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Abstract

The optimal detection problem in multi-antenna wireless communication

systems often reduces to the problem of finding the least-squares solution

to a system of linear equations, where the unknown vector is comprised of

integers, but the matrix coefficients and the given vector are real-valued.

The problem is equivalent to finding the closest lattice point to a given

point and is known to be NP-hard. We review the most commonly used

solution techniques, and discuss their computational complexity. Among

heuristic algorithms, we focus on the nulling and cancelling techniques, and

their fast implementations based on linear estimation theory. We then show

that an exact method, the sphere decoding algorithm, often has expected

complexity implementable in practical systems. We also describe extensions

of sphere decoding techniques to receivers that make use of the so-called soft

information.

Keywords – wireless communications, multi-antenna systems, integer least-

squares problems, lattice problems, maximum-likelihood detection, NP hard,

nulling and cancelling, sphere decoding

†In multi-antenna wireless communication systems, data is transmitted

across channels that can often be modeled as linear and time-invariant.

The received signal in such systems is given by a linear combination of the

transmitted data symbols, corrupted by an additive Gaussian noise,

x = Hs + v, (1.1)
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where H is an N × M complex valued channel whose realization is known

to the receiver (and is estimated, for instance, by means of sending a known

training sequence), s is an M -dimensional transmitted symbol, and v is an

N -dimensional noise with C(0, σ2) Gaussian entries. Furthermore, we will

assume that the entries in the transmitted symbol vector s in (1.1) are points

in a QAM constellation.

For computational reasons, we shall replace the complex-valued model

(1.1) by its real-valued equivalent in the usual way. To this end, we define

the m = 2M dimensional vector s, and the n = 2N dimensional vectors x

and v, composed of the real and imaginary parts of s, x, and v, respectively,

as

s =
[

R(s)T I(s)T
]T

, x =
[

R(x)T I(x)T
]T

, v =
[

R(v)T I(v)T
]T

,

and the n × m matrix H

H =

[

R(H) I(H)

−I(H) R(H)

]

.

Then the real-valued equivalent of the model (1.1) is given by

x = Hs + v. (1.2)

At a receiver, a detector forms an estimate of the transmitted symbol, ŝ.

The optimal detector minimizes the average probability of error, i.e., it min-

imizes P (ŝ 6= s). This is achieved by the maximum-likelihood (ML) design

which, under the previous assumptions, performs the non-linear optimiza-

tion

min
s∈Dm

L

‖x − Hs‖2, (1.3)

where Dm
L denotes the m-dimensional square lattice spanned by an L-PAM

constellation in each dimension. Furthermore, to obtain the soft decisions

required by iterative decoding schemes in systems employing space-time or

error-correcting codes, MIMO soft-decoding algorithms also often have to

solve (1.3) or its modifications.

Problem (1.3), typically referred to as an integer least-squares problem,

has a simple geometric interpretation. As the entries of s run over the

points in the L-PAM constellation, s spans the “rectangular” m-dimensional

lattice, Dm
L . However, for any given lattice-generating matrix H, the n-

dimensional vector Hs spans a “skewed” lattice. Thus, given the skewed

lattice Hs and the vector x ∈ Rn, the integer least-squares problem is to

find the “closest” lattice point (in a Euclidean sense) to x, as illustrated in

Figure 1.1.
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Fig. 1.1. Geometric interpretation of the integer least-squares problem

Problem (1.3) is, for a general H, known to be exponentially complex

both in the worst-case sense [Grotschel et al., 1993] as well as in the average

sense [Ajtai, 1998].

Optimal detection reduces to solving integer least-squares problems not

only for the simple uncoded transmission problem modeled by (1.2), but

also in the context of lattice codes [Banihashemi and Khandani, 1998; Agrell

et al., 2002], CDMA systems [Brutel and Boutros, 1999; Viterbo and Boutros,

2000], multi-antenna systems employing space-time codes [Foschini, 1996;

Damen et al., 2000; Hassibi and Hochwald, 2002], etc. Many of these ap-

plications are characterized by an affine mapping between the transmitted

and the received signal, and thus again allow for the use of the model (1.2),

where H now represents an equivalent channel.

In this chapter, we review the MIMO receiver algorithms for solving (1.3).

In particular, the solution techniques that we discuss are the following:

• heuristic techniques, which provide approximate but readily implementable

low-complexity solutions to the integer least-squares problem, and

• exact methods that, by exploiting the structure of the lattice, generally

obtain the solution faster than a straightforward exhaustive search.

