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Abstract

We derive several closed-form expressions that generalize co-prime array system model and study a non-

negative gridless compressive sensing formulation of the problem of estimating direction-of-arrival (DOA)

based on the derived model. To solve the problem, two computationally efficient cyclic block coordinate

minimization algorithms are proposed; the algorithms perform atomic norm minimization of an objective

function through a sequence of computationally efficient atom merging and atom activation steps conducted

in subdomains of a continuous atom search space. The convergence properties of the developed algorithms

are analyzed. Numerical simulations demonstrate that the proposed techniques outperform the joint sparsity

reconstruction method (JLASSO) and the ESPRIT method with spatial smoothing (SS-ESPRIT) in terms

of several criteria, and are comparable with the (computationally heavy) convex optimization based methods

followed by model order selection and ESPRIT, i.e. the gridless SPICE with ESPRIT (GLS-ESPRIT), the

atomic norm minimization with dimension reduction and ESPRIT (ANM-ESPRIT), and the nuclear norm

minimization with ESPRIT (NNM-ESPRIT), in respect to root mean square error (RMSE).

Keywords: DOA estimation, cyclic block coordinate minimization, gridless compressive sensing, atomic

norm, co-prime arrays

1. Introduction

The problem of estimating direction-of-arrival (DOA) of the signals impinging on an array of sensors is

encountered in a number of applications in radar, sonar, wireless communications, and other areas [1–5].

Source identifiability and DOA accuracy improve as the number of sensors grows [6]; however, increasing the

number of sensors leads to higher cost and hardware complexity of the DOA estimation scheme. It is thus5

desirable to enable identifiability and accuracy of a DOA estimation scheme with as small number of sensors

as possible. A fundamental limitation of the conventional uniform linear array (ULA) with O(M1 +M2)

∗Corresponding author
Email address: ircforward@kaist.ac.kr (Heeseong Yang)

Preprint submitted to Signal Processing September 27, 2017



sensors is that it can identify no more than O(M1 +M2) sources. To overcome the limitations of ULAs,

significant research efforts have been undertaken to develop non-uniform array structures [7–16]. Among

those, co-prime arrays1 have attracted significant attention due to their simplicity and efficacy (for details,10

see [11–16] and the references therein).

Rather than directly using raw signal measurements, a co-prime array system typically performs DOA

estimation by relying on a single-snapshot of a virtual signal obtained after vectorizing the sample covariance

matrix of multiple-snapshot raw measurements. In this framework, even when the number of sensors is

smaller than that of the sources, the number of measurements of the virtual array may be sufficiently high

to enable accurate identification of the sources. In particular, DOA estimation in co-prime arrays readily

leads to compressive sensing problems [14–16] of the form

min
u1,...,uN∈Ω

min
x1,...,xN≥0

1

2
‖r−A(u)x‖22 + λt

N∑
k=1

xk, (1)

where A(u) denotes an M×N (complex-valued) matrix with the kth column (or the kth atom) ak (uk) =

[ejπp1uk , ..., ejπpMuk ]T for k = 1, ..., N , p1, ..., pM are integer valued, u = [u1, ..., uN ]T (the components of u

belong to a common bounded range Ω), r is a given M × 1 noisy measurement vector, λt is constrained to

be positive, and x=[x1, ..., xN ]T denotes a nonnegative sparse vector consisting of K<N positive elements15

and N−K zero elements. (We postpone the discussion on the connection between the variables in (1) and

the parameters of DOA estimation in co-prime arrays to Section II.) The problem (1) is encountered in a

number of applications and has been intensively studied in the settings where u (and therefore A(u)) is

either known or restricted to a discrete set of possible values [17–20]. However, when restricting generally

continuous parameters to a finite predefined grid, performance of compressive sensing is typically affected20

by the grid mismatch [21]. If one needs to estimate both the sparse vector x and the vector of parameters u

in order to lead to accurate DOA estimation with no grid mismatch, optimization in (1) can be referred to

as gridless2 compressive sensing or the super-resolution problem [22–24]. In [23, 24], it was shown that the

general total variation minimization for super resolution problems can be reformulated as a computationally

costly convex optimization followed by sequential root-finding to calculate a form of Fourier matrix. This25

idea was extended and applied to DOA estimation in co-prime arrays in [15].

Irrespective of whether raw signal measurements need to be manipulated before being used to formulate

an optimization problem, many researches on gridless compressive sensing have been carried out in the

literature on the structured matrix recovery [25–29] that the estimation of Fourier matrix in [23, 24] is also

categorized into. In [25–27], the convex optimizations, e.g. the atomic norm minimization (ANM) and the30

1As discussed in Section II, the structure of co-prime arrays enables resolution of O(M1M2) sources using only O(M1+M2)

sensors.
2The word “gridless” implies that the parameters belong to an interval on a continuous line.
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nuclear norm minimization (NNM), were used for Hermitian Toeplitz covariance matrix estimation followed

by a spectral estimation method such as MUSIC and ESPRIT [30]. Their work is not based on (1). For a

more comprehensive review of gridless compressive sensing, we recommend the articles by Yang et el [28, 29].

Recently, [31] searched for practically feasible means of performing atomic decomposition [25, 32] and in

this context considered the line spectral estimation variant of (1); that work addressed grid mismatch and35

proposed a technique for atomic norm denoising based on a modified cyclic block coordinate minimization

(CBCM) algorithm [33–35] which, if convergent, finds a solution satisfying the Karush-Kuhn-Tucker (KKT)

optimality condition. A drawback of the method in [31] is the need to perform an a priori unknown number

of correction steps wherein a judiciously selected element of the estimate of x is set to zero and the cost

function is appropriately adjusted; the CBCM procedure is then run anew with u and x re-initialized as40

their current estimates.

In this paper, in order to solve the problem (1) (and therefore the DOA estimation problem in co-prime

array systems), we propose two practical algorithms based on CBCM that do not require the correction steps

of [31]. We refer to the first of these two algorithms as successive-atom-merging cyclic block coordinate

minimization for atomic norm minimization (SAM-CBCMA), and to the second one as successive-atom-45

activating cyclic block coordinate minimization for atomic norm minimization (SAA-CBCMA). As their

names suggest, the algorithms take different approaches to atom selection; while the SAM-CBCMA starts

with superfluous atoms and repeatedly performs a step in which redundant atoms are merged and hence the

number of parameters is reduced, the SAA-CBCMA starts with no atoms and repeatedly activates them

in a greedy fashion. An important common feature of the two proposed algorithms is that they divide the50

bounded range Ω and refine atom selection by performing optimizations in subdomains of Ω. This enables

reduction of the computational complexity as compared to strategies performing atom refinement on the

entire Ω. We observe that when the subdomains are appropriately constructed, the KKT condition of [31]

is not violated.

The contributions of this paper can be summarized as follows:55

• Two methods (SAM-CBCMA and SAA-CBCMA) for the nonnegative gridless compressive sensing

formulation of DOA estimation in co-prime arrays are proposed.

• Guarantees that sequences of estimates generated by the proposed methods converge to a stationary

point of the atomic norm minimization cost function are established.

