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Abstract

In wireless communication systems, channel state information is often assumed to be available
at the receiver. Traditionally, a training sequence is used to obtain the estimate of the channel.
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ever, the computational effort required to find the joint ML solution to the symbol detection and
channel estimation problem increases exponentially with the dimension of the problem. To signif-
icantly reduce this computational effort, we formulate the joint ML estimation and detection as an
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1 Introduction

The pursuit for high-speed data services has resulted in a tremendous amount of research activity in

the wireless communications community. To obtain high reliability of the transmission, particular

attention has been payed to the design of receivers (see, e.g., [1] and references therein).

In the system design, one often assumes knowledge of the channel coefficients at the receiver.

These are typically obtained by sending a training sequence, thus sacrificing a fraction of the

transmission rate. On the other hand, in practical systems, due to rapid changes of the channel

and/or limited resources, training and channel tracking may be infeasible. One possible remedy is

to differentially encode the transmitted data and thus eliminate the need for the channel knowledge.

Another one is to exploit known properties of the transmitted data to learn the channel blindly –

for instance, one can exploit the fact that the transmitted data belongs to a finite alphabet.

We consider a problem of joint maximum-likelihood (ML) channel estimation and signal de-

tection in a communication system where the transmitters use only one antenna but the receiver

employs multiple antennas. This can, for instance, be the case on an uplink, where all users (trans-

mitters) have a single antenna, while the base station (receiver) has multiple antennas. Let N

denotes the number of receive antennas and let T be the time interval during which the channel co-

efficients remains constant and change to an independent set of values afterwards (i.e., we assume

the block-fading channel model). The received signal can be written as

X = HS∗ + W = H

[

S∗

τ S∗

d

]

+ W, (1)

where H =

[

h1 h2 . . . hM

]

is the N × M channel matrix comprised of N single-input

multi-output (SIMO) channel gain vectors hi, i = 1, 2, . . . , M , whose entries are independent,

identically distributed (iid) complex Gaussian random variables CN (0, 1). Matrix Sτ is the (deter-

ministic and known) Tτ ×M matrix of training symbols, while the matrix Sd is Td ×M matrix of
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data symbols, and where T = Tτ + Td. We assume that all elements of Sτ and Sd are unitary, i.e.,

|sij
τ |2 = 1, 1 ≤ i ≤ Tτ , 1 ≤ j ≤ M,

|sij
d |2 = 1, 1 ≤ i ≤ Td, 1 ≤ j ≤ M,

(2)

where sij
τ denotes an (i, j) entry in Sτ , and where sij

d denotes an (i, j) entry in Sd. Furthermore,

N × T matrix W is an additive noise matrix whose elements are assumed to be iid complex

Gaussian random variables C(0, σ2).

The joint ML channel estimation and signal detection problem can be stated as follows:

min
H,S

‖X − HS∗‖2, (3)

where the entries of S satisfy (2). Problem (3) is a mixed optimization problem: it is a least-

squares problem in H and an integer least-squares problem in S. Traditionally, the solution to the

integer least-squares problems is found by an exhaustive search over the entire symbol space. The

complexity of exhaustive search is exponential in MTd and often infeasible in practice. Therefore,

low-complexity heuristic techniques, usually iterating between the S and the estimate of H , are

often employed (see, e.g., [2] and the references therein). On the other hand, in communication

applications, the sphere decoding [3] is recognized as a technique for solving integer least-squares

problems at polynomial expected complexity [4, 5].

In this paper, we show how the sphere decoding algorithm can be employed to find the solution

of (3), and prove that, at high SNR, the expected complexity results of [4, 5] hold. In other words,

we show that the joint ML channel estimation and symbol detection problem (3) can be solved

in polynomial expected time over a wide range of system parameters. We should remark that the

basic sphere decoding algorithm performs the closest point search in a rectangular lattice and the

available expected complexity results assume the same. Therefore, when discussing complexity,

we will assume that the entries of S belongs to a QPSK constellation (so that (2) hold). However,
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sphere decoding can easily be modified and used for detection of symbols coming from a PSK-

modulation schemes [6].

