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Abstract

The maximum-likelihood (ML) detection problem for channels with memory is investigated. The Viterbi
algorithm (VA) provides an exact solution. Its computational complexity is linear in the length of the trans-
mitted sequence but exponential in the channel memory length. On the other hand, the sphere decoding (SD)
algorithm also solves the ML detection problem exactly and has expected complexity which is a low-degree
polynomial (often cubic) in the length of the transmitted sequence over a wide range of signal-to-noise ratios
(SNR). We combine the sphere-constrained search strategy of SD with the dynamic programming princi-
ples of the VA. The resulting algorithm has the worst-case complexity determined by the VA, but often
significantly lower expected complexity.

Index Terms—ML sequence detection, sphere decoding, Viterbi algorithm, expected complexity, frequency-
selective channels

1 Introduction

We consider the frequency-selective channel model, with input/output relation given by

xi =
l∑

j=1

hjsi−j+1 + vi, (1)

where hi, i = 1, . . . , l are the coefficients of the channel impulse response, l denotes the channel length, s i is

the ith symbol in the transmitted sequence chosen from an L-PAM constellation DL = {−L−1
2 , . . . , L−1

2 },

and vi denotes a Gaussian noise sample N (0, σ2). Over a horizon of length T , the ML sequence detector

minimizes the cost function
CT =

T∑

j=1

|xj −
l∑

m=1

hmsj−m+1|2 (2)

to find the most likely transmitted symbol sequence {s1, . . . , sT }. The Viterbi algorithm (VA) [1] exploits

the Markovian property of the channel and finds the sequence which minimizes CT by using dynamic pro-

gramming ideas. Typically, the VA is employed as a breadth-first search on a trellis, a directed graph

‡California Institute of Technology, Pasadena, CA 91125. This work was supported in part by the NSF under grant no. CCR-
0133818 and by the Office of Naval Research under grant no. N00014-02-1-0578.

§Department of Electrical Engineering, University of Southern California, CA 90089



describing systems with memory illustrated in Fig. 1. The key observation is that CT can be recursively

computed as

Ck+1 = Ck +

∣
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xk+1 −

l∑

m=1

hmsk−m+1

∣
∣
∣
∣
∣
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, k = 0, . . . , T − 1, C0 = 0. (3)

Clearly, the second term on the right-hand side (RHS) of (3) does not depend on sk−l, . . . , s1 but only on

the current symbol sk and the current memory of the channel sk−1sk−2 . . . sk−l+1. The Ll−1 possible states

of the channel memory comprise the state set Sk (see Fig. 1). To find the kth segment of the optimal path,

it is sufficient to, for every state S [j]
k+1 ∈ Sk+1 (j = 1, . . . , Ll−1), keep only the branch emanating from a

state in Sk and terminating in the state S [j]
k+1 that has the smallest transition cost. This procedure can be done

recursively. The trellis path of length T that has the smallest cost CT is the optimal path. The signal sequence

that corresponds to the branch transitions along the optimal trellis path is the solution to the ML detection

problem. The complexity of the VA is proportional to the number of states and thus grows exponentially

with the length of the channel. On the other hand, it is linear in the length of the data sequence.

The SD algorithm [2] can also be used for detection on channels with memory ([3],[4]). Permitting a

guard interval, the SD algorithm provides ML performance. To employ SD, we first need to write (1) as

x = Hs + v,

where the (T + l − 1) × 1 vectors x and v, the (T + l − 1) × T matrix H , and the T × 1 vector s are given

by

x =












x1

x2

...

xT+l−1












, v =












v1

v2

...

vT+l−1












, H =















h1

... . . .

hl . . . h1

. . .

hl















, s =









s1

...

sT









. (4)

The ML detection can now be expressed as an integer least-squares problem,

min
s∈DT

L

‖x − Hs‖2. (5)

This problem has a geometric interpretation: given a point x, find the closest lattice point in a skewed

lattice Hs. The SD algorithm solves (5) by performing a search over only those points Hs that belong to a

sphere around x. The radius r of the sphere is chosen so that we find a point inside the sphere with a high
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probability. In particular, note that ‖x − Hs‖2 = ‖v‖2 = v2
1 + . . . + v2

T is a chi-square random variable

with T degrees of freedom. Thus the radius r2 = αTσ2 can be chosen probabilistically so that
∫ αT