• Closed-form expressions that generalize the co-prime array system model [11, 12] are derived.60

• Extensive benchmarking results are provided comparing the proposed methods with the various pre-

vious methods3: the joint sparsity reconstruction method (JLASSO) [16], the gridless SPICE with

3The method proposed in [15] seems to be very sensitive to the choice of hyperparameters and for that reason is not included
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ESPRIT (GLS-ESPRIT) [27], the ANM with dimension reduction and ESPRIT (ANM-ESPRIT) [25],

the NNM with ESPRIT (NNM-ESPRIT) [26], and the ESPRIT method with spatial smoothing (SS-

ESPRIT) [12].65

The remainder of the paper is organized as follows. In Section 2, we introduce a co-prime array system

model and its corresponding measurement model for DOA estimation. In Section 3, we provide detailed

descriptions of the SAM-CBCMA and SAA-CBCMA algorithms and prove their convergence. In Section 4

we present results of a computational study of the co-prime array described in Section 2, demonstrating the

superiorities of the proposed algorithms: they are much faster than the benchmarking algorithms except SS-70

ESPRIT; outperform JLASSO and SS-ESPRIT in terms of several criteria – specifically, root mean square

error (RMSE), detection probability (Pd), false alarm count 1 (Pf,1), false alarm count 2 (Pf,2); and are

comparable with the recent gridless sparse methods using computationally heavy convex optimization, i.e.

GLS-ESPRIT, ANM-ESPRIT, and NNM-ESPRIT, in respect to RMSE. Moreover, we study convergence

of the proposed algorithms. Finally, we conclude the paper in Section 5.75

Throughout the paper, the notations (·)T and (·)H denote the transposition and conjugate transposition

operators, respectively. (·)∗ is the conjugate operator. |·| is the cardinality of a set, or the absolute value of a

scalar. Re {·} is the real part of a complex number. Unless otherwise noted, bold characters denote column

vectors. [·]m is the mth element of the vector in square blankets. E {·} is the expectation operator. ĉ (or

ĉ) is the estimate of a scalar c (or a vector c). diag {·} denotes a diagonal matrix whose diagonal entries80

are the elements of the vector in braces. The superscript of (·)(i) indicates the ith iteration. ⊗ denotes the

Kronecker product. ◦ is the Khatri-Rao product. ek is the unit base vector having all zero elements except

the kth element which is equal to one. dxe and bxc denote the least integer that is greater than or equal to

x and the greatest integer that is less than or equal to x, respectively.

Preliminary results of this work were reported in [36].85

2. Background on Co-prime Arrays and the Formulation of the DOA Problem

Consider a 1-D co-prime array where the co-prime numbers are M1 and M2 (M1 <M2) as illustrated

in Fig. 1. Following the setting of [11, 12], the co-prime array consists of two linear arrays that have

M2 sensors with their location set {ndM1|n = 0, 1, ...,M2 − 1} and dcM1 sensors with their location set

{ndM2|n = 0, 1, ..., dcM1 − 1}, where dc is a positive integer. Let us denote the set of unique differences90

between all possible pairs of elements of these two sets by PSD. Unlike in [11, 12], the described setting does

not restrict dc to be 1 or 2. Moreover, the described setting is clearly different from the CACIS and CADiS

presented in [13]. In this section, our main focus is on finding closed-form expressions for the elements of

in the benchmarking study.
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Figure 1: A generalized co-prime array configuration.

PSD and using those expressions to construct an effective measurement model by selecting nonredundant

elements of the vectorized covariance matrix in a co-prime array.95

For an illustration, suppose that sensor spacing d is one. After denoting the largest element of PSD by

Mmax we can write

Mmax =

 M1 (M2 − 1) if dc = 1,

M2 (dcM1 − 1) if dc > 1.
(2)

PSD can be thought of as a collection of integer grid points between −Mmax and Mmax where virtual sensors

are located. The integers between −Mmax and Mmax not included in PSD are associated with the locations

that are referred to as “holes", i.e., those not associated with virtual sensors; therefore, PSD specifies the

virtual array configuration and, thus, the effective measurement model for a co-prime array. To clarify this,

let MC denote the largest positive integer such that the consecutive integers between −MC and MC do not

include the positions of holes. Since M1 and M2 are co-prime, MC can be found as

MC =

 M1 +M2 − 1 if dc = 1,

(dc − 1)M1M2 +M1 − 1 if dc > 1.
(3)

Clearly, the smallest positive number indicating the position of a hole is MC + 1. Furthermore, all positive

5



values indicating the positions of holes should satisfy condition

MC + 1 +m1M1 +m2M2 < Mmax, (4)

where m1 and m2 are nonnegative integers. For given m1 and m2, the left-hand side of the inequality in (4)

corresponds to a position of a hole on the positive grid points. For convenience, we denote the positions of

holes by

m+
1 M1 +m+

2 M2 if dc = 1,

(dc − 1)M1M2 −M2 +m+
1 M1 +m+

2 M2 if dc > 1.

where m+
1 and m+

2 are positive integers. To find explicit expressions for the positions and the total number

of holes, we only need to consider the two possible scenarios: (a) dc = 1 and (b) dc > 1. In particular:

(a) When dc = 1, (4) becomes m+
1 M1 +m+

2 M2 < M1 (M2 − 1) and, by mathematical induction, the range

of m+
2 for m+

1 = 1, 2, ...,
⌈
M2

(
M1−1
M1

)
− 1
⌉
is calculated as

1 ≤ m+
2 ≤

⌊
M1

(
M2 −

(
1 +m+

1

))
M2

⌋
.

The total number of holes on the positive grid is⌈
M2

(
M1−1
M1

)
−1
⌉∑

k=1

⌊
M1 (M2 − (1 + k))

M2

⌋
.

(b) When dc > 1, (4) becomes n+
1 M1 +n+

2 M2 < M1M2 and, by mathematical induction, the range of m+
2

for m+
1 = 1, 2, ...,

⌈
M2 − M2

M1

⌉
is calculated as

1 ≤ m+
2 ≤

⌊
M1 −

m+
1 M1

M2

⌋
.

The total number of holes on the positive grid is⌈
M2−M2

M1

⌉∑
k=1

⌊
M1 −

kM1

M2

⌋
.

Positions of holes on the negative grid are characterized by indices obtained by changing the sign of the

indices of the holes on the positive grid. Following (a) and (b), all elements of PSD are known and scalable

by a positive value d.100

Let us consider a co-prime array system receiving K plane waves, i.e., there are K sources, incident from

directions ϕ1,..., ϕK (in radians), and denote the complex amplitude of the kth plane wave and the noise of

the lth sensor by αk and nl, respectively. Then the received baseband measurement vector y is given by

y = B (ϕ)α+ n, (5)
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where B (ϕ) is a (dcM1 + M2 − 1) ×K array manifold matrix whose kth column corresponds to ϕk, ϕ =

[ϕ1, ..., ϕK ]T , α = [α1, ..., αK ]T , and n = [n1, ..., ndcM1+M2−1]T . Assume that αk and nl are independent,

zero-mean random variables. Then, the covariance matrix of y is given by

Ry = E
{
yyH

}
= B (ϕ) RαBH (ϕ) + Rn, (6)

where

Rα = E
{
ααH

}
= diag {s} ,

Rn = E
{
nnH

}
= diag {sn} ,

s = [E {α1α
∗
1} , ..., E {αKα∗K}]

T
,

sn =
[
E {n1n

∗
1} , ..., E

{
ndcM1+M2−1n

∗
dcM1+M2−1

}]T
.

The vectorization of (6) yields

rvec = vec {Ry} = (B∗ (ϕ) ◦B (ϕ)) s + (I ◦ I) sn. (7)

Let us denote the elements of PSD after having them sorted in ascending order by dpm, m = 1, . . . ,M , where

M =
∣∣PSD∣∣ and pm is an integer. Assuming that d = λ/2 where λ is the wavelength, every element of the

kth column of B∗ (ϕ) ◦B (ϕ) becomes one of ejπp1ϕk , ..., ejπpMϕk .4 We further refine rvec by combining

and averaging its elements that correspond to the identical rows of B∗ (ϕ) ◦B (ϕ). The resulting M × 1

processed measurement vector r in the co-prime array framework is of the form

r = Ae (ϕ) s + sK+1e(M+1)/2 + ε, (8)

where Ae (ϕ) is theM×K matrix with the kth column a (ϕk) = [ejπp1ϕk , ..., ejπpMϕk ]T , ε is a residual vector

due to using a sample covariance matrix instead of the true one, Ry, and sK+1 = 1
dcM1+M2−1

∑dcM1+M2−1
l=1 E {n∗l nl}.