Note that the model (1) include both the blind and the training-based scheme – blind scheme

model is obtained by simply setting Tτ = 0. In this paper, we consider both schemes. We start

by considering single user system (M = 1), for which we solve (3) for both Tτ = 0 and Tτ > 0.

This is presented in Section 2, while Section 3 contains generalization of the Tτ > 0 case to the

multi-user scenario. We discuss only training-based multi-user case in order to avoid ambiguities

that arise in blind scenarios. An interesting result of Section 3 implies that the complexity of the

algorithm grows only linearly with the number of users. The complexity of the sphere decoding

algorithm for solving (3) is discussed in Section 3, and the results therein imply polynomial ex-

pected complexity of the algorithm over a wide range of system parameters. In Section 5, we

briefly discuss use of soft sphere decoding for joint detection and decoding in systems employing

channel codes. Simulation results are presented in Section 6, while the summary and conclusion

are in Section 7.

2 Single user case

We consider a single-user case, i.e., consider the model (1) for M = 1. Then the received signal

can be written as

X = hs
∗ + W = h

[

s
∗

τ s
∗

d

]

+ W, (4)

and the optimization problem that needs to be solved is

min
h,s

‖X − hs
∗‖2, (5)

where the entries of s have unit power. The blind and the training-based schemes for solving (5)

are treated in the remainder of this section.
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2.1 Blind joint ML estimation and detection

Assuming that there is no training sequence (Tτ = 0), so that sd = s and the model (4) becomes

X = hs
∗ + W = hs

∗

d + W. (6)

For any given s, the channel ĥ that minimizes (6) is given by

ĥ = Xs/‖s‖2 =
1

T
Xs, (7)

where we used the assumption that the entries of s have unit power. Substituting (7) in (5) gives

‖X − hs
∗‖2 = ‖X(I − 1

T
ss

∗)‖2

= tr [X(I − 1

T
ss

∗)X∗]

= tr (XX∗) − 1

T
s
∗X∗Xs (8)

Hence the optimization (5) is equivalent to solving

max
s

s
∗X∗Xs. (9)

Optimization problem (9) is over vectors s with integer values and a straightforward way to solve

it is via exhaustive search [2]. On the other hand, the sphere decoding algorithm efficiently solves

optimization problems over integers. However, the sphere decoding problem minimizes objective

function over integer-valued vectors, and thus we need to express (9) accordingly. To this end, let

λ̂ = λmax(X
∗X) denote the maximum eigenvalue of X∗X , and let ρ > λ̂ (for instance, we can

choose ρ = tr(X∗X)). The problem (9) is then equivalent to

min
s

s
∗(ρI − X∗X)s. (10)
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The optimization problem (10) is an integer least-squares problem. Furthermore, note that due to

the choice of ρ, the matrix (ρI −X∗X) is positive definite and therefore it allows for the Cholesky

factorization of the form

ρI − X∗X = R∗R, (11)

where R is an upper-triangular matrix. Thus the sphere decoding algorithm of Fincke and Pohst

[3] can be applied to solve (10). Rather than exhaustively searching over the entire symbol space,

the sphere decoding algorithm performs a limited search inside a sphere of an appropriately chosen

radius r, i.e., finds the point sd that minimizes (10) among all lattice points that satisfy

s
∗X∗Xs ≤ r2. (12)

(The choice of the radius r in (12) will be discussed in Section 4.) The closest lattice point to the

origin inside the sphere is the solution to (10).

The sphere decoding algorithm breaks down condition (12) into a set of T necessary conditions

that the components of the vector s need to satisfy. The algorithm can be related to nulling and

canceling (see, e.g., [7]) where, after a component of the vector s that satisfies (12) is found,

its contribution to s
∗X∗Xs is subtracted. However, unlike in nulling and canceling, in sphere

decoding the components of s are not fixed until an entire vector s which satisfies (12) is found.

We omit any further details for brevity and refer the interested reader to [3], or to [4, 5] and

the references therein. Furthermore, for an application of complex sphere decoding, relevant for

detection of symbols coming from PSK constellations, we refer the reader to [6].

