The coverage is given in the

following theorem. The proof is given in the appendix (Section 5.6.1).

137



Theorem 5.1.1. Under the above RSU deployment at road intersections in

the Manhattan Poisson line process model, the coverage of horizontal roads is

given by,

prsu,inter,h
cover (λrsu, rrsu, λ

h
road, λ

v
road) =

{
1− e

− λrsu
λh

road

·(2·rrsu)
, if λrsu ≤ λh

road · λv
road

1− e−µtotal
rsu ·(2·rrsu), otherwise,

,

(5.12)

where

µtotal,h
rsu =

λrsu + (λv
road)2

λh
road + λv

road

, (5.13)

is the linear density of RSUs on a typical horizontal road when λrsu > λh
road ·

λv
road. The coverage of vertical roads is given by

prsu,inter,v
cover (λrsu, rrsu, λ

h
road, λ

v
road) = prsu,inter,h

cover (λrsu, rrsu, λ
v
road, λ

h
road), (5.14)

i.e., by exchanging λh
road and λv

road in prsu,inter,h
cover .

Note that if λh
road 6= λv

road, the density of intersections on horizontal

and vertical roads are not the same. Placing more RSUs on roads with fewer

intersections can provide better coverage.

5.1.3 Cellular Based Sensing Coverage

Cellular coverage without obstructions. The 2D coverage of unobstructed

BSs follows a simple 2D Poisson Boolean process [53], which results in a pro-

portion of covered roads:

pBS
cover(λBS, rBS) = 1− e−λBS·π·r2

BS . (5.15)
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Cellular coverage under obstruction. We let A0 = (L0,W 0, H0), where

L0,W 0, H0 ∈ R+, denote a typical random cuboid whose dimensions have

the same distribution as buildings. For a BS located at x, we denote by

E(x,A0) ⊆ R2 the footprint of a typical building located on the same side of

the road as the BS at x. The shape of the typical building is A0 and E(x,A0)

is referenced to the location of the building, see Fig. 5.4. The average number

of BSs sensing a typical location 0 is characterized in the following theorem.

Theorem 5.1.2. Under our obstruction model, the number of BSs sensing a

typical location 0, No
BS, has mean

E[No
BS] = λBS ·

∫
DBS∩b(0,rBS)

e−E[Nb(x)]dx, (5.16)

where

E[Nb(x)] = λb · EA0

[∣∣(l0,ρ(A0)·x ⊕ Ě(x,A0)) ∩Db

∣∣] (5.17)

is the expected number of buildings blocking a BS located at x, l0,ρ(A0)·x is the

line segment between 0 and ρ(A0) ·x, ρ(A0) = min(1, H
0

hBS
), ⊕ is the Minkowski

sum [53], Ě(x,A0) = {y| − y ∈ E(x,A0)}.

The proof follows by Campbell’s theorem [53] and is given in the ap-

pendix (Section 5.6.2). If the densities of buildings and BSs are low, the

sensing channels between 0 and different BSs can be approximated as inde-

pendent. No
BS thus follows a Poisson distribution with the same mean and the

probability that the location 0 is covered by at least one BS is given by

pBS,o
cover(λBS, rBS, λb) = 1− e−E[No

BS], (5.18)
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Figure 5.4: E(x,A0) denotes the footprint of a typical building, which has a
shape A0 and located on the same side of the road as the BS at x, referenced
to the building’s location.

where E[No
BS] is given in Eq. 5.16.

Model for blockage density. We can see from Eq. 5.18 that the coverage

of obstructed BSs depends on building density λb, instead of road density λroad.

It is natural to expect the road density to be positively correlated with the

building density, e.g., a correlation of over 60% was found in the generalized

least squares regression model developed in [72]. In our work we will use a

very simple model for building density, i.e.,

λb = c · λroad, (5.19)

where c is a constant such that λb = 1
400
/m2 (medium building density) at

λroad = 6 km / km2. The actual relationship between λb and λroad is more

complicated and we use this simple model to study the scaling of cellular

coverage qualitatively.
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5.1.4 Comparisons

Other road models. Our analysis will focus on the MPLP road model.

Other road models include (non-random) Manhattan grid model [62], and

Poisson line process [73]. In these models, our analysis on RSU and cellular

based sensing remain valid, except for the case where RSUs are placed at inter-

sections. In Manhattan grid model, the topology of the roads is deterministic

and the analysis of coverage is straight forward. For the Poisson line process

the results are similar to the MPLP model and a detailed analysis is included

in the appendix. The qualitative results and implications on infrastructure

deployment are similar in these models.

Let us compare the minimum required spatial sensor density to achieve

a target coverage probability, pmin
cover. Let λrand,min

rsu , λeven,min
rsu , λinter,min

rsu , λmin
BS , and

λo,min
BS be the minimum sensor density to provide at least pmin

cover coverage in the

five schemes discussed above.

We study how the required sensor density scales in the road densities

and coverage requirements. Fig. 5.5 illustrates how the required sensor density

to achieve pmin
cover = 90% coverage as one varies the road density, e.g., from

sparse rural to dense urban areas. rrsu = rBS = 200 m, and we let λh
road =

λv
road. For cellular sensing obstruction model, we assume the buildings have

the same dimensions, lb = lb = 14 m, hb = 3 m. The BSs are placed at a

height hBS = 15 m, and dBS,min
road = db,min

road = 10 m, i.e., two 3.5 m lanes and

3 m sidewalk. Note that we only present result in obstructed cellular based

sensing for λroad ≤ 6 km / km2. At larger road densities, the buildings may
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Figure 5.5: Required sensor densities to achieve 90% coverage at different road
densities for different schemes. ‘RSU random’ RSUs randomly located along
roads; ‘RSU even’ RSUs located along the road at even space; ‘RSU inter’
RSUs first deployed at intersections and remaining RSUs randomly located
along roads; ‘cellular’ cellular based sensing without obstruction; ‘cellular ob-
structed’ cellular based sensing subject to obstruction.

be tall and close to to each other. BSs may only sense the roads surrounding

the BSs, and cellular based sensors may be deployed and work as (randomly

deployed) RSUs. Fig. 5.6 exhibits the required sensor density for different

coverage requirement. The road density is λroad = 6 km / km2, while other

parameters are the same as those in Fig. 5.5.

