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Abstract

Microarrays (DNA, protein, etc.) are massively parallel affinity-based biosensors capable of detecting
and quantifying a large number of different genomic particles simultaneously. Among them, DNA microar-
rays comprising tens of thousands of probe spots are currently being employed to test multitude of targets
in a single experiment. In conventional microarrays, each spot contains a large number of copies of a single
probe designed to capture a single target, and hence collects only a single data point. This is a wasteful
use of the sensing resources in comparative DNA microarray experiments, where a test sample is measured
relative to a reference sample. Typically, only a fraction of the total number of genes represented by the two
samples is differentially expressed, and thus a vast number of probe spots may not provide any useful infor-
mation. To this end we propose an alternative design, the so-called compressed microarrays, wherein each
spot contains copies of several different probes and the total number of spots is potentially much smaller
than the number of targets being tested. Fewer spots directly translates to significantly lower costs due to
cheaper array manufacturing, simpler image acquisition and processing, and smaller amount of genomic
material needed for experiments. To recover signals from compressed microarray measurements, we lever-
age ideas from compressive sampling. For sparse measurement matrices, we propose an algorithm that has
significantly lower computational complexity than the widely-used linear-programming-based methods, and
can also recover signals with less sparsity.
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1 Introduction

Over the past decade, high-throughput assay technologies have received a lot of attention in the genomic

research community and biotech industry. Among these technologies, DNA microarrays have attracted

much interest due to their capability to test as many as tens of thousands of different nucleotide sequences

simultaneously. This stands in contrast to traditional techniques that are able to analyze only a small number

of nucleotide sequences at a time.

Sensing in DNA microarrays [1]-[8] is based on the process of hybridization in which complementary

DNA strands bind to each other creating structures in lower energy states. Typically, the surface of a DNA

microarray comprises an array of spots, each spot containing a large number of identical single-stranded

DNA sequences (probes) designed to capture copies of a single DNA molecule (target) of interest. DNA

microarrays are often used to measure gene expression levels, i.e., to quantify the process of transcription

of DNA information into messenger RNA molecules (mRNA). The information transcribed into mRNA is

further translated to proteins, the molecules that perform most of the functions in cells. Therefore, by mea-

suring gene expression levels, we may be able to infer critical information about the functionality of cells or

whole organisms [9]-[11], study diseases and the effects of drugs on them [12]-[18], etc. DNA microarrays

are often used to compare the gene expression levels of a test sample with that of a reference sample. In a

typical scenario, only a fraction of the total number of genes (e.g., 30, 000 in an entire genome) is found to

be differentially expressed. Therefore, a large fraction of a microarray does not contribute any information

about the subset of the genes that are differentially expressed. To remedy this, in [19] a microarray archi-

tecture comprising spots that contain mixtures of several different probes was proposed, so that a signal

measured at each probe spot is potentially a combination of as many targets. This allows acquisition of mul-

tiple data points for each of the targets being tested, including those that are indeed differentially expressed.
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However, the signal recovery in the composite microarrays of [19] does not exploit inherent sparseness of

the signal.

In this paper, we leverage ideas from compressive sampling to enable more economic usage of the

sensing resources in composite microarrays. The essential idea of compressive sampling is that we may be

able to recover an inherently sparse signal by using far fewer measurements than what is typically needed

for a signal which is not sparse [21]-[27]. Compressive sampling is closely related to the problem of solving

an underdetermined system of linear equation with a sparseness constraint – which is precisely the problem

of signal recovery in composite microarrays with fewer probe spots than probes. By judiciously choosing

probes comprising each spot, we may be able to recover sparse signal from a microarray wherein the number

of probe spots is significantly reduced. We refer to such platforms as compressed microarrays. Having

fewer probe spots translates to lower costs due to cheaper array manufacturing, simpler image acquisition

and processing, and smaller amount of genomic material needed for experiments. Moreover, decreasing

sample volume size is critically important in order to further the applications of microarray technology in

diagnostics, and enable environmental monitoring applications.