Note that the number of rows of Ae (ϕ) is much larger than that of B (ϕ) in (5) and thus solving

min
u1,...,uN

min
x1,...,xN≥0

1

2

∥∥r−sK+1e(M+1)/2−A(u)x
∥∥2

2
+λt

N∑
k=1

xk (9)

enables identification of more than O(M1 + M2) plane waves – more precisely, it enables identification of

O(M1M2) plane waves. This problem is of the same form as the optimization (1) except that sK+1e(M+1)/2

should be estimated and then eliminated5. Note that the vectors u and x (which we are interested in

estimating) are typically set to have longer lengths than ϕ and s, respectively.

4p1 and pM are −Mmax and Mmax, respectively.
5It is straightforward to eliminate sK+1e(M+1)/2. See Section 4.2 for details.

7



3. The Algorithms and Their Convergence Analysis105

In this section, we describe the SAM-CBCMA and SAA-CBCMA algorithms and analyze their con-

vergence properties. Recall that our methods perform optimizations in subdomains instead of the entire

domain Ω, which can lead to computational efficiency without estimation performance degradation. A

detailed discussion of subdomain is presented in Section 4.2.

3.1. SAM-CBCMA110

Let û(i)
k and Ω

(i)
k denote the estimate of uk and its corresponding subdomain in the ith iteration of the

algorithm. We initialize SAM-CBCMA with equally sized Ω
(0)
k , k = 1, ..., N , with centers û(0)

k . Once û(0)
k ,

k = 1, ..., N , are selected, the initial xk, denoted by x̂
(0)
k , k = 1, ..., N , are found as the solution to (1)

(ignoring the regularization term in the objective function). Next, at iteration i, if x̂(i−1)
k is non-zero we

update the pairs (û(i−1)
k , x̂(i−1)

k ) sequentially according to the equations115

rk = r−
k−1∑
l=1

x̂
(i)
l al

(
û

(i)
l

)
−

N∑
l=k+1

x̂
(i−1)
l al

(
û

(i−1)
l

)
, (10)

û
(i)
k = arg max

uk∈Ω
(i−1)
k

Re
{
aHk (uk) rk

}
, (11)

Ω
(i)
k =

[
max

{
−W, û(i)

k −Ws

}
, min

{
W, û

(i)
k +Ws

}]
, (12)

x̂
(i)
k = max

{
0,Re

{
rHk ak

(
û

(i)
k

)}
− λt

}
/M, (13)

where W and Ws are positive values determining the boundaries of Ω and Ω
(i)
k , respectively (without a

loss of generality, Ω = [−W,W ]). It is worth pointing out that the atom refinement (11) is performed in a

subdomain rather than the entire domain Ω.

If (u
(i)
k , x

(i)
k ) and (u

(i)
l , x

(i)
l ) formed in the ith iteration of the algorithm are virtually undistinguishable,

one of them is considered redundant. To formalize the notion of redundancy, let us refer to the collection of

pairs satisfying
∣∣∣û(j̄)
l − û

(i)
k

∣∣∣ ≤ ∆umax, l 6= k, as a cluster, where ∆umax denotes a pre-selected threshold on

the separation between cluster elements and

j̄ =

 i if l < k,

i− 1 if l > k.

SAM-CBCMA merges all pairs in the cluster as follows. Let us define the index set PSC as

PSC =
{
l|x̂(j̄)

l 6=0 and
∣∣∣û(j̄)
l −û

(i)
k

∣∣∣≤∆umax, ∀l 6= k
}
. (14)
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We re-evaluate x̂(i)
k according to

x̂
(i)
k ← x̂

(i)
k +

∑
m∈PS

C

x̂(j̄)
m , (15)

and force all x̂(j̄)
l for l ∈ PSC to zero. SAM-CBCMA is formalized as Algorithm 1, where imin and δt denote

the minimum number of iterations and the residual threshold for algorithm termination, respectively. The120

SAM-CBCMA algorithm terminates in the iteration i where the merging process does not take place and

the termination condition (steps 18 and 20 in Algorithm 1) is satisfied. The minimum number of iteration,

imin, is imposed to avoid premature termination. Note that without merging,
∣∣PSC ∣∣ + 1 of pairs (û

(i)
k , x̂

(i)
k )

would essentially share a common û(i)
k and thus

∣∣PSC ∣∣ computations would be unnecessarily performed in the

following iteration; merging allows us to avoid those computations and hence accelerates SAM-CBCMA (as125

evident from steps 5–7 of Algorithm 1), as well as to promote sparsity of the solution x̂.

3.2. SAA-CBCMA

Unlike SAM-CBCMA, the SAA-CBCMA algorithm starts with no atoms and increases cardinality of

the support set, greedily selecting and activating atoms over Ω. Such an atom activation procedure is

reminiscent of the active-set algorithm of Lawson and Hanson (LH) [37]. In particular, at iteration i, an

atom is activated according to

û
(i)
k = arg max

uk∈
(
Ω\
⋃

l Ω
(i−1)
l

)Re
{
aHk (uk) rk

}
, (16)

where the feasible range of uk excludes the subdomains corresponding to previously activated atoms. Then,

unless the newly activated atom has a negligible effect on the cost function, all the activated atoms including

the most recent one are refined according to the update equations (10)–(13). If the newly activated atom is130

indistinguishable from a previously activated one, the SAA-CBCMA algorithm is terminated. The differences

between the LH algorithm (applying to our problem) and SAA-CBCMA are that the LH algorithm optimizes

a cost function with no regularization while SAA-CBCMA optimizes a regularized cost function and that

the active-set refinement of the LH algorithm involves rejection of a newly activated atom and re-selection of

another atom on a predefined discrete grid while SAA-CBCMA relies on atom refinement within a continuous135

sub-range, i.e. a subdomain, using (11). The SAA-CBCMA is formalized as Algorithm 2. Note that the

steps 2-9 of Algorithm 2 implement atom activation while steps 10-18 are parts of the atom refinement

procedure. The termination of Algorithm 2 is facilitated via steps 7–9.

3.3. Convergence Analysis

In this subsection, we build upon the result of [35] to establish convergence of the proposed cyclic block

coordinate minimization algorithms. For convenience, let us refer to a row vector of length tk, k = 1, ..., L1,

9



Algorithm 1 SAM-CBCMA

Initialization: û(0)
k , Ω

(0)
k , and x̂(0)

k for all k. Termination=1 and i = 0.

1: while Termination do

2: i← i+ 1

3: Merge = 0.

4: for k = 1, ..., N do

5: if x̂(i−1)
k = 0 then

6: Continue.

7: end if

8: Calculate rk using (10).

9:
fk,1 = 1

2

∥∥∥rk − ak

(
û

(i−1)
k

)
x̂

(i−1)
k

∥∥∥2

2

+λt

(∑
l 6=k x̂

(j̄)
l + x̂

(i−1)
k

)
.

10: Update û(i)
k , x̂(i)

k , and Ω
(i)
k using (11)–(13).

11: if
∣∣PSC ∣∣ > 0 then

12: Merge=1.

13: Do merge process using (15).

14: for l ∈ PSC do

15: x̂
(j̄)
l ← 0.