Benefit of placing RSUs at intersections. Deploying RSUs at intersec-

tions can double the coverage benefit per RSU, so the required sensor density

can in principle be reduced by half as compared to random deployment, i.e.,
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Figure 5.6: How the required spatial sensor density scales in the coverage
requirement pmin

cover.

λinter,min
rsu = 1

2
λrand,min

rsu . More precisely the relationship between λinter,min
rsu and

λrand,min
rsu (when λh

road = λv
road) is given by

λinter,min
rsu =

{
λrand,min

rsu − λ2
road

4
if λroad ≤

√
2 · λrand,min

rsu

1
2
· λrand,min

rsu otherwise
. (5.20)

See the results for ‘RSU random’ and ‘RSU inter’ in Fig. 5.5. When λinter is low,

the difference between λrand,min
rsu and λinter,min

rsu , i.e.,
λ2

road

4
in Eq. 5.20, increases

with road density λroad. At high road densities, e.g., λroad ≥ 11 km / km2

in Fig. 5.5, deploying RSUs only at (some of) the intersections is enough to

provide the required coverage and the required RSU density is reduced by half.

Random v.s. evenly located RSUs. If RSUs are distributed at even spac-

ings, there is no overlap among the coverage of RSUs (at low RSU densities)
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and λeven,min
rsu < λrand,min

rsu . We can derive from Eq. 5.9 and Eq. 5.10 that

λrand,min
rsu ∝ − log(1− pmin

cover), (5.21)

λeven,min
rsu ∝ pmin

cover. (5.22)

As pmin
cover → 1, the minimum sensor densities for random deployment schemes,

i.e., λrand,min
rsu , λinter,min

rsu , λmin
BS and λo,min

BS , go to infinity while λeven,min
rsu increases

linearly with pmin
cover and is bounded. Deploying RSUs at even spacings mini-

mizes the required RSU density. λeven,min
rsu can be further reduced by placing

RSUs at intersections. However when deploying RSUs at intersections, the

distance between RSUs is not necessarily multiple of the sensing range, thus

overlap between RSUs might be inevitable. Optimal deployment of RSUs will

thus depend on the actual topology of the roads.

RSU based sensing v.s. cellular based sensing. In RSU based sensing,

the required sensor density increases linearly with road density while if there

are no obstructions in cellular based sensing, the required sensor density does

not scale with road density. This indicates that the sensor density and asso-

ciated cost in cellular based sensing could be smaller than RSU based sensing

at high road densities. The required sensor density depends on sensing ranges,

rrsu and rBS. Based on our analysis, the required sensor density in RSU sens-

ing is inversely proportional to rrsu while the required density in unobstructed

cellular based sensing is proportional to 1/r2
BS. Consider randomly distributed

RSU and cellular based sensing without obstructions, the minimum sensor

144



0 100 200 300
RSU and Cellular Sensing Range

0

0.5

1

1.5

2

2.5

3

rs
u
/

bs

Figure 5.7: How λrand,min
rsu /λmin
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densities to achieve the same coverage should satisfy

λrand,min
rsu =

π · r2
BS · λroad

2 · rrsu

· λmin
bs . (5.23)

It is clear that cellular based sensing is more beneficial when the sensing range

is large and road density is high. Fig. 5.7 illustrates how the ratio between

λrand,min
rsu and λmin

BS , i.e., λrand,min
rsu /λmin

BS , scales in the sensing range, rBS = rrsu,

at road density λroad = 6 km /km2. The ratio increases linearly with sensing

range and we have λrand,min
rsu = λmin

BS at rrsu = 106 m, i.e., the density of sensors

is the same in both schemes in an urban setting when rrsu ≈ 100 m. From

Eq. 5.23 we can see the rrsu threshold is proportional to 1
λroad

. It is obvious

that when cellular based sensing is subject to obstruction, the required sensor

density increases with building density (and thus road density). Cellular based
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sensing thus may not be more efficient than RSU based sensing. As we have

discussed, cellular based sensing in dense urban area may only cover the roads

surrounding the BSs and work similar to RSUs.

Conclusion. In this section we compared the performance of different

infrastructure assisted sensing, including RSU and cellular based sensing. De-

ploying RSUs at even spacings (regularly) and at intersections reduces the

required density of RSUs. When the road density is high and sensing range

is large, it can be more beneficial to deploy sensors at BSs to cover multi-

ple roads with one sensor. However there are more obstructions at high road

densities, limiting the coverage of cellular based sensing to roads surrounding

the BSs. This suggest that cellular based sensing will be at a disadvantage

over RSU based sensing unless BSs are placed on the sides of buildings and/or

along roads similarly to RSUs. These considerations will however be highly

dependent on the available technologies and costs.

5.2 RSU Assisted Collaborative Sensing

In this section we study how the deployment and sensing capabilities of

RSUs would impact the performance of vehicle collaborative sensing assisted

by RSUs, i.e., vehicles share sensor data with neighboring collaborative vehicles

and RSUs.
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5.2.1 Sensing of Objects

Previously in this dissertation we focus on sensing the (void) locations,

which is closely related to representing the environment using occupancy map

or sharing raw sensor data. Sharing raw sensor data can be more reliable in

case of accidents [38], but can be costly in the communication and processing

of data. Modeling objects by their geometric shapes and additional informa-

tion can be more efficient. Each object is modeled with a geometric shape

and additional information, e.g., velocity. Such representation works well in

tracking objects in dynamic environments and has much lower cost, i.e., lower

cost in computation and communication, which makes it especially desirable

in the early stage of automated driving. In the following sections, including

the simulation of sensing with RSUs and temporal diversity of sensing, we

shall study the sensing of objects using the metrics defined below.