Typically, DNA microarrays are manufactured by either spotting (i.e., printing) probe molecules in

their allotted spots, or by a direct probe synthesis on the array. In this paper we focus on the former,

i.e., we propose and study compressed microarrays manufactured by probe spotting, and l1-optimization

techniques for a sparse signal recovery therein. On the other hand, recent work [38] proposes the design of

probes, each of which can potentially capture several different targets, and employs the belief propagation

approach to facilitate sparse signal recovery. The design of probes in [38] can be quite challenging; in

particular, balancing probes selectivity, specificity, as well as performing array calibration (i.e., determining

the strength of binding of each target analyte to its corresponding probe) can be problematic. Our approach,

however, employs already-designed probe sets and simply requires mixing a number of different probes
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prior to spotting them on an array – a procedure which is readily feasible. We should also note that, for

simplicity of array manufacturing, we insist that the number of probes constituting spots in compressed

microarrays is not very large (which in turn poses constraint that the so-called sampling matrix be sparse

itself). As we will show in the paper, this additional constraint on the compressed microarray design is

actually beneficial from the signal processing perspective since it enables the development of novel efficient

signal processing algorithms for sparse signal recovery.

The paper is organized as follows. In Chapter 2, we give a brief background on DNA microarrays and

compressive sampling. Chapter 3 introduces the compressed DNA microarray architecture and presents

a simulation study of their performance. In Chapter 4, a novel, computationally efficient algorithm for the

recovery of sparse signals specifically tailored for applications to compressed DNA microarrays is presented.

Experimental results are described in Chapter 5, while the summary and conclusions are given in Chapter 6.

2 Background

2.1 DNA microarrays

To evaluate the abundance of target molecules in a biological sample, DNA microarrays rely on hybridiza-

tion, a process in which single-stranded nucleotide sequences bind to each other creating structures in lower

energy states. In fluorescent-based systems, the target molecules are labeled with fluorescent tags prior

to the actual experiment. When applied to the microarray and under appropriate experimental conditions

(e.g., temperature and salt concentration), labeled target molecules begin hybridizing to the complementary

probes. The process of hybridization may take hours before it reaches the steady-state. Then, the array is

washed, at which point unbound target molecules are removed. Finally, the fluorescent molecules attached

to targets bound to probe spots are excited and their emission is measured to obtain an image. The image
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intensities are correlated to the hybridization process, and thus provide the information about the amount of

targets under evaluation.

DNA microarrays are often used to evaluate gene expression levels, i.e., quantify the process of tran-

scription of DNA data into mRNA. In gene expression profiling applications, DNA microarrays compare the

gene expression levels of a test sample with the gene expression levels of a reference sample. For instance,

one may be interested in comparing gene expression between normal and diseased (e.g., cancerous) cells.

This is typically done using two-color microarrays, in which the two samples are labeled with two different

types of fluorescent tags; in particular, the two types of tags are capable of emitting light at different wave-

lengths. The difference of the two signals is used as an indication of the relative amounts of the mRNA

in the test and the reference sample. If the amount of mRNA in the test sample is much smaller or larger

than the amount of mRNA in the reference sample, the corresponding gene is said to be under-expressed or

over-expressed, respectively.

2.2 Compressive sampling

In compressive sampling, we are interested in estimating an n-dimensional signal x which has no more than

k non-zero entries. (Note that we do not know a priori the locations of the non-zero entries.) So, k < n; in

fact, we frequently focus on applications where k << n.

The vector x is not directly observable. Instead, we observe m linear combinations of the entries of x,

yi =
n∑

j=1

Aijxj , i = 1, 2, . . . , m, (1)

where k < m < n. In other words, the number of measurements that we collect is smaller than the size of

the vector x, yet larger than the number of its non-zero entries. Collecting the coefficients Aij into an m×n
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matrix A, we can write (1) in a matrix form

y = Ax. (2)

The underdetermined system of equations (2) may, in principle, be solved by using the fact that the vector

x is sparse. In particular, we could consider all possible combinations of k columns of A, and attempt to

solve the corresponding system of equations which is overdetermined (since each one has m equations with

k unknowns). Assuming that each of these combinations of columns forms a matrix with a full rank, at least

one of the overdetermined systems will have a solution. This solution determines the positions and values

of the non-zero entries in x. However, the outlined approach requires solving up to




n

k


 systems of

equation, which, for k << n, is approximately O(nk), and is clearly practically infeasible.