16: end for

17: end if

18: if i > imin and Merge=0 then

19:
fk,2 = 1

2

∥∥∥rk − ak

(
û

(i)
k

)
x̂

(i)
k

∥∥∥2

2

+λt

(∑
l 6=k x̂

(j̄)
l + x̂

(i)
k

)
.

20: if
(
fk,1 − fk,2

)
/fk,1 < δt then

21: Termination=0.

22: Break.

23: end if

24: end if

25: end for

26: end while

27: return x̂k and ûk for k = 1, ..., N

consisting of the parameters to be estimated as the kth coordinate block. After denoting the cost function

of the coordinate block group t=[t1, ..., tL1
] by f (t1, ..., tL1

) (or f (t)) and the rth update of the coordinate

10



Algorithm 2 SAA-CBCMA

Initialization: x̂(0)
k = 0 for all k and i = 0.

1: while (1) do

2: i← i+ 1

3: Calculate ri using (10).

4: fi,1 = 1
2 ‖ri‖

2
2 + λt

i−1∑
l=1

x̂
(i−1)
l .

5: Select û(i−1)
i using (16) and update x̂(i−1)

i using (13).

6:
fi,2 = 1

2

∥∥∥ri − ai

(
û

(i−1)
i

)
x̂

(i−1)
i

∥∥∥2

2

+λt

(
i−1∑
l=1

x̂
(i−1)
l + x̂

(i−1)
i

)
.

7: if
(
fi,1 − fi,2

)
/fi,1 < δt,1 and i > imin then

8: Break.

9: end if

10: for k = 1, ..., i do

11: Calculate rk using (10).

12:
fk,1 = 1

2

∥∥∥rk − ak

(
û

(i−1)
k

)
x̂

(i−1)
k

∥∥∥2

2

+λt

(∑
l 6=k x̂

(j̄)
l + x̂

(i−1)
k

)
.

13: Update û(i)
k , x̂(i)

k , and Ω
(i)
k using (11)–(13).

14:
fk,2 = 1

2

∥∥∥rk − ak

(
û

(i)
k

)
x̂

(i)
k

∥∥∥2

2

+λt

(∑
l 6=k x̂

(j̄)
l + x̂

(i)
k

)
.

15: if
(
fk,1 − fk,2

)
/fk,1 < δt,2 then

16: Break.

17: end if

18: end for

19: end while

20: return x̂k and ûk for k = 1, ..., N

block group by tr=[tr1, ..., t
r
L1

], we can define the (r + 1)st update of the coordinate block group as

tr+1 =
[
tr+1
1 , ..., tr+1

s−1, t̂s, t
r+1
s+1, ..., t

r+1
L1

]
, (17)

where

t̂s = arg min
ts

f
(
tr1, ..., t

r
s−1, ts, t

r
s+1, ..., t

r
L1

)
(18)

and tr+1
j = trj for all j 6= s. We proceed by stating several definitions in which z and d denote row vectors140

in RL2 ; dom g = {z|g (z) <∞}; and a row vector d̄k = [0, ..., 0,dk, 0, ..., 0] ∈ RL2 for k = 1, ..., L1 such that

11



L1∑
k=1

d̄k = [d1,d2, ...,dL1
].

Definition 1. The directional derivative of a function g at z in the direction d is

g′ (z; d) = lim
η→0+

g (z + ηd)− g (z)

η

=
∂

∂η
g (z + ηd)

∣∣∣∣
η=0

.

Definition 2. z is a stationary point of a function g if z ∈ dom g and g′ (z; d) ≥ 0 for all d.

Definition 3. z is a coordinate-wise local minimum (maximum) point of a function g if z ∈ dom g and

g
(
z + d̄k

)
≥ g (z) (g

(
z + d̄k

)
≤ g (z)) for all possible d̄k in the constraint that at least one of the nonzero145

elements of d̄k is within a local range.

Definition 4. A function g is regular at z ∈ dom g if

g′ (z; d) =

L1∑
k=1

g′
(
z; d̄k

)
.

Hereafter, confining our attention to the optimization (1) being solved by our algorithms, we set L1 =N ,

L2 =2N , tk=[uk, xk], denote the cost function of (1) by f(t1, ..., tN ), dk∈R2, ek∈RN , and d̄k=ek ⊗ dk.

Lemma 1. Suppose that the sequence {tr} for r = 1, 2, ... is produced by using the update equations (10)–

(13). Then, {tr} for r = 1, 2, ... is bounded.150

Proof. Let us define a set T 0 =
{
z : f (z) ≤ f

(
t0
)}

where t0 is an initial coordinate block. The component

uk of any element of T 0 is in the closed interval [−W,W ]. The other component xk of that element is also

in the closed interval [0,∞) since infinite xk yields the infinite cost function. Therefore, T 0 is closed and

bounded. Furthermore, since f (tr) monotonically decreases or stay the same as r increases, it holds that

f (tr) ≤ f
(
t0
)
so {tr} ⊂ T 0. The two results that “T 0 is closed and bounded” and “{tr} ⊂ T 0” indicate155

that the sequence {tr} for r = 1, 2, ... is bounded.

Lemma 2. f is regular.

Proof. Note that the directional derivative of f at d = [d1, ...,dN ], where dk = [du,k, dx,k], is given by

f ′ (t1, ..., tN ; d)

= Re

{(
r−

∑N

k=1
du,kxk

∂

∂uk
a (uk) + dx,ka (uk)

)H

×
(

r−
∑N

k=1
xka (uk)

)}
+ λt

N∑
k=1

dx,k. (19)
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The directional derivative of f at d̄k is given by

f ′
(
t1, ..., tN ; d̄k

)
= Re

{(
r− du,kxk

∂

∂uk
a (uk) + dx,ka (uk)

)H
×
(

r−
∑N

k=1
xka (uk)

)}
+ λtdx,k. (20)

Using (19) and (20), we obtain

f ′ (t1, ..., tN ; d) =

N∑
k=1

f ′
(
t1, ..., tN ; d̄k

)
. (21)

Therefore, f is regular.

Finally, we introduce the following theorem.

Theorem 1. Suppose that the problem (11) for k = 2, 3, ..., N − 1 has at most one solution. Then, the160

sequence {tr} for r=N−1, 2N−1, ... produced by the update equations (10)–(13) converges to a stationary

point of f .

Proof. By Bolzano-Weierstrass theorem6 [38] and Lemma 1, {tr} for r = 1, 2, ... forms a convergent

sequence and any subsequence of {tr} is also convergent. In other words, for any row vector s̄j, j = 1, 2, ..., N ,

it holds that
{
tr−N+1+j

}
, r = N − 1, 2N − 1, ... converges to s̄j =

[
s̄j1, s̄

j
2, ..., s̄

j
N

]
. Note that f(z) for z ∈ T 0

is continuous and lower-bounded by zero; moreover, f(tr) monotonically decreases as r increases. Therefore,

{f(tr)} for r = 1, 2, ... must converge, i.e.,

f
(
t0
)
≥ lim
r→∞

f (tr)=f
(
s̄1
)

=f
(
s̄2
)

= · · · =f
(
s̄N
)
. (22)

To complete the proof of Theorem 1, we need to show that if the problem (11) for k = 2, 3, ..., N − 1

has at most one solution, f (tk) for k = 2, 3, ..., N − 1 has at most one minimum over the corresponding

subdomain. Recall the cost function in (1),

f (t1, ..., tN )=
1

2

∥∥∥∥r−∑N

k=1
ak (uk)xk

∥∥∥∥2

2

+λt

N∑
k=1

xk. (23)

For the coordinate block tk,

f (tk) =
M

2

(
xk −

Re
{
rHk a (uk)

}
− λt

M

)2

− c (uk) , (24)

6Every bounded infinite set (or sequence) of real numbers has at least one limit point.
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where

c (uk)=

(
Re
{
rHk a (uk)

}
−λt

)2
2M

+
1

2
rHk rk+λt

∑
l 6=k

xl. (25)

Note that once uk is specified, so is xk since f (tk) is convex with respect to xk. Consequently, if Re
{
rHk a (uk)

}
has a finite number of local maxima in uk, we can calculate the unique local minimizer of f(tk).