It is a pleasantly surprising fact that the exact techniques turn out to have

complexity comparable to that of the heuristic techniques over a useful range

of channel signal to noise ratios (SNR) (see Section 1.2).

1.1 Heuristic Techniques

Finding the exact solution of (1.3) is, in general, NP hard. Therefore, many

wireless communication systems employ some approximations, heuristics or
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combinations thereof in often a manageable computational complexity. We

briefly discuss some of these techniques.

Zero-forcing:

Solve the unconstrained least-squares problem to obtain ŝ = H †x, where

H† denotes the pseudo-inverse of H. Since the entries of ŝ will not necessarily

be integers, round them off to the closest integer (a process referred to as

slicing) to obtain

ŝB =
[

H†x
]

Z
. (1.4)

The above ŝB is often called a Babai estimate [Grotschel et al., 1993]. In

the communications literature, this procedure is referred to as zero-forcing

equalization.

The complexity of finding the Babai estimate is essentially determined by

the complexity of finding the pseudo-inverse of the matrix H in (1.4). The

simplest way of calculating the pseudo-inverse is by means of QR factoriza-

tion, H = QR. It can also be calculated in a more stable way (which avoids

inverting the upper triangular matrix R) by means of singular value decom-

position (SVD) of H. In either case, assuming that H is square (i.e, n = m),

the complexity of finding the Babai estimate is of cubic order, O(m3).

Nulling and cancelling:

In this method, the Babai estimate is used for only one of the entries of

s, say the first. Then this entry, s1, is assumed to be known and its effect is

cancelled out to obtain a reduced-order integer least-squares problem with

m−1 unknowns. The process is repeated to find s2, etc. In communications

parlance this is known as decision-feedback equalization.

We shall find it convenient to denote the partition of the channel matrix

H into rows and columns as

H = [h1 h2 . . . hm] =







H1
...

Hn






.

The nulling and cancelling algorithm can be stated by the following pseudo-
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code:

y1 := x

for k = 0 to m − 1

find weighting vector wm−k

ŝm−k := slice(wm−kyk+1)

yk+2 = yk+1 − hm−kŝm−k

end

In the algorithm, for each value of the index k, the entries of the auxiliary

vector yk+1 are weighted by the components of the weight vector wm−k and

linearly combined to account for the effect of the interference. Depending on

the criterion chosen for the design of wm−k (i.e., for performing the nulling

operation), we can distinguish between the following cases:

(i) Zero-forcing (ZF) nulling

In this case, interference from the yet undetected symbols is nulled.

Denoting

Hm−k =
[

h1 h2 . . . hm−k

]

,

this condition can be stated as

H∗
m−kwm−k = em−k,

where em−k is a (m − k) × 1 column vector that consists of all zeros

except for the (m−k)-th entry whose value is 1. The weighting vector

is then given by the least-norm solution of the form

wm−k = H†
m−kem−k,

where (·)† denotes the pseudo-inverse, i.e., H†
m−k = Hm−k(H

∗
m−kHm−k)

−1.

(ii) Minimum mean-square error (MMSE) nulling

The objective in MMSE nulling is to minimize the expected mean-

square error between the receiver’s estimate and the transmitted sym-

bol. This can be expressed as

E
[

sm−ky
∗
k+1

]

= w∗
m−kE

[

yk+1y
∗
k+1

]

.

Furthermore, we shall assume that the previous decisions made by

the detector were correct, i.e., ŝm−k = sm−k. Defining

s1:m−k = [s1 s2 . . . sm−k],

we can write

yk+1 = Hm−ks1:m−k + v,
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where v is the noise vector in (1.2). Furthermore, assuming that the

transmitted symbol sequence is spatially white and has variance Es,

we readily find that the MMSE nulling vector is given by

wm−k =

(

H∗
m−kHm−k +

1

ρ
I

)−1

hm−k,

where ρ = Es

σ2 denotes the signal-to-noise ratio (SNR).

The computational complexity is again determined by the complexity of

solving the underlying unconstrained least-squares problem, i.e., calculating

the pseudo-inverse at each step of the algorithm. When m = n, we need to

evaluate the pseudo-inverse of a series of matrices with dimensions m×(m−
k), where k = m, m−1, . . . , 1. The computational complexity of performing

this series of operations is clearly of the fourth order, i.e., O(m4), an order

of magnitude higher than the complexity of finding the Babai estimate.