0

λT/2−1

Γ(T )
e−λdλ = 1 − ε, (6)

where ε � 1. The condition that a point Hs belongs to the sphere of radius r is given by

r2 ≥ ‖x − Hs‖2. (7)

The summation on the RHS of (7) can be expanded to yield a set of conditions on the components of s,

(x1 − h1s1)
2 ≤ r2

1, (x2 − h1s2 − h2s1)
2 ≤ r2

2, (x3 − h1s3 − h2s2 − h3s1)
2 ≤ r2

3, etc.,

where r2
1 = r2, r2

2 = r2
1−(x1−h1s1)

2, r2
3 = r2

2−(x2−h1s2−h2s1)
2, etc. Note that this gives T conditions

on the components of s which are necessary but still not sufficient. Only if the additional constraint,

r2
T+1 ≥ (xT+1 − hlsT−l+2 − . . . − h2sT )2 + . . . + (xT+l−1 − hlsT )2,

where r2
T+1 = r2 − ∑T

j=1(xl −
∑l

m=1 hmsj−m+1)
2, is satisfied, does the point s indeed belong to the

sphere, i.e., satisfies condition (7). The SD algorithm performs a depth-first search on a tree, as illustrated in

Figure 2. A trace leading to a surviving node on the kth level of the tree corresponds to a vector [s1 . . . sk]
∗

inside the k-dimensional sphere. With the probabilistic choice of r, the computational complexity of the SD

algorithm is a random variable [5], with the mean often significantly below the complexity of the VA [4].

2 Combining sphere decoding and Viterbi algorithm

The complexity of the VA is linear in the length of the data sequence but is exponential in the channel

memory size, where the base of the exponent is the symbol alphabet size. Thus for long channels and/or

large symbol alphabets, the VA is often inefficient and occasionally non-feasible. On the other hand, over

a wide range of SNR, expected complexity of SD is a low-degree polynomial in the data block length and

the degree of the polynomial does not vary significantly with the channel memory size. However, the SD

algorithm does not at all exploit the Markovian property of the channel, which is precisely what the VA

does. Therefore, a hybrid receiver structure that combines the constrained search strategy of SD with the

trellis based decoding of the VA, is desired. This can be obtained by either modifying the SD algorithm to
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include the channel memory state constraints or by adding the sphere constraints to the trellis search of the

VA. The two approaches, essentially equivalent although one is depth-first and the other is breadth-first, are

briefly presented here.

Algorithm 1 [SD modified with VA]: Consider the SD algorithm and the tree search illustrated in

Fig. 1. The SD algorithm does not take into account the Markovian property of the channel. We propose

the following modification: assume that the algorithm is currently examining a node on the k th level of the

tree. Based on the current, and on up to l − 2 tree nodes on levels k − 1, k − 2, . . . , k − l + 1 along which

the algorithm descended to the current node, we identify the current state S [j]
k = sksk−1 . . . sk−l+1. The

meaning of the state is as same as on the trellis, i.e., it is the current state of the channel memory and we

assign a cost Ck(S [j]
k ) to it. By writing out the recursion for r2

k, it is easy to see that

Ck(S [j]
k ) = r2 − r2

k+1.

Now, in addition to the standard steps that the SD algorithm undertakes, we enforce that it also compares

this Ck(S [j]
k ) with the previously stored minimum cost min Ck(S [j]

k ). If the current Ck(S [j]
k ) is greater than

min Ck(S [j]
k ), the algorithm prunes the tree, i.e., it discards the current tree node. If the current Ck(S [j]

k )

is smaller than the previously stored minCk(S [j]
k ) (or there are no previously stored minCk(S [j]

k )), the

algorithm assigns min Ck(S [j]
k ) := Ck(S [j]

k ) and proceeds with the other SD steps. Note that the algorithm

is still depth-first. Clearly, its complexity will be lower than the complexity of the original SD.