Finally, we should remark that the sphere decoding algorithm can be interpreted as a tree search

procedure, as illustrated in Figure 1, where the nodes on the kth level of the tree correspond to k-

dimensional subvectors s
k of the unknown vector s. We will find this tree-search interpretation

useful when later discussing training-based schemes.

6



2.2 Joint ML estimation and detection in training-based schemes

Assume that Tτ > 0, i.e., training sequence sτ preceeds the data block sd. The optimization

problem (10) can then be written as

min
sd

[

s
∗

τ s
∗

d

]

(ρI − X∗X)






sτ

sd




 . (13)

For simplicity, we will find it useful to define

ρI − X∗X = Γ.

Recall that we choose ρ such that ρ > λmax(X∗X). Therefore, matrix Γ is positive definite.

Partition Γ as

Γ =






Γ11 Γ12

Γ∗

12
Γ22




 ,

and note that, since Γ is positive definite, so is Γ2. Therefore, we can write

[

s∗τ s
∗

d

]






Γ11 Γ12

Γ∗

12
Γ22











sτ

sd




 = s

∗

τΓ11sτ + s∗τΓ12s + s
∗

dΓ
∗

12
sτ + s

∗

dΓ22sd

= (sd − Γ−1

22
Γ∗

12
sτ )

∗Γ22(sd − Γ−1

22
Γ∗

12
sτ ) + s

∗

τΓ11sτ

Since s
∗

τΓ11sτ does not depend on sd, the optimization (13) becomes

min
sd

(sd − Γ−1

22
Γ∗

12
sτ )

∗Γ22(sd − Γ−1

22
Γ∗

12
sτ ) = min

sd

‖sd − Γ−1

22
Γ∗

12
sτ‖2

Γ22
,

which we can solve with the sphere decoding algorithm.
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3 Multi-user case

We now focus on the general multi-user case. The relevant optimization problem is the one (3).

For any S, optimal channel estimate H is obtained as

Ĥ = XS(S∗S)−1S∗,

and thus we have

arg min
H,S

‖X − HS∗‖2 = arg min
S

‖X − XS(S∗S)−1S∗‖2

= arg min
S

tr {X(I − S(S∗S)−1S∗)X∗}

= arg max
S

tr {(S∗S)−1S∗X∗XS}

Recall that S is comprissed of unitary symbols. If the users are uncorrelated, then S∗S ≈ TI , and

it follows that

arg max
S

tr {(S∗S)−1S∗X∗XS} = arg max
s1,...,sM

M∑

k=1

(sk)∗(X∗X)sk,

where s
k is the symbol vector of the kth user (i.e., the kth row in matrix S). Furthermore,

max
M∑

k=1

(sk)∗(X∗X)sk = min
s1,...,sM

M∑

k=1

(sk)∗(ρI − X∗X)sk,

and thus, since the users choose their signals independently, optimization (3) is equivalent to the

optimization problem

min
sk

(sk)∗(ρI − X∗X)sk, k = 1, . . . , M. (14)

From (14), it is clear that without knowing anything about the users, we could not resolve their

signal vectors. Therefore, we insist on Tτ > 0, i.e., we assume training matrix Sτ with distinct
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rows. This resolves user ambiguity. More intrestingly, optimization (14) implies that in order

to detect signals received from M users, we only need to find M points inside the T -dimensional

sphere – therefore, the dimension of the problem does not increase with the number of users, as one

may expect. As a result, computational complexity grows only linearly in the number of users.1

To explain how the sphere decoding is employed in this case, recall the tree-search interpre-

tation of the algorithm discussed in Section 2.1. We search for M vectors s
k, 1 ≤ k ≤ M , in

T -dimensional sphere of radius r. Each such vector allows for partition of form

s
k =






s
k
τ

s
k
d




 ,

where s
k
τ is known to the receiver. In fact, matrix Sτ is comprised of all such vectors sk

τ . For

each sk
τ , the sphere decoding algorithm then performs search for s

k minimizing (14). One can

interpret the search for s
k as a tree-search procedure where the root of the tree is fixed to sk

τ . This

is illustrated in Figure 2.