Nulling and cancelling with optimal ordering.

The nulling and cancelling algorithm can suffer from error-propagation: if

s1 is estimated incorrectly it can have an adverse effect on estimation of the

remaining unknowns s2, s3, etc. To minimize the effects of error propagation,

it is advantageous to perform nulling and cancelling from the “strongest” to

the “weakest” signal. This is the method proposed for V-BLAST [Foschini,

1996].

Consider, for instance, the MMSE nulling and cancelling algorithms. To

perform optimal ordering, we consider the covariance matrix of the estima-

tion error s − ŝ,

P = E(s − ŝ)(s − ŝ)∗ =

(

H∗H +
1

ρ
I

)−1

.

Consider the entries of the estimated symbol ŝ, i.e., {ŝi, i = 1, 2, . . . , m}.
The “strongest” signal, corresponding to the “best” estimate, is the one

with the smallest variance, i.e., si for which Pii is the smallest. If we reorder

the entries of s so that the strongest signal is sm, then the estimate ŝm is

going to be better than it would be for any other ordering of the entries

in s. This ordering we perform at each step of the nulling and cancelling

algorithm.

The computational complexity of the algorithm is the same as the com-

plexity of the standard nulling and cancelling algorithm, namely O(m4),

augmented by the complexity of the ordering operation, which, for the set

of k elements, is O(k3).
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Square-root algorithm for nulling and cancelling:

The increased complexity of the nulling and cancelling algorithm as com-

pared to the zero-forcing algorithm is that the former requires repeated

evaluation of the pseudo-inverse for each deflated channel matrix. It is

of interest to seek cost effective implementations of the algorithm so that

a pseudo-inverse at a particular stage can be efficiently deduced from the

pseudo-inverse computed at the previous stage. To this end, using the array

algorithm ideas of linear estimation theory (see, e.g., [Kailath et al., 2000]),

a so-called square-root algorithm was proposed in [Hassibi, 1999].

Such algorithms are characterized by numerical stability and robustness

achieved by increasing the dynamic range of the quantities involved, their

condition numbers, etc. In particular, this is obtained by insisting to

• Avoid squaring objects, such as computation of H∗H.

• Avoid inverting objects.

• Make as much use as possible of unitary transformations.

For the following discussion, it will be convenient to write the basic linear

least-mean-squares estimate of s, given the observation x = Hs + v, as

ŝ = (H∗H +
1

ρ
I)−1H∗x =

[

H
1√
ρIm

]†
[

x

0

]

= H†
1x, (1.5)

where H†
1 denotes the first n columns of the pseudo-inverse of the augmented

channel matrix in (1.5).

To start the use of unitary transformations, and to avoid squaring H,

consider the QR decomposition of the augmented channel matrix

[

H
1√
ρIm

]

= QR =

[

Q1

Q2

]

R,

where Q is an (n + m) × m matrix with orthonormal columns, and R is

m × m non-singular and upper-triangular. Note then that

P = (H∗H +
1

ρ
Im)−1 = (R∗R)−1 = R−1R−∗.

Thus we can identify R−1 as a square-root of P , say,

R−1 = P 1/2, P 1/2P ∗/2 = P.
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The pseudo-inverse of the augmented channel matrix now becomes
[

H
1√
ρIm

]†

= R−1Q∗ = P 1/2Q∗,

and thus

H†
1 = P 1/2Q∗

1.

Therefore, given P 1/2 and Q1, we can compute both the pseudo-inverse

and the error covariance matrix, required for the nulling operation and the

optimal ordering. The problem becomes one of finding the best way to

compute P 1/2 and Q1.

Recall that the optimal ordering is performed according to the values of

the diagonal entries of P . This information can also be deduced from P 1/2.

Since the diagonal entries of P are simply the squared length of the rows of

P 1/2, the minimum diagonal entry of P corresponds to the minimum length

row of P 1/2.