We consider the same environmental model as the one for the sensing

of locations introduced in Section 4.1. We first define the objects of interest of

sensor i, Oi, based on the region of interest in Definition 4.1.2 as follows.

Definition 5.2.1. (Objects of interest) Given sensor i’s region of interest Di,

the objects of interest of sensor i, Oi, is defined as the set of objects overlapping

with Di, i.e.,

Oi =
{
j ∈ N+

∣∣Ej ∩Di 6= ∅
}
. (5.24)

We shall assume object j is sensed by sensor i if any part of object j is
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sensed, i.e.,

Ej ∩ Ci(Φ̃) 6= ∅. (5.25)

Similar to the sensing redundancy for a location in Definition 4.2.1, we define

the object sensing redundancy of object i as follows.

Definition 5.2.2. (Object sensing redundancy) Given an environment and

sensing field Φ̃, and a subset of collaborating sensors, K ⊆ Φs, the object

sensing redundancy of object i is defined as the number of sensors in K sensing

object i, i.e.,

Ro(Φ̃, K, i) =
∑

j:Xj∈K

1
(
Ei ∩ Cj(Φ̃) 6= ∅

)
. (5.26)

We also define the object coverage of sensor i based on the coverage of

a location in Definition 4.2.3 as follows.

Definition 5.2.3. (Object coverage and reliability) Given an environment and

sensing field Φ̃, a minimum redundancy requirement γ ∈ N+ for reliable sens-

ing of objects, a subset of collaborating sensors, K ⊆ Φs, and sensor i’s objects

of interest Oi, the γ-object coverage set of sensor i is the set of objects in Oi

which are covered by at least γ sensors in K, denoted by

Co
c (Φ̃, K,Oi, γ) =∆

{
j ∈ Oi

∣∣Ro(Φ̃, K, j) ≥ γ
}
. (5.27)

The γ-object coverage of sensor i is the cardinality of the γ-object coverage

set,

|Co
c (Φ̃, K,Oi, γ)|. (5.28)
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The γ-object coverage reliability is the γ-object coverage normalized by the

area of region of interest,

|Co
c (Φ̃, K,Oi, γ)|
|Oi|

. (5.29)

In the detailed evaluation of collaborative sensing with RSUs, we would

use the performance metrics on sensing of the objects.

5.2.2 RSU Assisted Collaborative Sensing Scenario

In our simulations we shall consider a 3D scenario, and the metrics are

extended to 3D accordingly.

Sensing capabilities. We suppose each collaborative sensing vehicle is

equipped with a sensor mounted on the central top of the vehicle. The sensing

supports of sensors are discs centered at the sensor with radius rvehicle. Sensors

are subject to obstructions from neighboring vehicles (no self obstruction),

and an object is assumed to be sensed by a sensor if any part of the object

is sensed. Each sensing vehicle has a communication range rcomm. Fig. 5.8

illustrates collaborative sensing with infrastructure. We assume vehicles can

receive sensor data from all sensors within communication range, including

RSUs and other collaborative sensing vehicles.

Deployment of Infrastructure. The performance of infrastructure sens-

ing depends on the deployment characteristics. Suppose the sensors are located

at a height hrsu above the ground, and the distance to the roadside is droad.

Suppose also the density of RSU units along the road is µrsu on one side of the
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Figure 5.8: Collaborative sensing with infrastructure.

road. Denote by drsu the distance between the 1-D location of two neighboring

sensors. drsu can be fixed, i.e., RSUs are regularly (or uniformly) distributed,

or random, e.g., RSUs follow a Poisson process.

Collaborative sensing assumptions. In the following simulations of RSU

assisted sensing, we shall assume vehicles are interested in the vehicles mov-

ing in the same direction, and communicate with vehicles moving in the same

direction. Sensor data regarding vehicles in the same direction is more impor-

tant, and V2V communication links are more stable. Sensing and communi-

cating with vehicles in the same direction is likely to be used in the early stage

of automated driving.

In the base case, droad = 2 m, hrsu = 3 m, µrsu = 1
400

RSU /m, RSUs are

distributed along the road at even spacings, i.e., drsu = 400 m. rvehicle = rrsu =

200 m, rcomm = 200 m.

Note that under the above assumptions on sensing and communication

range, there is exactly one RSU within the communication range of a vehicle.

The RSUs are not sharing data with neighboring RSUs and the sensing support
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of the RSU communicating with the vehicle may fail to cover the whole region

of interest of the vehicle, undermining the benefits of RSUs. To get sensor

data from all RSUs covering the vehicle’s region of interest, the communication

range needs to be sufficiently large, i.e.,

rcomm ≥ rinterest + rrsu. (5.30)

Such communication range can be achieved by 1) extending vehicle-to-RSU

communication range, which can be difficult for links in the mmWave band

in dynamic and possibly obstructed environment; 2) relaying sensor data via

V2V communication; and 3) RSUs sharing (and possibly merging) sensor data

amongst RSUs via high rate wired or wireless links.

Simulation scenario. We consider a typical freeway scenario as de-

scribed in [38], see Fig. 5.8 for example. There are three lanes in each direc-

tion, and the lane width is 4 m. Vehicles are randomly located in the lanes

with the same distribution as used in Section 4.1. We simulate two types of

vehicles modeled as rectangular cuboids, including sedans 4.8 m×1.8 m×1.5 m

(length × width × height), and SUVs 5 m×2 m×1.8 m. Half of the vehicles

are selected to be sedans while the other half are SUVs. Vehicles are moving

at a velocity s = 20 m / sec, the lane density of vehicles is µvehicle = 1
2·s = 0.025

vehicles/m, e.g., the average distance between two neighboring vehicles in

the same lane is 2 sec. The region of interest for a vehicle has a range of

rinterest = 10 · s = 200 m in both forward and backward directions, i.e., vehicles

require a 10 sec prediction forward and backward of the environment.
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Figure 5.9: 1-object coverage reliability for the base case.