Note that by insisting on Tτ > 0, we sacrifice some rate. However, this is typically required in

order to resolve user ambiguity. Once this ambiguity is gone, sphere decoding can be employed

with no additional requirements on the structure of transmitted data.

4 Complexity of the algorithm and choice of the search radius

Choice of the search radius is crucial for the computational complexity of the sphere decoding

algorithm. If the radius is too small, we may not find anything and thus may have to repeat the

search with larger radius. On the other hand, if the radius is too big, the algorithm has to go through

many points which requires significant computation time.

1Actually, increase in the computational complexity is even less than linear in the number of users. The reason for
that is in the fact that preprocessing – i.e., finding ρ and performing the QR-factorization of (ρI − X∗X) – needs to
be done only once for all users.
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A simple choice of the radius could be based on the heuristic solutions to (3). For instance, an

obvious heuristic for solving (3) consists of finding the eigenvector corresponding to the maximum

eigenvalue of X∗X (or, equivalently, the dominant right singular vector of X) and then projecting

it onto symbol space (i.e., rounding each entry). This heuristic can be exploited as a starting point

of the sphere decoding search – the norm of the heuristic solution can be used as the search radius.

However, we cannot say much about the complexity of the sphere decoding algorithm for this

deterministic choice of the search radius.

Alternatively, when the distribution of the objective function of the minimization is known,

one can choose radius according to some parameters of that distribution. For instance, in [4],

objective function of the minimization problem that is being solved by sphere decoding has chi-

square distribution, and the search radius is chosen according to the variance of that distribution.

In particular, the variance is scaled in such a way that the probability of finding a point inside the

sphere is very high. Furthermore, the expected complexity of the sphere decoding algorithm for

such a choice of the radius is found and shown to be polynomial over a wide range of SNRs.

In this section, we show next that the objective function in (10) has a chi-square distribution

at high SNRs. Parameters of the distribution suggest a probabilistic choice of the search radius,

while the expected complexity results of [4, 5] imply practical feasibility of the sphere decoding

algorithm employed for solving (10). We start by proving the following lemma.

Lemma 1. At high SNR, s∗(ρI − X∗X)s is chi-square distributed.

Proof: Assume large SNR, i.e., SNR � 1. Consider the eigenvalue decomposition of X ∗X ,

X∗X =

[

û Ĝ

]






λ̂ 0

0 Λ̂











û
∗

Ĝ∗




 ,

where λ̂ denotes the largest eigenvalue, and where diagonal elements of Λ̂ are the remaining T −

1 eigenvalues in decreasing order. Taking ρ = λ̂, we can write the objective function of the
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minimization (10) as

s
∗(ρI − X∗X)s = s

∗(λ̂I − ûû
∗λ̂ − ĜΛ̂Ĝ∗)s

= s
∗[λ̂(I − ûû

∗) − ĜΛ̂Ĝ∗]s

= s
∗Ĝ(λ̂I − Λ̂)Ĝ∗

s (15)

where in going from the second to the third line above, we used I − ûû
∗ = ĜĜ∗. Furthermore,

X∗X = (X − hs
∗)∗(X − hs

∗)

= ‖h‖2
ss

∗ + sh
∗W + W ∗

hs
∗ + W ∗W (16)

= λ̂ûû∗ + ĜΛ̂Ĝ∗ (17)

On the other hand, for σ2 � 1 (i.e., SNR � 1),

X∗X = ‖h‖2T

(
s√
T

) (
s
∗

√
T

)

,

and hence, at high SNRs, the theoretical values of λ̂ and Λ̂ become

λ = T‖h‖2, Λ = 0. (18)

Note that, using (16), we obtain

Ĝ∗(X∗X)s = Ĝ∗(‖h‖2
ss

∗ + sh
∗W + W ∗

hs
∗ + W ∗W )s

= λ(Ĝ∗
s) + (Ĝ∗

s)h∗W s + Ĝ∗W ∗
hT + Ĝ∗W ∗W s (19)
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On the other hand, from (17),