Now assume that the entries of the transmitted signal s have been re-

ordered so that the m-th diagonal entry is the smallest. Consider a unitary

transformation Σ that rotates (or reflects) the m-th row of P 1/2 to lie along

the direction of the m-th unit vector, i.e.,

P 1/2Σ =

[

P (m−1)/2 P
(m−1)/2
m

0 p
1/2
m

]

, (1.6)

where p
1/2
m is a scalar. It was shown in [Hassibi, 1999] that the block upper

triangular square-root factor of P in (1.6), P (m−1)/2, is a square-root factor

of Pm−1. Therefore, to find the square-root factor of P (m−1), one needs to

make P block upper triangular. The next signal to be detected is selected

by finding the minimum length row of P (m−1)/2. The rows of P (m−1)/2 are

then reordered so that this minimum length row corresponds to the last

(m− 1)-th row, and the upper block triangularization of P (m−1)/2 gives the

next square-root factor, P (m−2)/2, and so on.

The process described above results in upper triangularization of the

square root matrix P 1/2. Let q
1,i

, i = 1, . . . , m, denote the resulting columns

of Q1, i.e.,

Q1 =
[

q
1,1

. . . q
1,m

]

.

It was shown in [Hassibi, 1999] that the nulling vectors for the signals s1 to

sm are given by

H†
1,i = p

1/2
i q∗

1,i
,
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where p
1/2
i is the i-th diagonal entry of P 1/2. Therefore, the nulling vectors

are simply found by scaling the columns of Q1 by the diagonals of P 1/2.

Moreover, there is no need for recomputing P 1/2 and Q1 for the deflated

matrices H(m−k), k = 1, . . . , m− 1. The information needed for the optimal

ordering and finding nulling vectors is already implicitly contained in P 1/2

and Q1.

What remains to be specified is the computation of P 1/2 and Q1. Note

that we can write

P = (
n
∑

j=1

H∗
j Hj +

1

ρ
I)−1.

Denoting

P|i ,





i
∑

j=1

H∗
j Hj +

1

ρ
I





−1

, P|n = P,

and using a matrix inversion lemma, we obtain the so-called Ricccati recur-

sion of the RLS (recursive-least-squares) algorithm ([Kailath et al., 2000],

Section 2.6),

P|i = P|i−1 −
P|i−1H

∗
i HiP|i−1

re,i
, re,i = 1 + HiP|i−1H

∗
i , P|0 = ρI. (1.7)

On the other hand, to find a recursion for H†
1 , note that the least-mean-

square estimate of the signal, ŝ = P 1/2Q∗
1x = H†

1x, satisfies the recursion

([Kailath et al., 2000], Lemma 2.6.1)

ŝ|i = ŝ|i−1 + K̄p,ir
−1/2
e,i (xi − Hiŝ|i−1), K̄p,i = P|i−1H

∗
i r

−∗/2
e,i , ŝ|0 = 0.

Then the recursion for the pseudoinverse H†
1 = P 1/2Q1 can be written as

H†
1|i = H†

1|i−1+K̄p,ir
1/2
e,i (e∗i−HiH

†
1|i−1), K̄p,i = P|i−1H

∗
i r

−∗/2
e,i , H†

1|0 = 0m×n.

(1.8)

Note that H†
1 = H†

1|n.

One can further improve (1.7), (1.8), by ensuring direct propagation of

P 1/2. Incorporating these improvements, the algorithm of [Hassibi, 1999]

can be summarized as follows:

(i) Compute P 1/2 and Q1.

Propagate a square-root algorithm of the following form:
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1 HiP
1/2
|i−1

0 P
1/2
|i−1

−ei Bi−1






Θi =







r
1/2
e,i 0

K̄p,i P
1/2
|i

Ai Bi






, P

1/2
|0 =

√
ρI, B0 = 0n×m,

where ei is the i-th unit vector of dimension n, and Θi is any unitary

transformation that block lower triangularizes the pre-array. After n

steps, we obtain

P 1/2 = P
1/2
|n and Q1 = Bn.

(ii) Find the minimum length row of P 1/2 and permute it to be the last

(m-th) row. Permute s accordingly.

(iii) Find a unitary Σ that makes P 1/2Σ block upper triangular,

P 1/2Σ =

[

P (m−1)/2 P
(m−1)/2
m

0 p
1/2
m

]

.

(iv) Update Q1 to Q1Σ.

(v) The nulling vector for the m-th signal is given by p
1/2
m q∗1,m, where q1,m

denotes the m-th column of Q1.

(vi) Go back to step 3, but now with P (m−1)/2 and Q
(m−1)
1 , (the first

m − 1 columns of Q1).