Finally, we use the results of [35]: under the condition that f (tk) for k = 2, 3, ..., N − 1 has at most165

one minimum over the corresponding subdomain, (a) s̄1 = s̄2 = · · · = s̄N−1; (b) s̄j is a coordinate-wise local

minimum point of f ; and (c) s̄j is also a stationary point since f is regular by Lemma 2.

Since the maximum number of atoms N is finite, both the number of merge steps of SAM-CBCMA and

that of the atom activation steps of SAA-CBCMA are also finite. Therefore, if we use the estimated pair of

xk and uk immediately following the merge step or atom activation step to initialize t0, it is clear that each170

of our algorithms would converge to a stationary point of the cost function. The selection of subdomains is

further discussed in Section 4.2.

4. Simulation Results

In this section, we first specify the five criteria used for performance evaluation, specifically the RMSE,

Pd, Pf,1, Pf,2, and CPU time, and discuss how to choose the parameters of SAM-CBCMA and SAA-CBCMA175

considering a co-prime array with a positive integer dc. Next, we empirically compare the performance of

our algorithms with that of the existing methods7, i.e. JLASSO [16], GLS-ESPRIT [27], ANM-ESPRIT

[25], NNM-ESPRIT [26], and SS-ESPRIT [12], in terms of the selected criteria and verify their convergence.

4.1. Performance evaluation criteria

To characterize the accuracy of the algorithms, let us set the lower and upper bound of the detection

region of the kth plane wave, BLk and BUk , as

BLk = max {−W,ϕk −∆B} ,

BUk = min {W,ϕk + ∆B} , (26)

where ∆B is the maximum half width of a detection region. Denoting the detection threshold by γt, we make180

a decision on the kth plane wave depending on whether there exist at least one pair (ûl, x̂l), l = 1, ..., N , such

7JLASSO, GLS-ESPRIT, ANM-ESPRIT, and NNM-ESPRIT are implemented by using the CVX package [39]. For sim-

ulation, we respectively set the number of grid points and the hyperparameter η of the JLASSO optimization (8) in [16] to

4(2M2(2M1 − 1) + 1) and max
{

1.7, 3.5Mσ̂2
}
where σ̂2 is an initial estimate of noise power. The hyperparameter 0.5λ/

√
N

of the ANM-ESPRIT optimization (190) in [29] is set to 5
√
Mσ̂2. The hyperparameter η of the NNM-ESPRIT optimization

(173) in [29] is set to 1.25Mσ̂2.
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that BLk < ûl ≤ BUk and x̂l > γt. Consequently, the detection probability Pd is calculated as the number

of detected plane waves/K. If there exist more than one pair (ûl, x̂l) in a detection region, the superfluous

pairs count as type-1 false alarms. So, the false alarm count 1, Pf,1, is calculated as the number of type-1

false alarms/K. Moreover, Pf,2 is calculated as the number of type-2 false alarms which are defined as185

overall false alarms in the entire domain Ω. The average RMSE (in radians) of ûk is calculated based on

one of the detected plane waves that has the maximum signal power in each detection region. The CPU

time is the time (in seconds) required for a Monte Carlo run of an algorithm. It is worth pointing out that

Pd and Pf,1 include information about grid mismatch sensitivity and target resolvability.

4.2. Parameter setting190

We set the maximum number of atoms to N = 2M + 1. This guarantees that at least one of the columns

of A (u) is linearly dependent on other columns. As a result, it is possible that the final estimate x̂ of CBCM

includes at least one zero element and thus according to [31] satisfies the KKT condition of atomic norm

minimization. In order to determine the entire domain Ω, W is set to 1 − 1/(2Mmax + 1) and thus Ω =

[−1+1/ (2Mmax + 1) , 1−1/ (2Mmax + 1)]. This allows every column of A (u) to represent a discrete Fourier195

vector sampled at Nyquist sampling rate but exclude several points (the holes). In order to determine the

range of subdomains, we set empirically recommended value Ws ∈ [0.5/(2Mmax + 1), 2/(2Mmax + 1)]. Note

that under the assumption of not having any holes, 2W/(2Mmax+1) and 4W/(2Mmax+1) are approximate 3-

dB and null-to-null mainlobe widths of the Fourier-domain response, respectively. There is a trade-off where

a large Ws increases possibility of finding the optimal uk in each iteration but also increases computational200

complexity while the opposite happens with a smallWs. By adjusting the value ofWs, initial subdomains are

either overlapped or their union does not initially cover the entire domain. The most influential parameter,

λt, is in general hard to select to both promote the sparsity of x and suppress the data-fitting error. However,

since λt plays a role of a soft threshold in x updates, as implied by (13), we can make an intuitively plausible

choice. Recall Re
{

rHk a
(i)
k

}
in (13). This object can be recognized as the magnitude of the spectrum of the205

even part of [rk]m for m = 1, 2, ..., N at the frequency û(i)
k , which can be approximated by Mx̂

(i−1)
k . In the

regimes where the signal power is greater than the power of noise, it is expected that x̂(i)
k > sK+1 for every

i. Therefore, we set λt = c1MsK+1 where c1 is a positive control parameter. To promote sparsity of x,

λt can be set to max {c2, c1MsK+1} where c2 is a positive value that controls the minimum sparsity level.

Finally, c1 and c2 can be chosen by cross validation.210

For the SAM-CBCMA algorithm, we initialize u withN evenly spaced points between−1+1/ (2Mmax + 1)

and 1− 1/ (2Mmax + 1). Then we calculate the initial x and sK+1 in (9) by relying on matrix pseudo inver-

sion and setting λt = 0, which leads to the minimum l2-norm solution. The initial x is further refined by

forcing its negative elements to be zero. The initial estimate of sK+1, denoted by ŝK+1, is used to eliminate

the effect of sK+1 in both of our algorithms by updating r← r− ŝK+1e(M+1)/2 at the initialization.215
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Table 1: Values of the SAM-CBCMA parameters set in the simulations.

λt max {1.5, 1.25MŝK+1} N 2M + 1

W 1− 1/(2M2(2M1 − 1) + 1) γt 0.05 max
m

x̂m

Ws 1/(2M2(2M1 − 1) + 1) M1, M2 3, 5

∆umax 1/(2M2(2M1 − 1) + 1) imin 3

∆B 2/(2M2(2M1 − 1) + 1) δt 5× 10−10

Remark: Solving (9) by using algorithms on subdomains from Section 3 yields a stationary point of

the cost function. It is of interest to analyze optimality of such stationary points. When the subdomain

concept is not used, from Theorem 1 in [31] it follows that the stopping point s̄ = [ū1, x̄1, ū2, x̄2, ..., ūN , x̄N ]

of a CBCM algorithm satisfies the KKT condition for atomic norm minimization if at least one of x̄k for

k = 1, ..., N is zero. However, in line spectral estimation problems including (9), the range where an optimal220

uk exists is limited to the mainlobe width of the spectrum so we clearly do not have to optimize uk over the

entire Ω. Furthermore, once a subdomain is set to cover some portion of the width of a lobe (either sidelobe

or mainlobe), our algorithms tend to find the peak of the lobe as the iterations proceed. This is because

the preceding estimate of uk is used as the center of the corresponding subdomain at the current iteration.