On the other hand, for a long time it has been known that constrained l1 minimization,

min
x, Ax=y

‖x‖1, (3)

as well as the related constrained quadratic programming (so-called Lasso [20]),

min ‖y −Ax‖2 subject to ‖x‖1 ≤ β, (4)

where ‖x‖1 =
∑n

i=1 |xi| denotes the l1-norm of the vector x, and β is an appropriately chosen constant,

perform well when employed for finding sparse solutions (see, e.g., [21], [22], [35]). Only recently there

have been theoretical results justifying the performance of the constrained l1 minimization. These results

show that, for measurement matrices A which satisfy certain conditions, the constrained l1 minimization

recovers the solution if the unknown vector x is sparse enough, i.e., if the ratio k/n is sufficiently small
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[25], [28]. The aforementioned conditions require that all subsets of the columns of A be sufficiently

non-singular. Verifying such conditions is quite difficult and, thus, finding k which guarantees perfect

reconstruction is rather hard. Recently, there has been a lot of effort on finding k which asymptotically

(for large n) guarantees that the solution will be found with high probability for a large class of random

matrices A [28]. In particular, there exist such results for matrices A with random Gaussian entries, as

well as those with distributions that are symmetric around zero. We should also mention an ongoing search

for recovery methods in the presence of noise [33]-[37]. These are of particular importance in practical

scenarios, including compressed microarrays presented in this paper.

A note about complexity: A straightforward solution to l1 minimization problem is obtained by linear

programming, which can be solved in polynomial time (often O(n3), where n denotes the number of un-

knowns). For applications with very large n, cubic complexity may present practical difficulties. Therefore,

there is a need for more efficient algorithms and an ongoing effort in signal processing community to find

them [29]-[32]. As a general comment, it appears reasonable to expect that measurement matrices with

special structure (e.g., sparse A) may lead to faster algorithms (more on this in Section 4).

3 Compressed microarrays

When quantifying a sparse signal, compressive sampling provides cost-efficient utilization of the sensing

resources. In particular, we recall from Section 2.2 that a sparse signal may be recovered from a small

number of linear combinations of its components. The compressive sampling ideas are relevant to the

applications of DNA microarrays in gene expression profiling, where the gene expression levels of a test

sample are compared with the gene expression levels of a reference sample. Since in practical scenarios

only a small fraction of the total number of genes is differentially expressed, the difference of the signals
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produced by the two samples is sparse. Moreover, linear combinations of the signal components may be

acquired by the composite probe spots comprising a mixture of several probe sequences as in [19]. The

sparseness constraint, on the other hand, suggests possible recovery of the signal from potentially far fewer

probe spots than the total number of probe sequences composing the spots of the microarray.

In [39], the authors developed a statistical model for microarrays, which is directly applicable to the

compressed microarrays. In particular, for a compressed microarray with n spots containing probes designed

to quantify m different targets, we can write

y = Ax + w + v, (5)

where y denotes the n-dimensional measurement, x denotes the m-dimensional data vector (the number of

copies of each target), v is the n-dimensional zero-mean iid Gaussian additive noise due to instrumentation

and other biochemistry-independent noise sources, w denotes the shot-noise (i.e., zero-mean iid Gaussian

noise with covariance proportional to the signal – see, e.g., [39]-[40]), and where A is an n × m binary

matrix containing information about probe mixing. In other words, the (i, j) element of A is non-zero if and

only if the jth target can bind to some of the probes in the ith spot. We limit the entries in A to binary 1/0

for the sake of manufacturing simplicity, e.g., to impose the constraint that each microarray spot contains an

equal amount of different probes comprising it. Each row of the matrix A corresponds to a probe spot. The

composition of the ith probe spot, 1 ≤ i ≤ m, is determined by the positions of ones in the ith row of A.

Moreover, the number of different probes in the ith spot is equal to the number of ones in the ith row of the

matrix A. An illustration of the compressed microarray system model is shown in Figure 1.

In a two-color microarray experiment, we are comparing two samples characterized by data vectors x1

and x2, and are interested in finding differentially expressed genes, i.e., finding non-zero entries of the vector
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Figure 1: An illustration of the compressed microarray system model.

x = x1 − x2. Defining y = y1 − y2, w = w1 −w2, and v = v1 − v2, we can write

y = Ax + w + v. (6)

The vector x in (6) is sparse, i.e., it has a small number of entries that are non-zero (or significantly larger

than zero). Recalling the discussion of compressive sampling, it should appear clear that since x is sparse,

one may be able to recover it using (3) or (4).