5.2.3 Numerical Results on RSU Sensing

Fig. 5.9 exhibits the 1-object coverage reliability for the base case. An

RSU do have a good coverage of the road within its sensing support and the

sensing support of RSUs almost cover the whole road. However a vehicle may

fail to communicate with all sensors/RSUs sensing its objects of interest. In

fact in the base case each vehicle can communicate with only one RSU, whose

sensing support may be different from the vehicle’s region of interest, thus the

reliability is not 100%.

Communication range rcomm. Fig. 5.10 exhibits the results for different

communication ranges. When rcomm = 400 m, a vehicle can get sensor data

from all RSUs sensing the objects of interest. We can see that the coverage
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Figure 5.10: 1-object coverage reliability for different communication ranges:
200 m, 400 m. At rcomm = 400 m, each vehicle can communicate with all RSUs
that can sense its objects of interest.
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Figure 5.11: 1-object coverage reliability for different RSU heights: 1 m, 2 m,
3 m.

reliability is almost 1. This indicates that RSUs are almost not subject to

obstructions from vehicles when the vehicles are moving at normal velocities

(still see obstructions from large vehicles like trucks or when the vehicles are

moving very slow and the distance between vehicles is small). It is more

important to extend the range of communication so that each vehicle can

get all sensor data regarding its region of interest. Feasible approaches are

discussed in the end of Section 5.2.2.

Height of RSUs hrsu. Fig. 5.11 shows the coverage reliability result for

hrsu = 1 m, 2 m, 3 m. As expected, RSUs which are located higher have better

coverage. Notice that once hrsu is higher than the vehicles, the gain in object

coverage reliability from increasing hrsu is marginal. However RSUs at larger
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Figure 5.12: 1-object coverage reliability for different RSU deployment: 1)
random: the locations of RSUs follow a Matérn process with minimum gap
50 m, and 2) even space. Communication range is rcomm = 400 m.

heights can sense a larger proportion of objects’ surfaces and roads.

Deployment regularity: evenly spaced or randomly located. In Fig. 5.12

we compare different RSU deployment regularities. We use a Matérn pro-

cess [55] to model the distribution of RSUs, and set the minimum gap between

vehicles to be 50 m. The communication range is set to be 400 m. When ran-

domly distributed, RSUs may fail to cover some parts of the road, decreasing

the 1-object coverage reliability. However there can be benefits of random

placement: in some parts of the road may be covered by multiple RSUs, and

the sensing reliability in these parts are higher.

Distance to road drsu. Fig. 5.13 shows the reliability result for different
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Figure 5.13: 1-object coverage reliability for RSUs deployed at different dis-
tances to road side droad: 0 m, 2 m, and 10 m.

distances to road: drsu = 0 m, 2 m, 10 m. There is no clear change in RSU

coverage, indicating that drsu does not have much impact if RSUs are placed

above the vehicles.

Density of RSUs µrsu. Fig. 5.14 exhibits the reliability result at differ-

ent RSU densities: 1
800

RSU /m, 1
400

RSU /m, 1
200

RSU /m. As expected the

coverage increases with RSU density. At µrsu = 1
200

RSU /m the RSUs pro-

vide 2-coverage of the road, e.g., each location can be sensed by at least 2

RSUs. Vehicles can communicate with at least one RSU in both forward and

backward directions, and have 100% coverage with the help from RSUs.

RSU sensing range rrsu. In Fig. 5.15 we compare the results for differ-

ent RSU sensing ranges, i.e., rrsu = 100 m, 200 m, 300 m, 400 m. As expected
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Figure 5.14: 1-object coverage reliability for different RSU densities:
1

800
RSU /m, 1

400
RSU /m, 1

200
RSU /m.
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Figure 5.15: 1-object coverage reliability for different RSU sensing ranges rrsu:
100 m, 200 m, 300 m, 400 m.
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sensing coverage would increase with rrsu.

Conclusion on the deployment of RSUs. Deploying schemes and RSU

capabilities impact the performance of collaborative sensing with RSUs. Our

results show that deploying sensing RSUs can greatly improve collaborative

sensing performance, especially at low penetrations. RSUs are less likely to be

subject to obstructions compared with sensing of vehicles. However to get the

most from RSUs, we should extend the communication range between vehicles

and RSUs, e.g., RSUs sharing sensor data with neighboring RSUs and send

(possibly merged) data to vehicles.

5.3 Spatio-temporal Diversity in Collaborative Sensing

In the previous sections we studied how collaborative sensing improves

coverage for a snapshot of the environment by providing spatial diversity in

sensing, i.e., sensor data for locations and objects from different points of view.

In addition, collaborative sensing can improve sensing performance via utiliz-

ing temporal diversity in sensing. Objects in the environment are moving thus

the environment is dynamic, e.g., vehicles’ regions of interest, blockage fields,

and the sensor coverage sets are varying with time. Sensor data measured at

different time provides possibly different information regarding the environ-

ment, thus sensors can utilize temporal diversity for sensing and tracking of

objects in the environment.
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5.3.1 Temporal Dynamic Environment and Sensing Model

We modify the environment and sensing model in Section 4.1 to capture

temporal dynamics.

We let Xi be the location of object i at time 0, and denote by

Φd(t) = {Xd
i (t), i ∈ N+}

the locations of objects at time t, where Xd
i (t) is the location of object i at time

t. Suppose the movements of objects are IID and independent of the locations

of objects (during the time interval we are interested in). Φ ∼ HPPP(λ) thus

it follows the Displacement Theorem [57] that the locations of objects at any

time t will remain an HPPP process, i.e.,

Φd(t) ∼ HPPP(λ),∀t.