In fact, our numerical results demonstrate that, in practical settings, the (approximate) 3dB width of the225

mainlobe of a spectrum is a sufficiently large subdomain and enables comparable or better performance of

the proposed algorithms as compared to state-of-the-art methods.

4.3. Discussion of the results

For simulations, we set dc = 2 and assume that the plane waves are randomly incident from a limited

angular range between −0.875 and 0.875 radian. We set the powers of waves (signals) to fluctuate in a way230

that their maximum value can be at most four times larger than their minimum value, and noise powers

to be equal. Therefore, the SNR is defined as M
K

∑K
k=1E {α∗kαk.}/E {n∗1n1}. The number of snapshots for

constructing a sample covariance matrix is 500. The symbol e ± c in Table 2–4 denotes 10±c. Note that

GLS-ESPRIT, ANM-ESPRIT, NNM-ESPRIT, and SS-ESPRIT require estimating rank of a covariance

matrix estimator (model order). For this, we employ the model order selection method introduced in [40],235

that is, a combination of the second order statistic of eigenvalues (SORTE) [41] and the ratio of adjacent

eigenvalues (RAE) for stable model order selection and list the means and standard deviations of the model

order estimators in a form of fraction in the last parts of Table 2–4 where the denominators and numerators

indicate the means and standard deviations, respectively. The simulation parameter values of the SAM-
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Figure 2: The comparison of DOA estimation RMSE’s in the K = 1 target case.

CBCMA algorithm are given in Table 1.8 For the SAA-CBCMA algorithm, the same parameter values are240

used except that δt,1 = δt,2 = 10−7 and imin = 1. The simulation results are obtained using arithmetic

average via 2000 Monte Carlo runs, except for Fig. 5, in the following three scenarios: K = 1, K = 2,

and K = 15 targets. In the K = 2 case (two-close-target case), the true DOA values are separated by 0.03

radian while in the 15-target case the minimum separation between neighboring DOA values is set to be

0.05 radian. Note that 2Ws, i.e., the range of subdomains, is set to 0.04 radian which is approximately the245

3dB mainlobe width of the spectrum in our co-prime array setting.

The results for K = 1 are shown in Fig. 2 and Table 2. Both SAM-CBCMA and SAA-CBCMA

are comparable with the benchmarking algorithms in terms of RMSE. Moreover, the value of Pf,1 of our

algorithms is small in all SNRs, implying that they overcome the grid mismatch problem. GLS-ESPRIT

offers the best performance in most criteria but CPU time and, especially, almost achieves the Cramér Rao250

lower bound (CRLB) [14] at high SNRs. It is worthy noting that our algorithms are about more than ten

times faster than the other methods except the SS-ESPRIT method that is the fastest because only model

order selection and singular value decomposition are performed without other iterative procedures. SAM-

CBCMA is about more than twice slower than SAA-CBCMA. The reason why SAM-CBCMA is slower

than SAA-CBCMA is that the number of targets is K = 1 and thus activating atoms is more efficient255

8Since the number of sensors is given by dcM1 +M2 − 1, the number of (physical) sensors in our simulation is 10.
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Figure 3: The comparison of DOA estimation RMSE’s in the K = 2 target case.

than performing the merge step. As the number of targets increases, SAM-CBCMA becomes faster than

SAA-CBCMA (as evident by the CPU time in the 15-target case). On all the criteria except CPU time,

SAM-CBCMA and SAA-CBCMA are shown to exhibit similar performance.

Fig. 3 and Table 3 compare the target resolvability of the algorithms. We observe that if the SNR is 0

dB or higher, our algorithms and JLASSO perform well in terms of Pd and Pf,1 and, therefore, have good260

resolvability in K = 2 close-target cases. GLS-ESPRIT, ANM-ESPRIT, and NNM-ESPRIT also yield good

resolvability at 15 dB but degraded resolvability at 10 dB or less SNRs. However, these convex optimization

based methods have the potential for improvement of resolvability by improving model order selection since

the degradation is mainly due to incorrectly selected model order (as evident by the standard deviations in

Table 3). GLS-ESPRIT is the only one that almost achieves the CRLB in Fig. 3. The SS-ESPRIT algorithm265

achieves the lowest performance in terms of every criterion except CPU time. Specifically, Pd of SS-ESPRIT

is only about 0.5 at all SNRs, which means that SS-ESPRIT does not resolve the two close targets we set.

Note that the strong performance in terms of RMSE at low SNRs is partly due to ignoring the estimates

yielding large RMSE values during the detection process (those are being counted as “missing targets”). We

should also point out that both of our algorithms are practically feasible although SAM-CBCMA is slower270

than SAA-CBCMA (same as in the K = 1 target case), and yield better resolvability and RMSE than

ANM-ESPRIT. SAA-CBCMA has the best detection ability.
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Figure 4: The comparison of DOA estimation RMSE’s in the K = 15 target case.

Fig. 4 and Table 4 illustrate the performance of the algorithms when the number of targets is larger than

the number of sensors. We first observe that all the methods excluding the SS-ESPRIT method that yields

the worst performance with the underestimated model order have capability of detecting 15 targets with 10275

sensors. The RMSE of GLS-ESPRIT appreciably decreases as the SNR increases while those of the other

methods including our algorithms are saturated. In fact, it is known that GLS-ESPRIT stems from a large-

snapshot realization of the maximum likelihood estimator [42] and, thus, the RMSE of GLS-ESPRIT can

be expected to be good at high SNRs. It is worth pointing out that our algorithms retain the computational

efficiencies and the RMSEs comparable with those of ANM-ESPRIT and NNM-ESPRIT. SAM-CBCMA is280

now faster than SAA-CBCMA, as opposed to the small K settings. This is because the atom activation over

the entire Ω (excluding the union of the subdomains corresponding to previously activated atoms), done by

SAA-CBCMA, imposes a significant computational burden when the number of targets is large. Meanwhile,

SAM-CBCMA maintains computational efficiency when the number of targets is large.

Fig. 5 illustrates the normalized power spectra of all the methods we consider. All the methods identify285

the four components of the ground truth. There are good coincidence between the ground truth and the

spectra of GLS-ESPRIT and NNM-ESPRIT. The spectra of SAA-CBCMA and SAM-CBCMA are also

similar to the ground truth while JLASSO, ANM-ESPRIT, and SS-ESPRIT yield relatively inaccurate

spectra.
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Figure 5: Power spectrum for each algorithm over 20 Monte Carlo runs. The ground truth with power [1, 0.9, 0.5. 0.5] and

DOA [0.45, 0.41, -0.1, -0.2]. For comparison, we plot only the detected peaks for SAA-CBCMA, SAM-CBCMA, and JLASSO,

and the peaks with perfect model order selection for the other ones.

Fig. 6–11 depict the convergence behaviors of the SAM-CBCMA and SAA-CBCMA algorithms. As290

a convergence metric, we use δk defined as the l2 norm of the difference between the estimated pairs (i.e.,

estimated coordinate blocks) before and after kth update. We observe from the figures a common trend that

the curves of δk become flat at about 10−6, which is the pre-set tolerance for estimating uk, k = 1, ..., N .