The square-root algorithm achieves all the desired computational objec-

tives. In particular, it avoids computing the pseudo-inverse for each deflated

channel matrix, avoids squaring or inverting any quantities, and makes ex-

tensive use of unitary transformations. Using the algorithm, the compu-

tational complexity of the nulling and cancelling receiver can be reduced

from O(m4) to O(m3), which is the complexity of the simple zero-forcing

algorithm discussed earlier.

Solving relaxed convex optimization problems:

Another heuristic approach to maximum-likelihood detection is via con-

vex optimization techniques. The integer least-squares problem is essen-

tially transformed into an optimization problem with both objective and

constraint being convex functions. To illustrate the technique, we consider

the detection problem where the entries in the symbol s are chosen from

4 − QAM constellations, i.e., for each entry in the symbol vector s it holds

that s2
i = 1.
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Since

‖x − Hs‖2 = sT HT Hs − 2xT HT s + xT x

= TrHT HS − 2xT HT s + xT x,

where S = ssT , the integer least-squares problem can be expressed as

min TrHT HS − 2xT HT s + xT x

subject to Sii = 1, S � ssT , rank(S) = 1

Using

S � ssT ⇔
[

S s

sT 1

]

� 0

and relaxing the rank one constraint, one can obtain a semi-definite program

(with variables S, s) of the form

min TrHT HS − 2xT HT s + xT x

subject to Sii = 1,

[

S s

sT 1

]

� 0.

Solving this SDP for s, an approximate solution to the detection problem

can be found as ŝ = sgn(s) (recall that the algorithm is only for s2
i = 1).

The complexity of solving the SDP is roughly cubic, O(m3).

1.2 Exact Methods: Sphere Decoding

With an abundance of heuristic methods presented in the previous section,

it is natural to ask how close they come to the optimal solution? In Fig-

ure 1.2, the bit-error rate (BER) performance of an exact solution is com-

pared with the ordered nulling and cancelling (N/C) for a multi-antenna

system with M = 8 transmit and N = 12 receive antennas employing

16-QAM modulation scheme. Clearly, the ML receiver significantly out-

performs N/C; thus there is merit in studying exact solutions. The most

obvious one is to search over the entire lattice which invariably requires an

exponential search. There do, however, exist exact methods that are more

sophisticated than exhaustive search and can be employed for an arbitrary

H. Such are Kannan’s algorithm [Kannan, 1983] (which searches only over

restricted parallelograms), the KZ algorithm [Lagarias et al., 1990] (based

on the Korkin-Zolotarev reduced basis [Korkin and Zolotarev, 1873]) and

the sphere decoding algorithm of Fincke and Pohst [Pohst, 1981; Fincke and

Pohst, 1985]. We will focus on the latter, i.e., on solving (1.3) with the
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Fig. 1.2. Bit error performance of a sphere decoding vs. nulling and cancelling with
optimal ordering, M = 8, N = 12, 16-QAM.

sphere decoding algorithm. [For the system in Figure 1.2, finding the exact

solution by means of exhaustive search requires testing 4.3× 109 points and

is thus practically infeasible. The exact performance curve in Figure 1.2

is obtained with the sphere decoding algorithm, which on the other hand

requires computational effort implementable in practice.]

The basic premise in sphere decoding is rather simple: attempt to search

over only lattice points s ∈ Dm
L that lie in a certain sphere of radius d

around the given vector x, thereby reducing the search space and hence the

required computational effort (see Figure 1.3). Clearly, the closest lattice

point inside the sphere will also be the closest lattice point for the whole

lattice. However, closer scrutiny of this basic idea leads to two key questions.

Fig. 1.3. Idea behind the sphere decoder
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(i) How to choose d? Clearly, if d is too large, we may obtain too many

points and the search may remain exponential in size, whereas if d is

too small, we may obtain no points inside the sphere.

A natural candidate for d is the covering radius of the lattice, de-

fined to be the smallest radius of spheres centered at the lattice points

that cover the entire space. This is clearly the smallest radius that

guarantees the existence of a point inside the sphere for any vector

x. The problem with this choice of d is that determining the covering

radius for a given lattice is itself NP hard [Conway and Sloane, 1993].

Another choice is to use d as the distance between the Babai esti-

mate and the vector x, i.e., d = ‖x − HŝB‖, since this radius guar-

antees the existence of at least one lattice point (here the Babai esti-

mate) inside the sphere. However, it may happen that this choice of

radius will yield too many lattice points lying inside the sphere.