We should briefly mention the important issue of probe design. Two among the most important prop-

erties of microarray probes are their sensitivity and specificity. Sensitivity is a measure of how strongly

a probe reacts with the target which it is supposed to capture. Specificity, on the other hand, is the abil-

ity of a probe to discriminate between targets, i.e., its ability to ignore (do not bind or cross-hybridize to)

other targets. In (6), we have implicitly assumed that all probes are equally sensitive and that there is no

probe-target binding due to cross-hybridization. The scenario wherein these assumptions do not hold and

techniques which take that into account are considered in [39]. Imbalanced sensitivity, for instance, may

be incorporated in the compressed microarray model by appropriately scaling selected non-zero entries of

A. Imperfect specificity, on the other hand, would require increasing the fraction of non-zero entries in

A. In general, cross-hybridization is detrimental to the complexity of the signal recovery in compressed

microarrays and thus special attention should be payed to specificity of probes in compressed microarrays.
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As an illustration, in Figure 2 we demonstrate the performance of l1-constrained minimization employed

for the detection of sparse signals in a compressed microarray simulated according to the model (6). The

microarray comprises n = 24 probe spots, and each spot contains a mixture of 24 different probes chosen

from the set of m = 96 available probe sequences, each designed to capture one target of interest. So, the

dimension of the matrix A is 24× 96. Moreover, the number of non-zero entries in x is k = 8. Parameters

of the microarray model (6) are chosen so as to mimic a realistic experiment. As implied by Figure 2, the

algorithm successfully recovers sparse data from noisy observations.

For the same system, we compare the relative mean-square-error of the signal vector estimate obtained

via l1-optimization in the compressed microarray with the mean-square-error of the direct readout in the

conventional (i.e., not compressed microarray). The obtained relative mean-square-error is shown as a

function of signal-to-noise ratio (defined as the ratio of the expected signal power and the expected additive

noise power) in Figure 3. The mean-square-error is computed over 1000 Monte Carlo runs, where we

randomly generated signal and noise. As expected, the reduction (by a factor of 4) of the number of probe

spots in a compressed microarray is penalized by a slightly higher estimation mean-square error.

When designing compressed microarrays, we have the freedom in choosing the coefficient matrix A,

i.e., choosing the mixtures which compose the probe spots. A major design challenge is the construction

of matrices A which facilitate the exact recovery of the sparse signal in the absence of noise, and robust

performance of the recovery algorithms in a noisy case. A large fraction of the compressive sampling

literature considers a random choice of A. For example, there are results showing that a large class of

random matrices satisfy the reconstruction requirements mentioned in Section 2.2 with high probability.

This essentially means that, for a random choice of A, as the dimension of the problem n increases, the

probability of finding the correct solution approaches one. We should note that these results require that the

signal be ”sparse enough”.
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Probabilistic results have somewhat limited relevance to the design of compressed microarrays. Costly

synthesis of probes and manufacturing of arrays call for non-random constructions of A and efficient algo-

rithms which would deterministically guarantee exact signal recovery in a noiseless scenario, and be robust

with respect to noise. Moreover, to maintain complexity and cost of array manufacturing low, the number of

different probes composing the spots should not be too large. This translates to a constraint on the number

of ones in each row of the coefficient matrix A. Therefore, signal recovery methods that are inspired by

low-density parity check (LDPC) codes and expander graphs [44]-[51] appear promising in addressing the

above issues. For instance, an LDPC code generator matrix is a well suited choice for the coefficient matrix

A in compressed microarray applications: it has fixed and low number of ones in each row and column, and

is generally non-singular which is one of the requirements for signal recovery capability.

Finally, since we have the freedom of choosing the coefficient matrix A, and since A is sparse itself, it is

reasonable to expect that we can find faster and more robust algorithms, e.g., faster than linear programming.

Fast algorithms are of particular importance in the compressed microarray applications, where the size of

the unknown vector x may be rather large (up to tens of thousands, i.e., the number of genes).