This implies that up to the predefined tolerance, each algorithm converges to a stationary point of the cost

function. In Fig. 6–8 that show the convergence behavior of SAM-CBCMA, strong peaks that are caused295

by merge process are observed after the metric δk becomes small, i.e., when the current update calculation

makes a small perturbation of an estimated pair. Recall that once the merge step is performed, all the

pairs satisfying the merge condition but one are forced to have zero x̂k. Accordingly, the difference between

the current δk and δk−1 can be significant and consequently strong peaks can appear in such cases. This

is mainly observed not only in Fig. 8 where K = 15 but also in Fig. 7 which deals with only two targets.300

The latter takes place because the two targets are close to each other and, therefore, the Fourier responses

(approximately sinc functions) induced by two similar ui and uj , i 6= j have near-overlapping sidelobes as

well as near-overlapping mainlobes. xl corresponding to these sidelobes are eliminated by thresholding in

the update equation (13) or by merging. Therefore, in this case, the merge process needs to be performed

more frequently. Fig. 9–11 show the convergence behavior of SAA-CBCMA, displaying that fluctuations305

caused by activated atoms are observed in early update calculations. Note that δk has a relatively large
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Figure 6: Convergence of the SAM-CBCMA in the K = 1 target case.

value right after an atom is activated, and then becomes stabilized. So, we can infer from the number of

the crests of fluctuations (at early update calculations) how many atoms are activated. As expected, the

15-target case shown in Fig. 11 exhibits the most crests.

5. Conclusions310

We proposed two algorithms, SAM-CBCMA and SAA-CBCMA, for solving nonnegative gridless com-

pressive sensing problems that arise in DOA estimation with co-prime arrays. The convergence analysis

shows that the proposed algorithms are capable of finding a stationary point satisfying the KKT condition

of atomic norm minimization. We numerically compared the performance of the proposed methods with

those of JLASSO, GLS-ESPRIT, ANM-ESPRIT, NNM-ESPRIT, and SS-ESPRIT in terms of several cri-315

teria. The simulation results demonstrate that SAM-CBCMA and SAA-CBCMA compare favorably with

prior methods in terms of computational efficiency, detectability, resolvability, and the accuracy of the esti-

mates. Moreover, the convergence behavior of the proposed methods is tested numerically. SAM-CBCMA

and SAA-CBCMA may be used in a broader range of applications including hyperspectral unmixing [43]

and object recognition [44].320

21



the kth update calculation

100 101 102 103

δ
k

10-6

10-4

10-2

Noiseless

SNR=-5 [dB]

SNR=0 [dB]

SNR=5 [dB]

SNR=10 [dB]

SNR=15 [dB]

Figure 7: Convergence of the SAM-CBCMA in the K = 2 target case.
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Figure 8: Convergence of the SAM-CBCMA in the K = 15 target case.

22



the kth update calculation

100 101 102 103

δ
k

10-6

10-4

Noiseless

SNR=-5 [dB]

SNR=0 [dB]

SNR=5 [dB]

SNR=10 [dB]

SNR=15 [dB]

Figure 9: Convergence of the SAA-CBCMA in the K = 1 target case.
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Figure 10: Convergence of the SAA-CBCMA in the K = 2 target case.
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Figure 11: Convergence of the SAA-CBCMA in the K = 15 target case.
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Table 2: Performance evaluation in the K = 1 target case.

Pd -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 9.9800e-1 1.0000 1.0000 1.0000 1.0000

SAA-CBCMA 9.9800e-1 1.0000 1.0000 1.0000 1.0000

JLASSO 9.9900e-1 1.0000 1.0000 1.0000 1.0000

GLS-ESPRIT 9.9950e-1 1.0000 1.0000 1.0000 1.0000

ANM-ESPRIT 9.9950e-1 1.0000 1.0000 1.0000 1.0000

NNM-ESPRIT 1.0000 1.0000 1.0000 1.0000 1.0000

SS-ESPRIT 9.9800e-1 1.0000 1.0000 1.0000 1.0000

Pf,1 -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 1.5000e-2 6.0000e-3 2.0000e-3 5.0000e-4 0.0000

SAA-CBCMA 1.6000e-2 1.9500e-2 2.4500e-2 1.9000e-2 2.5000e-3

JLASSO 3.7500e-2 2.0000e-3 5.0000e-3 9.0000e-3 2.0000e-3

GLS-ESPRIT 4.3500e-2 9.0000e-3 1.5000e-3 5.0000e-4 0.0000

ANM-ESPRIT 4.9500e-2 7.5000e-3 2.0000e-3 1.0000e-3 3.0000e-3

NNM-ESPRIT 4.7500e-2 1.0500e-2 1.5000e-3 1.0000e-3 0.0000

SS-ESPRIT 8.5000e-3 1.0000e-3 0.0000 0.0000 0.0000

Pf,2 -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 8.3350e-1 3.1250e-1 1.3000e-2 5.0000e-4 1.0000e-3

SAA-CBCMA 9.5300e-1 3.3300e-1 3.3500e-2 1.9000e-2 2.5000e-3

JLASSO 8.5800e-1 5.4000e-2 7.5000e-3 9.0000e-3 2.0000e-3

GLS-ESPRIT 3.1765 5.1850e-1 1.0100e-1 1.1000e-2 0.0000

ANM-ESPRIT 3.4720 4.6200e-1 1.3400e-1 3.3000e-2 1.3150e-1

NNM-ESPRIT 3.3330 4.2800e-1 1.2300e-1 5.3500e-2 0.0000

SS-ESPRIT 1.9430 1.1000e-1 1.4500e-2 0.0000 0.0000

CPU time -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 1.7274e-2 1.7848e-2 1.9648e-2 2.4699e-2 2.1502e-2

SAA-CBCMA 6.5249e-3 7.1170e-3 9.2029e-3 1.3112e-2 6.1186e-3

JLASSO 8.0444e-1 8.0392e-1 8.0420e-1 8.6983e-1 7.2687e-1

GLS-ESPRIT 5.9484e-1 5.9569e-1 6.0463e-1 6.2615e-1 6.3086e-1

ANM-ESPRIT 8.7820e-1 8.9630e-1 8.9426e-1 9.3025e-1 1.0066

NNM-ESPRIT 7.7971 7.3701 8.9764 9.5310 1.2049e+1

SS-ESPRIT 2.8359e-3 1.1328e-3 7.8125e-4 5.7812e-4 6.1719e-4

Model order -5 dB 0 dB 5 dB 10 dB 15 dB

GLS-ESPRIT 7.7411
4.1760

3.3813
1.5185

1.5030
1.1010

4.9193e−1
1.0110

0.0000
1.0000

ANM-ESPRIT 8.0379
4.4715

3.1887
1.4620

1.7256
1.1340

8.5163e−1
1.0330

3.7186e−1
1.1315

NNM-ESPRIT 7.8827
4.3330

3.0698
1.4280

1.6548
1.1230

1.0706
1.0535

0.0000
1.0000

SS-ESPRIT 4.8003
2.9410

1.2664
1.1100

4.5869e−1
1.0145

0.0000
1.0000

0.0000
1.0000
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Table 3: Performance evaluation in the K = 2 target case.