(ii) How can we tell which lattice points are inside the sphere? If this

requires testing the distance of each lattice point from x (to determine

whether it is less than d), then there is no point in sphere decoding

as we shall still need an exhaustive search.

Sphere decoding does not really address the first question. [We shall ad-

dress it later by exploiting statistical assumptions in our model.] However,

it does propose an efficient way to answer the second one. The basic ob-

servation is the following. Although it is difficult to determine the lattice

points inside a general m-dimensional sphere, it is trivial to do so in the

(one-dimensional) case of m = 1. The reason is that a one-dimensional

sphere reduces to the endpoints of an interval and so the desired lattice

points will be the integer values that lie in this interval. We can use this

observation to go from dimension k to dimension k + 1. Suppose we have

determined all k-dimensional lattice points that lie in a sphere of radius d.

Then for any such k-dimensional point, the set of admissible values of the

k + 1-th dimensional coordinate that lie in the higher dimensional sphere of

the same radius d forms an interval.

The above means that we can determine all lattice points in a sphere

of dimension m and radius d by successively determining all lattice points

in spheres of lower dimensions 1, 2, . . . , m and the same radius d. Such an

algorithm for determining the lattice points in an m-dimensional sphere es-

sentially constructs a tree where the branches in the k-th level of the tree

correspond to the lattice points inside the sphere of radius d and dimension

k—see Figure 1.4. Moreover, the complexity of such an algorithm will de-
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pend on the size of the tree, i.e., on the number of lattice points visited by

the algorithm in different dimensions.
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Fig. 1.4. Sample tree generated to determine lattice points in a 4-dimensional
sphere.

With this brief discussion we can now be more specific about the problem

at hand. To this end, we shall assume that n ≥ m, i.e., that there are at

least as many equations as unknowns in x ≈ Hs. Note that the lattice point

Hs lies inside a sphere of radius d centered at x if, and only if,

d2 ≥ ‖x − Hs‖2 . (1.9)

In order to break the problem into the subproblems described above, it is

useful to introduce the QR factorization of the matrix H

H = Q

[

R

0(n−m)×m

]

, (1.10)

where R is an m × m upper triangular matrix and Q =
[

Q1 Q2

]

is an

n × n orthogonal matrix. The condition (1.9) can then be written as

d2 ≥
∥

∥

∥

∥

x −
[

Q1 Q2

]

[

R

0

]

s

∥

∥

∥

∥

2

= ‖Q∗
1x − Rs‖2 + ‖Q∗

2x‖2 ,

where (·)∗ here denotes Hermitian matrix transposition. Or in other words,

d2 − ‖Q∗
2x‖2 ≥ ‖Q∗

1x − Rs‖2 . (1.11)

Defining y = Q∗
1x and d

′2 = d2 − ‖Q∗
2x‖2 allows us to rewrite this as

d
′2 ≥

m
∑

i=1



yi −
m
∑

j=i

ri,jsj





2

, (1.12)

where ri,j denotes an (i, j) entry of R. Here is where the upper triangular
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property of R comes in handy. The right-hand side (RHS) of the above

inequality can be expanded as

d
′2 ≥ (ym − rm,msm)2 + (ym−1 − rm−1,msm − rm−1,m−1sm−1)

2 + . . . (1.13)

where the first term depends only on sm, the second term on {sm, sm−1}
and so on. Therefore a necessary condition for Hs to lie inside the sphere

is that d
′2 ≥ (ym − rm,msm)2. This condition is equivalent to sm belonging

to the interval
⌈

−d
′
+ ym

rm,m

⌉

≤ sm ≤
⌊

d
′
+ ym

rm,m

⌋

, (1.14)

where d·e denotes rounding to the nearest larger element in the L-PAM

constellation which spans the lattice. Similarly, b·c denotes rounding to the

nearest smaller element in the L-PAM constellation which spans the lattice.

Of course, (1.14) is by no means sufficient. For every sm satisfying (1.14),

defining d
′2
m−1 = d

′2 − (ym − rm,msm)2 and ym−1|m = ym−1 − rm−1,msm, a

stronger necessary condition can be found by looking at the first two terms

in (1.13), which leads to sm−1 belonging to the interval
⌈

−d
′

m−1 + ym−1|m
rm−1,m−1

⌉

≤ sm−1 ≤
⌊

d
′

m−1 + ym−1|m
rm−1,m−1

⌋

. (1.15)

One can continue in a similar fashion for sm−2, and so on until s1, thereby

obtaining all lattice points belonging to (1.9).