Ĝ∗(X∗X)s = λ̂ Ĝ∗
û

︸︷︷︸

=0

û
∗ + Ĝ∗Ĝ

︸︷︷︸

=I

Λ̂Ĝ∗
s = Λ̂(Ĝ∗s) (20)

Combining (19) and (20) leads to

λ(Ĝ∗
s) + (Ĝ∗

s)h∗W s + Ĝ∗W ∗
hT + Ĝ∗W ∗W s = Λ̂(Ĝ∗s),

from which, letting σ2 → 0 and neglecting higher order terms (those whose power goes as σ4), we

obtain

λ(Ĝ∗
s) + Ĝ∗W ∗

hT ≈ 0 ⇒ λ(Ĝ∗
s) ≈ −Ĝ∗W ∗

hT,

which, since σ2 � 1, we can further write as λ(Ĝ∗
s) ≈ −G∗W ∗

hT . Therefore, for high SNRs,

(Ĝ∗
s) is circular Gaussian with zero mean. To find its variance, note that

TG∗W ∗
h = TG∗









W ∗

1
h

...

W ∗

Nh









,

where Wk denotes the kth column of W . Also, note that

E [W ∗

k hh
∗Wl] = E [h∗WlW

∗

k h] = σ2‖h‖2δk,l,

and thus Ĝ∗
s covariance matrix is given by

cov(Ĝ∗
s) =

T 2

λ2
cov(G∗W ∗

h)

=
T 2

λ2
‖h‖2σ2I =

T

λ
σ2I

= Tσ2(λI − Λ)−1,
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where Λ = 0 was inserted for convenience. Therefore,

(Ĝ∗
s) ∼ CN

[
0, Tσ2(λI − Λ)−1

]
.

At high SNR, λ ≈ λ̂, Λ ≈ Λ̂, and therefore approximately

(Ĝ∗
s) ∼ CN

[

0, T σ̂2(λ̂I − Λ̂)−1

]

,

where σ̂2 is an estimate of σ2. This estimate can be obtained (see, e.g., [8] and the references

therein) as the mean of the (N − 1) smallest eigenvalues of XX ∗ (or, alternatively, the smallest

(N − 1) non-zero eigenvalues of X∗X).

Therefore, we have just shown that the scaled term in (15), 1

T σ̂2 (s
∗Ĝ)(λ̂I − Λ̂)(Ĝ∗

s), is chi-

square distributed with (T − 1) degrees of freedom, and so is 1

T σ̂2 s
∗(ρI − X∗X)s.

We use the result of Lemma 1 to choose the size of the search radius for sphere decoding:

1. Single-user case, blind scheme:

Recall that the probability density function of chi-square distribution is given by an incom-

plete gamma function. Therefore, we can choose the search radius r2 = αT σ̂2 so that the

cumulative density function

∫ αT

0

γ(λ, T − 1)dλ = 1 − ε, (21)

where γ(·, ·) denotes an incomplete gamma function and 1 − ε is set close to 1, say, 0.99.

This means that the optimal point is inside the sphere with probabality 1−ε. If the algorithm

does not find any point inside the sphere, new radius needs to be calculated (say, by setting

1 − ε = 0.999).
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2. Single-user case, training-based scheme:

Denoting the above computed radius for the blind scheme by rb, the radius for the training-

based scheme, rt, may be chosen as

r2

t = r2

b − s∗τ (Γ11 − Γ12Γ
−1

22
Γ∗

12
)sτ .

We should further remark that |R| = 0 for ρ = λ̂. Therefore, to prevent any possible numerical

problems, we suggest choice ρ > λ̂, as stated in Section 2. Then the search radius should be

modified and it may be chosen as

r′ = (ρ − λ̂) + r,

where r is chosen as implied by (21).