Pd -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 5.9600e-1 8.4875e-1 9.9250e-1 9.9950e-1 9.9975e-1

SAA-CBCMA 6.2100e-1 9.4625e-1 9.9975e-1 1.0000 1.0000

JLASSO 5.5675e-1 8.8150e-1 9.9900e-1 9.8875e-1 9.9950e-1

GLS-ESPRIT 5.1300e-1 5.1450e-1 6.8675e-1 9.9250e-1 1.0000

ANM-ESPRIT 5.2275e-1 5.1450e-1 6.9300e-1 9.8075e-1 1.0000

NNM-ESPRIT 5.2150e-1 5.1375e-1 6.1225e-1 8.9225e-1 1.0000

SS-ESPRIT 5.0525e-1 5.0050e-1 5.0000e-1 5.0000e-1 5.0025e-1

Pf,1 -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 7.5000e-3 1.0250e-2 5.2500e-3 7.5000e-3 0.0000

SAA-CBCMA 1.6750e-2 2.3500e-2 2.5000e-3 5.0000e-4 0.0000

JLASSO 5.2500e-3 1.3000e-2 5.7500e-3 1.4500e-2 5.0000e-4

GLS-ESPRIT 2.5000e-3 7.5000e-4 3.2500e-3 1.7500e-3 0.0000

ANM-ESPRIT 1.5000e-3 1.5000e-3 3.0000e-3 1.7500e-3 0.0000

NNM-ESPRIT 1.0000e-3 1.0000e-3 3.2500e-3 2.5000e-4 0.0000

SS-ESPRIT 0.0000 0.0000 0.0000 0.0000 0.0000

Pf,2 -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 6.1050e-1 2.2700e-1 4.0000e-2 1.6000e-2 0.0000

SAA-CBCMA 6.8350e-1 2.3450e-1 2.5500e-2 1.0000e-3 0.0000

JLASSO 1.0850e-1 5.1000e-2 1.8500e-2 2.9000e-2 1.0000e-3

GLS-ESPRIT 9.2050e-1 4.7300e-1 4.6600e-1 2.4000e-1 1.0500e-2

ANM-ESPRIT 1.2150 5.0600e-1 7.7600e-1 2.7100e-1 0.0000

NNM-ESPRIT 1.1155 3.7500e-1 5.4450e-1 7.1500e-2 2.9500e-2

SS-ESPRIT 4.3200e-1 4.3500e-2 0.0000 0.0000 0.0000

CPU time -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 1.9373e-2 4.0730e-2 6.8117e-2 9.0320e-2 1.0333e-1

SAA-CBCMA 8.3934e-3 3.3149e-2 5.3319e-2 5.8106e-2 5.7392e-2

JLASSO 8.5630e-1 8.6775e-1 9.4743e-1 8.5615e-1 8.8710e-1

GLS-ESPRIT 5.9665e-1 6.1158e-1 6.3927e-1 6.6198e-1 6.6323e-1

ANM-ESPRIT 8.9207e-1 9.4296e-1 9.4379e-1 1.0500 9.6189e-1

NNM-ESPRIT 7.7721 7.9849 9.6924 1.0881e+1 1.1155e+1

SS-ESPRIT 2.3594e-3 1.4141e-3 1.7188e-3 1.0234e-3 6.0938e-4

Model order -5 dB 0 dB 5 dB 10 dB 15 dB

GLS-ESPRIT 4.5015
1.9465

3.2954
1.5020

3.2728
1.8395

2.2814
2.2250

4.6957e−1
2.0105

ANM-ESPRIT 5.1636
2.2605

3.4054
1.5350

4.1636
2.1620

2.2950
2.2325

0.0000
2.0000

NNM-ESPRIT 4.9524
2.1585

2.9431
1.4025

3.5169
1.7690

1.2884
1.8560

1.9912e−1
2.0295

SS-ESPRIT 2.4819
1.4425

8.1170e−1
1.0445

0.0000
1.0000

0.0000
1.0000

2.2361e−2
1.0005
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Table 4: Performance evaluation in the K = 15 target case.

Pd -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 9.0150e-1 9.9610e-1 9.9537e-1 9.9570e-1 9.9467e-1

SAA-CBCMA 9.0077e-1 9.9687e-1 9.9597e-1 9.9603e-1 9.9530e-1

JLASSO 8.3557e-1 9.9083e-1 9.9007e-1 9.9213e-1 9.9033e-1

GLS-ESPRIT 7.3970e-1 9.4493e-1 9.9867e-1 9.9953e-1 9.9993e-1

ANM-ESPRIT 7.6967e-1 9.6970e-1 9.9713e-1 9.9993e-1 9.9987e-1

NNM-ESPRIT 7.6310e-1 9.7583e-1 9.9643e-1 9.9960e-1 9.9977e-1

SS-ESPRIT 6.1953e-1 7.7607e-1 8.3643e-1 8.1527e-1 8.0463e-1

Pf,1 -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 6.1000e-3 1.5067e-2 2.3000e-3 1.5000e-3 1.3333e-3

SAA-CBCMA 2.3333e-3 3.5333e-3 6.0000e-4 3.0000e-4 3.6667e-4

JLASSO 2.9667e-3 8.4333e-3 1.5667e-3 1.3667e-3 9.6667e-4

GLS-ESPRIT 8.0167e-2 5.9167e-2 3.3900e-2 3.9333e-3 5.3333e-4

ANM-ESPRIT 8.7833e-2 6.6667e-2 4.2000e-3 3.2333e-3 2.9667e-3

NNM-ESPRIT 8.7800e-2 8.4333e-2 7.9000e-3 8.3000e-3 7.2333e-3

SS-ESPRIT 6.4333e-3 8.6333e-3 8.8333e-3 8.0000e-3 7.9333e-3

Pf,2 -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 5.6900e-1 7.8500e-1 1.0700e-1 4.9000e-2 4.5000e-2

SAA-CBCMA 5.1100e-1 6.2750e-1 7.7500e-2 2.9500e-2 2.8000e-2

JLASSO 2.6150e-1 3.9950e-1 6.4000e-2 3.6000e-2 2.9500e-2

GLS-ESPRIT 4.1945 2.5960 1.4835 2.1450e-1 1.0000e-1

ANM-ESPRIT 4.8530 3.4300 9.6250e-1 6.3400e-1 5.4150e-1

NNM-ESPRIT 4.6655 3.8330 5.7500e-1 4.9950e-1 4.2250e-1

SS-ESPRIT 1.8065 1.3785 1.1120 1.1450 1.1720

CPU time -5 dB 0 dB 5 dB 10 dB 15 dB

SAM-CBCMA 6.4338e-2 1.1487e-1 9.0203e-2 8.1604e-2 8.0568e-2

SAA-CBCMA 7.8952e-2 1.4470e-1 1.3355e-1 1.3179e-1 1.3171e-1

JLASSO 1.0321 1.0308 9.7341e-1 1.0235 9.8989e-1

GLS-ESPRIT 6.5929e-1 6.8463e-1 7.4989e-1 7.7167e-1 8.3656e-1

ANM-ESPRIT 9.6501e-1 1.0085 1.1442 1.1335 1.1316

NNM-ESPRIT 8.9919 9.4239 1.3658e+1 1.3382e+1 1.3484e+1

SS-ESPRIT 7.0312e-4 8.9063e-4 9.6094e-4 9.0625e-4 7.3438e-4

Model order -5 dB 0 dB 5 dB 10 dB 15 dB

GLS-ESPRIT 8.8113
1.5290e+1

5.0543
1.6770e+1

2.9477
1.6464e+1

8.8081e−1
1.5208e+1

4.1628e−1
1.5099e+1

ANM-ESPRIT 8.7452
1.6398e+1

4.7126
1.7976e+1

1.5421
1.5919e+1

7.0750e−1
1.5633e+1

5.8704e−1
1.5540e+1

NNM-ESPRIT 8.7183
1.6112e+1

4.5394
1.8471e+1

1.2403
1.5522e+1

5.7976e−1
1.5493e+1

5.2209e−1
1.5419e+1

SS-ESPRIT 5.6644
1.1100e+1

3.9258
1.3020e+1

2.5124
1.3659e+1

2.1537
1.3374e+1

2.1570
1.3242e+1

29


	Introduction
	Background on Co-prime Arrays and the Formulation of the DOA Problem
	The Algorithms and Their Convergence Analysis
	SAM-CBCMA
	SAA-CBCMA
	Convergence Analysis

	Simulation Results
	Performance evaluation criteria
	Parameter setting
	Discussion of the results

	Conclusions