3.1 Compressed microarrays for aCGH technologies

Array comparative genomic hybridization (aCGH) technology, wherein total genomic DNA from a test and

a reference samples are compared on a DNA microarray, has recently emerged as a platform for detecting

and mapping alterations in genomic structures. The arrays used in aCGH applications may have as many

as million of distinct probes and are thus capable of providing high-resolution information about the DNA

sequence in focus. The aforementioned alterations (i.e., changes in DNA copy number) include small ampli-

fications and deletions, as well as large chromosomal gains and losses [42]. Such alterations are commonly

encountered in various types of human cancers, including breast and ovarian (see, e.g., [42] and the refer-
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ences therein). Therefore, detecting DNA alterations can provide valuable information about the genomic

mechanisms of cancer as well as be used in diagnostics and search for drug treatments.

The alterations typically affect continuous segments of a genome, and their total length is just a fraction

of the length of entire genome. By mapping DNA segments to their chromosomal locations and reordering

x accordingly, the unknown signal is both sparse and piecewise constant (see, e.g., [43] and the references

therein). Sparse signal with piecewise constant segments can be efficiently recovered using l1 minimization.

For instance, the Lasso optimization problem (4) can be modified to

min ‖y −Ax‖2 subject to ‖x‖1 ≤ β, ‖Dx‖1 ≤ γ, (7)

where β and γ are appropriately chosen constants, and where the matrix D denotes the differentiation

operator, i.e., its general structure is given by

D =




1 −1 0 0 0

0 1 −1 0 0

. . . . . .

0 0 0 1 −1




.

[We should note that other constraints on the signal, such as piecewise linear, can be taken into account in a

way similar to (7).]

In Figure 4, we illustrate the performance of the algorithm (7) when applied for detection of sparse,

piecewise-constant signals in compressed microarrays simulated according to the model (6). The microarray

comprises n = 24 probe spots, and each spot contains a mixture of 24 different probes chosen from the set

of m = 96 available probe sequences, each designed to capture one target of interest. Hence, the dimension
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of the matrix A is 24 × 96. Moreover, the number of the non-zero entries in x is k = 28. The simulation

parameters of the model (6) are chosen so as to mimic realistic experiment. As implied by Figure 4, (7)

successfully recovers sparse data from noisy observations. Note that the fraction of non-zero components

of x is fairly large (k = 28 out of m = 96). In fact, without the additional piecewise-constant constraint, l1

minimization is not able to recover the signal since it is not sufficiently sparse. However, since the derivative

of a piecewise-constant signal is very sparse, the signal can be efficiently recovered using (7).

4 Speeding up the sparse signal recovery in applications with sparse coeffi-

cient matrices

When the coefficient matrix A is sparse, as in the compressed microarray applications, the sparse signal

recovery may be performed more efficiently than in the cases where A has a general structure. To this end,

we start off by making several observations below.

Let us consider the noiseless case and yi, the ith component of the observation vector y. It is obtained

as an inner product of the ith row of A with the vector x,

yi =
n∑

k=1

aikxk, (8)

where aik denotes the (i, k) entry of A. The sparseness of both A and x implies that yi may be zero for some

i; clearly, the chance of this happening increases with the sparseness of A and x since, as their sparseness

increases, it becomes more likely that, for a given i, we cannot find k such that both aik 6= 0 and xk 6= 0.

On the other hand, in the compressed microarray applications A comprises zeros and ones while the

non-zero entries of x are real numbers. Therefore, if aikxk 6= 0 for any k, it is highly unlikely that yi in (8)
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is zero. Let Ki denote the set of indices k, 1 ≤ k ≤ n, such that aik 6= 0. If yi = 0, we may conclude that,

with high probability, xk = 0 for all k ∈ Ki.

Similarly, if two or more entries in the observation vector y are equal and non-zero, with high probability

it is so because they measure the same non-zero components of x. For instance, if yi = yj 6= 0, they are

equal because not all xk, k ∈ Ki ∩ Kj , are zero. More importantly, yi = yj 6= 0 also means that all xk,

k ∈ (Ki ∪ Kj) \ (Ki ∩ Kj), are zero. In other words, if yi = yj 6= 0, then xk = 0 for every k such that

aik 6= ajk. Similar statements can be made if more than two components of the observation vector y are

non-zero and equal.

Using the observations above, we can recover many of the components of x and often all of them. If all of

the components are not found, one can attempt to find the rest via the constrained l1 optimization problem

(3). The advantage now is that, due to the removal of many unknowns and equations, the computational

complexity of this step is significantly reduced – see comments below.

The procedure described above can be formalized with the following algorithm.

Input: y, A.