For simplicity we suppose the shape, location of sensor on the object,

and the radial sensing support of the sensor, Mi = (Ai, Yi, S
0
i ), do not change

with time, e.g., objects do not rotate. Denote by

Ed
i (t) = Xd

i (t)⊕ Ai (5.31)

the region occupied by object i at time t, and

Sdi (t) = Xd
i (t)⊕ S0

i (5.32)

the sensing support of sensor i at t. The environment and sensing sensing field

at t is given by

Φ̃d(t) =
{(
Xd
i (t), (Ai, Yi, S

0
i )
)
, i ∈ N+

}
,
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and the model for the temporal dynamics of the environment and sensing

capabilities is denoted by

Φ̃d =
(
Φ̃d(t), t ∈ R

)
.

We let Φs denote the locations of collaborating sensors at time 0.

The coverage set of sensor i at time t, Cd
i (Φ̃d, t), is given by

Cd
i (Φ̃d, t) =

{
x ∈ Sdi (t)

∣∣x ∈ Ed
i (t) or lXd

i (t)+Yi,x
∩ E−i,d(t) ⊆ {x}

}
, (5.33)

where E−i,d(t) = ∪j 6=iEd
j (t) is the blockage set associated with objects other

than i at t.

We let Dd
i (t) ⊆ R2 denote sensor i’s region of interest at time t. We

shall define the objects that a sensor needs to sense at time t as follows.

Definition 5.3.1. (Objects of interest at time t) The objects of interest of

sensor i at time t are the objects which overlap with sensor i’s region of interest

at t, denoted by Od
i (t), i.e.,

Od
i (t) =

{
j ∈ N+

∣∣Ed
j (t) ∩Dd

i (t) 6= ∅
}
. (5.34)

5.3.2 Sensing Redundancy and Coverage Resulting from Temporal
Dynamics

We suppose an object i is sensed by object j at time t if sensor j senses

any part of i, i.e.,

Cd
j (Φ̃d, t) ∩ Ed

i (t) 6= ∅.
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Sensors can track the states of objects in the environment, e.g., locations,

velocity, acceleration, etc, and thus have a good estimate of the objects even

when the objects are blocked for some time. For simplicity we assume an

object is tracked by a sensor at t if the object has been sensed in time interval

[t − τ, t], where τ is the maximum time window for reliable tracking without

new sensor data.

The spatio-temporal sensing redundancy of an object can then be de-

fined as follows.

Definition 5.3.2. (Spatio-temporal object sensing redundancy) Given an en-

vironment and sensing model Φ̃d, a fixed subset of sensors collaborating, K ⊆

Φs, and assuming an object can be sensed if it has been sensed within a time

period τ , the object sensing redundancy of sensor i at time t is given by

Ro,d(Φ̃d, K, i, t, τ) =
∑

j:Xj∈K

1
(
∃z ∈ [t− τ, t] s.t. Ed

i (z) ∩ Cd
j (Φ̃d, z) 6= ∅

)
.

(5.35)

Given the above definition of spatio-temporal sensing redundancy we

can define the (γ, τ)-object coverage reliability as follows.

Definition 5.3.3. ((γ, τ)-object coverage reliability) Given an environment

and sensing field Φ̃d, a minimum redundancy requirement γ ∈ N+ for reliable

sensing of an object, a subset of collaborating sensors, K ⊆ Φs, and sensor i’s

objects interest Od
i , the γ-coverage object set of sensor i is the set of objects

of interest at time t which are covered by at least γ sensors in K, denoted by

Cd
c (Φ̃d, K,Od

i , γ, t, τ) =∆
{
j ∈ Od

i (t)
∣∣Rd(Φ̃d, K, j, t, τ) ≥ γ

}
. (5.36)
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The (γ, τ)-object coverage reliability is proportion of the objects of interest

that are in the γ-coverage set, i.e.,

|Cc(Φ̃, K,Od
i , γ, t, τ)|

|Od
i (t)|

. (5.37)

5.3.3 Performance of Collaborative Sensing Utilizing Spatio-temporal
Diversity

The relative movement of neighboring vehicles driving in the same di-

rection would typically be small, e.g., the relative locations of vehicles in a

fleet may be stable most time. Such slow relative movement facilitates the

communication amongst the vehicles, but limits the temporal diversity in the

sensing of vehicles moving in the same direction. The sensing coverage of col-

laborative sensing for vehicles moving in the same direction may fail to change

quickly with time and obstructed vehicles will remain unseen. By compari-

son RSUs and vehicles moving in the opposite direction will see fast relative

movements to a given flow of vehicles and have improved sensing coverage

with temporal diversity. We have shown in Section 5.2 that RSUs can have

an almost unobstructed view of the road if located well above the vehicles. In

reality, RSUs may be low, e.g., lower RSUs to save cost, and vehicles are of

different dimensions, thus the sensing of vehicles can be obstructed and RSUs

may benefit from temporal sensing diversity. The relative velocity of vehicles

moving in the opposite direction is large, i.e., 2 ·s, thus there is more temporal

diversity. However such high relative speed can make it difficult to establish

reliable high rate links (in the mmWave band).
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Figure 5.16: Freeway simulation scenario for RSU assisted collaborative sens-
ing with temporal dynamics.

Let us evaluate the performance of collaborative sensing in the presence

of such relative motions via simulation in a freeway scenario. We shall use the

same assumptions on the deployment of RSUs as introduced in Section 5.2. We

shall refer to the direction of the lanes close to RSUs as the ‘nearby’ direction,

and the other direction as the ‘opposite’ direction, see Fig. 5.16.

We consider different collaborative sensing schemes, i.e., 1) base case:

collaborate with only vehicles moving in the same direction. The communica-

tion channel is stable, yet the set of collaborating sensors is limited. 2) RSU:

in addition vehicles communicate with sensing capable RSUs. 3) opposite:

vehicles communicate with vehicles moving in the same direction and opposite

direction.