5 Soft decoding of channel codes and other remarks

So far, we have assumed that the users send uncoded data. On the other hand, if the users employ

channel codes, we can use sphere decoding techniques for soft iterative decoding. To this end,

one can use modified sphere decoding (the FP-MAP algorithm) proposed in [13], or the list sphere

decoding proposed in [6]. Both modifications exploit the fact that sphere decoding finds all points

that satisfy sphere constaint, e.g., in the single-user case, finds all vectors s such that

‖X − hs‖2 ≤ r2.

(For the FP-MAP algorithm, the condition is ‖X − hs‖2 ≤ r2 +
∑

log p(si), where p(si) is the

a priori information about the ith component of s.) By an appropriate choice of the radius, one

can guarantee that the algorithm will return a number of points, which are then used to for a soft
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decision about the components of the vector s. Assuming that transmitter, prior to modulation,

employs channel codes (such as convolutional, turbo, LDPC, etc.), the soft decisions made by the

modified sphere decoder are then iterated with the soft decisions made by the channel decoder. For

brevity, we refrain ourselves from a more detailed discussion and refer the reader to [6], [13].

On another note, in this paper we have been primarily concerned with posing the problem of

the joint ML channel estimation and signal detection in a form to which sphere decoding can be

applied, and establishing relation with the existing analytical treatment of the complexity of sphere

decoding. There are many practical realizations of sphere decoding that perform even better. For

instance, the Schnorr-Euchner version of sphere decoding presented in [10], and further analyzed in

[11], the radius scheduling suboptimal scheme introduced in [12], etc. Applying those techniques

to further lower the complexity of sphere decoding in the context of joint ML estimation and

detection are highly desirable.

6 Simulation results

In this section, we give several examples that illustrate the performace and the corresponding

complexity of the sphere decoding algorithm in the previously described scenarios.

Example 1 [Single-user system]: Consider a single user which employs one antenna, while

the receiver employs N = 4 antennas. The data is transmitted in blocks of length T = 20. We

compare the BER performance of the sphere decoding algorithm and the iterative least squares with

projections (ILSP) algorithm (see, e.g., [2], [9]). [Simulation results are obtained by performing

Monte Carlo runs in which h and W are varied.] The ILSP essentially finds the least squares

estimate of the symbols and projects it onto the symbol space to obtain the estimate ŝ. Then

ŝ is used to update the estimate of the channel and the two aforementioned steps repeated until

convergence.

As shown in Figure 2, the sphere decoding algorithm significantly outperforms ILSP over the
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considered range of SNR. Figure 3 shows the complexity exponent, defined as

e = logT F,

where F denotes the total number of operations required to detect a vector s. (For the sphere

decoding, the total complexity is a sum of the operations for the QR factorization and the sphere

decoding search). It is evident that the sphere decoding has roughly cubic complexity over the

range of SNRs of interest.

Example 2 [Multi-user system]:

Example 3 [Single-user system, coded data]:

7 Summary and Conclusion

We considered the joint ML channel estimation and signal detection problem for single-input

multiple-output wireless channels. To reduce the computational effort, we formulated the design

problem so that it can be solved via the use of sphere decoding. It was shown that the algorithm,

when applied to the problem herein, has polynomial expected complexity.

We treated both sigle-user and multi-user scenarios. For the latter, we have shown that the

complexity of sphere decoding for joint ML estimation and detection in multi-user systems grows

only linearly with the number of users. Simulations illustrated performance of the algorithm and

its complexity. When compared with the best available heuristics, the sphere decoding provided

much better performance at comparable complexity over a wide range of SNR.

There are many directions for the future work and possible extensions of the current work. Ap-

plying more powerful variations of sphere decoding (such as Schnorr-Euchner and radius schedul-

ing techniques) to further lower the complexity of sphere decoding in the context of joint ML

estimation and detection is of high interest. Furthermore, extension to the case where both trans-
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mitter and receiver employ multi-antenna is highly desirable.
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Figure 1: Tree search of the sphere decoding algorithm.
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Figure 2: Sphere decoding for multi-user case.
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Figure 3: BER comparison of sphere decoding and ILSP algorithms, n = 4, T = 20.
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Figure 4: Expected complexity exponent, n = 4, T = 20.

20