1. Form subsets collecting indices of the components of y of equal value. Denote by S a subset among

them with the largest cardinality (if there exist more than one such subset, choose any). Denote by ys

the value of the components of y with an index from S .

2. If |S| = 1, terminate the algorithm.

3. For each si ∈ S, 1 ≤ i ≤ |S|, find Ki = {k : asik 6= 0}.

4. Find subsets P and Q defined as P = K1 ∩ K2 ∩ · · · ∩ Ksi , Q = (K1 ∪ K2 ∪ · · · ∪ Ksi) \ P .

5. If |P| = 1, then
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5.1. Set x̂p = ys, where p is the sole component of P .

5.2. y = y − ysAp, where Ap denotes the pth column of A.

5.3. Remove the components of y having indices in S, and the corresponding rows of A.

5.4. Remove the columns of A having indices in P ∪Q.

6. If |P| > 1, then

6.1. Remove all but one component of y with indices in S, and the corresponding rows of A.

6.2. Remove all columns of A with indices in Q.

7. Go to step 1.

We will refer to the above as the sparse matrix pre-processing (SMPP) algorithm. Based on the previously

made observations, the SMPP algorithm exploits sparseness of the coefficient matrix A to compute as many

components of x as possible. In this process, some rows and columns of A become redundant. Hence, in

step 5 and step 6, the SMPP algorithm updates A by removing the redundant columns and rows. In doing

so, the algorithm may fully recover the sparse signal x. If not, it will terminate after recovering a number of

components of x and removing the corresponding rows and columns of A. The remaining components of x

can be recovered with a linear program, solving a reduced size l1 minimization problem whose constraints

involve the reduced coefficient matrix A. We will refer to the combination of the SMPP and linear program

as the SMPP-LP algorithm. Whether the SMPP algorithm will be sufficient to recover x, or SMPP-LP need

to be used, depends upon the sparseness and particular structure of A.

The computational complexity of linear programming, often O(n3) where n is the size of the problem,

may be prohibitive for high-dimensional problems. On the other hand, the complexity of the pre-processing

described in this section is only linear in n. Therefore, the pre-processing algorithm, which may significantly
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reduce the size of the problem that needs to be solved with linear program, extends practical feasibility of

sparse recovery to large problems such as those encountered in microarray applications.

Figure 5 shows a comparison of the CPU time of SMPP-LP and linear program. The graph shows the

CPU time, averaged over N = 1000 Monte Carlo runs, required for solving a sparse recovery problem

y = Ax where the n×m matrix A and the k-sparse, n× 1 vector x are generated randomly. The matrix A

is sparse with six 1’s per column, and the ratios m/n = 0.25, k/n = 0.1.

On another note, the SMPP (or SMPP-LP) algorithm may relax the requirement on the sparseness of

the signal. For instance, when the coefficient matrix is generated randomly from a symmetric distribution,

constrained l1 minimization may recover signals with k/n at most 0.17. Empirical studies of the SMPP-LP

algorithm for sparse signal recovery in applications where A is sparse imply that the ratio k/n may be as

large as 0.25. In Figure 6, we compare the performance of the SMPP-LP algorithm with the linear program.

The size of x is n = 400, and the largest k that can be recovered with either algorithm is plotted as a function

of the number of measurements m. Clearly, linear program requires more strict sparseness constraints than

the SMPP-LP algorithm. The benefit of the latter is particularly significant for small m/n.

As mentioned earlier, low-density parity check (LDPC) code generator matrices are well suited for the

compressed microarray applications: they are very sparse, with constant number of ones in each row and

column. When they are chosen as coefficient matrices, and the SMPP-LP algorithm is used for recovery,

the signal need not be very sparse. We have tested several rate-1/2 LDPC codes, publicly available from

[52]. In particular, we used the LDPC codes as coefficient matrices A of dimensions 408×816, 504×1008,

2000× 4000, and 4000× 8000. For all of the above, the SMPP-LP algorithm was able to recover randomly

generated signal vectors with sparseness k ≈ m/2 = n/4, i.e., it could recover up to k/n = 0.25.