Fig. 5.17 illustrates the (1, τ)-object coverage reliability of collaborative

sensing in different collaboration schemes and different τ . RSUs are uniformly

deployed along the road, providing a 1-coverage of the road, e.g., rrsu = 200 m,
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(a) Nearby direction
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Figure 5.17: The (1, τ)-object coverage reliability of collaborative sensing with
vehicles driving in the same direction and RSUs for vehicles moving in (a) the
original direction, and (b) the opposite direction.
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drsu = 400 m. We assume rinterest = 200 m, droad = 2 m. The communication

range is rcomm = 500 m, which is enough for a vehicle to communicate with all

sensors having relevant sensor data. We set hrsu = 1 m, which is lower than

the heights of vehicles. Such assumption on hrsu is mainly used to make the

sensors subject to obstructions to study the impact of temporal diversity. The

base case is that vehicles collaborate with other vehicles moving in the same

direction.

First let us consider collaborative sensing without temporal diversity,

i.e., τ = 0 sec. From simulation results we can see sensing coverage reliability

increases with spatial diversity, i.e., collaboration with RSUs and/or vehi-

cles in the opposite direction improves the sensing coverage reliability. More

specifically, collaborating with RSUs provides larger gain at low penetrations

while collaborating with vehicles in the opposite direction works better at high

penetrations. As expected, collaborating with both RSUs and vehicles in the

opposite direction provides most temporal diversity and thus most gain.

When temporal diversity in sensing is utilized, i.e., RSUs and vehicles

in the opposite direction track objects using previous measurements, coverage

reliability can be further improved. In fact the coverage reliability increases

with τ . Note that collaborating with RSUs utilizing the temporal diversity

alone can already provide a relative high coverage, e.g., over 95%. This indi-

cates that relative mobile RSUs can have a good coverage of the environment

by tracking objects even when RSUs are not located higher than all objects

and are subject to objects. Comparison of coverage for vehicles moving in
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different directions show that RSUs benefit more from temporal diversity in

sensing vehicles moving in the further away lanes. The reason is that the ob-

structions in the nearby lanes have larger relative movements, thus RSUs will

see larger temporal diversity in obstruction field.

5.3.4 Generalized Sensing with Mobile Sensors

In this section we provide a preliminary generalized model for sensing

with mobile sensors. In particular we consider a setting where sensors are

moving and sense the environment collaboratively. We try to characterize the

coverage for a fixed object and the temporal dynamics of coverage for such an

object.

We ignore the impact of obstructions, e.g., sensors are drones moving

above the ground and not obstructed. Assume sensors are randomly located

on an 2-D infinite plane, each moving in a random direction, Θ ∼ unif[0, 2π].

The velocity of sensor i at time t, Vi(t) ∈ R+, is IID, bounded and stationary.

The acceleration of sensors is also bounded. We denote by V ∈ R+ a random

variable having the same distribution of the sensor velocity. At time 0, the

sensors are initially randomly located on the plane following an HPPP with

intensity λsensor,

Φs = {Xi, i ∈ N+}.

The sensing support of sensor i, Si ∈ R2, is a disc centered on the sensor with

radius Ri, i.e., Si = b(Xi, Ri). Objects are randomly located on the plane, and

we consider a typical object located at 0 with a fixed convex shape a ⊂ R2.
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For a location, a is a single point. We assume that an object occupying is

sensed if the region occupied by the object overlap with the sensing support

of any sensor, i.e., the typical object is sensed if

∃i ∈ N+ s.t. Si ∩ a 6= ∅.

Based on our assumptions we have the following results on the distri-

bution of sensors and the coverage of a typical object (or location).

Lemma 5.3.4. (Displacement theorem) If at time 0 sensors follow an HPPP

with intensity λsensor, sensors move independently in random directions uni-

formly distributed in [0, 2π] and the velocities of sensors are IID, at any time

t the locations of sensors follow an HPPP with intensity λsensor.

Denote by R ∈ R+ a random variable with the same distribution as

the radius of sensing support, a ⊆ R2 an convex shape representing the shape

of the reference object. Recall that we let ν2(a) denote the area of a, ν1(∂(a))

the length of the perimeter of a. The number of sensors viewing the typical

object with shape a is given by the following result.

Theorem 5.3.5. (Number of sensors viewing an object) At any time t, the

number of sensors seeing a typical object with a convex shape a, Nsensor(t),

follows a Poisson distribution with mean

E[Nsensor(t)] = λsensor ·
(
π E[R2] + ν2(a) + E[R] · ν1(∂(a))

)
. (5.38)
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The probability that the location is sensed by at least one sensor is then given

by

psensed = 1− e−E[Nsensor(t)]. (5.39)

The above result is the direct application of generalized Steiner Formula

[57] as used in Section 3.1.

Based on our previous analysis of temporal dynamics of blockage state

in mobile wearable network, we characterize the spatio-temporal dynamics of

the sensing of a typical object as follows.

Theorem 5.3.6. (Temporal arrival of sensors covering a typical object) Based

on our assumptions on sensor mobility, a given object of shape a experiences

a Poisson arrival of new sensors which provide coverage that has rate

λQsensor = λsensor · E[V ] ·
(
2 · E[R] + ν1(∂(a))/π

)
, (5.40)

where E[V ] is the average velocity of sensors.

Theorem 5.3.7. (Temporal dynamics of sensing of a typical object) The sens-

ing state of a typical object follows an alternating renewal process. The du-

ration an object of shape a is not viewed by any sensors, Tnotsensed, has an

exponential distribution with mean

E[Tnotsensed] =
1

λQsensor

=
1

λsensor · E[V ] ·
(
2 · E[R] + ∂(a)/π

) . (5.41)

The duration the object is viewed by some sensor, Tsensed, has mean

E[Tsensed] =
psensed

1− psensed

E[Tnotsensed]. (5.42)
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The proof of the theorem follows our proof for Theorem 3.2.1. For the

sensing of a location, we have ν2(a) = 0 and ν1(∂(a)) = 0 and the results

directly apply.

Based on Thm. 5.3.7 the probability (the proportion of time) that a

location/object is not sensed for at least tnotsensed is given by,

pnotsensed · e−λ
Q
sensor·tnotsensed . (5.43)

5.4 Robustness in Collaborative Sensing

In this part we briefly discuss the robustness characteristics of collabo-

rative sensing.