Algorithm 2 [VA modified with SD]: Consider the trellis representation of a frequency-selective chan-

nel and a finite data block transmission. We impose the constraint (7) that the transmitted signal belongs to a

sphere of radius r defined by (6). As we have shown in the previous section, an obvious necessary condition

that the transmitted signal needs to satisfy is given by (x1 −h1s1)
2 ≤ r2

1 . However, from (2), this condition

is equivalent to the constraint C1(S [j]
1 ) ≤ r2, for all j. Similarly, condition (x2 − h1s2 − h2s1)

2 ≤ r2
2 is

equivalent to the constraint C2(S [j]
2 ) ≤ r2, for all j. In general,

Ck(S [j]
k ) ≤ r2, k = 1, 2, . . . , T, j = 1, 2 . . . , Lmin(k,l)−1. (8)

On the trellis, condition (8) means that the cost Ck(S [j]
k ) should, for every state index j and every time

index k, be smaller than the radius of the sphere. The states S [j]
k that violate condition (8) can be neglected,

i.e., no branches emanating from such states need to be considered when searching for the optimal trellis
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path. Therefore, the search on trellis can, on average, be performed faster that the Viterbi algorithm. The

worst case complexity, on the other hand, coincides with the complexity of the Viterbi algorithm. The

sphere-constrained trellis search is illustrated in Fig. 1.

The following points are worthy of mention. Algorithm 2 is employed on the trellis and essentially

reduces the complexity of the VA by discarding the states which violate certain (sphere) constraints. Hence

Algorithm 2 is in fact a reduced-state detection algorithm; in particular, it is closely related to the T-algorithm

[6], which discards states whose cost is greater than some threshold. In the current paper, the lattice structure

of the modulation scheme is used to relate the aforementioned threshold to the radius of the sphere centered

at the received vector, where this radius is chosen according to the noise variance so it guarantees finding

the solution with high probability. Such a choice of the radius/threshold enables us to analytically find the

expected complexity of Algorithm 2, which we derive in the next section. A probabilistic choice of the

threshold was also recently proposed in [7], where it was chosen based on the probability of discarding

an optimal state. However, unlike the majority of state-reduced algorithms, Algorithm 2 above does not

sacrifice the ML performance but (permitting a guard interval) solves the detection problem exactly. Note

that obtaining the exact solution may actually require increasing the sphere radius, if no point is found inside,

and repeating the search.

Also, recall that the VA is often employed for sequence detection by forcing the detector to make deci-

sions once sufficiently deep inside the trellis (common heuristic suggests that 5 times the channel length is

sufficiently deep). Algorithm 2 can be slightly modified to employ the same heuristic. In this case, one can

think of a sliding window (or a “sliding sphere”) of length (dimension) 5l that imposes a sphere constraint

of the form (7) on the states of the trellis.

On another note, Algorithm 1 is the more preferable one when the ratio l/T is relatively large; the reason

is its depth-first strategy which allows one to, when the algorithm finds a point inside the sphere, compute

a new radius based on that point and restart, thus making the search for the optimal solution more efficient.

It also allows for implementation of computationally more efficient versions of sphere constrained search,

such as the Schnorr-Euchner’s (see [5]-[4] and the references therein).

3 The expected complexity of the combined VA/SD

In this section, we find an analytic expression for the expected complexity of the combined VA/SD proposed

above. The derivation takes the approach originally proposed in [5]-[4], where it was used to find the
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expected complexity of the original SD algorithm of Fincke and Pohst [2]. Clearly, the expected complexity

of the combined VA/SD is proportional to the expected number of the states that survive the pruning process,

Ec =
T∑

d=1

E(# of states that survive in the state set Sd)
︸ ︷︷ ︸

Es(d)

·(# of flops per state). (9)

Since all states are equally likely, the expected number of surviving states in the state set Sd is given by, say,

Es(d) =

ns(d)
∑

j=1

P (S [j]
d survives) = ns(d) · P (S [1]

d survives) = ns(d) · P (Cd(S [1]
d ) ≤ r2

d), (10)

where S [1]
d is the state which corresponds to [sd, sd−1, . . . , sd−l+1] = [−L−1

2 , . . . ,−L−1
2 ], and where the

number of states is given by ns(d) = Lmin(l,d)−1 (so, when d ≥ l and the channel memory “fills”, the

number of states is a constant, ns(d) = Ll−1). In what follows, we determine Es(d) for d ≥ l.∗ We start by

finding the probability that, for a given transmitted sequence, state S [1]
d survives the pruning. Consider the

following thought experiment: assume that the sequence st of length d was transmitted and that x = Hst+v

is observed. We wish to determine the probability that for an arbitrary sequence sa of length d, it holds that

r2 ≥ ‖x − Hdsa‖2 = ‖v + Hd(st − sa)‖2 = ‖v + (Σt − Σa)h‖2, (11)

where the d × d matrix Hd and the l-dimensional vector h are given by

Hd =















h1

... . . . 0

hl . . . h1

. . . . . .