We can now formalize the algorithm.

Input: Q =
[

Q1 Q2

]

, R, x, y = Q∗
1x, d.

1. Set k = m, d
′2
m = d2 − ‖Q∗

2x‖2, ym|m+1 = ym

2. (Bounds for sk) Set UB(sk) = bd
′

k
+yk|k+1

rk,k
c, sk = d−d

′

k
+yk|k+1

rk,k
e − 1

3. (Increase sk) sk = sk + 1. If sk ≤ UB(sk) go to 5, else go to 4.

4. (Increase k) k = k + 1; if k = m + 1 terminate algorithm, else go to 3.

5. (Decrease k) If k = 1 go to 6. Else k = k−1, yk|k+1 = yk −
∑m

j=k+1 rk,jsj ,

d
′2
k = d

′2
k+1 − (yk+1|k+2 − rk+1,k+1sk+1)

2, and go to 2.

6. Solution found. Save s and its distance from x, d
′2
m − d

′2
1 + (y1 − r1,1s1)

2,

and go to 3.

Note that the subscript k|k + 1 in yk|k+1 above is used to denote the

received signal yk adjusted with the already estimated symbol components

sk+1, . . . , sm.

We also need a method to determine the desired radius d. Here is where

our statistical model of the communication system helps. Note that 1
σ2 ·
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‖v‖2 = 1
σ2 · ‖x − Hs‖2 is a χ2 random variable with n degrees of freedom.

Thus we may choose the radius to be a scaled variance of the noise,

d2 = αnσ2,

in such a way that with a high probability we find a lattice point inside the

sphere,
∫ αn/2

0

λn/2−1

Γ(n/2)
e−λdλ = 1 − ε,

where the integrand is the probability density function of the χ2 random

variable with n degrees of freedom, and where 1− ε is set to a value close to

1, say, 1−ε = 0.99. [If the point is not found, we can increase the probability

1 − ε, adjust the radius, and search again.]

With the above choice of the radius, and because of the random nature of

H and v, the computational complexity of the sphere decoding algorithm is

clearly a random variable. Moreover, and rather strikingly, we can compute

the mean and the variance of the complexity. We omit the details, but note

that in [Hassibi and Vikalo, 2005], the mean value is calculated

(i) for a 2-PAM constellation to be

C(m, ρ, d2) =
m
∑

k=1

fp(k)
k
∑

l=0

(

k

l

)

γ

(

αn

2(1 + 12ρl
m(L2−1)

)
,
n − m + k

2

)

(1.16)

(ii) for a 4-PAM constellation to be

C(m, ρ, d2) =
m
∑

k=1

fp(k)
∑

q

1

2k

k
∑

l=0

(

k

l

)

gkl(q)γ

(

αn

2(1 + 12ρq
m(L2−1)

)
,
n − m + k

2

)

,

(1.17)

where gkl(q) is the coefficient of xq in the polynomial

(1 + x + x4 + x9)l(1 + 2x + x4)k−l.

The number of elementary operations per visited point in (1.16)-

(1.17) is fp(k) = 2k+9+2L, and γ(·, ·) denotes an incomplete gamma

function.

Similar expressions can be obtained for 8-PAM, 16-PAM, etc., constella-

tions.

Let C(m, ρ) denote the expected complexity of actually finding the solu-

tion, i.e., the expected complexity of the search where we keep increasing
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radii until finding a lattice point. Figure 1.5 shows the expected complex-

ity exponent defined as ec = logm(C(m, ρ)). For a wide range of SNR,

ec ≤ 4, and thus in such SNR regions the expected complexity of the sphere

decoding is comparable with the complexity of the heuristic techniques.
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Fig. 1.5. The complexity exponent as a function of ρ for m = n = 10 and L =
2, 4, 8, 16

Figure 1.5 shows the complexity as a function of SNR for m = 10 and

L2-QAM constellations with L = 2, 4, 8, 16. A particular modulation scheme

can be used only in the range of SNRs that supports transmission at the rate

corresponding to that modulation scheme, i.e., the rate has to be smaller

than the ergodic capacity of the MIMO channel,

Cerg = E {log det (IM + H∗H)} .