5.4.1 Metric for Sensing Robustness

The (γ, τ)-object coverage reliability introduced in Def. 5.3.3 could be

used as a metric for robustness in collaborative sensing. Diversity in the points

of view (spatial diversity) helps improve the reliability of computational per-

ception of the environment, e.g., a bicycle can be distinguished from pedestri-

ans when seen from different points of view. The redundancy in sensor data

also improves robustness to sensor / link failures. As for temporal diversity,

measurements taken at different times can be used to better track and predict

changes in the environment.
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5.4.2 Impact of Failures

Sensing and communication are the two key components underlying

collaborative sensing. The impact of different types of failures can be summa-

rized as follows:

Failures in sensing and communication. If both the sensing and com-

munication capability of a vehicle fail, the vehicle can no longer perceive the

environment and perform automated driving. Such vehicles would need to be

driven by humans or pull over to the side of the road. Such vehicles also would

no longer participate in collaborative sensing. For other collaborative sensing

vehicles, such failures are equivalent to reducing the penetration ratio. How

the collaborative sensing performance and communication cost scales in the

penetration ratio has already been studied in Section 4.2 and Section 4.4.

Failures in sensing. If the sensors on a vehicle fail but it can still com-

municate, the vehicle can sense the environment based on sensor data from

other vehicles participating in collaborative sensing. The vehicle may still per-

form automated driving, but the sensing of the environment surrounding the

vehicle can be poor, especially at low penetrations. In this setting collabo-

rative sensing should probably facilitate human drivers instead of performing

fully automated driving. To other vehicles, the penetration of sensors is lower,

so is the sensing coverage and redundancy. However, the vehicle can still help

relay data, thus the communication cost on V2I network does not increase (ac-

tually the communication cost may decrease as the total amount of generated

sensor data reduces).
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Failures in communication capabilities. If the communication capabili-

ties of a vehicle fails, the vehicle can still sense the environment and perform

automated driving based on its own sensors. However the coverage of a single

vehicle is obstructed and the vehicle can not coordinate with other vehicles.

The vehicle should take more conservative actions, including driving slower,

increasing the gaps between vehicles, and being more cautious in path plan-

ning / changing lanes, etc. To other vehicles, failures in communication is the

same as reducing penetration ratio.

5.5 Conclusion

In this chapter we show that carefully deployed sensing capable infras-

tructure has good coverage of roads, and can effectively help vehicles in sensing

beyond obstructions. However, this would require deployment of sensing and

communication capable RSUs regularly along the roads and at intersections,

as enabling sensing at existing cellular infrastructure may suffer from obstruc-

tions. Furthermore, to share sensing data with all relevant vehicles, long range

and high rate V2I/V2V (relay) links are required. One may consider enabling

infrastructure to share and/or relay sensor data generated by vehicles and

infrastructure with neighboring infrastructure via (mmWave) backhaul.

In addition our analysis and findings also apply for V2I communica-

tion relying on the availability of LOS channels, e.g., millimeter wave based

communication. In the future more data traffic would be generated on the

road, including safety related and infotainment data. Service providers may
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focus more on serving the needs of increasing mobile traffic demands, e.g., by

deploying infrastructure which are carefully placed (i.e. unobstructed coverage

of roads) and have good backhaul support.

5.6 Appendix: Proofs and Additional Results

5.6.1 Proof of Theorem 5.1.1

Proof. Consider a typical point 0 on a typical horizontal line, x-axis. The

intersections on a horizontal road follow an HPPP of intensity µh
inter = λv

road,

thus the spatial density of intersections is

λinter = λh
road · λv

road. (5.44)

Case 1: λrsu ≤ λinter. Each intersection has an independent probability

of λrsu/λinter to have a RSU. The RSUs along a typical road thus follows an

HPPP with intensity

λrsu

λinter

· µh
inter =

λrsu

λh
road

. (5.45)

The coverage probability is thus given by

pinter,h
cover (λrsu, rrsu, λ

h
road, λ

v
road) = 1− e

− λrsu
λh

road

·2·rrsu
. (5.46)

Case 2: λrsu > λinter. Denote by µrand
rsu the linear intensity of the ran-

domly distributed RSUs along the road in addition to the RSUs at intersec-

tions. The total spatial density of RSUs is λrsu, thus the spatial density of
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randomly deployed RSUs should satisfy that

λrsu = λroad · µrand
rsu + λinter, (5.47)

µrand
rsu =

λrsu − λinter

λroad

=
λrsu − λh

road · λv
road

λroad

. (5.48)

On a typical horizontal road, the RSUs at intersections and randomly de-

ployed RSUs are independent, thus the RSUs on the road form an HPPP with

intensity

µtotal,h
rsu = µh

inter + µrand
rsu

= λv
road +

λrsu − λh
road · λv

road

λroad

=
λrsu + (λv

road)2

λh
road + λv

road

,

(5.49)

i.e., the RSU intensity of randomly located RSUs plus the benefit from RSUs

located at intersections. The coverage probability given λrsu > λinter is thus

given by

pinter,h
cover (λrsu, rrsu, λ

h
road, λ

v
road) = 1− e−µ

total,h
rsu ·2·rrsu . (5.50)

Combine the two cases and we finish the proof.