0 hl . . . h1















, h =












h1

h2

...

hl












.

Furthermore, the structure of the sequence vectors st and sa is of the form

st = [st,1 . . . st,d−l
︸ ︷︷ ︸

st,past

| st,d−l+1 . . . st,d
︸ ︷︷ ︸

st,state

]∗, sa = [sa,1 . . . sa,d−l
︸ ︷︷ ︸

sa,past

| sa,d−l+1 . . . sa,d
︸ ︷︷ ︸

sa,state=−L−1

2
... −L−1

2

]∗,

∗For the other case (d < l), Es(d) can be either found similarly or simply approximated by the total number of states. This will
be a good approximation since this early in the trellis/tree there is not much pruning and most of the states survive.
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while the d × l dimensional matrices Σt and Σa are given by

Σt =















st,1 0
... . . .

st,d−l+1 . . . st,d−2l

...
...

st,d . . . st,d−l+1















, Σa =















sa,1 0
... . . .

sa,d−l+1 . . . sa,d−2l

. . . ...

Σa,−L−1

2

sa,d−l+1















,

where the Σa,−L−1

2

region in Σa has all entries equal to −L−1
2 . The vector [v h]∗ in (11) is Gaussian and

hence we can find the characteristic function of ‖v + (Σt − Σa)h‖2 (see [4]),

Φ(ω) =

√
2d+l

√

(1 + jω2σ2)d−l ∏l
i=1 [1 + jω2(σ2 + ρi)]

,

where ρi, i = 1, . . . , l are the eigenvalues of the matrix (Σt −Σa)
∗(Σt − Σa). Thus, for a given (st; sa,past),

the probability that the state S [1]
d corresponding to sa,state = [−L−1

2 . . . − L−1
2 ] survives is given by

P (Cd(S [1]
d ) ≤ r2

d|st, sa,past) =
1

2π

∫ r2

t=0

∫ ∞

ω=−∞

Φ(ω)e−jωtdωdt. (12)

To find the probability P (Cd(S [1]
d ) ≤ r2

d), we need to average (12) over all (st; sa,past),

P (Cd(S [1]
d ) ≤ r2

d) =
1

Ll−1

1

L2(d−l+1)

∑

st,state

∑

(st,past;sa,past)

1

2π

∫ r2

t=0

∫ ∞

ω=−∞

Φ(ω)e−jωtdωdt. (13)

The outer summation in (13) is performed over Ll−1 states in which the transmitted sequence may terminate.

The inner summation is performed over L2(d−l+1) possible pairs (st,past; sa,past). An efficient enumeration of

the symbol sequences that might ease the computation (13) by counting pairs (st; sa,past) with the same

P (Cd(S [1]
d ) ≤ r2

d|st, sa,past) and lead to a more explicit closed-form expression for P (Cd(S [1]
d ) ≤ r2

d), so far

appears hard to obtain. Thus we leave (13) in its current form to be used numerically in evaluating (10), (9).

4 Simulation results and summary

We consider a channel of length l = 6, transmitting 4-PSK modulated (L = 4) data in blocks of length

T = 20, and employ the combined VA/SD for ML detection at the receiver. Let us define complexity

exponent as e = logT F , where F denotes the total number of operations (flop count) performed when
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detecting s. Fig. 3 shows the (empirically obtained) expected complexity exponent as a function of SNR.

In the considered SNR range, the combined algorithm has lower expected complexity than both the SD and

the VA. Furthermore, the expected complexity is roughly cubic in the considered range of SNR.

Fig. 4 shows empirical distribution of the complexity exponent at SNR = 18dB. The complexity is

for the scheme that finds the optimal solution. In particular, we set the sphere radius so that a point is found

with probability .9; if no point is found, we increase this probability to .99, and so on. As evident from

Fig. 4, the complexity exponent of the VA/SD algorithm is often significantly smaller than the complexity

exponent corresponding to the VA (denoted by the vertical dashed line).

In summary, we proposed combining the sphere-constrained search of the SD and the dynamic pro-

gramming principles of the VA for ML detection for channels with memory. The hybrid algorithm is either

the SD modified so to speed-up the search for the closest-point in the lattice or the VA with the imposed

sphere-constraints resulting in state-reduction on trellis. We found the analytic expression for the expected

complexity of the algorithm and illustrated it via simulations. The algorithm has expected complexity which

is a low-degree polynomial in the data block length over a wide range of SNR.
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