On the other hand, the complexity of the sphere decoding algorithm for

such SNRs is practically feasible (as noted above, it is often ec ≤ 4). For

instance, although the complexity for L = 16 appears to be high over a wide

range of SNR, it is only for ρ > ρ40 = 27.9dB that this modulation scheme

can be employed (ρ40 is the SNR for which the capacity Cerg = 40 = R4(L =

16)). The complexity exponent at ρ40 and L = 16 is ec ≈ 4.4. The other

SNRs marked on Figure 1.5, ρ30 = 21.6dB, and ρ20 = 14.9dB, have similar

meanings (only for L = 8 and L = 4, respectively).

On another note, the expected complexity above accounts for finding all

the lattice points in the sphere. The point among those found that is closest

to x is the solution to (1.3). There are some more efficient variations on

the basic sphere decoding algorithm that potentially avoid having to search
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over all the lattice points inside the sphere. We briefly mention two of them

here. In both cases, of course, the expected complexity will be no greater

than that of the basic sphere decoding algorithm; however, exact calculation

of the expected complexity appears to be difficult.

• Sphere decoding with radius update.

Whenever the algorithm finds a point sin inside the sphere (note that

Hsin is not necessarily the closest point to x), we set the new radius of the

sphere d2 = ‖x − Hsin‖2 and restart the algorithm. Such radius update

may be particularly useful at lower SNRs, where the number of points in

the initial sphere is relatively large.

• Schnorr-Euchner version of sphere decoding.

This strategy was proposed in [Schnorr and Euchner, 1994]. The likeli-

hood that the point will be found early is maximized if the search at each

dimension k is performed from the middle of the allowed interval for sk,

and if the radius update strategy (as described above) is used. More de-

tails about the Schnorr-Euchner version of the sphere decoding, and some

improvements thereof, can be found in [Agrell et al., 2002; Damen et al.,

2003].

1.3 Soft MIMO Receive Algorithms

Multi-antenna wireless communication systems that protect transmitted

data by either imposing error-correcting or space-time codes require prob-

abilistic (soft) information at the MIMO receiver. This soft information is

typically used to iterate between the receiver and the inner decoder (which

recovers information from the error-correcting or the space-time encoder).

In [Stefanov and Duman, 2001], turbo-coded modulation for multi-antenna

systems was studied, and heuristics based on N/C employed to obtain soft

channel information. It was also noted there that if the soft information is

obtained by means of an exhaustive search, the computational complexity

grows exponentially in the number of transmit antennas and in the size of the

constellation. Hence, for high-rate systems with large number of antennas,

the exhaustive search proves to be practically infeasible.

In [Vikalo et al., 2004; Hochwald and ten Brink], two variations of the

sphere decoding algorithm were proposed for obtaining the soft information.

Both variations reduce the complexity of estimating the soft information by

employing sphere decoding ideas to constrain the number of lattice points

used for computing the required likelihood ratios. In [Hochwald and ten
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Brink], sphere decoding was employed to obtain a list of bit sequences that

are “good” in a likelihood sense. This list is then used to generate soft

information, which is subsequently updated by iterative channel decoder

decisions. In [Vikalo et al., 2004], a MIMO detector based on a modification

of the original Fincke-Pohst algorithm was proposed to efficiently obtain soft

information for the transmitted bit sequence. This modified Fincke-Pohst

algorithm essentially performs a maximum a posteriori (MAP) search, i.e.,

it solves

min
s∈Dm

L

[

‖x − Hs‖2 −
m
∑

k=1

log p(sk)

]

,

where p(sk) are a priori information for each symbol in the transmitted

sequence. The MAP search is used to obtain a set of lattice points that

contribute significantly to the likelihood ratios (for more details, see [Vikalo

et al., 2004]). These likelihood ratios (i.e., the required soft information)

are then passed onto the channel decoder. The channel decoder’s output is

then fed back to the Fincke-Pohst MAP (FP-MAP) for the next iteration.

As discussed above, to obtain computationally efficient receiver schemes,

the MIMO communication systems utilizing soft information may require

modifications of the basic sphere decoding algorithm. Other MIMO systems

may require such modifications as well. For FIR channels, the sphere decod-

ing algorithm does not at all exploit the Markovian property of the channel,

which is precisely what the Viterbi algorithm does. Practical algorithms

that combine both structures (the lattice and the Markovian property) are

highly desirable. On the other hand, when error-correcting codes are cou-

pled with analog channels (through some modulation scheme) problems of

joint detection and decoding arise. Some preliminary work addressing both

these issues can be found in [Vikalo, 2003].
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