We recall that the discussion in this section concerns the sparse signal recovery in the noiseless case. In

the noisy case, we use steps 1− 6 of the SMPP algorithm.
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5 Experimental verification

In this section, we present a series of proof-of concept experiments designed and conducted to demonstrate

data acquisition and signal recovery in compressed microarrays. The experiments were conducted in the

Millard and Muriel Jacobs Genetics and Genomics Laboratory at California Institute of Technology. The

goal was detection and quantification of k ≤ 8 targets on an array otherwise capable of testing n = 96

different targets. Moreover, the desired probe spot compression ratio, m/n was chosen to be 4. Therefore,

the compressed microarray has only m = 24 probe spots, each comprising a combination of a number of

different probe sequences. Mixtures of the probes, synthesized oligonucleotide sequences, were deposited

to their respective spots; the targets are cDNA molecules extracted from Escherichia Coli. Details are given

below.

5.1 Description of the experiments

Targets for the compressed microarray experiment were generated using The RNA SpikesTM, a commer-

cially available set of 8 purified RNA transcripts purchased from Ambion Inc. Lengths of the RNA se-

quences are (750, 752, 1000, 1000, 1034, 1250, 1475, 2000) nucleotides, respectively. Typically, these spikes

are used in microarrays for calibration purposes and have been chosen so that the eight sequences have little

mutual correlation. The RNA sequences were reverse transcribed to obtain cDNA targets, which were then

labeled with Cy5 dyes. We denote the set of these 8 targets by T8.

Eight oligo probes designed for capturing the targets in T8 were also purchased from Ambion Inc.

Moreover, we acquired 88 probes designed to test the mouse genome. We denote the set of Ambion probes

as P8, and the set of mouse genome probes as P88. The full set of 96 oligonucleotide probes, all of them

25 nucleotides long, is denoted as P96. The targets from T8 do not cross-hybridize with (i.e., bind to) the
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probes from P88.

We designed m = 24 different mixtures, each comprising 24 probes selected from P96. Each of the

mixtures is deposited in one of the spots of the compressed microarray. Content of the mixtures determine

composition of the coefficient matrix A; hence, each row in A has 24 ones and 72 zeros. The structure of A

we used in the experiments is illustrated in Figure 7 (we omit the full matrix for brevity).

5.2 Experimental results

For all of the experiments described in this subsection, the sparse signal vector x was constructed such that

xk 6= 0 if and only if k ∈ K = {1, 9, 17, 25, 33, 41, 49, 57}. In particular, x1 contains information about

the amount of the first target from the set T8, x9 contains information about the amount of the second target

from T8, etc.

In the first experiment, the targets from T8 were applied to a microarray, where the individual amounts

of targets were (5ng, 5ng, 2ng, 1ng, 10ng, 2ng, 1ng, 1ng), respectively. The experiment was left overnight

and the array, after washing away the sample, was scanned. Figure 8 shows (a) the measured light intensities

of the compressed microarray spots, and (b) the recovered signal. Clearly, the strongest 8 components of the

recovered signal correspond to the targets in T8.

In the second experiment, the targets from T8 were applied to a microarray, where the individual amounts

of targets were (5ng, 5ng, 2ng, 1ng, 10ng, 2ng, 1ng, 1ng), respectively. Similar to the above, the experiment

was left overnight and the array, after washing away the sample, was scanned. Figure 9 shows (a) the

measured light intensities of the compressed microarray spots, and (b) the recovered signal. Once again, the

strongest 8 components of the recovered signal correspond to the targets in T8.

These early experimental results indicate practical feasibility of the techniques proposed in the paper.

The reduction in the number of probe spots is rather significant: the compressed microarrays we designed
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and tested have 4 times fewer spots than what their conventional counterparts would need to perform the

same task. The recovered signal was noisy yet its strongest components correctly identified targets from the

test sample.

We conducted several more compressed microarray experiments testing the targets from T8, including

the experiments where we added complex biological background (i.e., total mice DNA) to the sample; in

these experiments, the strongest components of the recovered signal vector correctly identified targets from

T8 and thus the compressed microarray appears capable of detecting them in the presence of biological

background presence. As a part of the future work, we intend to calibrate the array (i.e., determine the

strengths of the binding of the targets from T8 to their corresponding probes) in order to enable precise

quantification of their amounts.

6 Summary and conclusions

In this paper, we discussed a novel DNA microarray architecture which we refer to as compressed DNA mi-

croarrays. In compressed microarrays, each probe spot contains a mixture of a number of different probes.