5.6.2 Proof of Theorem 5.1.2

Proof. Under our model of buildings, the region occupied by buildings follow

a Boolean process [57]. A building centered at y with shape a0 blocks the BS

at x if

(y ⊕ E(x, a0)) ∩ l0,ρ(a0)·x 6= ∅, (5.51)
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i.e., the location of building satisfies that,

y ∈
(
l0,ρ(a0)·x ⊕ Ě(x, a0)

)
. (5.52)

The buildings are independent, and y ∈ Db, thus we can get the expected

number of obstructing buildings by taking expectation over A0, i.e.,

E[Nb(x)] = λb · EA0

[∣∣(l0,ρ·x ⊕ Ě(x,A0)) ∩Db

∣∣] (5.53)

By the Boolean process, Nb(x) follows an exponential distribution, thus the

probability that a BS located at x is not obstructed is given by

P(Nb(x) = 0) = e−E[Nb(x)]. (5.54)

By Campbell’s theorem [57], the number of BSs sensing 0, NBS, has mean

E[NBS] = λBS ·
∫
DBS∩b(x,rBS)

e−E[Nb(x)]dx. (5.55)

5.6.3 RSU Sensing Coverage in Poisson Line Process Model

We consider the coverage of infrastructure based sensing in Poisson line

process road model.

Each road is modeled as a undirected straight line in the space, parametrized

by (p, θ), where p ∈ R is the perpendicular distance to the origin 0, θ ∈ [0, π)

is the angle between the line and the x1 axis, see [57].

ΦL = {(Pi,Θi), i ∈ N+}.
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(a) RSU based sensing (b) Cellular based sensing

Figure 5.18: (a) Model for RSU based sensing. (b) Model for cellular (BS)
based sensing.

with intensity λroad. The state space of lines is R×[0, π], and the state of the

lines, (Pi,Θi), follow an HPPP with intensity λroad in R×[0, π). This process

is known to be translation invariant and to have an average length of line

segments per unit area λroad [57].

In randomly distributed and evenly spaced deployment schemes, the

coverages are the same as the results in the MPLP model, see Eq. 5.9 and

Eq. 5.10. For RSUs at intersections along with randomly distributed RSUs,

let us first study the distribution of road intersections. Denote by λinter the

spatial density of road intersections, which is given in the following theorem.

Theorem 5.6.1. In a Poisson line model of density λroad, the intersections

on a line follows an HPPP of intensity

µinter =
2

π
· λroad. (5.56)
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The spatial density of line intersections is

λinter =
λ2

road

π
. (5.57)

Proof. Consider a typical line selected from the line process, e ∈ ΦL. By

Slivnyak-Mecke theorem [57], the Palm distribution of the line process as seen

by e, ΦL\{e}, has the same distribution of ΦL. Denote by Ψ the intersections

between e and ΦL\{e}. ΦL is isotropic, i.e., Θi ∼ unif[0, 2π], and translation

invariant, thus Ψ is a Poisson point process on e [57] with intensity

µinter =
2

π
· λroad. (5.58)

Each RSU deployed at intersections is shared by two roads, thus λinter is given

by

λinter =
λroad · µinter

2

=
λ2

road

π
.

(5.59)

Compared to the intersection density in MPLP in Eq. 5.11, the inter-

section density in the Poisson line model is larger at the same road density

λroad. The coverage of the roads is given by the following theorem.

Theorem 5.6.2. In the Poisson line road system, the coverage probability of

RSUs when RSUs are first deployed at intersections and then along the roads

randomly is given by,

prsu,inter
cover (λrsu, rrsu, λroad) =

{
1− e−

2·λrsu
λroad

·(2·rrsu)
, if π · λrsu ≤ λ2

road

1− e−µtotal
rsu ·(2·rrsu), otherwise

, (5.60)
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Figure 5.19: Required sensor density to achieve 90% coverage at different road
densities under MPLP model and Poisson line process model.

where

µtotal
rsu =

1

π
· λroad +

λrsu

λroad

(5.61)

is the linear density of RSUs on a typical road when λinter > λrsu.

The proof of the above result is similar to the proof of Theorem 5.1.1 in

the appendix (Section 5.6.1). The scaling of coverage in λrsu, rrsu, and λroad, is

similar to those in MPLP model, and the conclusions and implications on the

performance and deployment of RSUs would be identical. The only difference

would be that the density of road intersections is higher than that in MPLP.

The required RSU density to reach coverage requirement, λinter,min
rsu , could be

smaller as there are more intersections to deploy RSUs, see Fig. 5.19.
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Chapter 6

Conclusion and Future Work

Recent advances in communication and sensing technologies are en-

abling new applications, e.g., mmWave based wearable devices and collabora-

tive sensing for automated driving. These new application scenarios bring new

challenges to communication network design. Communication in mmWave

bands is promising in that it can in principle provide high rates and low latency,

yet is sensitive to blockages and mobility, especially for wearable networks in

dense and dynamic environments. In automated driving applications, sensing

and information sharing (in mmWave bands) are also subject to obstruction

and dynamics in the environment. In this dissertation we explored the impact

of blockage (obstruction) and mobility on collaborative sensing and mmWave

based communication, and the implications on the design of communication

networks.

mmWave based communication. At a high level the results in this

dissertation suggest that for dense mmWave wearable networks, blockage from

neighboring users’ bodies limits the strong interferers to a few stable nearby

neighbors, which should make it possible to design scalable MAC protocols to

manage interference. However, communication amongst wearable devices on a
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single user could still be challenging. Such communication channels are subject

to blockage by the user, e.g., limbs and torso, and to maintain connectivity

may need to rely on reflections off (mobile) nearby objects. Addressing the

need for reliable (low latency) connectivity when such self blockages occur,

might be a challenge for such systems.

Collaborative sensing. In this dissertation we quantified the perfor-

mance benefits and communication costs associated with collaborative sens-

ing, and their dependence on the penetration of collaborative vehicles. Our

study focused on characterizing what can be “seen” via collaborative sens-

ing, e.g., sensing coverage and redundancy/diversity. Quantifying how such

information will improve computational perception of the environment, e.g.,

translating sensing coverage and redundancy perception quality or application

performance remains yet to be addressed. This is critical towards deciding

collaboration schemes and thus communication requirements of future vehic-

ular automated driving systems. We envision that collaborative sensing based

on generic sensing models, i.e., vehicles using standardized models of the en-

vironment and sharing processed sensor data based on such models, will save

computation and communication costs and is likely to be critical in the devel-

opment of such systems.
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