By exploiting inherent sparseness of the signals in gene expression studies, target detection and quantifica-

tion can be performed with an array that has significantly smaller number of spots than the number of probes

consisting them. To this end, we used ideas from compressive sampling, and employed linear programming

to solve an appropriate l1-minimization problem. As we have demonstrated in simulations as well as with

experiments, if the signal vector is sufficiently sparse, l1-minimization can recover it.

In addition, we proposed the use of compressed microarray platforms in array comparative genomic

hybridization (aCGH) technologies. There, we demonstrated that the signal can be recovered by performing

l1-minimization with an additional constraint.
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Practical limitations impose certain requirements on the design of compressed microarrays. This is

reflected by the so-called measurement matrix being sparse and comprising 1/0 entries. For such a mea-

surement matrix, efficiency of l1-minimization can be significantly improved. To this end, we proposed an

algorithm for pre-processing the coefficient matrix and, in the process, determining a fraction of (if not the

full) signal vector. The algorithm reduces the size of (or completely eliminates need for) linear program, and

can recover signals with higher signal content than linear programming which requires more sparse signal.

We demonstrated the benefits of the proposed algorithm for both random as well as LDPC code inspired

coefficient matrices. The algorithm was developed with the noiseless scenario in mind; it is of interest to

search for its robust variants.

There are many directions where the work presented in the current paper can be extended. Random

matrices, often considered in the compressive sampling literature, have limited relevance to the compressed

microarray systems. Therefore, we need to find deterministic coefficient matrices that are sparse and have

the properties required for signal recovery. To this end, we have taken some steps in this direction by

studying the use of LDPC codes. It is of interest to extend this study, and expand it by looking into, e.g.,

expander graphs [51], etc.
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Figure 2: Demonstration of the sparse signal recovery in a compressed microarray with n = 24 probe
spots, where each spot comprises mixtures selected from the set of m = 96 probes. The number of non-zero
entries in the 96-dimensional signal is k = 8. Subfigures (a) and (b) show the test and the reference signals,
respectively, versus probe spot index. Subfigure (c) shows the sparse signal, and subfigure (d) its estimate
obtained by solving an appropriate l1 minimization problem.
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Figure 3: Comparison of the mean-square error of the estimate of x via l1-optimization employed for sparse
reconstruction in a compressed microarray with the mean-square error of the direct readout in a corre-
sponding conventional microarray. The parameters used in the simulations are n = 96, m = 24, and
k = 8. The mean-square error is computed over 1000 Monte Carlo runs.
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Figure 4: Illustration of the sparse signal recovery in a compressed microarray for aCGH applications. The
toy example considers an array with n = 24 probe spots, where each spot comprises mixtures selected from
the set of m = 96 probes. The number of non-zero entries in the 96-dimensional piecewise-constant signal
is k = 28. Subfigures (a) and (b) show the test and the reference signals, respectively, versus probe spot
index. Subfigure (c) shows the sparse signal, and subfigure (d) its estimate obtained by solving (7).
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Figure 5: Comparison of the CPU time of SMPP-LP and linear program. The graph shows the CPU time,
averaged over N = 1000 Monte Carlo runs, required for solving a sparse recovery problem y = Ax where
the n×m matrix A and the k-sparse, n× 1 vector x are generated randomly. The matrix A is sparse with
six 1’s per column, m/n = 0.25, k/n = 0.1.
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Figure 6: Comparison of the limits of sparse signal recovery, the SMPP-LP algorithm vs. linear program.
The graph shows the maximum number of non-zero elements of the signal vector, k, as a function of the
number of measurements, m, whereas the size of the signal vector is n = 400.
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Figure 7: Structure of the coefficient matrix A. Dark squares denote locations of ones, white denote locations
of zeros.
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Figure 8: Measured (a) and recovered (b) signal in an experiment where the targets from T8 were applied to
an array. The amounts of the targets used were (5ng, 5ng, 2ng, 1ng, 10ng, 2ng, 1ng, 1ng), respectively. The
strongest 8 components of the recovered signal in plot (b) correspond to the targets from T8.
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Figure 9: Measured (a) and recovered (b) signal in an experiment where the targets from T8 were applied to
an array. The amounts of the targets used were (5ng, 10ng, 5ng, 2ng, 5ng, 2ng, 2ng, 1ng), respectively. The
strongest 8 components of the recovered signal in plot (b) correspond to the targets from T8.
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